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Abstract

Recent advances in machine learning have sig-001
nificantly impacted the field of information ex-002
traction, with Large Language Models (LLMs)003
playing a pivotal role in extracting structured in-004
formation from unstructured text. Prior works005
typically represent information extraction as006
triplet-centric and use classical metrics such as007
precision and recall for evaluation. We reformu-008
late the task to be entity-centric, enabling the009
use of diverse metrics that can provide more010
insights from various perspectives. We con-011
tribute to the field by introducing Structured012
Entity Extraction (SEE) and proposing the Ap-013
proximate Entity Set OverlaP (AESOP) metric,014
designed to appropriately assess model perfor-015
mance. Later, we introduce a new model that016
harnesses the power of LLMs for enhanced ef-017
fectiveness and efficiency by decomposing the018
extraction task into multiple stages. Quantita-019
tive and human side-by-side evaluations con-020
firm that our model outperforms baselines, of-021
fering promising directions for future advance-022
ments in structured entity extraction.023

1 Introduction024

Information extraction refers to a broad family025

of challenging natural language processing (NLP)026

tasks that aim to extract structured information027

from unstructured text (Cardie, 1997; Eikvil, 1999;028

Chang et al., 2006; Sarawagi et al., 2008; Grish-029

man, 2015; Niklaus et al., 2018; Nasar et al., 2018;030

Wang et al., 2018; Martinez-Rodriguez et al., 2020).031

Examples of information extraction tasks include:032

(i) Named-entity recognition (Li et al., 2020), (ii) re-033

lation extraction (Kumar, 2017), (iii) event extrac-034

tion (Li et al., 2022), and (iv) coreference reso-035

lution (Stylianou and Vlahavas, 2021; Liu et al.,036

2023), as well as higher-order challenges, such037

as automated knowledge base (KB) and knowl-038

edge graph (KG) construction from text (Weikum039

and Theobald, 2010; Ye et al., 2022a; Zhong et al.,040

2023). The latter may in turn necessitate solving a041

Figure 1: Illustration of the structured entity extraction,
an entity-centric formulation of (closed) information
extraction. Given a text description as well as some
predefined schema containing all the candidates of entity
types and property keys, we aim to output a structured
json for all entities in the text with their information.

combination of the former more fundamental ex- 042

traction tasks as well as require other capabilities 043

like entity linking (Shen et al., 2014, 2021; Oliveira 044

et al., 2021; Sevgili et al., 2022). 045

Previous formulations and evaluations of informa- 046

tion extraction have predominantly centered around 047

the extraction of ⟨subject, relation, object⟩ triplets. 048

The conventional metrics used to evaluate triplet- 049

level extraction, such as recall and precision, how- 050

ever, might be insufficient to represent a model’s 051

understanding of the text from a holistic perspec- 052

tive. For example, consider a paragraph that men- 053

tions ten entities, where one entity is associated 054

with 10 relations as the subject, while each of the 055

other nine entities is associated with only 1 relation 056

as the subject. Imagine a system that accurately 057

predicts all ten triplets for the heavily linked entity 058

but overlooks the other entities. Technically, this 059

system achieves a recall of more than 50% (i.e., 060

10 out of 19) and a precision of 100%. However, 061

when compared to another system that recognizes 062

one correct triplet for each of the ten entities and 063

achieves the same recall and precision, it becomes 064

evident that both systems, despite showing identi- 065
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cal evaluation scores, offer significantly different066

insights into the text comprehension. Moreover,067

implementing entity-level normalization within tra-068

ditional metrics is not always easy due to chal-069

lenges like coreference resolution (Stylianou and070

Vlahavas, 2021; Liu et al., 2023), particularly in071

scenarios where multiple entities share the same072

name or lack primary identifiers such as names.073

Therefore, we advocate for alternatives that can074

offer insights from diverse perspectives.075

In this work, we propose Structured Entity076

Extraction (SEE), an entity-centric formulation of077

(closed) information extraction, which facilitates078

diverse evaluations. We define a structured entity079

as a named entity with associated properties and re-080

lationships with other named-entities. Fig. 1 shows081

an illustration of the structured entity extraction.082

Given a text description, we aim to first identify the083

two entities “Bill Gates” and “Microsoft”. Then,084

given some predefined schema on all possible entity085

types and property keys, the exact types, property086

keys, property values on all identified entities in087

the text are expected to be predicted, as well as the088

relations between these two entities (i.e., Bill Gates089

co-founded Microsoft). Such extracted structured090

entities may be further linked and merged to auto-091

matically construct KBs from text corpora. Along092

with this, we propose a new evaluation metric,093

Approximate Entity Set OverlaP (AESOP), with094

numerous variants for measuring the similarity be-095

tween the predicted set of entities and the ground096

truth set, which is more flexible to include different097

level of normalization (see Sec. 3).098

In recent years, deep learning has garnered signif-099

icant interest in the realm of information extrac-100

tion tasks. Techniques based on deep learning for101

entity extraction have consistently outperformed102

traditional methods that rely on features and kernel103

functions, showcasing superior capability in feature104

extraction and overall accuracy (Yang et al., 2022).105

Building upon these developments, our study em-106

ploys large language models (LLMs) to solve struc-107

tured entity extraction. We introduce a Multi-stage108

Structured Entity Extraction (MuSEE) model, a109

novel architecture that enhances both effectiveness110

and efficiency. Our model decomposes the entire111

information extraction task into multiple stages, en-112

abling parallel predictions within each stage for113

enhanced focus and accuracy. Additionally, we re-114

duce the number of tokens needed for generation,115

which further improves the efficiency for both train- 116

ing and inference. Human side-by-side evaluations 117

show similar results as our AESOP metric, which 118

not only further confirm our model’s effectiveness 119

but also validate the AESOP metric. 120

In summary, our main contributions are: 121

• We introduce an entity-centric formulation 122

of the information extraction task, Structured 123

Entity Extraction (SEE), within the realm of a 124

closed setting. 125

• We propose an evaluation metric, 126

Approximate Entity Set OverlaP (AE- 127

SOP), with numerous variants tailored for 128

assessing structured entity extraction. 129

• We propose a new model leveraging the capa- 130

bilities of LLMs, improving the effectiveness 131

and efficiency for structured entity extraction. 132

2 Related work 133

In this section, we first review the formulation of ex- 134

isting information extraction tasks and the metrics 135

used, followed by a discussion of current methods 136

for solving information extraction tasks. 137

Information extraction tasks are generally divided 138

into open and closed settings. Open information 139

extraction (OIE), first proposed by Banko et al. 140

(2007), is designed to derive relation triplets from 141

unstructured text by directly utilizing entities and 142

relationships from the sentences themselves, with- 143

out adherence to a fixed schema. Conversely, 144

closed information extraction (CIE) focuses on ex- 145

tracting factual data from text that fits into a pre- 146

determined set of relations or entities, as detailed 147

by Josifoski et al. (2022). While open and closed 148

information extraction vary, both seek to convert 149

unstructured text into structured knowledge, which 150

is typically represented as triplets. These triplets 151

are useful for outlining relationships but offer lim- 152

ited insight at the entity level. It is often assumed 153

that two triplets refer to the same entity if their 154

subjects match. However, this assumption is not 155

always held. Additionally, the evaluation of these 156

tasks relies on precision, recall, and F1 scores at the 157

triplet level. As previously mentioned, evaluating 158

solely on triplet metrics can yield misleading in- 159

sights regarding the entity understanding. Thus, it 160

is essential to introduce a metric that assesses under- 161

standing at the entity level through entity-level nor- 162

malization. In this work, we introduce the AESOP 163

metric, which is elaborated on in Sec. 3.2. 164
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Various strategies have been employed in existing165

research to address the challenges of information166

extraction. TextRunner (Yates et al., 2007) initially167

spearheaded the development of unsupervised168

methods. Recent progress has been made with the169

use of manual annotations and Transformer-based170

models (Vasilkovsky et al., 2022; Kolluru et al.,171

2020a). Sequence generation approaches, like IMo-172

JIE (Kolluru et al., 2020b) and GEN2OIE (Kolluru173

et al., 2022), have refined open information extrac-174

tion by converting it into a sequence-to-sequence175

task (Cui et al., 2018). GenIE (Josifoski et al.,176

2022) focuses on integrating named-entity recogni-177

tion, relation extraction, and entity linking within178

a closed setting where a knowledge base is pro-179

vided. Recent work, PIVOINE (Lu et al., 2023),180

focuses on improving the language model’s gener-181

ality to various (or unseen) instructions for open182

information extraction, whereas our focus is on de-183

signing a new model architecture for improving the184

effectiveness and efficiency of language model’s185

information extraction in a closed setting.186

3 Structured Entity Extraction187

In this section, we first describe the structured en-188

tity extraction formulation, followed by detailing189

the Approximate Entity Set OverlaP (AESOP) met-190

ric for evaluation.191

3.1 Task Formulation192
Given a document d, the goal of structured entity193

extraction is to generate a set of structured entities194

E = {e1, e2, . . . , en} that are mentioned in the doc-195

ument text. Each structured entity e is a dictionary196

of property keys p ∈ P and property values v ∈ V ,197

and let ve,p be the value of property p of entity e.198

In the most general setting, properties may be of199

different types—e.g., text, categorical, and numer-200

ical quantities. For simplification, in this current201

work we consider only text properties and hence V202

is the set of all possible text property values.203

So, the goal of the task then becomes to learn a204

function f : d → E ′ = {e′1, e′2, . . . , e′m}, and we205

expect the predicted set E ′ to be as close as possible206

to the target set E , where the closeness is measured207

by some similarity metric Ψ(E ′, E). Note that the208

predicted set of entities E ′ and the ground-truth set209

E may differ in their cardinality, and our definition210

of Ψ should allow for the case when |E ′| ̸= |E|.211

Finally, both E ′ and E are unordered sets and hence212

we also want to define Ψ to be order-invariant over213

E ′ and E . As we do not need to constrain f to pro-214

duce the entities in any strict order, it is reasonable 215

for Ψ to assume the most optimistic ordering of E ′ 216

with respect to entity orderings in E . We denote 217

E⃗′ and E⃗ as some arbitrary but fixed ordering over 218

items in prediction set E ′ and ground-truth set E 219

for allowing indexing. 220

3.2 Approximate Entity Set OverlaP (AESOP) 221

Metric 222
We propose a formal definition of the Approximate 223

Entity Set OverlaP (AESOP) metric, which focuses 224

on the entity-level and more flexible to include 225

different level of normalization: 226

Ψ(E ′, E) = 1

µ

m,n⊕
i,j

Fi,j · ψent(E⃗′
i, E⃗j), (1) 227

which is composed of two phases: (i) optimal en- 228

tity assignment for obtaining the assignment matrix 229

F to let us know which entity in E ′ is matched with 230

which one in E , and (ii) pairwise entity compar- 231

ison through ψent(E⃗′
i, E⃗j), which is a similarity 232

measure defined between any two arbitrary entities 233

e′ and e. We demonstrate the details of these two 234

phases in this section. We assume that Ψ is some 235

aggregation
⊕

over individual pairwise entity com- 236

parisons ψent—e.g.,
⊕

may be a simple linear sum, 237

and µ is some scaling factor described later. 238

Phase 1: Optimal Entity Assignment. The opti- 239

mal entity assignment is directly derived from some 240

matrix F ∈ Rm×n, which is obtained by solving 241

an assignment problem between E ′ and E . Here, 242

the matrix F is a binary matrix where each element 243

Fi,j is 1 if the entity E⃗′
i is matched with the en- 244

tity E⃗j , and 0 otherwise. Before formulating the 245

assignment problem, we need to first define some 246

similarity matrix S ∈ Rm×n where each element 247

Si,j quantifies the similarity between the i-th entity 248

in E⃗′ and the j-th entity in E⃗ for the assignment 249

phase. This similarity can be based on various met- 250

rics, depending on the nature of the entities and the 251

properties being compared. 252

Then the optimal assignment matrix F is found by 253

maximizing the following total similarity: 254

F = argmax
F

m∑
i=1

n∑
j=1

Fi,j · Si,j , (2) 255

subject to the following four constraints to 256

ensure one-to-one assignment between entities 257

in the prediction set and the ground truth 258

set: (i) Fi,j ∈ {0, 1}; (ii)
∑m

i=1 Fi,j ≤ 1, ∀j ∈ 259

{1, 2, . . . , n}; (iii)
∑n

j=1 Fi,j ≤ 1, ∀i ∈ {1, 2, . . . ,m}; (iv) 260∑m
i=1

∑n
j=1 Fi,j = min{m,n}. 261
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Phase 2: Pairwise Entity Comparison. After262

obtaining the optimal entity assignment, we fo-263

cus on the pairwise entity comparison. We define264

ψent(E⃗′
i, E⃗j) as a similarity metric between any265

two arbitrary entities e′ and e from E ′ and E .266

Similar to Eq. 1, the pairwise entity similarity func-267

tion ψent itself can be defined as some aggregate268

function
⊗

over individual pairwise property simi-269

larity ψprop as follows:270

ψent(e
′, e) =

⊗
p∈P

ψprop(ve′,p, ve,p), (3)271

where ψprop(ve′,p, ve,p) can be defined as Jaccard272

index (Murphy, 1996) between the predicted values273

(i.e., a list of tokens) for corresponding properties,274

and
⊗

can be defined as a linear average. We de-275

sign the score as zero for missing properties.276

It should be noted that while both S and ψent are277

used to calculate similarities between pairs of enti-278

ties, they do not need to be identical. For instance,279

during the entity assignment phase, it is more im-280

portant to make sure the entity names are aligned,281

while it is more acceptable to treat all properties282

equally without differentiation during the pairwise283

entity comparison. The separation in the definitions284

of two similarity measures allows us to tailor our285

metric more precisely to the specific requirements286

of each phase of the process. Different variants for287

these metrics are demonstrated below.288

3.3 Variants of AESOP289

We introduce different variants of the AESOP met-290

ric, categorized based on two criteria: the method291

used for entity assignment and the normalization292

approach when computing the final metric value293

between E ′ and E . These variants allow for flex-294

ibility and adaptability to different scenarios and295

requirements in structured entity extraction.296

Variants Based on Entity Assignment. The first297

category of variants is based on the criteria for298

matching entities between the prediction E ′ and the299

ground-truth E . We define three variants:300

• AESOP-ExactName: Two entities are consid-301

ered a match if their names are identical, disre-302

garding case sensitivity. This variant is defined303

as Si,j = 1 if ve′i,name = vej ,name, otherwise 0.304

• AESOP-ApproxName: Entities are matched305

based on the similarity of their “name” property306

values. This similarity can be measured using a307

text similarity metric, such as the Jaccard index.308

• AESOP-MultiProp: Entities are matched based 309

on the similarity of all their properties, with a 310

much higher weight given to the “name” property 311

due to its higher importance. 312

Variants Based on Normalization. The second 313

category of variants involves different normaliza- 314

tion approaches for computing the final metric 315

value through Eq. 1: 316

• AESOP-Max: The denominator is the maximum 317

of the sizes of the target set and the predicted set, 318

i.e., µ = max{m,n}. 319

• AESOP-Precision: The denominator is the size 320

of the predicted set E ′, i.e., µ = m. 321

• AESOP-Recall: The denominator is the size of 322

the target set E , i.e., µ = n. 323

Given these choices, we can obtain 3× 3 = 9 vari- 324

ants of the AESOP metric. To avoid excessive com- 325

plexity, we regard the three variants with “AESOP- 326

MultiProp” as default to report in the main result 327

table because it considers all properties. We also 328

show that precision and recall are specific instances 329

of the AESOP metric in Appendix A. 330

4 Multi-stage Structured Entity 331

Extraction using Large Language 332

Models 333

In this section, we elaborate on the methodology 334

for structured entity extraction using LLMs. We 335

introduce a novel model architecture leveraging 336

LLMs, MuSEE, for Multi-stage Structured Entity 337

Extaction. MuSEE is built on an encoder-decoder 338

architecture, whose pipeline incorporates two piv- 339

otal enhancements to improve effectiveness and 340

efficiency: (i) reducing output tokens through intro- 341

ducing additional special tokens where each can be 342

used to replace multiple tokens, and (ii) multi-stage 343

parallel generation for making the model focus 344

on a sub-task at each stage where all predictions 345

within a stage can be processed parallelly. 346

Reducing output tokens. Our model condenses 347

the output by translating entity types and property 348

keys into unique, predefined tokens. Specifically, 349

for the entity type, we add prefix “ent_type_”, 350

while for each property key, we add prefix “pk_”. 351

By doing so, the type and each property key on 352

an entity is represented by a single token, which 353

significantly reduces the number of output tokens 354

during generation thus improving efficiency. For 355

instance, if the original entity type is “artificial 356

object” which is decomposed into 4 tokens (i.e., 357

“_art”, “if ”, “ical”, “_object”) using the T5 to- 358
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Figure 2: The pipeline of our proposed MuSEE model, which is built on an encoder-decoder architecture. The input
text only needs to be encoded once. The decoder is shared for all the three stages. All predictions within each stage
can be processed in batch, and teacher forcing enables parallelization even across stages during training.

kenizer, now we only need one special token,359

“ent_type_artifical_object”, to represent the entire360

sequence. All of these special tokens can be de-361

rived through the knowledge of some predefined362

schema before the model training.363

Multi-stage parallel generation. In addition to364

reducing the number of generated tokens, MuSEE365

further decomposes the generation process into366

three stages: (i) identifying all entities, (ii) deter-367

mining entity types and property keys, and (iii)368

predicting property values. To demonstrate this369

pipeline more clearly, we use the same text shown370

in Fig. 1 as an example to show the process of371

structured entity extraction as follows:372

Stage 1: Entity Identification.373

❖ [[[Text Description]]] ⇒ MuSEE ⇒ pred_ent_names
“Bill Gates” “Microsoft” ⟨EOS⟩

374
Stage 2: Type and property key prediction.375

❖ [[[Text Description]]] ⇒ MuSEE ⇒
pred_type_and_property
{“Bill Gates”} ent_type_human pk_country
pk_occupation ⟨EOS⟩

❖ [[[Text Description]]] ⇒ MuSEE ⇒
pred_type_and_property
{“Microsoft”} ent_type_corporation pk_cofounder
pk_headquarter ⟨EOS⟩

376
Stage 3: Property value prediction.377

❖ [[[Text Description]]] ⇒ MuSEE ⇒ pred_val
{“Bill Gates”} {ent_type_human} {pk_country}
America ⟨EOS⟩

❖ [[[Text Description]]] ⇒ MuSEE ⇒ pred_val
{“Bill Gates”} {ent_type_human} {pk_occupation}
Businessman ⟨EOS⟩

❖ [[[Text Description]]] ⇒ MuSEE ⇒ pred_val
{“Microsoft”} {ent_type_corporation}
{pk_cofounder} Bill Gates ⟨EOS⟩

❖ [[[Text Description]]] ⇒ MuSEE ⇒ pred_val
{“Microsoft”} {ent_type_corporation}
{pk_headquarter} Redmond ⟨EOS⟩

378

Among the three stages depicted, pred_ent_names, 379

pred_type_and_property, and pred_val are special 380

tokens to indicate the task. For each model pre- 381

diction behavior, the first “⇒” indicates inputting 382

the text into the encoder of MuSEE, while the sec- 383

ond “⇒” means inputting the encoded outputs into 384

the decoder. All tokens in blue are the prompt 385

tokens input into the decoder which do not need 386

to be predicted, while all tokens in bold are the 387

model predictions. Notice that we do not need to 388

predict the value for “type” and “name” in stage 389

3, since the type can be directly derived from the 390

“ent_type_” special key itself, and the name is ob- 391

tained during stage 1. The tokens in the bracket 392

“{..}” are also part of the prompt tokens and are 393

obtained in different ways during training and in- 394

ference. During training, these inputs are obtained 395

from the ground truth due to the teacher forcing 396

technique (Raffel et al., 2023). During inference, 397

they are obtained from the output predictions from 398

the previous stages. The full training loss is a com- 399

bination of three cross-entropy losses, one for each 400

stage. An illustration of our model’s pipeline is 401

shown in Fig. 2. 402

Benefits for Training and Inference. MuSEE’s 403

unique design benefits both training and inference. 404

In particular, each stage in MuSEE is finely tuned to 405

concentrate on a specific facet of the extraction pro- 406

cess, thereby enhancing the overall effectiveness. 407

Most importantly, all predictions within the same 408

stage can be processed in batch thus largely improv- 409

ing efficiency. The adoption of a teacher forcing 410

strategy enables parallel training even across dif- 411

ferent stages, further enhancing training efficiency. 412

During inference, the model’s approach to breaking 413

down long sequences into shorter segments signifi- 414

cantly reduces the generation time. It is also worthy 415

to mention that each text in the above three stages 416

needs to be encoded only once by the MuSEE’s 417
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encoder, where the encoded output is repeatedly418

utilized across different stages. This streamlined419

approach ensures a concise and clear delineation420

of entity information, facilitating the transforma-421

tion of unstructured text into a manageable and422

structured format.423

5 Experiments424

In this section, we describe the datasets used in our425

experiment, followed by the discussion of baseline426

methods and training details.427

5.1 Data428
In adapting the structured entity extraction, we re-429

purpose the REBEL dataset, originally developed430

for relation extractions (Huguet Cabot and Navigli,431

2021). This dataset connects entities identified in432

Wikipedia abstracts as hyperlinks, along with dates433

and values, to entities in Wikidata and extracts the434

relations among them. For entities without types435

in REBEL dataset, we categorize their types as436

“unknown”. Additionally, we introduce two new437

datasets, named Wikidata-based and GPT4-based.438

The Wikidata-based dataset is crafted using an ap-439

proach similar to REBEL but with two primary440

distinctions: (i) we record relations between any441

two entity mentions (surface forms), not just those442

present as hyperlinks; (ii) we simplify the entity443

types by consolidating them into broader categories444

based on the Wikidata taxonomy graph, resulting in445

less specific types. For the GPT4-based dataset, fol-446

lowing papers (Golde et al., 2023; Ye et al., 2022b;447

Meng et al., 2022; Lin et al., 2022) on zero-shot448

learning’s data generation capabilities, we utilize449

GPT4 to generate properties from a given prompt450

and text. The specifics of the prompt are outlined451

in Appendix B. The processes for developing the452

Wikidata-based and GPT4-based datasets are de-453

tailed in Appendix C, with examples provided in454

Appendix D. Comprehensive statistics for all three455

datasets are available in Appendix E.456

5.2 Baseline457
In our study, we benchmark our methodology458

against two distinct classes of baseline approaches.459

The first category considers adaptations from gen-460

eral seq2seq task models: (i) LLM-JSON: this ap-461

proach involves fine-tuning pre-trained language462

models. The input is a textual description, and463

the output is the string format JSON containing464

all entities. The second category includes tech-465

niques designed for different information extrac-466

tion tasks, which we adapt to address our challenge:467

Figure 3: An overal effectiveness-and-efficiency com-
parison across models on Wikidata-based Dataset.
MuSEE strongly outperforms all baselines on both
measures. The effectiveness is measured by AESOP-
MultiProp-Max.

(ii) GEN2OIE (Kolluru et al., 2022), which em- 468

ploys a two-stage generative model initially outputs 469

relations for each sentence, followed by all extrac- 470

tions in the subsequent stage; (iii) IMoJIE (Kolluru 471

et al., 2020b), an extension of CopyAttention (Cui 472

et al., 2018), which sequentially generates new ex- 473

tractions based on previously extracted tuples; (iv) 474

GenIE (Josifoski et al., 2022), an end-to-end au- 475

toregressive generative model using a bi-level con- 476

strained generation strategy to produce triplets that 477

align with a predefined schema for relations. 478

5.3 Training 479
We choose the T5 (Raffel et al., 2023) series of 480

LLMs and employ the pre-trained T5-Base (T5- 481

B) and T5-Large (T5-L) checkpoints as the base 482

models underlying every method discussed in sec- 483

tion 5.2 and our proposed MuSEE. LLM-JSON 484

and MuSEE are trained with the Low-Rank Adap- 485

tation (Hu et al., 2021), where r = 16 and α = 32. 486

For GEN2OIE, IMoJIE, and GenIE, we follow all 487

training details of their original implementation. 488

For all methods, we employ a linear warm up and 489

the Adam optimizer (Kingma and Ba, 2017), tun- 490

ing the learning rates between 3e-4 and 1e-4, and 491

weight decays between 1e-2 and 0. All experiments 492

are run on a NVIDIA A100 GPU. 493

6 Results 494

In this section, we show the results for both quanti- 495

tative and human side-by-side evaluation. 496

6.1 Quantitative Evaluation 497

Effectiveness comparison. The overall effective- 498

ness comparison is shown in Table 1. The re- 499

sults demonstrate the enhanced performance of 500

the MuSEE model across all metrics when com- 501

pared to the baselines. In particular, the MuSEE 502

model achieves the highest AESOP-MultiProp- 503
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Table 1: Summary of results of different models. Each metric is shown in percentage (%). The last column shows
the inference efficiency, measured by the number of samples the model can process per second. Our model has a
statistical significance for p ≤ 0.01 compared to the best baseline (labelled with *) based on the paired t-test.

Model
REBEL Wikidata-based GPT4-based

samples / secAESOP-MultiProp- AESOP-MultiProp- AESOP-MultiProp-
Max Precision Recall Max Precision Recall Max Precision Recall

LLM-JSON (T5-B) 41.91 46.25 55.26 36.98 43.38 46.98 42.16 48.66 49.18∗ 19.08
GEN2OIE (T5-B) 44.52 47.28 57.26 37.07 43.16 45.48 40.28 45.67 47.32 28.21∗

IMoJIE (T5-B) 46.11 50.49 62.18 37.08 42.38 46.56 41.27 48.37 48.56 5.36
GenIE (T5-B) 48.82∗ 67.16∗ 51.68 40.60∗ 56.88 50.61∗ 43.57∗ 57.10∗ 47.23 10.19
MuSEE (T5-B) 55.24 70.12 61.27 46.95 53.00 61.75 53.13 58.92 59.85 52.93

LLM-JSON (T5-L) 45.92 49.91 61.06 38.19 45.44 47.74 44.88∗ 52.59 49.27∗ 11.24
GEN2OIE (T5-L) 46.70 50.14 60.33 38.25 45.02 46.58 42.38 49.61 44.37 18.56∗

IMoJIE (T5-L) 48.13 53.47 62.94 38.18 45.22 47.57 41.92 50.97 45.85 3.73
GenIE (T5-L) 50.06∗ 66.48∗ 52.93 43.50∗ 60.23 53.75∗ 43.56 56.85∗ 47.21 5.09
MuSEE (T5-L) 57.39 71.36 63.21 50.94 60.11 61.68 54.17 62.28 63.15 33.96

Max scores of 55.24 (T5-B) and 57.39 (T5-L) on504

the REBEL dataset, 46.95 (T5-B) and 50.94 (T5-505

L) on the Wikidata-based dataset, and 53.13 (T5-506

B) and 54.17 (T5-L) on the GPT4-based dataset.507

These scores significantly surpass those of the com-508

peting models, indicating MuSEE’s stronger entity509

extraction capability. The other two metrics further510

underscore the efficacy of the MuSEE model. For511

instance, in the REBEL dataset, MuSEE (T5-B)512

achieves a AESOP-MultiProp-Precision of 70.12513

and a AESOP-MultiProp-Recall of 61.27. Similar514

improvements are observed in the Wikidata-based515

and GPT4-based datasets, where MuSEE leads in516

almost all three metrics. As discussed in Sec. 4,517

our MuSEE model is centered around two main518

enhancements: reducing output tokens and multi-519

stage parallel generation. By simplifying output520

sequences, MuSEE tackles the challenge of man-521

aging long sequences that often hinder baseline522

models, like LLM-JSON, GenIE, IMoJIE, thus re-523

ducing errors associated with sequence length. Ad-524

ditionally, by breaking down the extraction process525

into three focused stages, MuSEE efficiently pro-526

cesses each aspect of entity extraction, leveraging527

contextual clues for more accurate predictions. In528

contrast, GEN2OIE’s two-stage approach, though529

similar, falls short because it extracts relations first530

and then attempts to pair entities with these rela-531

tions. However, a single relation may exist among532

different pairs of entities, which can lead to low533

performance with this approach. Supplemental ab-534

lation study is provided in Appendix F.535
Efficiency comparison. As shown in the last col-536

umn of Table 1, we provide a comparison on the in-537

ference efficiency, measured in the number of sam-538

ples the model can process per second. The MuSEE539

model outperforms all baseline models in terms of540

efficiency, processing 52.93 samples per second541

with T5-B and 33.96 samples per second with T5-542
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MuSEE
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Figure 4: Grounding check across models on the
Wikidata-based dataset. MuSEE shows the least perfor-
mance drop on the perturbed version of data compared
to other baselines.

L. It shows a 10x speed up compared to IMoJIE, 543

and a 5x speed up compared to the strongest base- 544

line GenIE. This high efficiency can be attributed to 545

MuSEE’s architecture, specifically its multi-stage 546

parallel generation feature. By breaking down the 547

task into parallelizable stages, MuSEE minimizes 548

computational overhead, allowing for faster pro- 549

cessing of each sample. The benefit of this design 550

can be also approved by the observation that the 551

other multi-stage model, GEN2OIE, shows the sec- 552

ond highest efficiency. 553

To better illustrate our model’s strength, we show 554

the scatter plots comparing all models with var- 555

ious backbones in Fig. 3 on both the effective- 556

ness and the efficiency. We choose the Wikidata- 557

based dataset and the effectiveness is measured by 558

AESOP-MultiProp-Max. As depicted, our model 559

outperforms all baselines with a large margin. This 560

advantage makes MuSEE particularly suitable for 561

applications requiring rapid processing of large 562

volumes of data, such as processing web-scale 563

datasets, or integrating into interactive systems 564

where response time is critical. 565

Grounding check. As the family of T5 mod- 566

els are pre-trained on Wikipedia corpus (Raffel 567

et al., 2023), we are curious whether the models 568
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are extracting information from the given texts,569

or they are leveraging their prior knowledge to570

generate information that cannot be grounded to571

the given description. We develop a simple ap-572

proach to conduct this grounding check by per-573

turbing the original test dataset with the following574

strategy. We first systematically extract and cate-575

gorize all entities and their respective properties,576

based on their entity types. Then, we generate a577

perturbed version of the dataset, by randomly mod-578

ifying entity properties based on the categorization579

we built. We introduce controlled perturbations580

into the dataset by selecting alternative property581

values from the same category but different enti-582

ties, and subsequently replacing the original val-583

ues in the texts. The experiment results from our584

grounding study on the Wikidata-based dataset, as585

illustrated in Fig. 4, reveal findings regarding the586

performance of various models under the AESOP-587

MultiProp-Max, AESOP-MultiProp-Precision, and588

AESOP-MultiProp-Recall. Our model, MuSEE,589

shows the smallest performance gap between the590

perturbed data and the original data compared to its591

counterparts, suggesting its stronger capability to592

understand and extract structured information from593

given texts.594

Property-level performance comparison. The595

radar plots presented in Fig. 5 provide a property-596

level performance comparison, illustrating that our597

model, MuSEE, consistently outperforms others598

across almost all properties in both datasets. On599

some frequent properties like type and entity name,600

MuSEE can further improve the performance. It601

also outperforms all models on some less frequent602

properties, notably, capital in the Wikidata-based603

dataset. However, all models, including MuSEE,604

have a lower performance on some properties such605

as place of death and occupation compared to other606

properties, likely related to their sparsity in the607

dataset. The statistics of property frequencies of608

each dataset is shown in Appendix E.609

6.2 Human Evaluation610

To further analyze our approach, we randomly se-611

lect 400 test passages from the Wikidata-based612

dataset, and generate outputs of our model MuSEE613

and the strongest baseline GenIE. Human evalu-614

ators are presented with a passage and two ran-615

domly flipped extracted sets of entities with prop-616

erties. Evaluators are then prompted to choose617

the output they prefer or express no preference618

based on three criteria, Completeness, Correctness,619

Figure 5: A fine-grained performance comparison
across models on different properties. MuSEE shows
the strongest performance on almost all properties.

and Hallucinations (details shown in Appendix G). 620

Among all 400 passages, the output of MuSEE is 621

preferred 61.75% on the completeness, 59.32% on 622

the correctness, and 57.13% on the hallucinations. 623

These observations provide additional confirm to 624

the quantitative results evaluated using AESOP 625

metrics that our model significantly outperform 626

existing baselines. Case study on this evaluation is 627

shown in Appendix G. 628

7 Discussion and Conclusion 629

We introduce Structured Entity Extraction (SEE), 630

an entity-centric formulation of information ex- 631

traction in a closed setting. We then propose the 632

Approximate Entity Set OverlaP (AESOP) Met- 633

ric, which focuses on the entity-level and more 634

flexible to include different level of normalization. 635

Based upon, we propose a novel model architec- 636

ture, MuSEE, that enhances both effectiveness and 637

efficiency. Both quantitative evaluation and human 638

side-by-side evaluation confirm that our model out- 639

performs baselines. 640

An additional advantage of our formulation is its 641

potential to address coreference resolution chal- 642

lenges, particularly in scenarios where multiple 643

entities share the same name or lack primary iden- 644

tifiers such as names. Models trained with prior 645

triplet-centric formulation cannot solve the above 646

challenges. However, due to a scarcity of relevant 647

data, we were unable to assess this aspect in our 648

current study. 649

8 Limitations 650

The limitation of our work lies in the assumption 651

that each property possesses only a single value. 652

However, there are instances where a property’s 653

value might consist of a set, such as varying for- 654

mats of “date of birth”. Adapting our method to 655

accommodate these scenarios presents a promising 656

direction for future research. 657
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A Relationship between Precision/Recall and AESOP 835

In this section, we show the traditional metrics, precision and recall, are specific instances of the AESOP 836

metric. To calculate precision and recall, we use the following equations on the number of triplets, where 837

each triplet contains subject, relation, and object. 838

precision =
# of correctly predicted triplets
# of triplets in the prediction

, (4) 839

840

recall =
# of correctly predicted triplets

# of triplets in the target
. (5) 841

In the framework of the AESOP metric, precision and recall are effectively equivalent to treating each 842

triplet as an entity, where the subject as the entity name, and the relation and object form a pair of property 843

key and value. For optimal entity assignment (phase 1), precision and recall use the AESOP-MultiProp 844

variant but match entities based on the similarity of all their properties with a same weight. For pairwise 845

entity comparison (phase 2), the ψent(e
′, e) (Eq. 3), can be defined as 1 if v′ = v, otherwise 0, where v′ 846

and v are the only property values in e′ and e, respectively. For Eq. 1,
⊕

aggregation can be defined as a 847

linear sum, which principally results in how many triplets are correctly predicted in this case. If µ in Eq. 1 848

is set as the number of triplets in the prediction, this corresponds to the calculation of precision. Similarly, 849

when µ equals the number of triplets in the target, it corresponds to the calculation of recall. 850

B GPT4-based Dataset Prompt 851

Following is the prompt used to generate our GPT4-based dataset: 852

Prompt: “You are an information extraction system. You respond to each message with a json-
formatted summary of useful named entities in the message. Each named entity appears as one
entry in a json-formatted list, and the properties of that entry include entity name, type, and other
properties. Ignore unimportant entities, e.g., of type formatting, citations, and references. The types
of entities that we are most interested in are human, artificial object, spatio-temporal entity, corporate
body, concrete object, talk, geographical feature, natural object, product, system. The properties
(of the entities) we’re most interested in are given name, family name, country, part of, location,
languages spoken, written or signed, named after, capital, place of death, occupation, type, entity
name.” Important: you only include entities and their properties that appear in the text.

C Details of Wikidata-based and GPT4-based Dataset 853

We build two datasets: one is Wikidata-based dataset, and another one is GPT4-based dataset. 854

Wikidata-based dataset. This dataset is inspired by methodologies employed in previous works such as 855

Wiki-NRE (Trisedya et al., 2019), T-REx (Elsahar et al., 2018), REBEL (Huguet Cabot and Navigli, 2021), 856

leveraging extensive information available on Wikipedia and Wikidata. The primary objective centers 857

around establishing systematic alignments between textual content in Wikipedia articles, hyperlinks 858

embedded within these articles, and their associated entities and properties as cataloged in Wikidata. This 859

procedure is divided into three steps: (i) Parsing Articles: We commence by parsing English Wikipedia 860

articles from the dump file1, focusing specifically on text descriptions and omitting disambiguation and 861

redirect pages. The text from each selected article is purified of Wiki markup to extract plain text, and 862

hyperlinks within these articles are identified as associated entities. Subsequently, the text descriptions 863

are truncated to the initial ten sentences, with entity selection confined to those referenced within this 864

truncated text. This approach ensures a more concentrated and manageable dataset. (ii) Mapping Wikidata 865

IDs to English Labels: Concurrently, we process the Wikidata dump1 file to establish a mapping (termed as 866

the id-label map) between Wikidata IDs and their corresponding English labels. This mapping allows for 867

efficient translation of Wikidata IDs to their English equivalents. (iii) Interconnecting Wikipedia articles 868

1The version of the Wikipedia and Wikidata dump files utilized in our study are 20230720, representing the most recent
version available during the development of our work.
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with Wikidata properties: For each associated entity within the text descriptions, we utilize Wikidatas API869

to ascertain its properties and retrieve their respective Wikidata IDs. The previously established id-label870

map is then employed to convert these property IDs into English labels. Each entitys type is determined871

using the value associated with instance of (P31). Given the highly specific nature of these entity types872

(e.g., small city (Q18466176), town (Q3957), big city (Q1549591)), we implement a recursive merging873

process to generalize these types into broader categories, referencing the subclass of (P279) property.874

Specifically, we first construct a hierarchical taxonomy graph. Each node within this graph structure875

represents an entity type, annotated with a count reflecting the total number of entities it encompasses.876

Second, a priority queue are utilized, where nodes are sorted in descending order based on their entity877

count. We determine whether the top n nodes represent an ideal set of entity types, ensuring the resulted878

entity types are not extremely specific. Two key metrics are considered for this evaluation: the percentage879

of total entities encompassed by the top n nodes, and the skewness of the distribution of each entity type’s880

counts within the top n nodes. If the distribution is skew, we then execute a procedure of dequeuing the881

top node and enqueueing its child nodes back into the priority queue. This iterative process allows for882

a dynamic exploration of the taxonomy, ensuring that the most representative nodes are always at the883

forefront. Finally, our Wikidata-based dataset is refined to contain the top-10 (i.e., n = 10) most prevalent884

entity types according to our hierarchical taxonomy graph and top-10 property keys in terms of occurrence885

frequency, excluding entity name and type. The 10 entity types are talk, system, spatio-temporal entity,886

product, natural object, human, geographical feature, corporate body, concrete object, and artificial887

object. The 10 property keys are capital, family name, place of death, part of, location, country, given888

name, languages spoken, written or signed, occupation, and named after.889
GPT4-based dataset. Recent works have shown that pretrained large language models are capable of890

performing open information extraction when fine-tuned with specific instructions (Lu et al., 2023). In891

our approach to dataset construction, we adapt their methodologies by replacing instruction tuning with892

the technique of prompt engineering. We employ GPT-4 to extract the associated structured entities from893

the articles in a zero-shot manner, creating the GPT4-based dataset. The pre-defined schema, including all894

entity types and property keys, is explicitly written in the text prompt. We also ask GPT-4 to produce sets895

of entities in JSON format directly. See Appendix B for details. Given the text prompt, GPT-4 adeptly896

identifies entities, along with their corresponding properties and values, which become the ground-truth897

labels in this GPT4-based dataset. In the development of our GPT4-based dataset, we adopt the entity898

types and property keys found in the Wikidata-based dataset as our predefined schema. Despite this899

straightforward approach, it’s noteworthy that the count of associated entities for the same article can900

vary between the two datasets, thereby offering complementary perspectives. Illustrative examples of this901

phenomenon are presented in Appendix D.902

D Illustrations of Wikidata-based and GPT4-based Datasets903

In this section, we present two instances from our datasets for demonstration. These instances vividly904

demonstrate the variation in the number of related entities for the identical article across the two datasets.905

Furthermore, even if the entity count is the same, the specific entities and their corresponding attributes906

can significantly differ. The complementary nature of these two datasets enhances the robustness of our907

experimental setup.908

Text Description: Benton County is a county within the Northwest Arkansas region with a culture,909
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economy, and history that have transitioned from rural and agricultural to suburban and white collar
since the growth of Walmart, which is headquartered in Benton County. Created as Arkansas’s
35th county on September 30, 1836, Benton County contains thirteen incorporated municipalities,
including Bentonville, the county seat, and Rogers, the most populous city. The county was named
after Thomas Hart Benton, a U.S. Senator from Missouri influential in Arkansas statehood. The county
is located within the gently rolling terrain of the Springfield Plateau, a subset of the Ozark Mountains.
Much of eastern Benton County is located along Beaver Lake, a reservoir of the White River. The
county contains three protected areas: Logan Cave National Wildlife Refuge, Pea Ridge National
Military Park, and Devil’s Eyebrow Natural Area, as well as parts of the Ozark National Forest,
Hobbs State Park – Conservation Area, and two state wildlife management areas. Other historical
features such as log cabins, one-room school houses, community centers, and museums describe
the history and culture of Benton County. Benton County occupies and contained a population of
284,333 people in 100,749 households as of the 2020 Census, ranking it tenth in size and second in
population among the state’s 75 counties. 910

Wikidata-based: 911
912

{ 913

"0": { 914

"type": "geographical feature", 915

"entity name": "Missouri" 916

}, 917

"1": { 918

"type": "natural object", 919

"entity name": "Logan Cave National Wildlife Refuge" 920

}, 921

"2": { 922

"type": "artificial object", 923

"entity name": "Northwest Arkansas" 924

}, 925

"3": { 926

"type": "product", 927

"entity name": "Walmart", 928

"location": "Rogers" 929

} 930

} 931932

GPT4-based: 933
934

{ 935

"0": { 936

"part of": "St. Cloud Metropolitan Statistical Area", 937

"location": "East Central part of Minnesota", 938

"country": "U.S.", 939

"capital": "Foley", 940

"type": "geographical feature", 941

"entity name": "Benton County" 942

}, 943

"1": { 944

"part of": "Minneapolis-St. Paul Combined Statistical Area", 945

"type": "spatio-temporal entity", 946

"entity name": "St. Cloud Metropolitan Statistical Area" 947

}, 948
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"2": {949

"type": "spatio-temporal entity",950

"entity name": "Minneapolis-St. Paul Combined Statistical951

Area"952

},953

"3": {954

"named after": "Benton County",955

"occupation": "United States Senator",956

"country": "Missouri",957

"type": "human",958

"entity name": "Thomas Hart Benton"959

}960

}961962

Text Description: Acadia National Park is an American national park located along the mid-section
of the Maine coast, southwest of Bar Harbor. The park preserves about half of Mount Desert Island,
part of the Isle au Haut, the tip of the Schoodic Peninsula, and portions of 16 smaller outlying islands.
It protects the natural beauty of the rocky headlands, including the highest mountains along the
Atlantic coast. Acadia boasts a glaciated coastal and island landscape, an abundance of habitats, a
high level of biodiversity, clean air and water, and a rich cultural heritage. The park contains the tallest
mountain on the Atlantic Coast of the United States (Cadillac Mountain), exposed granite domes,
glacial erratics, U-shaped valleys, and cobble beaches. Its mountains, lakes, streams, wetlands, forests,
meadows, and coastlines contribute to a diversity of plants and animals. Woven into this landscape is
a historic carriage road system financed by John D. Rockefeller Jr. In total, it encompasses. Acadia
has a rich human history, dating back more than 10,000 years ago with the Wabanaki people.

Wikidata-based:963
964

{965

"0": {966

"type": "natural object",967

"entity name": "Schoodic Peninsula"968

},969

"1": {970

"type": "natural object",971

"entity name": "Cadillac Mountain"972

},973

"2": {974

"type": "geographical feature",975

"entity name": "Maine"976

}977

}978979

GPT4-based:980
981

{982

"0": {983

"part of": "United States",984

"location": "Maine coast, southwest of Bar Harbor",985

"entity name": "Acadia National Park",986

"type": "geographical feature"987

},988

"1": {989
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"part of": "Acadia National Park", 990

"type": "geographical feature", 991

"entity name": "Mount Desert Island" 992

}, 993

"2": { 994

"part of": "Acadia National Park", 995

"type": "geographical feature", 996

"entity name": "Isle au Haut" 997

}, 998

"3": { 999

"part of": "Acadia National Park", 1000

"type": "geographical feature", 1001

"entity name": "Schoodic Peninsula" 1002

}, 1003

"4": { 1004

"location": "Acadia National Park", 1005

"entity name": "Cadillac Mountain", 1006

"type": "geographical feature" 1007

}, 1008

"5": { 1009

"occupation": "financier of the historic carriage road system 1010

in Acadia National Park", 1011

"type": "human", 1012

"entity name": "John D. Rockefeller Jr." 1013

}, 1014

"6": { 1015

"location": "Acadia National Park", 1016

"entity name": "Wabanaki people", 1017

"type": "human" 1018

} 1019

} 10201021

E Statistics of Datasets 1022

The code for REBEL is licensed under the CC BY-SA-NC 4.0 license. The dataset statistics presented 1023

in Table 2 compare REBEL, Wikidata-based and GPT4-based datasets. All datasets feature a minimum 1024

of one entity per sample, but they differ in their average and maximum number of entities, with the 1025

GPT-4-based dataset showing a higher mean of 10.37 entities compared to 3.84 in the Wikidata-based 1026

set and 3.27 in REBEL. They also differ in the maximum number of entities, where GPT4-based has a 1027

max of 99, which is higher than 20 of Wikidata-based and 65 of REBEL. Property counts also vary, with 1028

REBEL having a slightly higher average number of properties per entity at 3.40, compared to 2.80 in 1029

the Wikidata-based dataset and 3.11 in the GPT-4-based dataset, and a maximum of 17 properties over 1030

8 and 12, respectively. REBEL contains 2,000,000 samples for training and 5,000 samples for testing, 1031

while the Wikidata-based and the GPT4-based datasets contain the same articles as the text descriptions 1032

and maintain an identical count of training and testing samples, with 23,477 for training and 4,947 for 1033

testing. 1034

F Ablation Study 1035

The ablation study conducted on the MuSEE model, with the Wikidata-based dataset, serves as an 1036

evaluation of the model’s core components: the introduction of special tokens and the Multi-stage parallel 1037

generation. By comparing the performance of the full MuSEE model against its ablated version, where 1038
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Table 2: Statistics of all three datasets used in our paper.

Statistics REBEL Wikidata-based GPT4-based

# of Entity Min 1 1 1
# of Entity Mean 2.37 3.84 10.37
# of Entity Max 65 20 99
# of Property Min 2 2 2
# of Property Mean 3.40 2.80 3.11
# of Property Max 17 8 12
# of Training Samples 2,000,000 23,477 23,477
# of Testing Samples 5,000 4,947 4,947
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Figure 6: Frequency histogram of entity types in
Wikidata-based Dataset.
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Figure 7: Frequency histogram of entity types in GPT4-
based Dataset.

only the special tokens feature is retained, we aim to dissect the individual contributions of these design1039

choices to the model’s overall efficacy. The ablated version simplifies the output format by eliminating1040

punctuation such as commas, double quotes, and curly brackets, and by converting all entity types and1041

property keys into special tokens. This is similar to the reducing output tokens discussed in Sec. 4. Results1042

from the ablation study, as shown in Table 3, reveal significant performance disparities between the1043

complete MuSEE model and its ablated counterpart, particularly when examining metrics across different1044

model sizes (T5-B and T5-L) and evaluation metrics. The full MuSEE model markedly outperforms1045

the ablated version across all metrics with notable improvements, underscoring the Multi-stage parallel1046

generation’s critical role in enhancing the model’s ability to accurately and comprehensively extract1047

entity-related information. These findings highlight the synergistic effect of the MuSEE model’s design1048

elements, demonstrating that both the Reducing output tokens and the Multi-stage parallel generation are1049

pivotal for achieving optimal performance in structured entity extraction tasks.1050

G Human Evaluation Criteria and Case Study1051

The details for the three human evaluation criteria are shown below:1052

• Completeness: Which set of entities includes all relevant entities and has the fewest missing important1053

entities? Which set of entities is more useful for further analysis or processing? Focus on the set that1054

contains less unimportant and/or irrelevant entities.1055

• Correctness: Which set of entities more correctly represents the information in the passage? Focus1056

on consistency with the context of the passage. Do extracted properties correctly represent each1057

entity or are there more specific property values available? Are property values useful?1058

• Hallucinations: Which set of entities contains less hallucinations? That is, are there any entities or1059
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Figure 8: Frequency histogram of property keys in
Wikidata-based Dataset.
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Figure 9: Frequency histogram of property keys in GPT4-
based Dataset.

Table 3: Ablation study on Wikidata-based dataset. Each metric is shown in percentage (%).

Model
AESOP-ExactName AESOP-ApproxName AESOP-MultiProp

Max Precision Recall Max Precision Recall Max Precision Recall

w/o Multi-stage (T5-B) 25.19 40.87 27.64 25.75 42.14 28.26 26.93 44.49 29.72
MuSEE (T5-B) 44.95 50.63 58.99 45.75 51.57 60.10 46.95 53.00 61.75

w/o Multi-stage (T5-L) 27.74 53.04 28.81 28.14 54.10 29.22 29.14 56.90 30.29
MuSEE (T5-L) 49.35 57.97 59.63 49.89 58.69 60.35 50.94 60.11 61.68

property values that do not exist or cannot be inferred from the text? 1060

We provide a case study for the human evaluation analysis comparing the outputs of GenIE (T5-L) and 1061

MuSEE (T5-L) given a specific text description. MuSEE accurately identifies seven entities, surpassing 1062

GenIE’s two, thus demonstrating greater completeness. Additionally, we identify an error in GenIE’s 1063

output where it incorrectly assigns Bartolomeo Rastrelli’s place of death as Moscow, in contrast to the 1064

actual location, Saint Petersburg, which is not referenced in the text. This error by GenIE could stem 1065

from hallucination, an issue not present in MuSEE’s output. In this example, it is evident that MuSEE 1066

outperforms GenIE in terms of completeness, correctness, and resistance to hallucinations. 1067

Text Description: The ceremonial attire of Elizabeth, Catherine Palace, Tsarskoye Selo; fot. Ivonna
Nowicka Elizabeth or Elizaveta Petrovna (; ) reigned as Empress of Russia from 1741 until her
death in 1762. She remains one of the most popular Russian monarchs because of her decision
not to execute a single person during her reign, her numerous construction projects, and her strong
opposition to Prussian policies. The second-eldest daughter of Tsar Peter the Great (), Elizabeth lived
through the confused successions of her father’s descendants following her half-brother Alexei’s
death in 1718. The throne first passed to her mother Catherine I of Russia (), then to her nephew
Peter II, who died in 1730 and was succeeded by Elizabeth’s first cousin Anna (). After the brief rule
of Anna’s infant great-nephew, Ivan VI, Elizabeth seized the throne with the military’s support and
declared her own nephew, the future Peter III, her heir. During her reign Elizabeth continued the
policies of her father and brought about a remarkable Age of Enlightenment in Russia. Her domestic
policies allowed the nobles to gain dominance in local government while shortening their terms of
service to the state. She encouraged Mikhail Lomonosov’s foundation of the University of Moscow,
the highest-ranking Russian educational institution. Her court became one of the most splendid
in all Europe, especially regarding architecture: she modernised Russia’s roads, encouraged Ivan
Shuvalov’s foundation of the Imperial Academy of Arts, and financed grandiose Baroque projects of
her favourite architect, Bartolomeo Rastrelli, particularly in Peterhof Palace.
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GenIE (T5-L):1068
1069

{1070

"0": {1071

"entity name": "Bartolomeo Rastrelli",1072

"place of death": "Moscow",1073

"given name": "Bartolomeo",1074

"family name": "Rastrelli",1075

"languages spoken, written or signed": "Russian",1076

"country": "Russia",1077

"type": "human"1078

},1079

"1": {1080

"entity name": "Catherine I of Russia",1081

"given name": "Catherine",1082

"languages spoken, written or signed": "Russian",1083

"type": "human"1084

}1085

}10861087

MuSEE (T5-L):1088
1089

{1090

"0": {1091

"type": "human",1092

"entity name": "Peter the Great",1093

"given name": "Peter"1094

},1095

"1": {1096

"type": "human",1097

"entity name": "Bartolomeo Rastrelli",1098

"family name": "Rastrelli",1099

"given name": "Bartolomeo"1100

},1101

"2": {1102

"type": "human",1103

"entity name": "Catherine I of Russia",1104

"given name": "Catherine"1105

},1106

"3": {1107

"type": "human",1108

"entity name": "Peter III",1109

"given name": "Peter"1110

},1111

"4": {1112

"type": "human",1113

"entity name": "Ivan Shuvalov",1114

"family name": "Shuvalov",1115

"given name": "Ivan",1116

"languages spoken, written or signed": "Russian"1117

},1118

"5": {1119

"type": "concrete object",1120
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Figure 10: Metric correlation analysis on REBEL dataset.

"entity name": "Peterhof Palace", 1121

"country": "Russia" 1122

}, 1123

"6": { 1124

"type": "human", 1125

"entity name": "Mikhail Lomonosov", 1126

"family name": "Lomonosov", 1127

"given name": "Mikhail", 1128

"languages spoken, written or signed": "Russian" 1129

} 1130

} 11311132
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Figure 11: Metric correlation analysis on Wikidata-based dataset.
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Figure 12: Metric correlation analysis on GPT4-based dataset.

H Metric Correlation Analysis1133

We show the correlation analysis between metrics across all models on three datasets. The results on the1134

REBEL dataset are shown in Fig.10, the results on the Wikidata-based dataset are shown in Fig.11, while1135

the results on the GPT4-based dataset are shown in Fig. 12. Specifically, we focus on the correlation1136

analysis of different metrics based on entity assignment variants in Phase 1 of AESOP, as described in1137

Sec. 3. For Phase 2, the “Max” normalization method is employed by default. In the associated figures,1138

AESOP-MultiProp-Max is uniformly used as the x-axis measure, while AESOP-ExactName-Max or1139

AESOP-ApproxName-Max serve as the y-axis metrics. The scatter plots in all figures tend to cluster near1140

the diagonal, indicating a robust correlation among the various metric variants we have introduced.1141
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