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ABSTRACT

We present SPINBENCH, a cognitively grounded diagnostic benchmark for eval-
uating spatial reasoning in vision language models (VLMs). SPINBENCH is
designed around the core challenge of spatial reasoning: perspective taking,
the ability to reason about how scenes and object relations change under view-
point transformation. Since perspective taking requires multiple cognitive ca-
pabilities, such as recognizing objects across views, relative positions ground-
ing, and mentally simulating transformations, SPINBENCH introduces a set of
fine-grained diagnostic categories. Our categories target translation, rotation,
object relative pose, and viewpoint change, and are progressively structured so
that single-object simpler tasks scaffold toward the most demanding multi-object
perspective-taking setting. We evaluate 37 state-of-the-art VLMs, both propri-
etary and open source. Results reveal systematic weaknesses: strong egocen-
tric bias, poor rotational understanding, and inconsistencies under symmetri-
cal and syntactic reformulations. Scaling analysis shows both smooth improve-
ments and emergent capabilities. While human subjects achieve high accuracy
(91.2%), task difficulty as measured by human response time shows strong cor-
relation with VLM accuracy, indicating that SPINBENCH captures spatial reason-
ing challenges shared across humans and VLMs. Together, our findings high-
light the need for structured, cognitively inspired diagnostic tools to advance spa-
tial reasoning in multimodal foundation models. Our website can be found at
https://sites.google.com/view/spinbench/.

1 INTRODUCTION

Spatial reasoning is a fundamental component of human cognition and a key capability for embodied
agents operating in the physical world (Xia et al., 2018). From recognizing object configurations to
simulating motion and perspective changes, spatial understanding enables agents to interpret their
environment and plan actions accordingly.

Multimodal foundation models, particularly vision-language models (VLMs), have recently
achieved impressive progress in visual understanding (Li et al., 2025b; Wang et al., 2025; Qwen
et al., 2025; Team et al., 2025; Li et al., 2024b), however their spatial reasoning capabilities re-
main poorly understood and underdiagnosed. The demonstrated utility in downstream tasks, such
as navigation (Elnoor et al., 2025; Song et al., 2024), manipulation (Yang et al., 2025b; Sermanet
et al., 2024), autonomous driving (Xie et al., 2025; Pan et al., 2024), and physical commonsense
reasoning (Chow et al., 2025) primarily reflects end-to-end performance at the application level,
where spatial reasoning is entangled with high-level language and planning objectives. They do not
directly test whether models understand geometric primitives, such as rotation, translation, object-
relative pose, and viewpoint changes and thus can not expose failures underlies spatial intelligence.

As aresult, it remains unclear whether VLMs are genuinely capable of spatial reasoning, or whether
they rely on dataset biases and shallow pattern matching. Recent benchmarks like MindCube (Yin
et al., 2025) and Space (Ramakrishnan et al., 2024) reveal striking failures in mental modeling and
spatial generalization, often exposing large performance gaps between models and humans. While
efforts such as SpaceOm and Spacethinker (Chen et al., 2025a) explore linguistic training enhance-
ments via reinforcement learning, they still exhibit limited transfer of these gains to spatial reasoning
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Figure 1: Overview of SPINBENCH task design across seven task groups. Representative subtasks
are illustrated for each group with simplified question wording for clarity. In the released benchmark,
all queries include explicit frame-of-reference definitions to avoid ambiguity. Human face data are
sourced from the Stereo Face Database Fransens et al. (2005) and are licensed for research use only.
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tasks (Yin et al., 2025). This calls for a structured diagnosis of: (1) what specifically breaks down
in VLMSs’ spatial reasoning, and (2) how such reasoning can be systematically evaluated.

Our approach is inspired by foundational insights in cognitive science. Early behaviorist theories
treated thinking as verbal behavior (Skinner, 1957), but classic mental rotation experiments (Shep-
ard & Metzler, 1971) demonstrated that spatial cognition often depends on analog, imagery-based
processes-continuous, imagistic simulations that go beyond linguistic representations. These in-
sights motivate the central question: Can VLMs engage in such imagery-based spatial reasoning, or
are they limited to symbolic and linguistic associations?

To address this, we introduce SPINBENCH, a cognitively grounded, diagnostically structured bench-
mark as shown in Fig. 1. Our design is informed by both psychological paradigms and system-level
considerations. SPINBENCH emphasizes progressive structure, cognitive fidelity, and controlled
variation for diagnostic value. Our progression of tasks reflects increasing spatial complexity and
scale (Hegarty et al., 2006): At the low level, we assess single-object perception tasks such as object
identity matching, canonical view selection, mental rotation, and dynamic translation/rotation; At
the higher level, we evaluate object-elation grounding and perspective taking in cluttered, multi-
object scenes. Our most challenging task, multi-object cluttered scene perspective taking, requires
models to integrate subskills from all prior tasks, making it a holistic probe of spatial cognition. We
include both real-world and photo-realistic synthetic data across diverse domains (e.g., household
objects, vehicles, human faces), ensuring validity while maintaining evaluation rigor. Each task type
is carefully designed to evaluate specific spatial skills and is embedded within a controlled variation
regime: we manipulate frame-of-reference (FoR) (Zhang et al., 2025c), introduce premise-based
question structures, apply syntactic and symmetrical augmentations, and vary the number of visual
inputs (e.g., single, triplet, quartet). These tasks serve as interpretable bridges from raw perceptual
features to fundamental spatial concepts and then to challenging spatial reasoning.

Together, SPINBENCH provides an interpretable and rigorous framework for diagnosing the spatial
reasoning capabilities of modern VLMs and for understanding the role of rotation as a window
into 3D spatial understanding. Our empirical analysis reveals key failure modes in VLM spatial
reasoning: persistent egocentric bias, difficulty with rotation and viewpoint changes, inconsistencies
in handling symmetry, and failures in linguistic-only spatial inference. We also observe diverse
scaling behaviors across tasks and limited correlation with existing benchmarks, suggesting that
SPINBENCH offers novel and complementary diagnostic insights into VLM spatial competence.
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2 RELATED WORK

Spatial reasoning benchmarks A wide range of benchmarks have been proposed to evaluate
the spatial reasoning abilities. Early diagnostic datasets like CLEVR (Johnson et al., 2017) intro-
duced synthetic, rendered scenes with simple 3D shapes. Recent spatial reasoning benchmarks for
vision-language models have explored diverse aspects of spatial cognition. Some, such as Mind-
Cube and VSI-Bench (Yin et al., 2025; Yang et al., 2025a), emphasize cognitive mapping, how
models represent and track spatial information across scenes. SpaCE-10, SPHERE, and 3DSR-
Bench (Gong et al., 2025; Zhang et al., 2024; Ma et al., 2025a) define a range of atomic spatial
skills (e.g., counting, height, orientation), yet often lack controlled variation in perspective, refer-
ence frame, or multi-frame reasoning. BLINK (Fu et al., 2024) highlights perception-level gaps
in multimodal models, and ViewSpatial-Bench (Li et al., 2025a) focuses on viewpoint-dependent
localization. MulSeT (Zhang et al., 2025b) covers distance, occlusion, and viewpoint-dependent
localization with synthetic data. Meanwhile, OmniSpatial, 3D-PC and SPACE (Jia et al., 2025a;
Linsley et al., 2024; Ramakrishnan et al., 2024) draw from cognitive psychology to design spatial
tasks, but sometimes entangle spatial reasoning with functionality and physical commonsense or are
limited to abstract 2D plane geometry. Our tasks are carefully designed to isolate spatial reasoning
by controlling for distractors, motion dynamics, reference frame shifts, and multi-image input for-
mats. We incorporate both real-world and photo-realistic synthetic data to ensure domain diversity
and real-world relevance. Instead of emphasizing task comprehensiveness, SPINBENCH offers di-
agnostic value by introducing fine-grained control over key spatial factors such as premise structure,
symmetry, and syntactic variation. As summarized in Tab. 1, our benchmark uniquely combines
progressive task structure, cognitive grounding, and controlled variation.

Benchmark Reference Var.  Premise Var. Symmetric Var. ~ Syntactic Var. Domain Multi-Image  Tasks  Size

%

CLEVR Johnson et al. (2017)
BLINK Fu et al. (2024)
SpaCE-10 Gong ¢ 25

cubes 90 853k
mixed 14 3.8k
8 6k

12 2.8k
9 2.3k
5 5.7k

x %

indoor

% % %

mixed
MsCOCO
ScanNET, MsCOCO

% X %

MindCube Yin et al. (2025)
OmniSpatial Jia et al. (20252)
SpinBench (Ours) Household, car, face, infinigen (Raistrick et al,, 2024) 51 2.6k

indoor/outdoor 4 21k
web, driving, tests 50 1.5k

3% %% % % % X
% %% %X X
% % X% % X

Table 1: Benchmark comparison highlighting the controlled structure and diagnostic focus of SPIN-
BENCH. Our benchmark supports reference frame variations, premise-based variations, symmetric
and syntactic variations, and multi-image spatial reasoning across both real and synthetic domains.

Spatial reasoning models To improve spatial reasoning in VLMs, recent work has explored 3D
abstractions and finetuning. Methods like SpatialReasoner (Ma et al., 2025b), SSR (Liu et al., 2025)
and APC (Lee et al., 2025) use explicit 3D representations for perspective-aware reasoning, . Others,
such as MetaSpatial (Pan & Liu, 2025), Embodied-R (Zhao et al., 2025), Spatial VLM (Chen et al.,
2024), and SVQA-R1 (Wang & Ling, 2025), adopt reinforcement learning or large-scale pretraining
to enhance spatial understanding across 2D and video data. Despite progress, purely linguistic
approaches remain limited, humans rely on structured, often non-verbal representations to reason
about space, motivating models that move beyond language-based reasoning alone.

3 DATASET AND BENCHMARK RECIPES

3.1 DIAGNOSTIC APPROACH TO SPATIAL REASONING

SPINBENCH is designed around the core challenge of perspective taking: reasoning about how
scenes and object relations change under viewpoint transformation. Perspective taking is a highly
integrative ability as it requires recognizing objects across views, grounding their relative positions,
and mentally simulating their transformations. To better diagnose model strengths and weaknesses,
SPINBENCH decomposes this advanced reasoning evaluation into a set of targeted diagnostic cat-
egories. Each category represents a fundamental spatial reasoning ability that supports perspective
taking, such as object identity recognition, relation grounding, translation, and rotation. Together,
these tasks allow us to disentangle where current vision language models succeed, where they fail,
and how these skills compose in the perspective taking setting. To minimize confounds, all tasks are
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Figure 2: Distribution of SPINBENCH tasks across seven spatial reasoning categories and four visual
domains. Right: Task breakdown by domain.

defined in a horizontal 2D plane. Vertical relations (e.g., above/below) and height differences are
excluded, and viewpoint changes are restricted to horizontal orbits around the scene.

3.2 TASK CATEGORIES AND DESIGN RATIONALE

The seven categories below are organized so that simpler diagnostic abilities scaffold toward the
most demanding task: perspective taking. Representative examples for each category are summa-
rized in Figure 1. Details in the Appendix A.3.

1. Identity Matching Evaluates whether models can consistently recognize the same object
across different viewpoints. This ability is a prerequisite for cross-view reasoning, ensuring
models can track object identity before more complex spatial inference.

2. Object-Relation Grounding Tests understanding of object-relative configurations within
a single static image, including directional relations (left/right, front/behind) or distance
relations (near/far) between two objects. This isolates spatial grounding from temporal or
multi-view demands, providing a controlled measure of static scene interpretation.

3. Dynamic Translation Assesses reasoning about linear object displacement over time.
Given two temporally ordered frames of the same object, models must identify whether
it moved left, right, front, or back relative to the viewer. By excluding rotation, this cate-
gory isolates translational understanding from other motion cues.

4. Dynamic Rotation Focuses specifically on rotational transformations. Models are given
two images of an object before and after in-place rotation and must determine the rotation
direction (e.g., clockwise vs. counterclockwise, defined from a top-down view). Restricting
the task to a single rotated object avoids background or displacement confounds, allowing
fine-grained analysis of rotational reasoning.

5. Canonical View Selection Examines whether models can map objects across canonical
viewpoints. Given a reference view (typically the front), models must select the correct
candidate from alternative perspectives (left, right, back). This setting avoid the complexity
of multi-object scenes.

6. Mental Rotation Tests whether models can mentally simulate object transformations.
Given an object and specified degree and direction of rotation, models must select the
correct resulting configuration. This requires internal spatial visualization and supports
analysis of whether models can simulate transformations beyond what is directly observed.

7. Perspective Taking The centerpiece of SPINBENCH, perspective-taking tasks require rea-
soning about entire scenes under viewpoint changes. Two subtypes are included: (S) se-
lecting the correct scene image from a new perspective, and (T) predicting how object re-
lations transform under perspective shifts. This category integrates all diagnostic abilities
and probes compositional spatial reasoning in its most demanding form.

3.3 DATASET COMPOSITION AND DOMAIN COVERAGE

SPINBENCH combines one simulation-generated synthetic dataset with three real-world datasets,
chosen to test spatial reasoning generalization across diverse visual domains and object categories. A
detailed breakdown of dataset composition, sampling strategies, and annotation pipelines is provided
in the Appendix A.
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* Infinigen Scenes We generate indoor environment table-top multi-object synthetic scenes
using Infinigen Raistrick et al. (2024) in the Isaac Sim environment NVIDIA, with objects
drawn from the YCB dataset Calli et al. (2015; 2017). Randomized object selection, place-
ment, and lighting yield diverse yet controlled settings. Data are generated for three task
categories: object-relation grounding, dynamic translation, and cluttered scene perspective
taking. For the perspective taking, we provide occlusion and no-occlusion variants to probe
reasoning under visual ambiguity.

* ABO Objects We sample household items from the Amazon Berkeley Objects (ABO)
dataset Collins et al. (2022), which provides high-quality 3D models of real commercial
products. Objects include 360° views (72 images at 5° intervals) with diverse geometries
and textures. We select geometrically structured objects and exclude highly symmetrical
cases to avoid ambiguous rotation or relation judgments.

 Cars Vehicle rotation sequences are drawn from the Multi-View Car Dataset Ozuysal et al.
(2009), which contains 20 cars imaged every 3—4 degrees during a full 360° rotation.
Cars are ideal for viewpoint-dependent reasoning due to their strong canonical orienta-
tions (front, back, side views). Since degree annotations are not provided, we sample and
label images at 45° intervals to ensure consistent angular coverage.

¢ Faces Human faces are sourced from the Stereo Face Database Fransens et al. (2005), con-
taining 100 individuals captured in 8 distinct poses. Faces pose biologically relevant chal-
lenges and require distinguishing viewer- versus object-centered reference frames. Their
natural asymmetry (left vs. right profiles) enables unambiguous evaluation of perspective-
taking.

3.4 CONTROLLED VARIATIONS

SPINBENCH is designed with fine-grained, controlled variations to evaluate how models handle
allocentric and egocentric reference, integrate visual and linguistic information, and model reasoning
consistency with symmetric and syntactic variations, providing a diagnostic lens for identifying
systematic biases, inconsistency, or modality-specific weaknesses. Detailed variations and examples
are provided in the Appendix A.2 and A.4.

Allocentric and Egocentric Reference Reference frame ambiguity is a common source of error
in pretrained models, arising because natural language often leaves the frame of reference implicit.
Humans flexibly switch between defaults (e.g., egocentric vs. allocentric) depending on context, but
models may struggle without explicit cues. Our face rotation tasks directly test this by presenting
identical transformations under two interpretations: the viewer’s perspective (e.g., “turn left” as seen
by the observer) versus the object’s own perspective (e.g., “turn left” as for the person). This contrast
reveals whether models exhibit systematic biases toward particular frames or can adapt to contextual
cues. In domains where objects lack intrinsic orientation, all relations are defined from the viewer’s
(camera) perspective to ensure consistency.

Consistency via Data Augmentation To probe reasoning stability, we systematically generate
equivalent variants of spatial relation tasks using two augmentation strategies: (i) Symmetrical aug-
mentation: Logically equivalent variants are created by flipping relations and answers (e.g., from
“Which object is on the left?”” to “Which object is on the right?”). This ensures models maintain
consistent reasoning under symmetrical transformations. (ii) Syntactic augmentation: Questions are
reformulated while preserving meaning (e.g., “Which object is on the left?” — “Is A on the left
or right of B?”). This tests whether models rely on surface phrasing or demonstrate robust spa-
tial understanding. Augmentations are applied across static (left/right, near/far, front/behind), with
combined variants yielding comprehensive test sets for consistency evaluation.

Visual vs. Linguistic Failures To disentangle sources of error, we introduce premise-based task
variants. In the with-premise condition, the spatial relation (e.g., “A is to the right of B in the front
view”) is explicitly provided in the prompt, while in the without-premise condition, models must
infer relations solely from the image. Comparing performance across conditions reveals whether
failures stem from visual grounding difficulties or from applying geometric reasoning when the
premise is known.
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4 EVALUATIONS

4.1 EVALUATION SETUP

Evaluated models We evaluated 37 vision-language models spanning both proprietary and open-
source models to assess spatial reasoning capabilities across diverse model scales and designs. We
included 4 proprietary VLMs: GPT-40, GPT-4.1 OpenAl et al. (2024), Claude 4 Sonnet, and Claude
3.5 Haiku, representing the current state-of-the-art. For open-source models, our evaluation covered
major model families, model sizes ranging from 1B to 38B, resulting in 33 models: InternVL2.5
(1B-8B) Chen et al. (2025b), InternVL3 (1B-38B) Zhu et al. (2025), InternVL3.5 (1B-38B) Wang
et al. (2025), Qwen2-VL (2B-7B) Yang et al. (2024), Qwen2.5-VL (3B-32B) Qwen et al. (2025),
Gemma-3 models (4B-27B) Team et al. (2025), LLaVA-interleave Li et al. (2024b), LLaVA-
OneVision (7B) Lietal. (2024a), Molmo-7B Deitke et al. (2024), MiniCPM-V-2.6 Yao et al. (2024),
Phi-3.5-vision Abdin et al. (2024). We also include physical or spatial domain-specific models,
including SpaceQwen2.5-VL Jia et al. (2025b), and three spatial reasoning models: SpaceOm Jia
et al. (2025b), SpaceThinker Chen et al. (2024), and Cosmos-Reasonl NVIDIA et al. (2025). We
included CoT variants for 3 specialized spatial reasoning models (Cosmos-Reasonl NVIDIA et al.
(2025), SpaceOm Jia et al. (2025b), SpaceThinker Chen et al. (2024)) to assess the impact of explicit
linguistic reasoning on spatial task performance. Proprietary models were evaluated via official
APIs. Open-source models implementation details are in Appendix D

Evaluation metrics We employ three complementary metrics to assess model performance. Raw
accuracy measures the proportion of correctly answered questions in all evaluated questions. Co-
hen’s kappa (k) (Cohen, 1960; Coenen, 2014) provides a chance-corrected accuracy measure that
accounts for varying option cardinality, enabling fair comparisons across different tasks. To evaluate
reasoning stability, we introduce Pairwise consistency, which calculates the average of symmetric
consistency rates across pairs of questions and their augmentations, measuring whether models pro-
duce identical outcomes (both correct or both incorrect) for logically equivalent questions.

4.2 RESULTS

Overall performance Figure 3 presents the overall performance of 37 VLMs across 23 grouped
task variants, organized under 7 spatial reasoning categories, and reveals a clear performance gradi-
ent across spatial reasoning categories. Object relation grounding emerges as the easiest category,
with many models achieving x > 0.6, indicating reliable extraction of basic spatial relations (e.g.,
left/right, front/behind) from single images. Identity matching displays a bimodal pattern: smaller
models perform near chance, while larger models reach near-perfect accuracy, suggesting an emer-
gent scaling ability. Dynamic spatial reasoning, especially tasks involving rotation, shows substan-
tial difficulty. Mental rotation and perspective taking generally yield the near chance overall scores,
with most models performing at or below chance, underscoring the absence of robust internal rep-
resentations for rotational transformations. Rankings of model overall accuracy averaged across
tasks and model pair-wise consistency are shown in the left of Figure 4, The top five models for
both overall accuracy and consistency are the same five models: InternVL3-38B, InternVL3.5-38B,
InternVL3-14B, InternVL3.5-14B, and GPT-4.1. Notably, the two strongest models (InternVL3-
38B and InternVL3.5-38B) also rank first and second on mental rotation and achieve the second-
and third-best performance on perspective taking. This links overall success to competence on the
most challenging tasks and highlights that models excelling in complex, compositional viewpoint
reasoning also perform strongly on simpler diagnostic tasks. More detailed results, including raw
accuracy and ungrouped performance, are provided in Appendix B.1, Fig. 31, 32, 33.

Consistency evaluations As shown in Figure 4, models exhibit severe inconsistencies in logically
equivalent spatial queries, revealing fundamental gaps in spatial reasoning. While top performers
like InternVL3-38B achieve 95.7% consistency, most models fail dramatically, with bottom per-
formers below 30% consistency. The strong correlation (r = 0.874,p < 0.05) between overall
accuracy and consistency suggests these failures stem from incompetent spatial reasoning. Models
that cannot maintain ”A left of B” equals B right of A” equivalency lack genuine spatial under-
standing. Detailed breakdowns of augmentation strategy analysis, consistency pattern distribution,
and comprehensive performance metrics can be found in Appendix B.2.
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Figure 3: Performance heatmap of 37 VLMs across 23 grouped task variants, organized under
7 spatial reasoning categories. Cohen’s kappa values (k) measure chance-adjusted performance,
where x = 0 indicates chance-level and x = 1 perfect accuracy. Three chain-of-thought (CoT)
variants of space reasoning models are included for comparison.
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Figure 4: Strong correlation between spatial reasoning accuracy and consistency across vision-
language models. Left: Model rankings by overall accuracy (top) and pair-wise consistency per-
centage (bottom), with colors indicating consistency levels. Right: Scatter plot revealing robust
positive correlation (Pearson = 0.874, p < 0.05) between the two metrics.

Biased perspective Models exhibit a strong bias toward the viewer’s perspective in dynamic rota-
tion tasks, even when the question explicitly requires an alternate viewpoint. As shown in Table 3,
the top-performing models on the egocentric task are the worst on the allocentric version. This
asymmetry suggests an inductive bias toward egocentric interpretation, likely influenced by training
data dominated by first-person visual descriptions. Such bias limits the models’ ability to generalize
across frames of reference and poses challenges for applications like robotics and navigation that
require flexible spatial reasoning.

Visual failures or linguistic failures Perspective-taking (T) tasks test whether models can reason
about how object relations transform under viewpoint shifts. In the premise-based variant, all rel-
evant spatial relations are explicitly stated in the prompt, so no visual grounding is required. Yet
many models still fail, revealing that errors persist even when the task reduces to purely linguis-
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Table 2: Performance improvement from CoT reasoning across models and tasks. Delta reflects
the change in Cohen’s x score. Bolded values indicate the task with the greatest improvement per
model, and gray-highlighted cells indicate negative performance improvement.

Task SpaceOm(3B) | SpaceThinker(3B) |  Cosmos-Reasonl-7B
Baseline  CoT A | Baseline  CoT A | Baseline CoT A
Object-relation grounding 0.332 0.493  +0.162 0.185 0.393  +0.208 0.569 0.649  +0.080
Identity matching 0.103  0.088 -0.015 0.143 0.217  +0.074 0.612  0.753 +0.141
Dynamic 0.000 0.064 +0.064 0.000 0.077  +0.077 0.013 0.449 +0.436
Car canonical view selection (back) 0.775 0.700  -0.075 0.625 0.700  +0.075 1.000 1.000 +0.000
ABO canonical view selection (back) 0.000 0.167 +0.167 0.076 0.045 -0.030 0.424 0.273  -0.152

Perspective-taking (T) w/ premise (back) 0.050 0400 +0.350 | 0.350 0.450 +0.100 | 0.000  0.600 +0.600
Perspective-taking (T) w/o premise (back) -0.250  0.000 +0.250 | -0.250 -0.550 -0.300 | -0.350  0.300 +0.650
Perspective-taking (T) w/ premise (L&R) -0.063  0.102 +0.165 0.075 0.407  +0.331 0.165 0270 +0.105
Perspective-taking (T) w/o premise (L&R) ~ 0.138  0.133  -0.005 | 0.137 0.066  -0.071 -0.115  0.016 +0.130

Table 3: Cohen’s kappa (x) values for dynamic rotation tasks in the face domain reveal a strong
view-centric bias. Models that perform best on the egocentric task (face_rotation_viewer)
perform worst on the allocentric variant (face_rotation_own)

Model Allocentric (face_rotation_own) Egocentric (face_rotation_viewer)
Molmo-7B-D-0924 -0.66 (worst) 0.94 (best)
InternVL3-38B -0.47 0.31
Qwen2.5-VL-32B-Instruct -0.49 0.29

tic reasoning over spatial abstractions. As shown in Figure 5 (a), four models (InternVL3_5-1B,
InternVL2_5-2B, InternVL3-1B, gemma-3-4b-it) consistently select the wrong answer with accu-
racy below 0.1, indicating systematic misinterpretation of reference frames. At the same time, seven
models, including gpt-4o, claude-sonnet-4, and several large Intern VL variants, achieve near-perfect
accuracy (>95%), showing that this reasoning is learnable. Overall, 16 of 39 models (41%) perform
below chance, underscoring that even abstracted at the linguistic level, spatial concepts are not ro-
bustly encoded or manipulated by most VLM:s.
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Figure 5: (a) Scatter plot comparing Perspective-taking(T) with premise accuracy against overall
accuracy for each model, demonstrating that linguistic spatial reasoning failures are correlated with
general model competence. Models are color-coded by Perspective-taking(T) with premise accu-
racy. (b) Scatter plot showing the relationship between VLM accuracy (x-axis) and human response
time (y-axis) across 51 task subtypes.

Does chain-of-thought reasoning help spatial reasoning? We evaluate the effect of CoT prompt-
ing on three models: SpaceOm, SpaceThinker, and Cosmos-Reasonl-7B (Table 2). Results show
substantial but heterogeneous gains. Cosmos-Reason1-7B benefits most, with an average improve-
ment of +0.221 across tasks and gains in 7 of 9 categories. Its largest boosts occur on perspective-
taking tasks, 4+0.650 and +0.650 on perspective-taking with and without premise (back), in-
dicating that CoT is especially effective for spatial transformations requiring explicit reasoning
steps. SpaceOm improves moderately (+0.118 average), particularly on object-relation grounding
(+0.162). SpaceThinker shows the weakest effect (+0.052 average), including a sharp drop (-0.300)
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on perspective-taking without premise (back). Across all models, object-relation grounding consis-
tently benefits from CoT, while canonical view selection tasks show mixed results. Overall, CoT
prompting provides a more significant advantage for complex, multi-step spatial transformations,
with larger models demonstrating more improvement.

Human response time and VLM accuracy correlation We further validate that SPINBENCH
reflects genuine spatial reasoning difficulty by comparing human and model performance. As shown
in Figure 5 (b), task subtypes that required longer human response times also elicited lower VLM
accuracy, with a significant negative correlation (r = —0.54, p < 0.05). This alignment indicates
that tasks harder for humans are also systematically harder for models, supporting that SPINBENCH
serves as a diagnostic benchmark whose progressively structured tasks reveal core spatial reasoning
challenges. More details on the human evaluations setup and results are provided in Appendix C.

Scaling laws and emergent capability Overall performance improves with model scale, but scal-
ing patterns differ sharply across task types (Figure 6). Object relation grounding tasks (e.g.,
left/right, front/behind) improve smoothly and monotonically across model families. In contrast,
identity matching exhibits clear emergence: smaller models remain at chance, while larger mod-
els (7B—8B+) achieve near-perfect accuracy. This non-linear jump suggests that cross-image 3D
abstraction only becomes possible once models reach sufficient capacity, consistent with emergent
abilities reported in language models Wei et al. (2022). A similar but more gradual emergent trend
appears in dynamic translation (e.g., object moving left/right). These distinct scaling behaviors
highlight the diagnostic value of our fine-grained benchmark: exposing clear gaps between small
and large models and enabling diagnosis of scaling laws in spatial reasoning.

Overall Accuracy (k) Object Relation Grounding Identity Matching Dynamic Translation
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Figure 6: Scaling laws across spatial reasoning tasks. Each line shows Cohen’s « (chance-adjusted
accuracy) with respect to model size for four model families. While overall performance increases
gradually with scale, different task types show distinct scaling patterns.

5 CONCLUSION AND LIMITATIONS

We present SPINBENCH, a cognitively grounded diagnostic benchmark for evaluating spatial rea-
soning in vision language models through fine-grained, controlled tasks targeting geometric trans-
formations and viewpoint changes. By decomposing complex perspective taking into interpretable
subskills, SPINBENCH facilitates precise diagnosis of model limitations. Our evaluation of 37 VLMs
reveals systematic weaknesses, including consistent reference-frame bias, failures in rotation under-
standing, and linguistic spatial inference, alongside diverse scaling behaviors and emergent capa-
bilities. These findings suggest that different aspect of spatial reasoning are not uniformly learned
and often remains underdeveloped even in advanced models. Human evaluation further validates
the benchmark, showing a strong correlation between human response times and VLM accuracy,
suggesting that SPINBENCH captures genuine cognitive difficulty shared across humans and mod-
els. SPINBENCH goes beyond scorekeeping by providing a diagnostic lens on spatial competencies,
offering conceptual clarity about what aspects of spatial reasoning VLMs do and do not master, and
guiding the development of multimodal foundation models. These diagnostic insights are directly
actionable for embodied Al, where failures in reference-frame reasoning or rotation understanding
can lead to breakdowns in navigation, manipulation, and other safety-critical tasks. A key limitation
is that we do not yet cover other important spatial concepts such as containment, support, or vertical

99 99 ¢

relations (e.g., “in,” “on,” “above”).
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Ethics Statement This work includes human evaluations conducted to measure benchmark diffi-
culty. All participants were adults who gave informed consent, and their data were collected and
analyzed anonymously. The study followed institutional ethics guidelines and posed no foresee-
able risks to participants. Beyond this, our research uses only public or synthetic datasets under
appropriate licenses. While failures in spatial reasoning can have implications for safety-critical
systems, SpinBench is intended solely as a diagnostic tool to improve transparency and safety in
model development. We affirm full adherence to the ICLR Code of Ethics throughout this work.

Reproducibility Statement We have taken steps to ensure that our work can be reproduced. The
design of SpinBench, including task categories, dataset composition, and controlled variations, is
described in detail in Section 3 and Appendix A. Experimental settings, model lists, and evaluation
metrics are provided in Section 4 and Appendix D, along with additional results in Appendix B
and C. All datasets used are either publicly available or generated using documented pipelines, and
details of sampling and annotation are included in the appendix. To further support reproducibility,
we provide an anonymous project website with benchmark resources and plan to release code and
data generation scripts in the near future.
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A SPINBENCH

A.1 DETAILED DATASET COLLECTION PROCESS

A.1.1 Simulation We adopt a synthetic dataset generation pipeline that integrates Infinigen-
generated indoor environments Raistrick et al. (2024) with the Isaac Sim simulator NVIDIA. The
pipeline is fully automated through a custom script built on top of the Infinigen SDG (synthetic data
generation) framework. The process can be summarized as follows:

1. Environment loading. A set of nine indoor dining-room scenes are retrieved from the
Infinigen asset library. Each scene is instantiated as a USD stage, with ceiling meshes
optionally hidden for improved lighting and camera coverage. Colliders are added to all
major surfaces (walls, floors, dining table) to enable realistic object—surface interactions.

2. Object assets. Everyday objects are imported from the Yale-CMU-Berkeley (YCB)
dataset Calli et al. (2015; 2017). We include 21 distinct items (e.g., banana, soup can,
mug, Rubik’s cube), each automatically labeled by parsing their USD asset names. Gravity
and rigid-body dynamics are attached using PhysX APIs to support physically plausible
placement and falling behavior. Additional assets can be manually labeled with explicit
semantic tags.

3. Scene composition. For each scene, objects are sampled and placed in the working area
above the dining table. Object poses are randomized within bounded 3D ranges (position,
orientation, scale). Distractor meshes and primitive shapes are also injected.

4. Lighting. Three movable sphere lights are added per scene and randomized in location, in-
tensity (500-2500 lumens), and color balance. Dome lights with HDR textures are random-
ized per capture to simulate natural variations in sky illumination (clear, cloudy, evening,
night).

5. Cameras. Multiple cameras (default: five per scene) are defined, with randomized intrin-
sics and extrinsics. We support both (i) random camera placements on a viewing sphere
around a target object, and (ii) structured camera orbits with fixed angular increments to
capture viewpoint changes.

6. Physics simulation. The scene is stepped forward for several frames to resolve collisions
and allow objects to settle into stable configurations. Captures are taken both after this
settling, producing “dropped” views with objects resting on the table.

7. Data capture. Render products are generated at 480 x 480 resolution using the RTX Path
Tracing renderer. For each environment and camera, both RGB images and corresponding
semantic pose annotations are written to disk through Isaac Replicator writers. On average,
we capture 100 frames per environment (500 frames total per scene when multiplied across
cameras).

In addition to randomized placement, we explicitly manipulate object positions to generate con-
trolled spatial displacements. Using custom utility functions, each object is sequentially shifted
relative to the initial position:

o Left/Right.  Objects are translated along the z-axis by fixed increments (e.g.,
move_left (distance=0.1) and move_right (distance=0.2)). This simu-
lates lateral displacements in the viewer’s frame of reference.

e Near/Far. Objects are shifted along the y-axis (move_near (distance=0.1),
move_far (distance=0.2) ), simulating depth changes toward or away from the cam-
era viewpoint.

This procedure yields a diverse and physically consistent dataset covering static spatial relations,
translational dynamics, and multi-view perspective taking (with and without occlusion). The mod-
ular design of the script enables controlled variation in object placement, illumination, and camera
trajectories, while preserving reproducibility through fixed random seeds.

A.1.2 Real-world dataset curation. To unify diverse real-world sources under a common spa-
tial reasoning framework, we implemented a multi-dataset curator that standardizes input formats,
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view sampling, and question generation. Each dataset is wrapped in a dedicated handler class that
exposes object discovery, available views, and sample generation routines. The curation pipeline
proceeds as follows:

* Object discovery. For each dataset, we enumerate object folders (ABO product IDs, car
object IDs, and face subject IDs). Only objects with complete view coverage are retained
(e.g., 72 views in ABO, consistent rotation sequences in Cars, and multiple head poses in
Faces). This ensures all curated objects can support viewpoint-based reasoning tasks.

* View normalization. Views are mapped to standardized angular indices. For ABO, we
map 72 canonical views to 0°-355° in 5° steps. For Cars and Faces, we parse angles and
normalize them to 0°-359°. This allows cross-dataset comparison of viewpoint-sensitive
tasks.

* Task generation. Each dataset supports three primary families of tasks:

1. Object identity. Odd-one-out tasks (triplets or quartets) where two or three views
depict the same object/person and one depicts a distractor.

2. Rotation classification. Pairwise comparisons where an object rotates by a known
offset (e.g., 45°, 90°), and the model must classify the rotation direction (clock-
wise/counterclockwise). For Faces, we explicitly test both viewer-centric and object-
centric frames of reference.

3. Canonical view selection. Given a front view, models must identify left, right, or back
profiles from among candidate images. This directly probes viewpoint reasoning and
perspective-taking.

* Mental rotation (ABO only). Leveraging ABO’s dense 72-view coverage, we generate
multiple-choice mental rotation tasks where the model must predict the outcome of rotating
an object by 45°~180° in either direction. Distractors are sampled to ensure a minimum
angular separation, preventing trivial cues.

» Splitting and statistics. = After sample generation, the curator splits data into
train/validation/test sets with dataset-specific ratios (e.g., ABO: 80/10/10; Faces: 70/10/20;
Cars: test-only). Statistics such as the number of objects, samples per task type, and split
sizes are logged for reproducibility.

* Query variation. To avoid linguistic bias and encourage genuine spatial reasoning, each
task type is associated with multiple natural language templates. For example, an odd-one-
out task may be phrased as “Which of these three images shows a different object?” or
alternatively as “Two of these images show the same object at different views, which one
is different?” During dataset generation, a random template is selected from the available
pool for each sample, ensuring linguistic diversity across training and evaluation.

* Answer option randomization. In addition to varying the textual query, we randomize the
ordering of candidate options (A/B/C or A/B/C/D). For odd-one-out tasks, the distractor
image can appear in any position; for rotation classification, the labels “clockwise” and
“counterclockwise” are shuffled; and for canonical view selection, left/right/back views are
permuted across options. This randomization ensures that models cannot exploit positional
biases (e.g., always guessing option C) and must instead rely on actual spatial reasoning to
succeed.

This unified curation procedure ensures that disparate real-world datasets contribute consistently
formatted, balanced tasks, enabling controlled evaluation of spatial reasoning across product-scale
objects (ABO), structured geometric entities (Cars), and biologically stimuli (Faces).

A.2 DATA ANNOTATION PROTOCOL

A.2.1 General Guidelines All annotations are designed to probe spatial reasoning while mini-
mizing confounds. We adopt the following principles: (i) all questions must be unambiguous under
a specified frame of reference, (ii) tasks must balance object categories and viewpoints, and (iii)
phrasing diversity is required to prevent overfitting to a single query template.
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A.2.2 Data Format and Structure Each annotated instance is serialized as JSON with four
fields: problem (natural language question), answer (ground truth label, always a single capital
letter), images (paths to associated views), and metadata (structured fields such as object IDs,
view indices, occlusion condition, task type). This format ensures compatibility with VQA pipelines
while retaining rich metadata for controlled analysis. All datasets are organized by dataset type
(ABO, Cars, Faces, Infinigen), and further by task subtype.

A.2.3 Quality Control and Validation We employ both automated and manual checks: for
Infinigen, annotation scripts display candidate images to the curator, who confirms correctness with
keystrokes (e.g., pressing “y” to validate a generated left/right relation). For real-world datasets,
handlers enforce strict view coverage (72 views for ABO, complete rotation for Cars, multi-pose

coverage for Faces). Random seeds are fixed during sampling for reproducibility.

A.2.4 Handling Ambiguities To ensure tasks probe genuine spatial reasoning rather than noise,
we implement explicit constraints to minimize annotation ambiguities:

* Angular separation. In ABO mental rotation tasks, distractor views are required to differ
by at least 30° from the target orientation. This prevents trivial confounds where two
options appear nearly identical. Car and Face rotation classification restricts rotations to
canonical offsets (45°, 90°, 180°) for clearer discriminability.

* Visibility filtering. In Infinigen, only objects with projected visibility above 0.8 are consid-
ered valid. Scenes where occlusion prevents reliable labeling are discarded. For occlusion
tasks, annotators explicitly tag each scene as no, partial, or full occlusion.

* Positional thresholds. Static left/right judgments are computed from object cuboid centers
projected in image space. Objects are required to have distinct x-coordinates to avoid
ambiguous ties. Near/far relations are based on y-coordinates, requiring a minimal vertical
separation. In dynamic relation tasks, movement distances are set to non-trivial shifts (0.2
scene units) to guarantee perceptibility.

* Symmetry control. Centrally symmetric objects (e.g., square stool) are excluded from
ABO to avoid cases where left/right or rotation cannot be distinguished visually.

* Frame-of-reference disambiguation. For face rotation, tasks are duplicated under both
object-centric (“the person turned their own head left”) and viewer-centric (“the person
turned to the viewer’s right”) frames.

These constraints, enforced both in code and manual filtering, ensure that all retained samples are
unambiguous and diagnostic of the intended spatial relation.

A.3 TASK CATEGORIES AND SUBTYPES

We provide a comprehensive breakdown of the dataset constitution across major task groups, their
subtypes, and the configuration details for each subtype. Table 4 summarizes the complete distribu-
tion across all 51 distinct task subtypes.

Table 4: Full task subtype breakdown with configuration details.

Group Subtype #Queries #Images #Options
car_identity 80 0+3 3
car-identity_quartet_imagefirst 9 0+4 4
car_identity_quartet_interleaved 5 0+4 4
car_identity_quartet_textfirst 6 0+4 4
face_identity 79 0+3 3
face_identity quartet_imagefirst 7 0+4 4

identity face_identity_quartet_interleaved 8 0+4 4
matching face_identity _quartet_textfirst 4 0+4 4
object_identity _imagefirst 33 0+3 3
object_identity_interleaved 35 0+3 3
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Group Subtype #Queries #Images #Options
object_identity_quartet_imagefirst 42 0+4 4
object_identity_quartet_interleaved 38 0+4 4
object_identity_quartet_textfirst 22 0+4 4
object_identity _textfirst 37 0+3 3

object- infinigen_spatial _relation_grounding_far_near 152 1+0 2
relation infinigen_spatial_relation_grounding_left_right 286 1+0 2
grounding  infinigen_spatial_relationship_front_behind 198 1+0 2
car_rotation_classification 80 2+0 2
face _rotation_classification_own_perspective 94 240 2
dynamic face_rotation_classification_viewer_perspective 70 2+0 2
rotation object_rotation_classification_imagefirst 35 2+0 2
object_rotation_classification_interleaved 47 240 2
object_rotation_classification_textfirst 27 2+0 2
dynamic infinigen_spatial_relationship-dynamic_front_back 78 240 2
translation  infinigen_spatial _relationship_dynamic_left_right 78 2+0 2
car_canonical_view_selection_back 19 143 3
car_canonical_view_selection_left 19 1+3 3
car_canonical_view_selection_right 20 1+3 3
. face_canonical _view_selection_own _perspective_left 23 1+2 2
cangmcal face_canonical _view_selection_own_perspective_right 19 142 2
view face_canonical view_selection_viewer_perspective_left 17 1+2 2
selection face_canonical _view_selection_viewer_perspective_right 18 1+2 2
object_canonical_view_selection_back 80 1+3 3
object_canonical_view_selection_left 86 1+3 3
object_canonical _view_selection_right 57 143 3
infinigen_rotation_selection_back_full_occlusion 9 1+3 3
infinigen_rotation_selection_back _no_occlusion 49 143 3
infinigen_rotation_selection_back _partial_occlusion 47 1+3 3
infinigen_rotation_selection_left_full_occlusion 5 1+3 3
infinigen_rotation_selection_left_no_occlusion 62 143 3
infinigen_rotation_selection_left_partial _occlusion 43 1+3 3
. infinigen_rotation_selection_right_full_occlusion 7 1+3 3
perspective . _ . . o .
taking }nﬁn% genjota@on,select}ong ght,no,(?cclusmn . 61 1+3 3
infinigen_rotation_selection_right_partial _occlusion 40 1+3 3
infinigen_spatial _relation_transformation_w_premise_back 33 1+0 2
infinigen_spatial _relation_transformation_w_premise_left 58 1+0 2
infinigen_spatial _relation_transformation_w_premise_right 53 1+0 2
infinigen_spatial_relation_transformation_wo_premise_back 36 1+0 2
infinigen_spatial_relation_transformation_wo_premise_left 58 1+0 2
infinigen_spatial _relation_transformation_wo_premise_right 52 1+0 2
mental object_mental rotation 78 1+4 4
rotation

Task Group Distribution. The dataset contains a total of 2,599 samples spanning seven major task
groups with varying emphasis: Object-Relation Grounding tasks represent the largest category with
636 samples (24.5%), followed closely by Perspective Taking with 613 samples (23.6%). Identity
Matching contributes 405 samples (15.6%), while Canonical View Selection and Dynamic Rotation
each account for approximately 13—-14% of the dataset (358 and 353 samples respectively). The
smaller categories include Dynamic Translation with 156 samples (6.0%) and Mental Rotation with
78 samples (3.0%).

Dataset Source Distribution. Four distinct data sources contribute to the benchmark: Infinigen
provides the majority with 1,405 samples (54.1%), followed by ABO Objects with 617 samples
(23.7%), Faces with 339 samples (13.0%), and Cars with 238 samples (9.2%). Notably, Infinigen
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exclusively covers Object-Relation Grounding, Perspective Taking, and Dynamic Translation tasks,
while the other domains span Identity Matching, Canonical View Selection, and Dynamic Rotation
tasks.

Task Configuration Details. The image structure varies systematically across task types, decom-
posed into reference images and candidate option images. Single reference image tasks (1+0 to 1+4
format) constitute the majority, including spatial relation tasks with text-only options (1+0), canon-
ical view selection with 2-3 image options (1+2, 143), and mental rotation with 4 image options
(1+4). Two-reference image tasks (2+0 format, 509 samples, 19.6%) appear exclusively in rota-
tion classification and dynamic relationship tasks with text-only options. Identity matching tasks
uniquely employ a no-reference format (0+3, 0+4), where all 3—4 images serve as candidate options
for comparison.

The relationship between option images and answer choices follows a consistent pattern: when the
image option count is 0, the task employs text-only multiple choice answers; otherwise, the number
of image options directly corresponds to the number of answer choices.

Answer Choice Distribution. The benchmark employs a balanced choice structure: binary choices
(A/B) represent 42.0% of tasks (1,094 samples), primarily in rotation classification and spatial trans-
formation tasks. Ternary choices (A/B/C) account for 56.4% (1,463 samples), covering canonical
view selection and most identity matching tasks. Four-way choices (A/B/C/D) constitute only 1.6%
(51 samples), exclusively in quartet identity matching and mental rotation tasks. The answer dis-
tribution across options shows a reasonable balance: option A appears in 42.3% of cases (1,100
samples), option B in 42.1% (1,094 samples), option C in 13.6% (354 samples), and option D in
2.0% (51 samples).

A.4 DETAILED TASK DESCRIPTION WITH EXAMPLES

A4.1 Identity Matching The identity matching tasks evaluate a model’s ability to recognize
whether multiple images depict the same object, person, or vehicle under viewpoint variation. This
capability serves as a foundational prerequisite for more complex spatial reasoning, since robust ob-
ject identity recognition must occur before reasoning about spatial transformations. Identity match-
ing tasks are presented across three domains—cars, faces, and generic objects—with further subdi-
visions based on presentation format (triplet vs. quartet, image-first vs. text-first vs. interleaved).
Quartet setting compared to triplet setting tests whether one more image of the same object increases
difficulty by presenting more tokens or decreases difficulty by presenting more views of the same
object.

* Car identity matching(Fig. 7): The model must decide which image shows a different
car, given triplets or quartets of cars photographed from different angles. Subtypes differ
by whether the distractor is presented among three images, or within a quartet with either
images first, text first, or an interleaved format.

* Face identity matching(Fig. 8): Analogous to the car tasks, but using human faces under
pose variation. The distractor is a different individual, while the other images depict the
same person from different viewpoints. This directly probes human face recognition under
multi-view conditions.

* Object identity matching (Fig. 9 and Fig. 10): For the triplet form, the model receives
three images, two of which depict the same object under viewpoint change, while one
shows a different object. Subtypes vary by whether images are shown first, interleaved
with text, or after text. Quartet form is a variation where the model must select the odd one
out from four candidate images, again with differences in presentation format. This setting
tests whether one more image of the same object increases difficulty by presenting more
tokens or decreases difficulty by presenting more views of the same object.

A.4.2 Dynamic Rotation The dynamic rotation tasks evaluate whether models can track the
orientation changes of a single object across sequential frames. Unlike static relation tasks, these
examples isolate rotational transformations with a static camera and a constant background, thereby
requiring models to reason about in-place turning rather than translation.
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Task group: identity matching (car)

Task: car_identity

Question:

<image>

<image>

<image>

Two of these images show the same car from different angles. Which one shows a different car?
Only answer with the capital letter from (A, B, C).

Task: car_identity_quartet_imagefirst

Question:

<image>
<image>
<image>
<image>
Which of these four images (A, B, C, D) shows a different car from the other three?
Only answer with the capital letter from (A, B, C, D).
s (%4

Task: car_identity_quartet_interleaved

Question:

Look at the following four cars:

A. <image>

B. <image>

C. <image>

D. <image>

Which image shows a different car?

Only answer with the capital letter from (A, B, C, D).

Task: car_identity_quartet_textfirst

Question:

Which of these four images shows a different car from the other three?
A. <image>

B. <image>

C. <image>

D. <image>

Only answer with the capital letter from (A, B, C, D).

Figure 7: Examples of car identity matching tasks. Models must detect the odd car out across triplets

and quartets, with different presentation styles (image-first, interleaved, text-first).
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Task group: identity matching (face)

Task: face_identity

Question:

<image>

<image>

<image>

Two of these images show the same person from different angles. Which one shows a different person?
Only answer with the capital letter from (A, B, C).

A 4

Task: face_identity_quartet_imagefirst

Question:

<image>

<image>

<image>

<image>

Three photos show the same person, one shows someone different. Which is different?
Only answer with the capital letter from (A, B, C, D).

A

Task: face_identity_quartet_interleaved

Question:

Compare these individuals:

A. <image>

B. <image>

C. <image>

D. <image>

Which is the different person?

Only answer with the capital letter from (A, B, C, D).

Task: face_identity_quartet_textfirst

Question:

In these four images, three show the same person from different poses, but one shows a different person. Identify the different one.
A. <image>

B. <image>

C. <image>

D. <image>

Only answer with the capital letter from (A, B, C, D).

Figure 8: Examples of face identity matching tasks. The model must identify which image depicts
a different individual, under both triplet and quartet setups, with varied presentation orders.
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1350
1351
1352
1353
1354
1356
1357 Task: object_identity_imagefirst
1358 Question:
1359 divzges
1360 <image>
<image>
1361 Which of these three images (A, B, C) shows a different object from the other two?
1362 Only answer with the captial letter from (A, B, C).
1363 2
1364 A i c
1365 R
1366
1367 .
1368
1369
1370 Task: object_identity_interleaved
1371 Question:
1372 Look at the following three images:
A. <image>
1373 B. <image>
C. <image>
1374 Which image shows a different object?
1375 Only answer with the captial letter from (A, B, C).
1376 A 2
—
1378 w. §J
1379
1380
1381 Task: object_identity_textfirst
1382 Question:
1383 In those three images, two of them show the same object at different views, but the other one show a different object. Identify which show the
different object.
1384
A. <image>
1385 B. <image>
C. <image>
1386 Only answer with the captial letter from (A, B, C).
1387 A 3
—E— B
1388 - c
1389
1390
1392 4 =
1393
1394
1395
1396
1397

1305 Figure 9: Examples of object identity matching with triplets. Each row contains three candidate
13099  images; two show the same object under view change, and one shows a different object.

1400

1401

1402

1403
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Task group: identity matching (object)

Task: object_identity_quartet_imagefirst

Question:

<image>

<image>

<image>

<image>

Three of these images show the same object at different views. Which one shows the different object?
Only answer with the capital letter from (A, B, C, D).

ntiaglas

Task: object_identity_quartet_interleaved

o4

Question:

Look at the following four images:

A. <image>

B. <image>

C. <image>

D. <image>

Which image shows a different object?

Only answer with the capital letter from (A, B, C, D).

A B c o (4
- -~
7
7 4 i

Task: object_identity_quartet_textfirst

Question:

Which of these four images shows a different object from the other three?
A. <image>

B. <image>

C. <image>

D. <image>

Only answer with the capital letter from (A, B, C, D).

v/

A

Figure 10: Examples of object identity matching with quartets. Models must identify the one image
depicting a different object, with task variants controlling text—image ordering.
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 Car rotation classification(Fig. 11): The model sees two sequential views of a car rotating
in place. It must decide whether the rotation was clockwise or counterclockwise, with
reference to a top-down view.

* Face rotation classification (own perspective vs. viewer perspective) (Fig. 12): These
subtypes probe perspective-dependent interpretation. From the human in the image’s own
perspective, “left” and “right” correspond to their intrinsic body-centered frame. From the
viewer’s perspective, left/right must be relative to the camera’s position or image frame.

* Object rotation classification(Fig. 13): Similar to cars, but applied to generic objects (e.g.,
furniture). Variants differ in presentation order (image-first, text-first, interleaved).

Task group: dynamic rotation (car)

Task: car_rotation_classification

Question:

<image>
<image>
The car rotated from the front view to the second view. Was the rotation clockwise or counterclockwise? A. clockwise, B. counterclockwise
Only answer with the capital letter from (A, B).

The camera is stationary and the car rotates in place from the front view.
Clockwise and counterclockwise are defined from a top-down view.

Task: car_rotation_classification

Question:

<image> _J

<image>

The first image shows the car from the front. In which direction did the car rotate to reach the second view?JA. clockwise, |B. counterclockwise

Only answer with the capital letter from (A, B).
The camera is stationary and the car rotates in place from the front view.
Clockwise and counterclockwise are defined from a top-down view.

Figure 11: Examples of dynamic rotation (car) tasks. The car is shown rotating in place across two
images, and the model must determine whether the transformation corresponds to a clockwise or
counterclockwise rotation.

A.4.3 Dynamic Translation The dynamic translation tasks evaluate whether models can detect
and interpret translational movements of objects across sequential frames. Unlike rotation clas-
sification, the focus here is on linear displacement within the viewer’s frame of reference while
the background and camera remain static. These tasks isolate directional movement (front/back or
left/right) from rotational or other spatial transformations.

* Front-back translation (Fig. 14): The model observes two frames showing an object (e.g.,
box, canned food) shifted either forward or backward relative to the static camera. It must
classify the displacement as “front” or "back.”
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Task group: dynamic rotation (face)

Task: face_rotation_classification_own_perspective

Question:

<image>

<image>

From the person's own perspective, which way did they turn their head? A. right,
Only answer with the capital letter from (A, B).

Consider the direction from the person's own perspective (their left vs their right).

Task: face_rotation_classification_own_perspective

Question:

<image>
<image>
From the person's own perspective, which way did they turn their head? |A
Only answer with the capital letter from (A, B).
Consider the direction from the person's own perspective (their left vs their right).

Task: face_rotation_classification_viewer_perspective

Question:

<image>
<image>
From the viewer's perspective, which direction did the person's head turn?
Only answer with the capital letter from (A, B).
Consider the direction from viewer's perspective (viewer's left vs viewer's right).

Task: face_rotation_classification_viewer_perspective

Question:

<image> V
<image>
Looking at the person from the camera's position, they turned to the A. left,

Only answer with the capital letter from (A, B).
Consider the direction from viewer's perspective (viewer's left vs viewer's right).

Figure 12: Examples of dynamic rotation (face) tasks. The model must classify the direction of
a person’s head turn, either from their own perspective (intrinsic left/right) or from the viewer’s
perspective (extrinsic left/right).
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Task group: dynamic rotation (object)

Task: object_rotation_classification_imagefirst

Question:

<image>

From a stationary viewpoint, in which direction did the object rotate between these two views? A. counterclockwise| B, clockwise
Only answer with the capital letter from (A, B).

The camera is stationary and the object rotate in place.
Clockwise and counterclockwise are defined from a top-down view.

=L B

Task: object_rotation_classification_interleaved

Question:

Looking at the object from a fixed camera positj
<image>
Which rotation direction does the object show?|A
Only answer with the capital letter from (A, B).
The camera is stationary and the object rotate in place.

Clockwise and counterclockwise are defined from a top-down view.

Task: object_rotati lassification_textfirst

The viewpoint is stati i did the object turn — clockwise or counterclockwise? <image>
<image>

A. counterclockwise,|B. clockwise

Question:

Only answer with the capital letter from (A, B).

The camera is stationary and the object rotate in place.

Clockwise and counterclockwise are defined from a top-down view.

. counterclockwise

|
!

AN

Figure 13: Examples of dynamic rotation (object) tasks. Object items are shown before and after
rotation, and the model must classify the direction of turn. Subtypes vary by whether the question is
posed text-first, image-first, or interleaved.
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 Left-right translation (Fig. 14): The model observes an object (e.g., scissors, bottle) mov-
ing laterally within the scene. It must determine whether the movement occurred toward
the left or the right, again from the static camera’s viewpoint.

A4.4 Object-Relation Grounding Object-relation grounding tasks assess a model’s ability to
infer object-relative spatial configurations from a single image. Each task involves two target ob-
jects within the same frame, and models must judge directional relations (e.g., left/right, in front
of/behind) or distance-based relations (e.g., near/far). These tasks capture object-relative pose un-
derstanding in static scenes. Unlike dynamic or multi-view reasoning tasks, these examples isolate
spatial grounding from both temporal reasoning and perspective transformations, serving as a con-
trolled evaluation of whether models can interpret scene-centric spatial layouts from a static visual
input. A key difficulty in these tasks is that the model must correctly identify the correct objects
of interest among possibly multiple distractor objects in the scene. This makes the setup closer to
an open-world detection problem: even if a model has a strong spatial reasoning ability, focusing on
the wrong object will lead to incorrect answers.

For spatial relation tasks with inherent symmetries, we systematically generate equivalent reformu-
lations through two complementary augmentation strategies to test reasoning consistency: Symmet-
rical Augmentation: We create logically equivalent variants by swapping spatial relationships and
flipping correct answers. For example, from a base query “Which object is on the left? A or B,”
we generate the symmetrical variant "Which object is on the right? A or B,” with the correspond-
ing answer flipped. This transformation preserves the underlying spatial configuration while testing
whether models maintain consistent spatial reasoning across equivalent logical formulations. Syn-
tactic Augmentation: We reformulate question structures while preserving semantic content, such
as transforming “Which object is on the left? A or B,” into ”’Is A on the left or right of B? A. left
B. right.” These variations test whether models rely on specific linguistic patterns or demonstrate
robust spatial understanding independent of question phrasing.

» Left/Right Relations with Augmentations (Fig. 15): The base task asks whether one ob-
ject (e.g., Rubik’s cube) is to the left or right of another (e.g., mustard bottle). Symmetrical
augmentation flips the query to its logical equivalent (“Is the mustard bottle to the left or
right of the Rubik’s cube?”), while syntactic augmentation reformulates the phrasing into
binary comparisons (““Which object is on the left?” vs. “Is A on the left or right of B?”). To-
gether, these variations test whether models preserve consistent reasoning across symmetry
and linguistic surface changes.

* Near/Far Relations with Symmetry (Fig. 16): The base task asks which of two objects
(e.g., marker vs. foam brick) is closer to the viewer. Symmetrical augmentation flips the
distance relation by instead asking which object is farther.

* Front/Behind Relations with Augmentations (Fig. 17): The base task asks which object
is in front of the other (e.g., mug vs. Rubik’s cube) from a front-view image. Symmet-
rical augmentation reverses the relation (“Which object is in the back?”), and syntactic
augmentation reformulates the query into pairwise comparisons (“Is the mug in front of or
behind the Rubik’s cube?””). These augmentations jointly probe whether models generalize
depth-order reasoning across logically equivalent but differently phrased prompts.

A.4.5 Canonical View Selection The canonical view selection tasks test whether models can
correctly identify specified viewpoints of objects, cars, or faces. Unlike dynamic tasks, the images
are presented as static alternatives, and the challenge lies in transforming the front-view reference
into another canonical perspective (left, right, or back). These tasks isolate perspective transforma-
tion without involving temporal dynamics or multi-object relationships.

* Car canonical view selection (Fig. 18): Given a front-view reference image, the model
must identify which candidate view corresponds to the car viewing from left, right, or back
side. This evaluates object-centered perspective reasoning in controlled automotive scenes.

* Face canonical view selection (own vs. viewer perspective) (Fig. 19): These tasks in-
troduce ambiguity in reference frames. From the person’s own perspective, left and right
correspond to their intrinsic orientation, whereas from the viewer’s perspective, left/right
are defined relative to the image frame.
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Task group: dynamic translation

Task: infinigen_spatial_relationship_dynamic_front_back

Question:

From a static viewer's perspective, which direction did the pudding box change position from the first image <image> to the second image

i d
[T on . back

O wer with a single capital letter from (A, B).

AA 15

Task: infinigen_spatial_relationship_dynamic_front_back

Question:

From a static viewer's perspective, which direction did the potted meat can change position from the first image <image> to the second image
<image

Afon|o-bace_17]]

Only answer with a single capital letter from (A, B).

Task: infinigen_spatial_relationship_dynamic_left_right

Question:

From a static viewer's perspective, which direction did the bleach cleanser change position from the first image <image> to the second image

irragey?
LA et B rignt

Only answer with a single capital letter from (A, B).

Task: infinig tial_relationship_dynamic_left_right

Question:

Figure 14: Examples of dynamic translation tasks. Objects undergo front—back (top) or left-right
(bottom) displacements while the camera remains fixed. The model must classify the displacement
direction.
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1728
1729
1730
1731
1732
1733

1735 Task: infinigen_spatial_relation_grounding_left_right
1736 !
Question:
1737
<image>
1738 From the viewe rspective, is rubiks cube on the left or right of mustard bottle in the image?
1 739 A. Ieft,
Only ansv apital letter from (A, B).
1740 .
Reference Image
1741 >
1742
1743 ) ;
1744 -
1745
1746
1747
1748
Question:
1749
1750 <image>
rom the viewer's perspective, is mustard bottle on the left or right of rubiks cube in the image?
1751 v B. right
Only answer with a single capital letter from (A, B).
1752
1753
1754
1755
1756
1757 Question:
1758 <image>
1759 om the viewer's perspective, which object is on the left in the image?
v B. rubiks cube
1760 Only answer with a single capital letter from (A, B).
1761 .
1762 Question:
1763 <image>
From the viewer's perspective. which object is on the right in the image?
1764 A. mustard bottle| B. rubiks cube["4 |
Only answer with a single capital letter from (A, B).
1765
1766
1767
1768
1769
1770
1771 . . . . . . .
1779 Figure 15: Examples of object-relation grounding left/right relation tasks. The base question asks
- whether a reference object (e.g., Rubik’s cube) is positioned to the left or right of another object
e (e.g., mustard bottle) from the viewer’s perspective. Symmetrical augmentation reverses the relation

(“Is the mustard bottle to the left or right of the Rubik’s cube?”), while syntactic augmentation
1775 reformulates the question style (“Which object is on the left?” vs. “Is object A on the left or right of
1776 object B?”).

1777

1778

1779

1780

1781
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1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
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Task: infinigen_spatial_relation_grounding_far_near
Question:
<image>
Nhich object is closer to the viewer in the image?
V4 e marker, B.foam brick
Only answer with a single capital letter from (A, B).

Reference Image

Question:

<image>
Which object is farther from the viewer in the image?

A. large marker, |B.foam brick 74|
Only answer with a single capital letter from (A, B).

Figure 16: Examples of object-relation grounding near/far relation tasks. The model must deter-
mine which of two objects (e.g., marker vs. foam brick) is closer to the viewer within a single image.
Symmetrical augmentation inverts the query (“Which object is farther?”’) while keeping the ground-
truth relation consistent. This setup features distance-based reasoning from monocular perspective
cues in static frames.
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1836
1837
1838
1839
1840
1841
1842
1 844 . . ial . Wi .
1845 Task: infinigen_sp _r p_front_|
Question:
1846
<image>
1847 [he image is taken from the front of the scene. Which object is in the front?
B.rubiks cube
1848 \/m wer with a single capital letter from (A, B).
1 849 Reference Image
1850
1851 ™
1852
1853
1854
1855
1856
1857 Question:
1858 )
<image>
1859 The image is taken from the front of the scene. Which object is in the back?
A mug,[B rublks cube [/ |
1860 Only answer with a single capital letter from (A, B).
1861
1862
1863
1864
1865 Question:
1866 _
<|mage>
1867 e image is taken from the front of the scene. Is mug positioned in front of rubiks cube or behind?
\/ 3. behind
1868 Only answer. With a single capital letter from (A, B).
1869
Question:
1870
<image>
1871 The image is taken from the front of the scene. Is rubiks cube positioned in front of mug or behind?
1872 A. in front of |B. behind ['4
Only answer with a single capital letter from (A, B).
1873
1874 \
1875
1876
1877
1878
1879
1880 . . . . . . . .
. Figure 17: Examples of object-relation grounding front/behind relation tasks. Given a front-facing
oo view, the model must decide which object (e.g., mug vs. Rubik’s cube) is positioned in front or

behind. Symmetrical augmentation flips the depth relation (“Which object is in the back?”), while

1885 gyntactic augmentation reformulates the question (“Is the mug in front of or behind the cube?”).
1884

1885
1886
1887
1888
1889
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* Object canonical view selection (Fig. 20): Similar to cars, but applied to generic objects
such as furniture. Models must map the front view to left, right, or back views, testing their
ability to reason about viewpoint consistency across diverse shapes.

Task group: canonical view selection (car)

Task: car_canonical_view_selection_back

Question:

You are shown four images of a car in order: [1] Front view, [2] View A, [3] View B, [4] View C.
Select the image that best shows the car from the back side.

Front view: <image>

A: <image>

B: <image>

C: <image>

Only answer with a single capital letter (A, B, or C).

The back side is defined from the viewer's perspective when looking at the front of the car.

Task: car_canonical_view_selection_left

Question:

You are shown four images of a car in order: [1] Front view, [2] View A, [3] View B, [4] View C.
Select the image that best shows the car from the left side.

Front view: <image>

A: <image>

B: <image>

C: <image>

Only answer with a single capital letter (A, B, or C).

The left side is defined from the viewer's perspective when looking at the front of the car.

Task: car_canonical_view_selection_right
Question:

You are shown four images of a car in order: [1] Front view, [2] View A, [3] View B, [4] View C.
Select the image that best shows the car from the right side.

Front view: <image>

A: <image>

B: <image>

C: <image>

Only answer with a single capital letter (A, B, or C).

The right side is defined from the viewer's perspective when looking at the front of the car.

Figure 18: Examples of canonical view selection with cars. The model must select the correct left,
right, or back view given a front-view reference.
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Task group: canonical view selection (face)

Task: face_t ical_view_selection_own_perspective_left

Question:

You are shown three images in order: [1] Front view, [2] View A, [3] View B.

Select the image that best shows the left profile (person's own left).

Front view: <image>

A: <image>

B: <image>

Only answer with a single capital letter (A or B).

The left/right profile is defined from the person's own perspective (their left vs their right).

Reforonce

lanti

Task: face_canonical_view_: _own_p tive_right

P

Question:

You are shown three images in order: [1] Front view, [2] View A, [3] View B.

Select the image that best shows the right profile (person's own right).

Front view: <image>

A: <image>

B: <image>

Only answer with a single capital letter (A or B).

The left/right profile is defined from the person's own perspective (their left vs their right).

Roferonce

A 4 B
-

Task: face_canonical_view_: 1_viewer_perspective_left

Question:

You are shown three images in order: [1] Front view, [2] View A, [3] View B.

Select the image that best shows the left profile (viewer's left).

Front view: <image>

A: <image>

B: <image>

Only answer with a single capital letter (A or B).

The left/right profile is defined from your perspective as the viewer (your left vs your right when looking at the person).

s (4

Referonce

Task: face_canonical_view_selection_viewer_perspective_right

Question:

‘You are shown three images in order: [1] Front view, [2] View A, [3] View B.

Select the image that best shows the right profile (viewer's right).

Front view: <image>

A: <image>

B: <image>

Only answer with a single capital letter (A or B).

The left/right profile is defined from your perspective as the viewer (your left vs your right when looking at the person).

Referonce

B

Figure 19: Examples of canonical view selection with faces. Tasks differ depending on whether
left/right is defined from the subject’s own perspective or from the external viewer’s perspective.
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1998
1999
2000
2001
2002
2003
2004 Task: object_ |_view_: _back
Question:
2005
2006 You are shown four images in order: [1] Front view, [2] View A, [3] View B, [4] View C.
Select the image that best shows the object from the back side.
Front view: <image>
2007 A: <image>
2008 B: <image>
C: <image>Only answer with a single capital letter (A, B, or C).
2009 The back side is defined from the camera/viewer's perspective: 'back side' means the side that appears on the back when looking at the object
from the front vi
m the front view.
2010 -
Reference A
2011
2012
2013
2014
2015
Task: object ical_view_selection_left
2016 i — .
Question:
2017
You are shown four images in order: [1] Front view, [2] View A, [3] View B, [4] View C.
2018 Select the image that best shows the object from the left side.
2019 Fror]t view: <image>
A: <image>
2020 B: <image>
C: <image>Only answer with a single capital letter (A, B, or C).
2021 The left side is defined from the Iviewer's perspective: 'left side' means the side that appears on the left when looking at the object from
2022 the front view.
- e B c
2024
2025
2026
2027
2028
2029 Task: object_ I_view_selection_right
Question:
2030
You are shown four images in order: [1] Front view, [2] View A, [3] View B, [4] View C.
2031 Select ghe im'age that best shows the object from the right side.
2032 R
2033 B: <image>
C: <image>Only answer with a single capital letter (A, B, or C).
2034 The right side is defined from the camera/viewer's perspective: 'right side' means the side that appears on the right when looking at the object
from the front view.
2035 Roference A B C
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046

2047 Figure 20: Examples of canonical view selection with objects. The model must determine left, right,
2048 or back views of generic objects such as furniture, based on a given front view.

2049

2050

2051
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A.4.6 Perspective Taking (View Selection) These tasks evaluate whether models can perform
perspective taking when selecting the correct viewpoint of a scene, even when parts of objects are
occluded. The challenge lies in integrating the reference view with multiple candidate perspectives,
reasoning about hidden surfaces, and maintaining consistent spatial relationships. Variants differ in
the extent of occlusion.

* Full occlusion (Fig. 21): The model sees a reference front view and must choose among
candidate views taken from back, left, or right perspectives, where large occluders hide
significant portions of the scene. Success requires inferring unseen object sides.

* No occlusion (Fig. 22): Similar setup, but with no major occlusion.

 Partial occlusion (Fig. 23): Candidate views contain moderate occlusion (e.g., objects
partially blocking others). The model must still identify the correct viewpoint, balancing
visible cues with inferred hidden structures.

A.4.7 Perspective Taking (Relative Position Transformation) This task group evaluates
whether models can correctly predict how spatial relationships between objects transform under
perspective shifts. Unlike view selection tasks, where the goal is to choose the correct viewpoint of
a scene, these tasks explicitly probe relational transformations: given a reference view, the model
must infer how relative positions (e.g., left/right, near/far) are altered when the viewpoint changes
to the back, left, or right side. In other words, the challenge lies in mentally re-projecting the scene
and predicting the new arrangement of objects from a different vantage point. To diagnose different
failure modes in spatial reasoning, we introduce premise-based variations in spatial transformation
tasks. In the with-premise condition, the relevant spatial relationship (e.g., “A is to the right of B
in the front view”) is provided directly in the prompt along with the corresponding image, allowing
the model to reason over an explicit linguistic premise. In the without-premise condition, no such
information is given, and the model must infer spatial relations from the reference image. This con-
trolled comparison does not assume a specific order of grounding and reasoning, but instead helps
identify whether failures arise from difficulties in extracting spatial relations from visual input, or
from applying geometric reasoning given a known premise.

* With premise (Figs. 24, 25, 26): The model is given a linguistic statement of the relative
positions (e.g., “X is closer than Y or “X is to the left of Y”) alongside the image, and
must predict how that relation transforms under a new viewpoint.

* Without premise (Figs. 27, 28, 29): The model only sees the reference image and must
infer the spatial relations itself before applying the geometric transformation to a new view-
point.

A.4.8 Mental Rotation Mental rotation tasks evaluate a model’s ability to simulate object trans-
formations by imagining how an object’s orientation changes under specified rotations. Unlike
perspective-taking tasks, which require adopting a different viewpoint, mental rotation requires rea-
soning about the intrinsic geometry of a single object as it spins in place. In these tasks, the model
is presented with a reference front view of an object and a description of a rotation (e.g., “rotate 135
degrees clockwise”). It must then select the correct image among several candidates that matches
the object’s new orientation. This requires integrating visual recognition with geometric transforma-
tion, a key hallmark of human mental imagery. These tasks are particularly diagnostic because they
isolate the ability to track orientation without introducing multi-object relations or cluttered scene
grounding.

* Mental Rotation (Fig. 30): The model is asked to determine the new orientation of a single
object after a specified angular rotation. For example, given a chair in its canonical front-
facing view, the model must predict which candidate corresponds to a 135-degree clockwise
rotation. Success requires both accurate angle-tracking and strong spatial imagination.
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Task group: perspective taking (view selection + full occlusion)

Task: infinigen_rotation_selection_back_full_occlusion

Question:

You are shown four images in order: [1] Front reference view containing the large marker, [2] View A, [3] View B, [4] View C.

Views A, B, and C show the same scene from three distinct angles, left, right, and back in random order.

From the viewer's perspective in the reference image.

<image>

Which of the three candidate views (A <image>, B <image>, or C <image>) is most likely taken from the back side of the large marker?

Only answer with a single capital letter from (A, B, C).

A B C
B ‘ f
n"

Task: infinigen_rotation_selection_left_full_occlusion

Reference

Question:

You are shown four images in order: [1] Front reference view containing the gelatin box, [2] View A, [3] View B, [4] View C.

Views A, B, and C show the same scene from three distinct angles, left, right, and back in random order.

From the viewer's perspective in the reference image.

<image>

Which of the three candidate views (A <image>, B <image>, or C <image>) is most likely taken from the left side of the gelatin box?

Only answer with a single capital letter from (A, B, C).

Reference

Task: infinigen_rotation_selection_right_full_occlusion

Question:

You are shown four images in order: [1] Front reference view containing the bowl, [2] View A, [3] View B, [4] View C.

Views A, B, and C show the same scene from three distinct angles, left, right, and back in random order.

From the viewer's perspective in the reference image.

<image>

Which of the three candidate views (A <image>, B <image>, or C <image>) is most likely taken from the right side of the bowl?

Only answer with a single capital letter from (A, B, C).

Reference

—W

&\ Emy
- ’

[

Figure 21: Examples of full occlusion perspective taking. Large occluders hide most of the target
object, requiring inference about unseen sides.
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Task group: perspective taking (view selection + no occlusion)

Task: infinigen_rotation_selection_back_no_occlusion

Question:

You are shown four images in order: [1] Front reference view containing the gelatin box, [2] View A, [3] View B, [4] View C.

Views A, B, and C show the same scene from three distinct angles, left, right, and back in random order.

From the viewer's perspective in the reference image.

<image>

Which of the three candidate views (A <image>, B <image>, or C <image>) is most likely taken from the back side of the gelatin box?

Only answer with a single capital letter from (A, B, C).

4

Task: infinigen_rotation_selection_left_no_occlusion

Question:

You are shown four images in order: [1] Front reference view containing the large marker, [2] View A, [3] View B, [4] View C.

Views A, B, and C show the same scene from three distinct angles, left, right, and back in random order.

From the viewer's perspective in the reference image.

<image>

Which of the three candidate views (A <image>, B <image>, or C <image>) is most likely taken from the left side of the large marker?

Only answer with a single capital letter from (A, B, C).

Reference

Task: infinigen_rotation_selection_right_no_occlusion

Question:

You are shown four images in order: [1] Front reference view containing the banana, [2] View A, [3] View B, [4] View C.

Views A, B, and C show the same scene from three distinct angles, left, right, and back in random order.

From the viewer's perspective in the reference image.

<image>

Which of the three candidate views (A <image>, B <image>, or C <image>) is most likely taken from the right side of the banana?

Only answer with a single capital letter from (A, B, C).

Reference
—— o W )

A B c
e w—

] -

\

= S

et >\

Figure 22: Examples of perspective taking without occlusion. Models rely solely on spatial consis-
tency across viewpoints.
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Task group: perspective taking (view selection + partial occlusion)

Task: infinigen_rotation_selection_back_partial_occlusion

Question:

You are shown four images in order: [1] Front reference view containing the power drill, [2] View A, [3] View B, [4] View C.

Views A, B, and C show the same scene from three distinct angles, left, right, and back in random order.

From the viewer's perspective in the reference image.

<image>

Which of the three candidate views (A <image>, B <image>, or C <image>) is most likely taken from the back side of the power dfrill?

Only answer with a single capital letter from (A, B, C).

Reference

Task: infinigen_rotation_selection_left_partial_occlusion

Question:

You are shown four images in order: [1] Front reference view containing the banana, [2] View A, [3] View B, [4] View C.

Views A, B, and C show the same scene from three distinct angles, left, right, and back in random order.

From the viewer's perspective in the reference image.

<image>

Which of the three candidate views (A <image>, B <image>, or C <image>) is most likely taken from the left side of the banana?

Only answer with a single capital letter from (A, B, C).

Reference

-
=f

You are shown four images in order: [1] Front reference view containing the potted meat can, [2] View A, [3] View B, [4] View C.
Views A, B, and C show the same scene from three distinct angles, left, right, and back in random order.
From the viewer's perspective in the reference image.

<image>
Which of the three candidate views (A <image>, B <image>, or C <image>) is most likely taken from the right side of the potted meat can?

Task: infinigen_rotation_selection_right_partial_occlusion

Question:

Only answer with a single capital letter from (A, B, C).

Reference

Figure 23: Examples of partial occlusion perspective taking. Candidate views contain moderate
occluders, requiring reasoning across partially visible cues.
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Task group: perspective taking (relative position transformation w/ premise)

Task: infinigen_spatial_relation_transformation_w_premise_back

Question:

<image>

As pudding box is closer and potted meat can is farther from the viewer in the given front view, then when viewed from the back, which object is
now closer to the viewer?

A. potted meat can (V2

B. pudding box

Only answer with a single capital letter from (A, B).

Task: infinig patial_relation_transfor ion_w_premise_back

Question:

<image>

As mustard bottle is on the left and mug is on the right in the given front view, then when viewed from the back, which object appears on the left
from the new perspective?

A. mustard bottle

B. mug m

Only answer With a single capital letter from (A, B).

.
C_

" 4

Figure 24: Examples of perspective taking with relative position transformation (with premise),
back view.
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Task group: perspective taking (relative position transformation w/ premise)

Task: infinig patial_relation_transformation_w_premise_left

Question:

<image>

As potted meat can is closer and pudding box is farther from the viewer in the given front view, then when viewed from the viewer's left side,
which object appears on the left from the new perspective?

A. potted meat can

B. pudding box

Only answer with a single capital letter from (A, B).

Reference Image

Task: infinigen_spatial_relation_transformation_w_premise_left

Question:

<image>

As rubiks cube is on the left and mug is on the right in the given front view, then when viewed from the viewer's left side, which object is closer to
the viewer?

A. mug @

B. rubiks cube

Only answer with a single capital letter from (A, B).

Reforence Image

Figure 25: Examples of perspective taking with relative position transformation (with premise), left
view.
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2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2390

2391

2392 <image>

2393 As large marker is closer and large clamp is farther from the viewer in the given front view, then when viewed from the viewer's right side, which
object appears on the left from the new perspective?

2394 A. large marker

B. large clamp
2395 Only answer with a single capital letter from (A, B).

Task: infinigen_spatial_rel. ion_w_premise_right

Question:

2396 [

~

2397
2398
2399
2400
2401
2402 Task: infinigen_spatial_relation_transformation_w_premise_right
2403 Question:
2404 <image>

As mug is on the left and rubiks cube is on the right in the given front view, then when viewed from the viewer's right side, which object is closer
2405 to the viewer?

A. mug
2406 B. rubiks cube
2407 Only answer with a single capital letter from (A, B).
2408 o imoge
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Figure 26: Examples of perspective taking with relative position transformation (with premise),
right view.
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2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441

2442

2444 Task: infinigen_spatial_relation_transformation_wo_premise_back
2445 Question:
2446 A
2447 The image shows the front view of a scene. Now imagine viewing the same scene from the back. From the new perspective, which object
appears on the left?
2448 A. large marker
B. large clamp
2449 Only answer with a single capital letter from (A, B).
2450 Roforance Imege
2451
2452 S
2453 *
2454
2455
2456 Task: infinigen_spatial_relation_transformation_wo_premise_back
2457 Question:
2458 <image>

The image shows the front view of a scene. Now imagine viewing the same scene from the back. From the new perspective, which object
2459 is closer to the viewer?

A. large marker
2460 B. large clamp
2461

Only answer with a single capital letter from (A, B).
2462

2463
2464 .
2465 ’
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Reference Image

Figure 27: Examples of perspective taking with relative position transformation (without premise),
back view.
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2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2498
2499
2500 <image>

2501 The image shows the front view of a scene. Now imagine viewing the same scene from the viewer's left side. From the new perspective, which
object is closer to the viewer?
2502 A. pitcher base
B. mustard bottle [V 4
2503 Only answer with a Single capital letter from (A, B).
2504 ot imago
2505 I’
2506
2507
2508
2509
2510 Task: infinigen_spatial_relation_transformation_wo_premise_|left

2511
<image>

2512 The image shows the front view of a scene. Now imagine viewing the same scene from the viewer's left side. From the new perspective, which
2513 object now appears on the left?
A. potted meat can

2514 B. pudding box
Only answer with &single capital letter from (A, B).
2515

2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Task: infinig ial_relati f ion_wo_premise_left

Question:

Question:

Reference Image

Figure 28: Examples of perspective taking with relative position transformation (without premise),
left view.
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2538

2540 Task: infinigen_spatial_relation_transformation_wo_premise_right

2541 Question:

2542 <image>

2543 Th_e im'age shows the fl_'ont view of a scene. Now imagine viewing the same scene from the viewer's right side. From the new perspective, which
object is closer e viewer?

2544 ]

2545 Only answer with a single capital letter from (A, B).

2546 —

2547

2548

2549

2550

2551

2552 Task: infinigen_spatial_relation_transformation_wo_premise_right

2553 Question:

2554 S : N NP —
The image shows the front view of a scene. Now imagine viewing the same scene from the viewer's right side. From the new perspective, which

2555 object now appears on the left?
A. master chef can

2556 gnf; g?\rs\::: vﬂa single capital letter from (A, B).

2557 —

2558

2559

2560

2561

2562

2563

2564

2565

2566

Figure 29: Examples of perspective taking with relative position transformation (without premise),
2567 right view.

2568
2569
2570
2571
2572 Task: object_mental_rotation
2573 Question:
<image>
2574 From the original viewpoint, the object spins 135 degrees clockwise. Which view shows the new orientation?
2575 A. <image>
B. <image>
2576 C. <image>
D. <image>
2577 Only answer with the captial letter from (A, B, C, D).
2578 Reference Image (o]
2579
2580 /
2581 f
2582 =
2583
2584
2585
2586 i
2587
2588 N J
2589 . . . .
2590 Figure 30: Examples of mental rotation tasks. The task presents a reference object (e.g., sofa with
beo cushions) and specifies a degree of rotation (e.g., 135° clockwise). The model must identify which

of the candidate views (A—D) corresponds to the rotated orientation.

48



Under review as a conference paper at ICLR 2026

B DETAILED VLMS EVALUATION RESULTS

B.1 RAW ACCURACY AND COHEN’S KAPPA

In addition to the main grouped heatmap reported in the paper, we provide complementary visual-
izations to support detailed analysis of model performance. Figure 31 reports raw accuracy for the
grouped 23 task variants, enabling comparison with the chance-adjusted results in the main text.
Figures 32 and 33 further expand to the ungrouped 51 subtype level, presenting both Cohen’s « and
raw accuracy. Together, these heatmaps give a complete view of performance across models, tasks,
and evaluation metrics.

B.2 DETAILED CONSISTENCY EVALUATIONS

B.2.1 Augmentation Types The benchmark employs two systematic augmentation strategies to
probe reasoning consistency:

1. Symmetric Augmentation: Logically equivalent transformations that flip spatial relations
while maintaining semantic meaning (e.g., “Which object is on the left?” — “Which object
is on the right?” with corresponding answer adjustments).

2. Syntactic Augmentation: Surface-level reformulations that preserve semantic content
while changing question structure (e.g., “Which object is on the left?” — “Is object A
on the left or right of object B?”).

B.2.2 Performance Metrics

Accuracy (%): Overall correctness rate calculated as:

Correct Responses
Total Test Cases

Accuracy = < ) x 100%

Consistency (%): Average of pairwise consistency across task variants, where consistency is
achieved when a pair of question variants yields identical outcomes (both correct or both
incorrect).

Perfect Rate (%): Frequency of achieving complete consistency across all four question variants:

Cases with All-Agree Patterns
Total Four-variant Cases

Perfect Rate = < > x 100%

This includes both CCCC (all correct) and WWWW (all wrong) patterns.

As shown in Table 5, the InternVL model family demonstrates exceptional performance across all
metrics, with InternVL3 variants achieving consistency rates above 90% while maintaining com-
petitive accuracy. Top-tier models (InternVL, GPT-4 variants) exhibit a strong positive correlation
between accuracy and consistency, indicating that spatial reasoning competence and stability are
fundamentally linked. However, notable exceptions exist: GPT-40 achieves 67.8% accuracy but only
79.6% consistency, suggesting brittleness in reasoning processes despite high performance. Mid-tier
models show significant variability in the accuracy-consistency trade-off. Models like Molmo-7B
achieve 73.5% consistency despite only 51.8% accuracy, indicating systematic but often incorrect
reasoning patterns. Conversely, models like Gemma-3-27B maintain 59.8% accuracy but exhibit
poor consistency at 53%, suggesting reliance on surface-level pattern matching rather than robust
spatial understanding. The Perfect Rate metric reveals additional nuances in model behavior. High
perfect rates indicate models that, when consistent, tend to be systematically correct or incorrect
across variants. Lower perfect rates suggest fragmented reasoning where models may correctly
answer some variants while failing others, indicating incomplete spatial representations. The sub-
stantial performance gap between top and bottom models underscores the significant challenges in
achieving stable spatial reasoning.
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VLM Benchmark Results: Raw Accuracy
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SpinBench Evaluations: Cohen's Kappa (Chance-Adjusted Performance)
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Table 5: Comprehensive performance ranking of 41 vision-language models on spatial reasoning
tasks. Accuracy represents overall correctness across all test cases. Consistency measures reasoning
stability across question variants, and Perfect Rate indicates the frequency of achieving complete
consistency across all four question variants (all correct or all incorrect).

Model Accuracy (%) Consistency (%) Perfect Rate (%)
OpenGVLab_InternVL3_5_38B 71.9 95.3 75.1
OpenGVLab_InternVL3_38B 73.8 95.7 71.1
OpenGVLab_InternVL3_5_14B 69.8 94.6 68.7
OpenGVLab_InternVL3_14B 70.3 91.4 63.7
gpt-4.1 69.8 85.9 59.5
Qwen_Qwen2.5_VL_32B_Instruct 67.3 85.7 62.7
OpenGVLab_InternVL3_9B 65.6 82.4 66.7
OpenGVLab_InternVL3_5_8B 68.6 83.9 59.7
OpenGVLab_InternVL3_8B 66.7 77.4 62.7
OpenGVLab_InternVL3_5_4B 65.8 77.1 61.7
gpt-4o 67.8 79.6 51.2
Qwen_Qwen2.5_VL_7B _Instruct 64.5 63.8 59.2
OpenGVLab_InternVL2_5_8B 61.2 65.9 57.7
claude-sonnet-4-20250514 64.8 71.7 42.8
llava-onevision-qwen2-7b-ov-hf 55.6 67.4 58.2
Cosmos-Reasonl-cot-7B 64.1 69.5 41.8
openbmb_MiniCPM_V 2_6 62.1 64.2 45.3
Qwen_Qwen2_VL_7B_Instruct 61.8 60.2 44.8
OpenGVLab_InternVL3_2B 55.7 58.4 50.7
allenai_ Molmo_7B_D_0924 51.8 73.5 35.8
OpenGVLab_InternVL2_5_ 4B 55.9 63.4 39.3
OpenGVLab_InternVL3_5_2B 56.3 59.5 42.3
llava_hf_llava_interleave_qwen_7b_hf 58.9 65.2 31.3
Qwen_Qwen2.5_VL_3B _Instruct 55.3 534 38.3
google_gemma_3_27b_it 59.8 53 25.4
Cosmos-Reason1-7B 58.8 40.9 433
google_gemma_3_12b._it 54.3 58.4 25.9
SpaceThinker-Qwen2.5VL-3B-cot 514 53.4 333
SpaceOm-cot 53.2 51.6 31.8
microsoft_Phi_3.5_vision_instruct 57.7 40.5 23.9
OpenGVLab_InternVL2_5 2B 50.5 50.5 21.4
claude-3-5-haiku 57.3 36.9 214
google_gemma_3_4b_it 47.8 40.1 15.9
OpenGVLab_InternVL3_1B 47.2 35.1 22.4
OpenGVLab_InternVL2_5_1B 46.4 37.6 19.9
SpaceQwen2.5-VL-3B-Instruct 494 33.7 16.4
Qwen_Qwen2_VL_2B_Instruct 48.3 29 17.9
OpenGVLab_InternVL3_5_1B 48.8 28.3 16.9
internlm_internlm_xcomposer2d5_7b 433 36.6 13.9
SpaceOm 49.2 17.9 18.4
SpaceThinker-Qwen2.5VL-3B 48.7 11.1 8.5

B.2.3 Augmentation Strategy Analysis In Fig. 35, the augmentation comparison reveals simi-
lar consistency rates across different transformation types (66-68%), with symmetric augmentations
performing marginally better. The small performance gaps (less than 3 percentage points) suggest
that current vision-language models exhibit similar levels of sensitivity to symmetric and syntactic
augmentation. The substantial error bars (approximately +8-10%) indicate variance in augmentation
sensitivity across models.
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B.2.4 Pattern Distribution Analysis The stacked bar chart Fig. 34 reveals several key insights
into model consistency behavior. High-performing models (topmost bars) demonstrate substantially
larger proportions of perfect consistency patterns (CCCC - all four variants correct), with top models
achieving above 60% perfect consistency rates. Conversely, lower-performing models show more
fragmented pattern distributions with higher prevalences of mixed consistency patterns and complete
failure modes (WWWW). The visualization demonstrates a clear correlation between overall accu-
racy and consistency stability. Models that perform well on spatial reasoning tasks also maintain
more coherent reasoning across question variants.

Consistency by Augmentation Type (n=41 models)

80
70 68B%

66 % 658%
60

50

40

Average Consistency (%)

30
20

10

Symmetric Syntactic Cross

Augmentation Type

Figure 35: Average consistency rates by augmentation strategy across 41 vision-language models
with 4-variant question sets. Error bars represent standard deviation across models. Symmetric aug-
mentations (question reformulations maintaining logical equivalence) achieve slightly higher con-
sistency than syntactic (surface-level rephrasing) and cross-augmentation (mixed transformations)
approaches.

B.3 CORRELATION ANALYSIS

We calculated correlations between our diagnostic benchmark and four established spatial reasoning
benchmarks at both overall and subtask levels (Table 6). Overall correlations between our diagnos-
tic benchmark and holistic benchmarks were weak and non-significant: MindCube (r = -0.088,
p = 0.836), ViewSpatial-Bench (r = 0.460, p = 0.299), OmniSpatial (r = 0.456, p = 0.137), and
SpaCE-10 (r = 0.098, p = 0.803). These results validate that our approach captures distinct foun-
dational capabilities rather than general spatial intelligence. Subtask correlations revealed targeted
diagnostic relationships (Figure 36). Significant correlations emerged between specific diagnostic
and benchmark subtasks: dynamic rotation abilities strongly predict 3D reasoning performance in
MindCube (r = 0.829, p = 0.021), identity matching correlates with person-based perspective tak-
ing in ViewSpatial-Bench (r = 0.915, p = 0.030), and static reasoning predicts object manipulation
capabilities in OmniSpatial (r = 0.764, p = 0.006). SpaCE-10 showed no significant correlations,
suggesting it evaluates distinct spatial reasoning components.

These patterns demonstrate that our diagnostic benchmark provides complementary rather than re-
dundant evaluation. While overall performance correlations are minimal, specific subtask relation-
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ships reveal how foundational spatial deficits contribute to failures in complex holistic tasks, en-
abling targeted identification of improvement areas.

static SEENZE] 0.067 0197
-0.150 0,007

identity_matching . o269 0110 0023
dynamic_prismatic
0352 0317

single_object_perspective | -0.154 0.013 0853 0.80: ~ ¥ K -0.579 -0.542 0537 0.545 -0.252 I
o7

mult_object_perspective =g 430 0081 0249 0333 0.021 0246 0387 0293 0314 0231

Diagnostic Benchmark Subtasks

5 g fb
& « L
MindCube Subtasks

$ < & & & <& &
SpaCE-10 Subtasks

ViewSpatial-Bench Subtasks

Figure 36: Subtask-level correlation matrix between diagnostic benchmark components and other
spatial benchmarks. Rows represent our six diagnostic subtasks, columns represent subtasks from
MindCube (n=7), ViewSpatial-Bench (n=5), and SpaCE-10 (n=5). Color intensity indicates cor-
relation strength: red denotes positive correlations, blue denotes negative correlations. Notably
significant correlations include dynamic rotation with MindCube’s 3D tasks (r=0.829) and identity
matching with ViewSpatial-Bench’s person-based reasoning (r=0.915).

Table 6: Overall Average Correlation Analysis: Diagnostic Benchmark vs. Holistic Spatial Bench-
marks

Benchmark number of models Pearsonr p-value
MindCube Yin et al. (2025) 8 -0.088 0.836
ViewSpatial-Bench Li et al. (2025a) 7 0.460 0.299
OmniSpatial Jia et al. (2025a) 12 0.456 0.137
SpaCE-10 Gong et al. (2025) 9 0.098 0.803

C HUMAN EVALUATIONS

We conducted human evaluation with twelve subjects to establish performance baselines and val-
idate task difficulty. One subject completed the full benchmark (2,599 questions), while eleven
others completed balanced samples of 200 questions each, with equal representation across all task
subtypes.

C.1 HuMAN EVALUATION TOOL DESIGN

We developed a specialized application for human evaluation. The tool handles diverse question
formats automatically, from single reference images with text options to complex multi-image image
options mental rotation tasks.

C.1.1 Question Type Detection and Display The system automatically parses question struc-
ture using pattern matching to distinguish between reference images and selectable options. For
spatial reasoning tasks with text choices (e.g., ”A. mug, B. mustard bottle”), it displays the reference
image alongside clearly labeled text options. For mental rotation tasks presenting multiple candidate
views, it identifies the initial reference state and labels the four candidate images as selectable op-
tions. This smart labeling prevents confusion about which elements are answerable choices versus
contextual information.

C.1.2 Progress Management and Resumption The tool implements progress tracking with au-
tomatic saving after each response. Subjects can resume interrupted sessions seamlessly. Questions
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are grouped and sorted by task type to minimize cognitive switching costs, with pop-up notifications
when transitioning between task categories.

C.1.3 Dataset Curation Integration Beyond collecting responses, the tool also supports real-
time dataset quality control. Subjects can flag ambiguous or problematic questions for removal using
a dedicated key. This dual-purpose design allows human evaluation to simultaneously serve as both
a performance benchmark and a dataset refinement process.

C.1.4 Response Collection The interface uses numbered keyboard input (1-4 corresponding to
A-D) for efficient response collection, with visual feedback for correctness and validation to prevent
invalid inputs. All responses include precise timestamps for response time analysis, with automatic
filtering of extended intervals (> 180s) that indicate interruptions rather than genuine decision time.
The tool generated detailed logs in JSONL format containing individual responses, task-specific
performance breakdowns, and timing statistics, enabling comprehensive analysis of human perfor-
mance patterns across different visual reasoning categories.

C.2 HUMAN PERFORMANCE

Table 7: Human Performance Statistics by Task Subtype. Accuracy and response time statistics
averaged across 12 human subjects, organized by task group categories.

Task Subtype Accuracy Response Time
Mean = SD  Mean =+ SD (s)
Canonical View Selection
car canonical view selection back 1.000 + 0.000 12.5 £10.7
car canonical view selection left 0.771 £ 0.391 114+ 6.7
car canonical view selection right 0.813 + 0.386 6.7+£2.8
face canonical view selection own perspective left 0.750 4+ 0.369 17.2 +10.2
face canonical view selection own perspective right 0.833 £+ 0.389 6.2+5.0
face canonical view selection viewer perspective left 0.771 £ 0.391 9.3+6.5
face canonical view selection viewer perspective right 0.792 4+ 0.382 53439
object canonical view selection back 0.999 £ 0.004 85+£34
object canonical view selection left 0.957 + 0.097 93+£3.7
object canonical view selection right 0.979 £+ 0.072 59+4.0
Identity Matching
car identity 0.999 + 0.004 6.7+4.1
car identity quartet imagefirst 0.963 + 0.088 59+43
car identity quartet interleaved 0.958 + 0.097 10.0 £52
car identity quartet textfirst 1.000 = 0.000 45+33
face identity 1.000 £ 0.000 42+19
face identity quartet imagefirst 1.000 + 0.000 41+£18
face identity quartet interleaved 1.000 = 0.000 33+ 1.0
face identity quartet textfirst 0.958 £+ 0.097 39£1.6
object identity imagefirst 1.000 + 0.000 35+15
object identity interleaved 0.979 + 0.072 45£25
object identity quartet imagefirst 0.998 £ 0.007 2.6+0.8
object identity quartet interleaved 1.000 % 0.000 33£1.2
object identity quartet textfirst 0.979 + 0.072 2.1£0.7
object identity textfirst 1.000 £ 0.000 254+0.8
Dynamic Rotation
car rotation classification 0.999 + 0.004 19.0 £ 11.1
face rotation classification own perspective 0.806 + 0.220 122+ 6.8
face rotation classification viewer perspective 0.624 + 0.390 143+ 124
object rotation classification imagefirst 0.917 £ 0.207 124+ 73

Continued on next page
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Table 7 continued from previous page

Task Subtype Accuracy Response Time
Mean £+ SD Mean £ SD (s)
object rotation classification interleaved 1.000 + 0.000 85+52
object rotation classification textfirst 0.972 £ 0.096 80=£5.1
Dynamic Translation
infinigen spatial relationship dynamic front back 0.792 £ 0.351 174 £ 12.9
infinigen spatial relationship dynamic left right 0.958 + 0.097 8.5+4.0
Object Relation Grounding
infinigen spatial relation grounding far near 0.810 £ 0.240 10.5 £3.8
infinigen spatial relation grounding left right 0.956 + 0.097 13.6 £53
infinigen spatial relationship front behind 0.998 £ 0.007 139+£7.1
Perspective Taking
infinigen rotation selection back full occlusion 0.813 + 0.155 33.0£15.0
infinigen rotation selection back no occlusion 0.873 + 0.167 2444+ 145
infinigen rotation selection back partial occlusion 0.825 + 0.225 253+ 12.6
infinigen rotation selection left full occlusion 0.958 + 0.144 204 £ 13.2
infinigen rotation selection left no occlusion 0.938 = 0.113 154 +6.5
infinigen rotation selection left partial occlusion 0.915 + 0.122 155+94
infinigen rotation selection right full occlusion 0.938 £ 0.113 159+6.5
infinigen rotation selection right no occlusion 0.976 + 0.072 158+ 7.7
infinigen rotation selection right partial occlusion 0.938 +0.113 13.8 £5.8
infinigen spatial relation transformation w premise back ~ 0.979 £ 0.072 250+ 11.3
infinigen spatial relation transformation w premise left 0.957 + 0.097 18.6 = 6.4
infinigen spatial relation transformation w premise right ~ 0.938 +0.113 174 £ 64
infinigen spatial relation transformation wo premise back  0.979 £ 0.072 16.6 £5.3
infinigen spatial relation transformation wo premise left ~ 0.991 £ 0.021 148 £5.0
infinigen spatial relation transformation wo premise right 0.913 £ 0.161 13.6 £5.8
Mental Rotation
object mental rotation 0.749 + 0.321 172 + 8.8
Overall 0.921 + 0.091 11.6 = 6.9

Overall Performance. Human subjects achieved high overall accuracy (0.921 + 0.091) across
the benchmark, as detailed in Tables 7 and 8, demonstrating that while tasks vary significantly
in cognitive difficulty, they remain within human capability. Some task groups showed excellent
accuracy, with Identity Matching achieving the highest performance (0.988 + 0.052). The primary
exceptions were Mental Rotation (0.749 4 0.321), which showed the highest variability and included
some of the most challenging scenarios in the benchmark. Response times varied dramatically across
tasks, ranging from 2.1 seconds for the fastest subtypes to 33.0 seconds for the most challenging,
indicating substantial variation in cognitive difficulty.

Task Group Difficulty Ranking. Analysis of the full benchmark results reveals clear difficulty hi-
erarchies across major task groups, as shown in Figure 37. By response time, the most challenging
groups are: (1) Perspective Taking (19.0s), demanding viewpoint reasoning often under occlusion;
(2) Mental Rotation (17.2s), requiring complex 3D spatial transformations; (3) Dynamic Transla-
tion (12.9s), involving spatial movement tracking; (4) Object-Relation Grounding (12.7s), requiring
analysis of spatial relationships between multiple objects; (5) Dynamic Rotation (12.4s), involving
rotational movement classification; (6) Canonical View Selection (9.2s), focusing on optimal view-
ing angles; and (7) Identity Matching (4.4s), the fastest category involving object recognition across
viewpoints.

The most demanding individual subtypes, detailed in Figure 38, include perspective-taking tasks
under full occlusion (infinigen rotation selection back full occlusion: 33.0s), complex spatial trans-
formations (infinigen spatial relation transformation with premise back: 25.0s), and partial occlu-
sion scenarios (infinigen rotation selection back partial occlusion: 25.3s). Conversely, the fastest
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Table 8: Human Performance Summary by Task Group. Accuracy and response time statistics
across 7 major task categories. Accuracy and response time means are averaged across 12 human
subjects within each task group. Response time range shows the span of mean response times across
different subtypes within each group (fastest to slowest subtype mean).

Task Group Accuracy Response Time Response Time Tasks
Mean + SD Mean =+ SD (s) Range (s) (n)
Identity Matching 0.988 £ 0.052 44+26 2.1-10.0 14
Canonical View Selection ~ 0.866 + 0.301 9.2+6.3 53-17.2 10
Object Relation Grounding  0.921 £ 0.149 127 £5.6 10.5-14.0 3
Dynamic Translation 0.875 £ 0.257 129+ 9.6 85-174 2
Dynamic Rotation 0.886 £+ 0.205 124 + 8.5 8.5-19.0 6
Mental Rotation 0.749 + 0.321 172 £ 8.8 17.2-17.2 1
Perspective Taking 0.928 £ 0.128 190 £94 13.6-33.0 15
Overall 0.921 + 0.091 11.6 £ 6.9 2.1-33.0 51

Task Group Performance Ranking
(by Response Time across Subjects)

Perspective Taking } 19.0s

Mental Rotation 17.2s

Dynamic Translation 12.9s

Static Inter Object 12.7s

Dynamic Rotation 12.4s

Canonical View Selection :| 9.2s
Identity Matching :| 4.4s

0 5 10 15 20 25 30
Mean Response Time (seconds)

Figure 37: Task Group Performance Ranking by Human Response Time. Perspective Taking
emerges as the most cognitively demanding task group (19.0s), followed by Mental Rotation (17.2s)
and Dynamic Translation (12.9s). Identity Matching tasks show the fastest response times (4.4s),
indicating a 4-fold difficulty range across major cognitive categories.
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responses occur in identity matching tasks, particularly object identity quartet text-first (2.1s), sug-
gesting these tap into rapid visual recognition processes that require minimal deliberative reasoning.

Task Subtypes Performance Ranking
(by Response Time across Subjects)
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Figure 38: Detailed Subtype Performance Rankings. The 51 task subtypes ranked by mean hu-
man response time, revealing extreme variation from 2.1s to 33.0s. Perspective-taking tasks under
occlusion (dark teal) dominate the most challenging subtypes, while identity matching tasks (yel-
low) cluster among the fastest responses. Color coding indicates task group membership.

Task Design Implications. The human performance data validates our benchmark’s difficulty gra-
dient and identifies genuinely challenging spatial reasoning scenarios. Tasks combining multiple
cognitive demands—such as perspective taking under occlusion or spatial transformations requiring
premise integration—emerge as the most demanding, requiring both extended processing time while
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generally maintaining high accuracy. The 4.3-fold difference between the easiest (Identity Match-
ing: 4.4s) and hardest (Perspective Taking: 19.0s) task groups demonstrates that our benchmark
successfully spans a wide range of spatial reasoning difficulties, from rapid visual recognition to
complex 3D transformations requiring nearly half a minute of deliberation.

C.3 CORRELATION ANALYSIS

Human-VLM Performance Correlation. To validate that our benchmark captures genuine spa-
tial reasoning difficulty rather than arbitrary task complexity, we analyzed the relationship between
human cognitive load and VLM performance across task subtypes. We calculated the correlation be-
tween mean human response times (averaged across 12 subjects per task) and mean VLM accuracy
(averaged across 37 models per task) for each of the 51 task subtypes in our benchmark.

Subtype Level: Longer Human Time ~ Lower VLM Accuracy
Pearson r = -0.5399 (p = 0.00004), Spearman p = -0.5082 (p = 0.00014)

50
= Quadratic fit

=== Linear fit
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40
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—@-
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Figure 39: Human-VLM Performance Correlation. Scatter plot showing the relationship be-
tween VLM accuracy (x-axis) and human response time (y-axis) across 51 task subtypes. For each
task subtype, we computed: (1) mean human response time by averaging individual response times
across all 12 human subjects who completed that task, and (2) mean VLM accuracy by averaging
performance across all 37 evaluated vision-language models on that same task. The correlation anal-
ysis treats each of the 51 task subtypes as an independent observation, examining whether tasks that
require more human cognitive effort (longer response times) also prove more challenging for VLMs
(lower accuracy). Color intensity indicates response time difficulty, with annotations highlighting
the most challenging outliers.

Our analysis revealed a significant negative correlation between human response times and VLM
accuracy (Pearson r = -0.5399, p < 0.0001; Spearman p = -0.5082, p = 0.0001, n = 51 tasks),
as illustrated in Figure 39. This moderate-to-strong correlation demonstrates that tasks requiring
longer human processing time consistently challenge VLMs more severely, providing empirical
evidence that our benchmark captures fundamental spatial reasoning difficulty shared across human
and artificial intelligence systems.

Cognitive Load. The correlation analysis reveals that human cognitive load, as measured by re-
sponse time, systematically predicts VLM performance degradation. Tasks in the upper-left re-
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gion of Figure 39 with both long human response times and low VLM accuracy—represent the
most cognitively demanding spatial reasoning scenarios in our benchmark. These include com-
plex perspective-taking under occlusion (e.g., infinigen rotation selection back full occlusion: 33.0s
response time), spatial transformations with premise integration (e.g., infinigen spatial relation trans-
formation with premise back: 25.0s), and challenging mental rotation tasks (17.2s). Notably, while
humans maintain high accuracy even on these slow tasks through extended deliberation, VLMs show
systematic accuracy degradation on these same challenging scenarios. This divergence suggests that
humans can leverage additional processing time to overcome spatial reasoning difficulties, while
current VLMs face fundamental limitations .

Benchmark Validity. The systematic relationship between human cognitive difficulty and VLM
performance provides strong evidence for our benchmark’s construct validity. Rather than testing
arbitrary visual challenges, our tasks appear to probe fundamental spatial reasoning capabilities
that require significant cognitive resources for both human and artificial intelligence systems. The
contrast between human speed-accuracy trade-offs (high accuracy with longer processing) and VLM
limitations (lower accuracy regardless of computation time) highlights important gaps in current
vision-language models’ spatial reasoning abilities. This alignment suggests that improvements in
VLM performance on our benchmark likely reflect genuine advances in spatial reasoning rather than
dataset-specific optimizations.

Benchmark Validity. The systematic relationship between human cognitive difficulty and VLM
performance provides strong evidence for our benchmark’s construct validity. The negative correla-
tion indicates that our tasks probe fundamental spatial reasoning capabilities that require significant
cognitive resources across both biological and artificial intelligence systems. Rather than testing
arbitrary visual challenges or dataset-specific artifacts, the alignment demonstrates that our bench-
mark captures core spatial reasoning demands. The contrast between human adaptive processing
(achieving high accuracy through longer deliberation) and VLM limitations (showing lower accu-
racy) highlights important gaps in current vision-language models’ spatial reasoning capabilities.
This alignment suggests that improvements in VLM performance on our benchmark likely reflect
genuine advances in spatial reasoning.

D DETAILS ON THE VLM EVALUATION SETUP

D.1 EVALUATION CONFIGURATION

All models were evaluated with consistent parameters to ensure fair comparison:
» Temperature: 0.0 (deterministic sampling)
* Top-p: 1.0 (no nucleus sampling restriction)

Image preprocessing: Multi-image inputs were processed by interleaving text and image tokens
according to each model’s expected format.

Answer extraction: We employed robust pattern matching to extract answers (A, B, C, D) from
model responses, checking for structured tags first (<answer>A</answer>) followed by stan-
dalone letters with word boundaries.

Referring to Chow et al. (Chow et al., 2025), during VLM evaluations, we appended an end prompt
to each question-answer pair. The end prompt is as follows, depending on the actual option number
for each task, as in Tab. 4:

Only answer with a single capital letter from (A, B).
Only answer with a single capital letter from (A, B, C).
Only answer with a single capital letter from (A, B, C, D).
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D.2 MODEL IMPLEMENTATIONS

D.2.1 LMDEPLOY-SUPPORTED MODELS

For the majority of open-source models, we utilized LMDeploy (Contributors, 2023; Zhang et al.,
2025a), a high-throughput inference engine optimized for large language models.

Models using LMDeploy:

¢ InternVL series: InternVL2.5 (1B—8B), InternVL3 (1B-38B), InternVL3.5 (1B-38B)
* Qwen-VL series: Qwen2-VL (2B-7B), Qwen2.5-VL (3B-32B)
* Gemma series:gemma-3-4b-it, gemma-3-27b-it, gemma-3-12b-it

¢ Additional models: Phi-3.5-vision-instruct, MiniCPM-V-2.6, Molmo-7B, llava-interleave-
qwen-7b-hf

Configuration: We configured tensor parallelism (TP) settings based on model size: TP=1 for
models less than 8B parameters, TP=2 for models less than 16B parameters, and TP=4 for larger
models. Backend selection was automatically determined based on model compatibility, with Tur-
boMind preferred for supported architectures and PyTorch as a fallback.

D.2.2 OTHER MODELS

For models not supported by LMDeploy or requiring specialized handling, we employed the Hug-
gingFace Transformers library with model-specific processors.

LLaVA-OneVision Model: We wused the official LLaVA-OneVision implementation with
LlavaOnevisionForConditionalGeneration and applied the chat template format for
multi-image inputs.

Spatial Reasoning Models: For SpaceOm, SpaceThinker-Qwen2.5VL-3B, and SpaceQwen2.5-
VL-3B-Instruct, we utilized Qwen2_5 VLForConditionalGeneration with specialized chat
templates supporting structured reasoning formats.

Cosmos-Reasonl-7B Model: we used the official LLaVA-OneVision implementation with
vLLM (Kwon et al., 2023) with specialized vision processing utilities to handle multi-modal in-
puts efficiently.

D.3 PROMPT FOR REASONING MODELS

In section 4.2, we evaluate the impact of CoT prompting across three specialized spatial reasoning
models: Cosmos-Reasonl NVIDIA et al. (2025), SpaceOm Jia et al. (2025b), SpaceThinker Chen
et al. (2024). We provide the prompts for each model: The prompt for Cosmos-Reasonl NVIDIA
et al. (2025):

You are a helpful assistant.

Answer the question in the following format:
"<think>\nyour reasoning\n</think>
<answer>\nyour answer\n</answer>."

The prompt for SpaceOm Jia et al. (2025b) and SpaceThinker Chen et al. (2024):

You are VL-Thinking, a helpful assistant with

excellent reasoning ability.

You should first think about the reasoning process and then
provide the answer.

Use <think>...</think> and <answer>...</answer> tags.
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E MORE RELATED WORKS

E.1 SPATIAL REASONING BENCHMARKS

Beyond traditional vision-language datasets, BLINK (Fu et al., 2024) introduces tasks that humans
can solve “within a blink,” but which remain challenging for multimodal large language models
(MLLMs). These tasks highlight persistent gaps between human perception and model capabil-
ities—particularly in spatial reasoning. Recent benchmarks offer complementary perspectives on
spatial reasoning: MindCube (Yin et al., 2025) and VSI-Bench (Yang et al., 20252a) focus on how
MLLMs construct internal representations of space, a process analogous to cognitive mapping.
These benchmarks primarily evaluate advanced, compositional tasks such as object identity tracking
across frames, spatial relation grounding within a frame, and object motion understanding. How-
ever, they do not explicitly isolate or test foundational spatial skills like basic perspective taking
or mental rotation. ViewSpatial-Bench (Li et al., 2025a) targets perspective-taking by evaluating
object localization from different viewpoints. The core task is determining what is visible from a
given perspective, a foundational problem in spatial understanding. SpaCE-10 (Gong et al., 2025)
defines a taxonomy of atomic spatial skills for question answering, including object recognition, lo-
calization, spatial relations, size comparison, and counting. However, its reliance on scanned indoor
scenes limits controlled testing of each skill in isolation. 3DSRBench (Ma et al., 2025a) centers
on spatial reasoning in 3D environments, categorizing tasks into height, location, orientation, and
multi-object reasoning. While comprehensive, its scope excludes key aspects of human spatial in-
telligence, such as perspective-taking and mental rotation. SPHERE (Zhang et al., 2024) proposes a
hierarchical evaluation of vision-language models, progressing from single-skill to multi-skill tasks.
Single-skill categories include position, counting, distance, and size. However, SPHERE primarily
uses a single static image as input, limiting its capacity to evaluate dynamic or temporally grounded
spatial understanding.

Several recent efforts draw inspiration from cognitive science: OmniSpatial (Jia et al., 2025a) offers
tasks rooted in psychological theory, covering dynamic reasoning, complex spatial logic, spatial
interactions, and perspective-taking. However, many of these tasks involve commonsense reasoning
about motion and function, which are often entangled with spatial cognition, making it difficult to
isolate spatial ability. SPACE (Ramakrishnan et al., 2024) categorizes spatial tasks into large-scale
and small-scale cognition. Large-scale tasks assess environment-level spatial understanding, while
small-scale tasks involve object-level reasoning. However, the object-level data is limited to 2D
synthetic shapes, lacking real-world 3D variability and complexity.

In contrast, our benchmark is cognitively grounded and systematically progresses from small-
scale to large-scale spatial reasoning tasks. We start from core perceptual challenges (e.g., object
identity, canonical view recognition(single object), mental rotation(single object), dynamic trans-
lation/rotation(single object)) and scale up to relational and perspective-taking tasks in complex
multi-object scenes. Our tasks are carefully designed to isolate spatial reasoning by controlling for
distractors, motion, reference frame shifts, and multi-image input. The use of both real-world and
photo-realistic synthetic data enables robust and interpretable evaluations. Our perspective-taking
task serves as the most challenging task, requiring integrating of all subskills, making it a holistic
test of spatial cognition. Existing benchmarks lack this layered structure and often conflate spatial
understanding with unrelated reasoning skills.

E.2 SPATIAL REASONING MODELS

One line of work enhances VLMSs’ spatial reasoning by leveraging explicit 3D abstractions of scenes.
SpatialReasoner (Ma et al., 2025b) introduces a large vision-language model that incorporates 3D
representations such as object locations and orientations to enable coherent and reliable reason-
ing. Similarly, Abstract Perspective Change (APC) (Lee et al., 2025) constructs perspective-aware
scene abstractions using vision foundation models for object detection, segmentation, and orien-
tation estimation, leading to significant improvements in perspective reasoning. SSR (Liu et al.,
2025) transforms raw depth data into structured, interpretable textual rationales to be integrated in
VLMs. Another direction relies on continued pre-training and reinforcement learning post-training.
MetaSpatial (Pan & Liu, 2025) adopts a reinforcement learning framework to iteratively refine scene
layouts with physics-aware constraints, generating coherent and realistic 3D arrangements without
supervised annotations. Spatial VLM (Chen et al., 2024) introduces large-scale synthetic pre-training
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data to equip models with quantitative 3D spatial reasoning, enabling accurate metric distance es-
timation and downstream improvements in VQA and robotics. Embodied-R (Zhao et al., 2025)
combines large-scale VLMs and LMs in an RL framework that integrates embodied reasoning from
video streams, using both fast and slow iterative processes to tackle diverse indoor and outdoor
tasks. vsGRPO-7B (Liao et al., 2025) employs R1-Zero-like training with GRPO to boost visual-
spatial reasoning, outperforming baselines and even surpassing GPT-40 on video-based benchmarks.
SpaceR (Ouyang et al., 2025) proposes the SpaceR-151k dataset alongside a spatially-guided RLVR
strategy (SG-RLVR), achieving state-of-the-art results and surpassing GPT-40 by 11.6% on VSI-
Bench. Likewise, SVQA-R1 (Wang & Ling, 2025) extends R1-style reinforcement learning to
spatial VQA through Spatial-GRPO, improving accuracy and interpretability without reliance on
supervised fine-tuning. More recent efforts such as SpaceOm and Spacethinker (Chen et al., 2025a)
attempt to enhance spatial reasoning through RL-driven linguistic fine-tuning, but their improve-
ments exhibit limited generalization Yin et al. (2025), leaving fundamental questions about VLMs’
spatial cognition unresolved. Ultimately, these works underscore that linguistic reasoning alone is
insufficient (Zhang et al., 2025b); humans understand physical space through structured reason-
ing that does not always translate into words, highlighting the need for models that reason beyond
language.

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models were used only as general-purpose tools to assist with writing clarity and
grammar refinement. All technical contributions, benchmark design, and evaluations were devel-
oped entirely by the authors themselves.
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