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ABSTRACT

A fundamental challenge in imitation and reinforcement learning is to learn poli-
cies, representations, or dynamics that do not build on spurious correlations and
generalize beyond the specific environments that they were trained on. We inves-
tigate these generalization problems from a unified view. For this, we propose a
general framework to tackle them with theoretical guarantees on both identifiability
and generalizability under mild assumptions on environmental changes. By lever-
aging a diverse set of training environments, we construct a data representation
that ignores any spurious features and consistently predicts target variables well
across environments. Following this approach, we build invariant predictors in
terms of policy, representations, and dynamics. We theoretically show that the
resulting policies, representations, and dynamics are able to generalize to unseen
environments. Extensive experiments on both synthetic and real-world datasets
show that our methods attain improved generalization over a variety of baselines.

1 INTRODUCTION

Imitation learning (IL) (Argall et al., 2009) concerns learning a policy via expert demonstrations
without access to a reward function, while reinforcement learning (RL) (Sutton & Barto, 2018)
focuses on learning a policy via interaction and reward feedback. One of the fundamental challenges
with state-of-the-art IL and RL approaches is their limited ability to generalize outside of the specific
environments they were trained on, because they learn easy-to-fit spurious correlations which are
prone to change between training and testing environments.

A natural approach to generalization across environmental changes is constructing a representation
that consistently predicts the target well across environments. That is, such a representation comprises
only those features that describe true correlations of interest with the target that are stable across
environments, excluding any features presenting environment-varying spurious correlations with
the target. By exploiting the varying degrees of spurious correlations naturally present in training
data collected from multiple environments, one can try to identify stable features and build invariant
predictors (e.g., invariant policies and dynamics) that are able to generalize to unseen environments
(Peters et al., 2016; Arjovsky et al., 2019; Lu et al., 2022). In both IL and RL, much effort has
been made in this direction. Specifically, in the IL setting, prior work has shown that only a policy
relying solely on the true causes of expert actions can robustly model the mapping from states to
optimal/expert actions, which is stable under environmental shift (de Haan et al., 2019; Zhang et al.,
2020c; Bica et al., 2021; Samsami et al., 2021; Kumor et al., 2021). In the RL setting, one usually
considers three types of generalization problems. First, it has been shown that a representation
consisting only of all the causal ancestors of the reward is the minimal sufficient representation for
policy learning (Zhang et al., 2020a; Huang et al., 2022; 2021). This is because in RL, we seek to
model return (i.e., cumulative reward) rather than solely rewards, which requires a representation
that can capture multi-timestep interactions. Such a representation can generalize to unseen testing
environments with unseen reward functions, as long as the new reward functions are causally
dependent on a subset of the same causal ancestors that determine the original reward function in
training environments (Zhang et al., 2020b; Huang et al., 2022). Second, in some scenarios where
testing and training environments further share the same reward function, the policy relying solely
on such representation, which is learned from training environments, can even directly generalize
to unseen testing environments (Higgins et al., 2017; Harrison et al., 2020; Zhang et al., 2020b).
Third, when the rewards between training and testing environments neither share the same function
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nor depend on a subset of the same causal ancestors, it is generally impossible to generalize either
representations or policies. However, it is still possible to learn generalizable (local) dynamics models
by building invariant predictors on a per-state-variable level1 (Tomar et al., 2021). Apparently, this
also relies on identifying the true causes of each state variable from those state variables in the
previous timestep. In this paper, to distinguish the three types of RL generalization problems above,
we call them representation generalization, policy generalization, and dynamics generalization,
respectively. A graphical illustration is presented in Fig. 3 of the appendix.

In this work, we attempt to look at the different generalization problems in IL and RL from a unified
view, and propose a general framework, under more relaxed assumptions over the distributional
shift and the underlying causal structures, to tackle them, with theoretical guarantees on both
identifiability and generalizability. The key idea is that by taking advantage of structural relationships
between environmental variables (i.e., observations, states, actions, and rewards), we formulate
the generalization problems in both IL and RL in the framework of invariant causal representation
learning (iCaRL) (Lu et al., 2022). This framework offers a tool, with theoretical guarantees under
rather general assumptions over the underlying causal diagram, to first identify direct causes of
a given target from data and then use those causes to build invariant predictors that are able to
generalize to unseen testing environments, which will be briefly reviewed in Appendix C.1. While
our methodology builds significantly on the supervised learning iCaRL framework, the application of
this methodology to problems in RL and IL is new and the results obtained are promising.

Our contributions are summarised as follows: (1) We investigate different generalization problems in
IL and RL in a unified perspective; (2) We propose a general framework to tackle the generalization
problems in IL and RL, with theoretical guarantees on both identifiability and generalizability; (3)
We propose general assumptions over the distributional shift and the underlying causal structures,
covering many real-world scenarios in IL and RL; (4) We show that our framework has theoretical
guarantees for OOD generalization in terms of policy, representation, and dynamics in IL and RL.

2 GENERALIZATION IN IMITATION LEARNING

2.1 PROBLEM FORMULATION

We consider the BC approach (Widrow, 1964; Pomerleau, 1989; 1991; Bain & Sammut, 1995; Schaal,
1999; Muller et al., 2006; Mülling et al., 2013; Bojarski et al., 2016; Mahler & Goldberg, 2017;
Bansal et al., 2018) to learning an imitation policy on the basis of expert demonstrations collected
from multiple environments, with the aim to generalize it to unseen environments. Technically,
we consider a family of environmentsMEall

= {(X e,A, P e, Re, γ) |e ∈ Eall}, with observations
xe ∈ X e ⊆ Rd, actions a ∈ A, a transition dynamics P e ≡ pe((x′)e|xe, a), a reward function
Re(xe, a) ∈ R, and a discount factor γ ∈ [0, 1). Note that, the action space and discount factor do not
change across all environments Eall. We assume only access to a dataset of recorded demonstrations
DEtr = {{τei }

Ne

i=1 |e ∈ Etr} from a set of training environments Etr ⊂ Eall, where each demonstration
τe consists of a sequence of environment specific observation-action pairs τe = (xet , at)t=0,... that
are drawn from an expert policy π∗. Our goal is to learn a policy π from DEtr so that it is able to
mimic the expert behaviour across Eall that share a certain structure. Specifically, we seek a policy
that generalizes well across Eall by solving the optimization problem:

min
π

max
e∈Etr

∑
τe∈De

∑
(xet ,at)∈τe

ℓe(π(xet ), at), (1)

where each ℓe is a choice of environment specific loss function and De = {τei }
Ne

i=1 is a set of
expert demonstrations collected from the training environment e ∈ Etr. Unless stated otherwise, for
simplicity of notation, we drop the superscript e when referring to the union over all the environments
Eall in the rest of this paper.

As discussed in Section 1, prior work has shown that only a policy replying solely on the true
causes of expert actions can generalize well to Eall. Hence, solving (1) is reduced to discovering
the causal features for expert actions from observations across Etr, and then, using them, build an
invariant policy. In the IL context, this can be also interpreted in the way that a generalizable policy
depends only on some shared components of the true latent states denoted by st, rather than their
corresponding observations xt, of the environments (cf. Fig. 3). Note that, in this work we do not
address the partial-observability problem explicitly (Thrun et al., 2005). Instead, we approximate

1This is because in many real world scenarios, each state variable only depends on a small subset of those
state variables in the previous timestep, and because spurious correlations arise for individual state variable
dynamics.

2



Published at the ICLR 2022 workshop on Objects, Structure and Causality

stacked consecutive observations as the observation xt, that is, xt loses no information about st
(Hausknecht & Stone, 2015; de Haan et al., 2019; Gelada et al., 2019; Zhang et al., 2020b):
Assumption 1 (Full-observability). Observations x contain all the information about states s.

2.1.1 ASSUMPTIONS ON THE CAUSAL DIAGRAM

s
p1

t · · · s
pr

t at sc1t · · · sckt

ct−1

xt

e

Figure 1: Causal structure in the IL settings,
where we assume there exist multiple unob-
served state variables. Each of them could be
either a parent of at, or has no direct connec-
tion with at. We allow for arbitrary connec-
tions between the latent state variables (red
dashed lines) as long as the resulting causal
diagram including at is a DAG.

We denote the data representation (true state) of ob-
servation xt by st = (sp1

t , . . . , spr

t , sc1t , . . . , sckt ) ∈
Rn, where n = r + k, and {sit}i∈Ip

.
={p1,...,pr} and

{sjt}j∈Ic
.
={c1,...,ck} are multiple scalar causal factors and

non-causal factors of at, respectively. We denote spt
.
=

(sp1

t , . . . , spr

t ) and sct
.
= (sc1t , . . . , sckt ) for the ease of clar-

ification. It is assumed that s is of lower dimension than
x, that is, n ≤ d. We assume that all the environments
Eall share some latent structure between xt, st and at, and
consider different degrees to which this structure may be
shared, which is encapsulated in Fig. 1 and summarized
as below. Note that, at this moment we do not explicitly
consider the node ct−1

.
= (st−1, at−1) and its both incom-

ing and outgoing arrows (marked in blue), and defer them
to Appendix F.1.
Assumption 2. (a) The causal graph containing st and at is a DAG; (b) xt ⊥⊥ at, e|st, implying that
p(xt|st) is invariant across Eall; (c) at ⊥⊥ e|spt , implying that p(at|spt ) is invariant across Eall.

Assumption 2, together with its corresponding causal diagram in Fig. 1, is flexible enough to cover
most scenarios in the IL setting, which is detailedly explained in Appendix F.2.

2.1.2 ASSUMPTIONS ON THE PRIOR

When the underlying causal diagram across Eall satisfies Assumption 2b, it is straightforward to
obtain the following primary assumption over the prior p(st|at, e) leading to identifiability of the
latent variables st by directly substituting (z, y) with (st, at) in Assumption 2 of Lu et al. (2022) (cf.
Assumption 10 in Appendix C.1).
Assumption 3. pT ,λ(st|at, e) belongs to a general exponential family with parameter vector given
by an arbitrary function λ(at, e) and sufficient statistics T (st) = [Tf (st)T,TNN (st)T]T given by
the concatenation of a) the sufficient statistics Tf (st) = [T1(s

1
t )

T, · · · ,Tn(s
n
t )

T]T of a factorized
exponential family, where all the Ti(s

i
t) have dimension larger or equal to 2, and b) the output

TNN (st) of a neural network with ReLU activations. The resulting density function is thus given by
pT ,λ(st|at, e) = Q(st)/Z(at, e) exp

[
T (st)Tλ(at, e)], (2)

where Q is the base measure and Z the normalizing constant.

A neural network with ReLU activation has universal approximation power. Therefore, the term
TNN (st) in Assumption 3 will allow the prior to capture arbitrary dependencies between the latent
variables st. This is important because for any two sit and sjt , we usually have that sit ⊥̸⊥ sjt |at, e. The
conditional dependencies between them are mainly due to the confounder ct−1 (cf. Fig. 1) (de Haan
et al., 2019). Another possibility is that there might exist instantaneous effects between sit and sjt (i.e.,
an arrow between sit and sjt ) in some scenarios (Peters et al., 2017; Sutton & Barto, 2018), which is
not considered in previous work (Bica et al., 2021).

Now we are ready to address the policy generalization problem in IL, by following the three phases
in iCaRL described in Appendix C.1. For ease of reference, this approach is called iCaRL-IL, which
is described in Appendix F.3 and whose corresponding theoretical results are given in Appendix H.

3 GENERALIZATION IN REINFORCEMENT LEARNING

3.1 PROBLEM FORMULATION

Unless stated otherwise, we follow the same notations used in the IL setting as described in Section 2.1.
In the RL setting2, we consider three generalization problems: policy generalization, representation

2We briefly review the basics of RL in Appendix A.
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generalization, and dynamics generalization. As analysed in Section 1, they all can be resolved in
the iCaRL framework. Specifically, we first identify the true states st from observations xt (Phase
1), then discover the causal ancestors of rewards or the true causes of each state variable among the
identified states st (Phase 2), and finally base on them to build invariant predictors in terms of policy,
representation, and dynamics (Phase 3). Apparently, all the three generalization problems are same
in Phase 1 but not in Phases 2&3. Hence, we first describe what they have in common in Phase 1
(Section 3.1) and then separately describe Phases 2&3 for each (Sections 3.2,3.3&3.4).

3.1.1 ASSUMPTIONS ON THE CAUSAL DIAGRAM

Unlike in the IL setting where the reward is not given, we assume here without loss of generality
that spt and sct are multiple scalar causal factors and non-causal factors of rt+1. We also assume that
all the environment Eall share some latent structure as encapsulated in Fig. 4 of the appendix and
summarized below. Note that, since at is always a causal factor of rt+1, it is not placed in the figure
for simplicity.
Assumption 4. (a) The causal graph containing st and rt+1 is a DAG; (b) xt ⊥⊥ rt+1, e|st, implying
that p(xt|st) is invariant across Eall.
The practicality of Assumption 4 can be detailedly explained in a similar way to that of Assumption
2. A more in-depth explanation can be found in Appendix G.1.

3.1.2 ASSUMPTIONS ON THE PRIOR

When the underlying causal diagram across Eall satisfies Assumption 4b, it is straightforward to
obtain the primary assumption (Assumption 12 in Appendix E) over the prior p(st|rt+1, e) leading to
identifiability of the latent variables st by substituting at with rt+1 in Assumption 3.

Under Assumptions 4b&12, we can follow the exact same steps as described in Appendix F.3.1
to identify the latent variables st with similar theoretical guarantees on identifiability, by directly
substituting at with rt+1 in all the corresponding equations and theorems. This resulting NF-iVAE
model in the RL setting is called NF-iVAE-RL.

3.2 POLICY GENERALIZATION

After estimating st for xt in Phase 1, let us first consider the ideal generalization case in which an
optimal policy learned from multiple training environments can zero-shot generalize to unseen testing
environments. As discussed in Section 1, it has proved that a representation only consisting of all
the causal ancestors of the reward is the minimal sufficient representation (MSR) for policy learning.
Hence, in Phase 2 we need to discover the causal ancestors of the reward, denoted by sAt ≡ AN(R),
from the identified state st. Due to Markovianity of the dynamics in RL, this can be implemented
by recursively applying the two-step method described in Appendix F.3.2. Precisely, we first use
the method to discover the direct causes spt of the reward rt+1 from st and then reuse it to find the
direct causes of spt+1 from st, whose union produces sAt . After obtaining sAt , to learn an invariant
policy that generalizes well to unseen environments in Phase 3, we need to further assume that all the
environments Eall share the following latent structure:
Assumption 5. (a) p(rt+1|spt , at) is invariant across Eall; (b) p(sAt+1|sAt , at) is invariant across Eall.
Assumption 5a states that all the environments share the same reward function. Assumption 5b
means that the latent structure induced by MSR sAt is shared across Eall. Thus, it is straightforward
that under Assumption 5, the learned policy across Etr is guaranteed to generalize well to Eall. We
therefore have the following result with proof in Appendix H.
Proposition 1. Under Assumptions 4,12&5 and the assumptions of Theorems 7&8, the policy learned
across Etr in the limit of infinite data has optimal OOD generalization across Eall.
Note that, unlike the IL setting where we learn the invariant policy in the supervised way, in the RL
setting we follow Zhang et al. (2020b) and combine our MSR sAt with the soft actor-critic (SAC)
algorithm (Haarnoja et al., 2018) to devise a practical RL method, termed iCaRL-RL-P, as shown in
Algorithm 1 of the appendix (see more in Appendix G.3).

3.3 REPRESENTATION GENERALIZATION

When Assumption 5 is violated, it is theoretically impossible that a policy learned from Etr can
generalize well to Eall. As discussed in Section 1, however, it is still possible that the representation
function Φ learned from Etr can generalize to unseen testing environments Ete, as long as the new
reward functions across Ete are causally dependent on a subset of the same causal ancestors sA that
determine the original reward function across Etr. This condition can be formalized as follows:
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Figure 2: (a) Evaluation for policy generalization on OpenAI gym environments in the IL setting. x-axis
indicates the number of trajectories with expert demonstrations from each training environment and y-axis is
average return of the learned imitation policy on the test environment, scaled between 1 (expert performance)
and 0 (random policy performance). (b-d) Evaluation for policy, representation, and dynamics generalization in
the RL setting, where the policies, representations, and dynamics are trained on two environments with different
simple distractors and evaluated on an unseen environment with natural video distractors. Note that, here the
baselines are BC (Pomerleau, 1991), RCAL (Piot et al., 2014), VDICE (Kostrikov et al., 2019), EDM (Jarrett
et al., 2020), IRM (Arjovsky et al., 2019), ICIL (Bica et al., 2021), SLAC (Lee et al., 2020), DeepMDP (Gelada
et al., 2019), MISA (Zhang et al., 2020a), DBC (Zhang et al., 2020b), and IPO (Sonar et al., 2021).

Assumption 6. AN(Re∗) = sA for any e∗ ∈ Ete.
Then, we have the following result whose proof is in Appendix H.
Proposition 2. Under Assumptions 4,12&6 and the assumptions of Theorems 7&8, the representation
function Φ learned across Etr in the limit of infinite data is able to generalize to Ete.

3.4 DYNAMICS GENERALIZATION

When Assumption 6 is also not satisfied, then generalizing Φ is hopeless as well. However, it is
still possible to learn generalizable (local) dynamics models by building invariant predictors on
a per-state-variable level. As discussed in Section 1, the rationale behind is that in many world
scenarios, each state variable only depends on a small subset of those state variables in the previous
timestep, which is summarized as below.

Assumption 7. Given states st, st+1 and action at, we have p(st+1|st, at) =
∏

i p(s
i
t+1|s

Pi
t , at),

where sit+1 denotes the i-th dimension of state st+1 and sPi
t is a set of the parents of sit+1 in st.

To learn invariant (local) dynamics models that generalize well to unseen environments, we need to
further assume that all the environments Eall share the following latent structure:
Assumption 8. Given states st, st+1 and action at, there exists some (local) dynamics model
p(sit+1|s

Pi
t , at) that is invariant across Eall.

Graphically, Assumption 8 indicates that sit+1 ⊥⊥ e|sPi
t , as shown in Fig. 5 of the appendix. Without

loss of generality, we similarly assume that sPi
t

.
= (s

pi
1

t , . . . , s
pi
r

t ) and sCi
t

.
= (s

ci1
t , . . . , s

cik
t ) are

multiple scalar causal factors and non-causal factors of sit+1. After estimating st for xt in Phase 1, it
is straightforward to use the two-step approach described in Appendix F.3.2 to discover the direct
causes sPi

t of sit+1 from st. Then, under Assumption 8, we can follow the same step depicted in
Appendix F.3.3 to learn the invariant (local) dynamics model p(sit+1|s

Pi
t , at) in Phase 3 by directly

substituting spt with (sPi
t , at) and at with sit+1 in Eq. (20). This approach is called iCaRL-RL-D. We

further have the following result (proof in Appendix H).
Proposition 3. Under Assumptions 4,12,7&8 and the assumptions of Theorems 7&8, the (local)
dynamics learned across Etr in the limit of infinite data has optimal OOD generalization across Eall.

4 EXPERIMENTS

We compare our approach with a variety of baselines on both synthetic and real-world datasets. In
all comparisons, unless stated otherwise, we average performance over ten runs and show the mean
results with standard deviations. Due to space limit, we only highlight some key results as shown in
Fig. 2 on the widely used control tasks and refer readers to Appendix I for more details. Our methods
consistently attain improved generalization over a variety of baselines in both IL and RL settings.

5 CONCLUSION AND RELATED WORK

We investigated the different generalization problems in terms of policy, representation, and dynamics
in IL and RL from a unified view, proposing a framework to tackle them with theoretical guarantees
on both identifiability and generalizability under mild assumptions over environmental changes.
Experimental results show that our methods attain improved generalization over a variety of baselines.

In Appendix B, we discuss the related work on different generalization problems in both IL and RL.
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Figure 3: A graphical illustration of different generalization problems in IL and RL that we study in
this work. Grey nodes denote observed variables and white nodes represent unobserved variables.
Dashed lines denote the edges which might vary across environments and even be absent in some
scenarios, whilst solid lines indicate that they are invariant across all the environments. In this toy
example, we have state s = (s1, s2, s3) and its corresponding observation x, where x is assumed to
contain all information about s (Assumption 1). In the IL settings where observation-action pairs
(x, a) are collected from an expert policy (blue lines), an invariant policy should solely depend on
(s1, s2) extracted from x. In the RL settings, it is worth noting that while s2 is the only causal parent
of r in s, a MSR must include both s1 and s2 because the next-timestep distribution of s2 depends
on s1. We have three different RL generalization problems. (1) Representation generalization: a
learned representation function that extracts (s1, s2) from x can generalize to unseen environments.
(2) Policy generalization: a learned policy mapping from (s1, s2) to at can generalize to unseen
environments. (3) Dynamics generalization: a learned local dynamics model p(s2t+1|s1t , s2t , at) can
generalize to unseen environments.
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Figure 4: Causal structure of both policy and representation generalization in the RL settings, where
we assume there exist multiple unobserved state variables. Each of them could be either a parent of
rt+1, or has no direct connection with rt+1. We allow for arbitrary connections between the latent
state variables (red dashed lines) as long as the resulting causal diagram including rt+1 is a directed
acyclic graph (DAG).

A BASICS OF IMITATION AND REINFORCEMENT LEARNING

We describe an environment as a standard Markov decision process (MDP) (Puterman, 1994; Sutton
& Barto, 2018) given by a tupleM = (X ,A, P,R, γ), with observations x ∈ X ⊆ Rd, actions
a ∈ A, a transition dynamics P ≡ p(x′|x, a), a reward function R(x, a) ∈ R, and a discount factor
γ ∈ [0, 1). A policy π(·|x) defines a distribution over actions conditioned on the observation x. At
time t, an agent is provided with an observation xt ∈ X and chooses an action at ∈ A according
to a policy at ∼ π(xt). The agent receives a reward rt+1 = R(xt, at) and then the environment
yields next observation xt+1 ∼ p(·|xt, at). Under a policy π, the value function, denoted by Vπ(x),
represents the expected cumulative discounted rewards (a.k.a., return) following π from observation
x, defined by Vπ(x) = Eπ[

∑∞
t=0 γ

trt+1|x0 = x]. Similarly, we also can define the action-value
function for policy π, denoted by Qπ(x, a), meaning that the value of taking action a in observation
x under a policy π: Qπ(x, a) = Eπ[

∑∞
t=0 γ

trt+1|x0 = x, a0 = a]. In the RL setting, the agent’s
goal is to find an optimal policy π∗ that maximizes the value function: π∗ = argmaxπ Vπ(x) for all
x ∈ X .
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Figure 5: Causal structure of dynamics generalization in the RL settings, where we assume there
exist multiple unobserved state variables. Each of them could be either a parent of sit+1, or has no
direct connection with sit+1. We allow for arbitrary connections between the latent state variables
(red dashed lines) as long as the resulting causal diagram including sit+1 is a DAG.

In the IL setting, the primary difference from the previous RL setting is that the reward is neither
known nor observed. Instead, we only have access to a dataset of expert demonstrations D = {τi}Ni ,
where each demonstration τ consists of a sequence of observation-action pairs τ = (xt, at)t=0,... that
are drawn from an expert policy π∗. We consider behavioural cloning (BC) approaches (Widrow,
1964; Pomerleau, 1989; 1991; Bain & Sammut, 1995; Schaal, 1999; Muller et al., 2006; Mülling
et al., 2013; Bojarski et al., 2016; Mahler & Goldberg, 2017; Bansal et al., 2018) that reduce policy
learning to supervised learning by training a discriminative model to predict expert actions given
observations. That is, the goal of BC is to seek a policy π that imitates the expert policy π∗ by solving
the optimization problem:

min
π

∑
τ∈D

∑
(xt,at)∈τ

ℓ(π(xt), at), (3)

where ℓ is a choice of loss function.

B RELATED WORK

Generalization in IL. IL through behavioural cloning has been extensively studied (Widrow, 1964;
Pomerleau, 1989; 1991; Bain & Sammut, 1995; Schaal, 1999; Muller et al., 2006; Kober et al., 2010;
Bojarski et al., 2016; Mahler & Goldberg, 2017; Bansal et al., 2018). However, none of existing
methods consider the problem of learning policies robust to spurious correlations so that they can
generalize to unseen environments. There are also some work studying the problem of domain
adaptation and transfer learning for IL. However, they assume access to either demonstrations from
testing environments (Sermanet et al., 2017; Liu et al., 2018; Kim et al., 2020) or online interaction
(de Haan et al., 2019; Lu & Tompson, 2020; Swamy et al., 2021), or they study the different problem
of hidden confounding (de Haan et al., 2019; Etesami & Geiger, 2020; Zhang et al., 2020c; Kumor
et al., 2021; Swamy et al., 2021). Another line of work is in the field of meta-learning whose goal is to
generalize learned policies to new tasks, but they also require access to demonstrations from the new
tasks (Finn et al., 2017a;b; Duan et al., 2017; Yu et al., 2018; James et al., 2018; Sharma et al., 2019).
Perhaps the most related to ours is the one in Bica et al. (2021) that also tackles the generalization
problem in IL by learning a representation shared across environments. However, they have no
theoretical guarantees on both identifiability and generalizability. Also, their assumptions over the
underlying causal graph are restricted, e.g., they assume that the causal factors spt and non-causal
factors sct must be independent from each other, which is not necessary in ours; etc.

Policy Generalization in RL. The goal of policy generalization in RL is to learn policies from
multiple training environments so that they can zero-shot generalize to unseen testing environments.
The most common approach to policy generalization is by adding different forms of regularization,
such as dropout and batch normalization (Cobbe et al., 2019) and information-theoretic regularizer
(Goyal et al., 2018; Pacelli & Majumdar, 2020). Although easy to implement, these methods do
not explicitly exploit any (causal) structure of the RL problem. Data augmentation and domain
randomization also show their potential in the sim-to-real generalization problem (Akkaya et al.,
2019; Peng et al., 2018; Urakami et al., 2019), but they are complementary to our methods and
could be potentially used to generate a diverse set of training environments for ours. While the
approaches based on PAC-Bayes (Majumdar et al., 2021) and adversarial perturbations (Sinha et al.,
2018) provide provable generalization guarantees, they require an a priori bound on how much the
test environments differs from the training environments. Inspired by the work of Arjovsky et al.
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(2019) and Ahuja et al. (2020), Krueger et al. (2021) propose a risk-extrapolation method and Sonar
et al. (2021) propose an approach referred as to invariant policy optimization for OOD generalization
in RL, but both have no theoretical guarantees on identifiability and generalizability. Saengkyongam
et al. (2021) tackle the problem of environmental shifts in offline contextual bandits from a causal
perspective. There are also much work on quantifying generalization in RL (Mnih et al., 2013; Nichol
et al., 2018; Song et al., 2019; Cobbe et al., 2019; 2020; Ahmed et al., 2020; Kirk et al., 2021).

Representation Generalization in RL. This line of work focuses on representation generalization
in RL that aims to learn representations from multiple training environments so that they can zero-
shot generalize to unseen testing environments. Much work has been done on reconstruction-based
representations (Lange & Riedmiller, 2010; Lange et al., 2012; Watter et al., 2015; Hafner et al., 2019;
Gelada et al., 2019; Huang et al., 2021), contrastive-based representations (Oord et al., 2018; Chen
et al., 2020; Laskin et al., 2020), and bisimulation-based representations (Larsen & Skou, 1989; Taylor
et al., 2008; Ferns et al., 2011; Ferns & Precup, 2014; Castro, 2020). However, none of these methods
explicitly consider the OOD generalization problem in terms of representation across environments.
Zhang et al. (2020a) propose a method of invariant prediction to learn model-invariance state
abstractions that generalize to novel observations in the multi-environment setting, but their method
is limited to a family of environments represented by block MDPs (Du et al., 2019) and also has no
theoretical guarantees on identifiability and generalizability. Lee et al. (2021) propose an approach for
structure and transfer learning of robot manipulation policies, but it requires performing/simulating the
effect of interventions in the environment. Agarwal et al. (2021) incorporate the inherent sequential
structure in RL into the representation learning process to improve generalization. Zhang et al.
(2020b) leverage bisimulation metrics to learn generalizable representations which encodes only
the task-relevant information from observations. Similarly, both of the methods above provide no
theoretical guarantees on identifiability and generalizability.

Dynamics Generalization in RL. For the tasks of dynamics generalization in RL, the goal is
to learn (local) dynamics models from multiple training environments so that they can zero-shot
generalize to unseen testing environments. Boutilier et al. (1999) detailedly explore structural
assumptions and computational leverage on the underlying MDP for decision-theoretic planning.
The most related setting is of factored MDPs, but most existing work in this field is either to assume
a known causal structure for the transition dynamics (Kearns & Koller, 1999; Jonsson & Barto,
2006; Strehl et al., 2007; Osband & Van Roy, 2014) or to not learn states abstractions (Kearns
& Koller, 1999; Strehl et al., 2007; Misra et al., 2020). Hallak et al. (2015) discuss learning the
factored structure in the dynamics of the environment under the factored MDP assumption. Volodin
et al. (2020) consider the problem of inferring a causal model of the environment, but intervention
is required. Note that, none of these methods consider the generalization problem in terms of
dynamics. Also note that, most factored MDP works include the factored reward condition, which is
not necessary in ours. Another thing in which we differ from these methods is that we only focus on
generalizing the local dynamics model on a per-state-variable level. The most related to our work is
the one in Tomar et al. (2021). While attempting to learn generalizable local dynamics model, they
have no theoretical guarantees on identifiability and generalizability.

C VARIATIONAL AUTOENCODERS

We briefly describe the framework of variational autoencoders (VAEs), which allows us to efficiently
learn deep latent-variable models and their corresponding inference models (Kingma & Welling,
2013; Rezende et al., 2014). Consider a simple latent variable model where x ∈ Rd stands for an
observed variable and z ∈ Rn for a latent variable. A VAE method learns a full generative model
pθ(x, z) = pθ(x|z)pθ(z) and an inference model qϕ(z|x), typically a factorized Gaussian distribution
whose mean and variance parameters are given by the output of a neural network with input x.
This inference model approximates the posterior pθ(z|x), where θ is a vector of parameters of the
generative model, ϕ a vector of parameters of the inference model, and pθ(z) is a prior distribution
over the latent variables. Instead of maximizing the data log-likelihood, we maximize its lower bound
LVAE(θ,ϕ):

log pθ(x) ≥ LVAE(θ,ϕ) := Eqϕ(z|x) [log pθ(x|z)]− KL (qϕ(z|x)||pθ(z)) ,
where we have used Jensen’s inequality, and KL(·||·) denotes the Kullback-Leibler divergence
between two distributions.
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zp1 · · · zpr y zc1 · · · zck

e

x

Figure 6: Causal structure of iCaRL, where we assume there exist multiple latent variables. Each of
them could be a parent, a child of y, or have no direct connection with y. Note that iCaRL allows for
arbitrary connections between the latent variables (red dashed lines) as long as the resulting causal
diagram including y is a directed acyclic graph (DAG).

C.1 INVARIANT CAUSAL REPRESENTATION LEARNING (ICARL)

Invariant causal representation learning (iCaRL) (Lu et al., 2022) is a framework for out-of-distribution
(OOD) generalization in supervised learning (SL), with theoretical guarantees on both identifiability
and generalizability. It aims to construct an invariant predictor that performs well across all environ-
ments Eall by expploiting data collected from multiple training environments Etr, where Etr ⊂ Eall.
The scenarios for OOD generalization in SL that iCaRL mainly considers are the ones whose under-
lying data generating process can be represented by a general causal diagram as shown in Fig. 6. In
particular, the input data is x ∈ Rd and its corresponding target is y ∈ Rs.3 The data representation
z = (zp1 , . . . , zpr , zc1 , . . . , zck) ∈ Rn are a set of latent variables encoding the input data, where
n = r + k, and {zi}i∈Ip

.
={p1,...,pr} and {zj}j∈Ic

.
={c1,...,ck} are multiple scalar causal factors and

non-causal factors of y, respectively. We denote zp
.
= (zp1

, . . . , zpr
) and zc

.
= (zc1 , . . . , zck) for the

ease of clarification. It is assumed that z is of lower dimension than x, that is, n ≤ d. The environment
is treated as a random variable e,4 where e could be any information specific to the environment
(Storkey, 2009; Peters et al., 2016; Zhang et al., 2017; Huang et al., 2020). For simplicity, e is set to
be the environment index, i.e., e ∈ {1, . . . , N}, where N is the number of training environments.

It is worth noting that iCaRL allows for arbitrary connections between the latent variables z as long
as the resulting causal diagram including y is a directed acyclic graph (DAG). Dashed lines indicate
the causal mechanisms which might vary across environments and even be absent in some scenarios,
whilst solid lines indicate that they are invariant across all the environments. To sum up, we posit that
the underlying causal graph (Fig. 6) satisfies the following assumption (Lu et al., 2022):
Assumption 9. (a) The causal graph containing z and y is a DAG; (b) x ⊥⊥ y, e|z, implying that
p(x|z) is invariant across Eall; (c) y ⊥⊥ e|zp, implying that p(y|zp) is invariant across Eall.

To learn the invariant predictor w that is a function mapping from zp to y, the iCaRL framework
consists of three phases. The idea is to first identify the latent variables (z) from the input data (x) by
using an extended identifiable variational autoencoder (NF-iVAE) model under Assumptions 9b&10
(Phase 1), then discover direct causes (zp) of the target (y) among the identified latent variables
under Assumption 9a (Phase 2), and finally learn the invariant predictor (w) for the target from the
discovered causes under Assumption 9c (Phase 3). We briefly review them below, cf. also Lu et al.
(2022).

C.2 PHASE 1: IDENTIFYING LATENT VARIABLES

Technically, under Assumption 9b, the proposed NF-iVAE in Phase 1 is a conditional generative
model with the parameters θ = (f ,T ,λ) ∈ Θ, defined as

pθ(x, z|y, e) = pf (x|z)pT ,λ(z|y, e), (4)
pf (x|z) = pϵ(x− f(z)), (5)

where ϵ is an independent noise variable with probability density function pϵ(ϵ). Importantly, the
primary assumption leading to identifiability of the latent variables in NF-iVAE is that the conditional
prior pT ,λ(z|y, e) belongs to a general exponential family with sufficient statistics T and natural
parameters λ. This is formalized as follows:

3The setup applies to both continuous and categorical data. If any input data or target is categorical, we
one-hot encode it.

4For generality, we use the bold font (y and e) to allow for multi-dimensional variables.
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Assumption 10. pT ,λ(z|y, e) belongs to a general exponential family with parameter vector given
by an arbitrary function λ(y, e) and sufficient statistics T (z) = [Tf (z)T,TNN (z)T]T given by
the concatenation of a) the sufficient statistics Tf (z) = [T1(z1)

T, · · · ,Tn(zn)
T]T of a factorized

exponential family, where all the Ti(zi) have dimension larger or equal to 2, and b) the output
TNN (z) of a neural network with ReLU activations. The resulting density function is thus given by

pT ,λ(z|y, e) =
Q(z)
Z(y, e)

exp
[
T (z)Tλ(y, e)], (6)

where Q is the base measure and Z the normalizing constant.

A neural network with ReLU activation has universal approximation power. Therefore, the term
TNN (z) in the above prior distribution will allow us to capture arbitrary dependencies between the
latent variables.

Most importantly, Lu et al. (2022) prove that under Assumptions 9b&10 and the conditions stated in
Theorems 1-3 of Lu et al. (2022), NF-iVAE can identify the latent variable z.

C.3 PHASE 2: DISCOVERING DIRECT CAUSES

After estimating z for each data point, under Assumption 9a, Lu et al. (2022) propose a heuristic
two-step approach to discovering the direct causes zp in Phase 2, which works well in practice. First,
the PC algorithm (Spirtes et al., 2000) is conducted to learn a Markov equivalence class of DAGs,
which outputs the direct neighbours of y, denoted by NE(y). Second, all pairs5 in NE(y) are tested
with conditional independence testing (Zhang et al., 2012) to discover zp by comparing p-values from
the two tests: IndTest(zi, zj |e) and IndTest(zi, zj |y, e), where IndTest denotes (conditional)
independence test. This is based on the observation that under Assumption 9, for any two zi and zj
from NE(y), only when both are causes of y does the dependency between them generally increase
after additionally conditioning on y.

C.4 PHASE 3: LEARNING AN INVARIANT PREDICTOR

After having obtained zp for y across Etr, under Assumption 9c, the invariant predictor w can be
learned in Phase 3 by solving the following optimization problem:

min
w

∑
e∈Etr

Ezep,ye
[
ℓ(w(zep), ye)

]
, (7)

where ℓ(·) could be any loss. Since E[y|zp] is assumed to be invariant across Eall, the learned w is
guaranteed to perform well across Eall.
When in an unseen testing environment, zp is required to be inferred from x before applying w for
prediction. This is implemented by leveraging the assumed invariant pf (x|z) through solving the
following optimization problem:

max
zp,zc

log pf (x|zp, zc) + λ1||zp||22 + λ2||zc||22, (8)

where the hyperparameters λ1 > 0 and λ2 > 0 control that the learned zp and zc have a reasonable
scale, both of which are selected on training/validation data.

D DEFINITIONS

For convenience, we restates some definitions given in Lu et al. (2022).

Definition 1. A structural equation model (SEM) C := (S, N) governing the random vector X =
(X1, . . . , Xd) is a set of structural equations:

Si : Xi ← fi(Pa(Xi), Ni),

where Pa(Xi) ⊆ {X1, . . . , Xd} \ {Xi} are called the parents of Xi, and the Ni are independent
noise random variables. We say that “Xi causes Xj” if Xi ∈ Pa(Xj). We call causal graph of
X to the graph obtained by drawing i) one node for each Xi, and ii) one edge from Xi to Xj if
Xi ∈ Pa(Xj). We assume acyclic causal graphs.

5We only need to consider those variables in NE(y) whose edges connecting to y are not oriented by PC.
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Definition 2. Consider a SEM C := (S, N). An intervention e on C consists of replacing one or
several of its structural equations to obtain an intervened SEM Ce := (Se, Ne), with structural
equations:

Sei : Xe
i ← fe

i (Pae(Xe
i ), N

e
i ),

The variable Xe is intervened if Si ̸= Sei or Ni ̸= Ne
i .

Definition 3. Consider a structural equation model (SEM) S governing the random vector
(X1, . . . , Xn,Y ), and the learning goal of predicting Y from X . Then, the set of all environ-
ments Eall(S) indexes all the interventional distributions P (Xe,Y e) obtainable by valid interven-
tions e. An intervention e ∈ Eall(S) is valid as long as (i) the causal graph remains acyclic, (ii)
E [Y e|Pa(Y )] = E [Y |Pa(Y )], and (iii) V [Y e|Pa(Y )] remains within a finite range.
Definition 4. (Exponential family) A multivariate exponential family is a set of distributions whose
probability density function can be written as

p(X) =
Q(X)

Z(θ)
exp(⟨T (X),θ⟩), (9)

where Q : X → R is the base measure, Z(θ) is the normalizing constant, T : X → Rk is the
sufficient statistics, and θ ∈ Rk is the natural parameter. The size k ≥ n is the dimension of the
sufficient statistics T and depends on the latent space dimension n. Note that k is fixed given n.
Definition 5. (Strongly exponential distributions) A multivariate exponential family distribution

p(X) =
Q(X)

Z(θ)
exp(⟨T (X),θ⟩) (10)

is strongly exponential, if
(∃θ ∈ Rk s.t. ⟨T (X),θ⟩ = const, ∀X ∈ X ) =⇒ (l(X ) = 0 or θ = 0), ∀X ⊂ Rn, (11)

where l is the Lebesgue measure.

The density of a strongly exponential distribution has almost surely the exponential component and
can only be reduced to the base measure on a set of measure zero. Note that all common multivariate
exponential family distributions (e.g. multivariate Gaussian) are strongly exponential.
Definition 6. Let Θ be the domain of the parameters θ = {f ,T ,λ}. Let ∼ be an equivalence
relation on Θ. A deep generative model is said to be ∼–identifiable if

pθ(O) = pθ̃(O) =⇒ θ ∼ θ̃. (12)
The elements in the quotient space Θ\ ∼ are called the identifiability classes.
Definition 7. Let ∼A be an equivalence relation on Θ defined by:

(f ,T ,λ) ∼A (f̃ , T̃ , λ̃) ⇐⇒ ∃A, c s.t. T (f−1(O)) = AT̃ (f̃−1(O)) + c, ∀O ∈ O, (13)
where A ∈ Rk×k is an invertible matrix and c ∈ Rk is a vector.
Definition 8. Let ∼P be an equivalence relation on Θ defined by:

(f ,T ,λ) ∼P (f̃ , T̃ , λ̃) ⇐⇒ ∃P, c s.t. T (f−1(O)) = P T̃ (f̃−1(O)) + c, ∀O ∈ O, (14)
where P ∈ Rk×k is a block permutation matrix and c ∈ Rk is a vector.

E ASSUMPTIONS

Assumption 11. pT ,λ(st|at, cc−1, e) belongs to a general exponential family with parameter vector
given by an arbitrary function λ(at, cc−1, e) and sufficient statistics T (st) = [Tf (st)T,TNN (st)T]T

given by the concatenation of a) the sufficient statistics Tf (st) = [T1(s
1
t )

T, · · · ,Tn(s
n
t )

T]T of a
factorized exponential family, where all the Ti(s

i
t) have dimension larger or equal to 2, and b) the

output TNN (st) of a neural network with ReLU activations. The resulting density function is thus
given by

pT ,λ(st|at, cc−1, e) =
Q(st)

Z(at, cc−1, e)
exp

[
T (st)Tλ(at, cc−1, e)], (15)

where Q is the base measure and Z the normalizing constant.
Assumption 12. pT ,λ(st|rt+1, e) belongs to a general exponential family with parameter vector
given by an arbitrary function λ(rt+1, e) and sufficient statistics T (st) = [Tf (st)T,TNN (st)T]T

given by the concatenation of a) the sufficient statistics Tf (st) = [T1(s
1
t )

T, · · · ,Tn(s
n
t )

T]T of a
factorized exponential family, where all the Ti(s

i
t) have dimension larger or equal to 2, and b) the
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output TNN (st) of a neural network with ReLU activations. The resulting density function is thus
given by

pT ,λ(st|rt+1, e) =
Q(st)
Z(rt+1, e)

exp
[
T (st)Tλ(rt+1, e)],

where Q is the base measure and Z the normalizing constant.

F GENERALIZATION IN IMITATION LEARNING

F.1 THE CONFOUNDER Ct−1

Note that, as pointed out by de Haan et al. (2019), the state-action pair ct−1 = (st−1, at−1) in the
previous timestep serves as a confounder influencing each state variable in st. Hence, we can explicitly
consider it in the causal diagram, as shown in Fig. 1. In practice, we use the observation-action
pair (xt−1, at−1) to approximate ct−1 (Assumption 1) due to the unobservability of st−1. Thus, ct−1

can be thought of as an observed confounder. In NF-iVAE, such an observed ct−1 can be treated
as an additional auxiliary variable other than at and e, which provides more information leading to
identifiability. That is, in some scenarios where the additional information of (at, e) is not enough to
identify st, we can include ct−1 to help further identify st with theoretical guarantees. This can be
done by directly substituting (at, e) with (ct−1, at, e) in the previous assumptions, equations, and
theorems (Appendix F.4 & H). This technique also applies to the different generalization problems
in RL that we will describe below. For simplicity, we will no longer include the node ct−1 in the
subsequent causal diagrams.

F.2 EXPLAINING THE PRACTICALITY OF ASSUMPTION 2

Let us explain in more detail how practical Assumption 2 is in the IL setting. Assumption 2a is
a common assumption in causal discovery (Spirtes et al., 2000; Pearl, 2009; Peters et al., 2017).
The reason that we require it is that we need to leverage causal discovery algorithms to discover
the causes of expert action at among st in Phase 2. It also makes sense in Assumption 2b that the
generative/causal mechanism p(xt|st) is assumed to be invariant across Eall. First, such a causal
mechanism mapping latent variables to observations is widely adopted in the machine learning
literature (Thrun et al., 2005; Hyvarinen & Morioka, 2016; Suter et al., 2019; Hyvärinen et al., 2019;
Teshima et al., 2020; Khemakhem et al., 2020; Schölkopf et al., 2021; Lu et al., 2022; Sun et al.,
2021). Second, we can view the generative process p(xt|st) as a physical mechanism generating
the observed variables, which is reasonably stable across Eall (Peters et al., 2017; Schölkopf, 2019;
Ahmed et al., 2020; Schölkopf et al., 2021). Assumption 2c is a widely-used default assumption in
OOD generalization (Peters et al., 2016; Arjovsky et al., 2019) and is also what we aim for in the
IL setting. Apparently, Assumption 2, together with its corresponding causal diagram in Fig. 1, is
flexible enough to cover most scenarios in the IL setting.

F.3 POLICY GENERALIZATION

Now we are ready to address the policy generalization problem in IL, by following the three phases
in iCaRL described in Appendix C.1. For ease of reference, this approach is called iCaRL-IL.

F.3.1 PHASE 1: IDENTIFYING STATES

Under Assumption 2b, it is straightforward to obtain a corresponding generative model by directly
substituting (x, z, y) with (xt, st, at) in Eqs. (4-5):

pθ(xt, st|at, e) = pf (xt|st)pT ,λ(st|at, e), (16)
pf (xt|st) = pϵ(xt − f(st)). (17)

The corresponding evidence lower bound (ELBO) is
LELBO

phase1(θ,ϕ) := EDEtr

[
Eqϕ(st|xt,at,e) [log pf (xt|st) + log pT ,λ(st|at, e)− log qϕ(st|xt, at, e)]

]
,

(18)
where qϕ(st|xt, at, e) is an approximate conditional distribution for st given by a recognition network
with parameters ϕ. To guarantee the identifiability result, the prior pT ,λ(st|at, e) is assumed to satisfy
Assumption 3 (i.e. Eq. (15)). Considering the unknown normalization constant Z in this prior, we
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use score matching (Hyvärinen, 2005; Vincent, 2011) to learn (T ,λ) by minimizing
LSM

phase1(T ,λ) := EDEtr

[
Eqϕ(st|xt,at,e)

[
||∇st log qϕ(st|xt, at, e)−∇st log pT ,λ(st|at, e)||2

] ]
.
(19)

In practice, as described in Lu et al. (2022), we can jointly learn (θ,ϕ) by combining Eq. (18) and
Eq. (19) in the following objective:

Lphase1(θ,ϕ) = LELBO
phase1(f , T̂ , λ̂,ϕ)− LSM

phase1(f̂ ,T ,λ, ϕ̂),

where f̂ , T̂ , λ̂, ϕ̂ are copies of f ,T ,λ,ϕ that are treated as constants and whose gradient is not
calculated during learning.

Importantly, under Assumptions 2b&3, we can follow the above steps to identify the latent variables
st in NF-iVAE with similar theoretical guarantees on identifiability, by directly substituting (x, z, y)
with (xt, st, at) in all the corresponding equations and theorems. All these are given in Appendix H.

F.3.2 PHASE 2: DISCOVERING DIRECT CAUSES

After estimating st for xt, we follow Lu et al. (2022) and use a two-step approach to discover the
direct causes spt of the action at. Roughly speaking, we first conduct the PC algorithm (Spirtes
et al., 2000) to learn a Markov equivalence class of DAGs, which outputs the direct neighbours of
at, denoted by NE(at). Then, all pairs in NE(at) are tested with conditional independence testing
(Zhang et al., 2012) to discover zp by comparing their dependences after additionally conditioning on
at, cf. Lu et al. (2022) and Appendix C.1. It is worth noting that whether ct−1 is included or not, this
approach works, because we concern only about the direct causes of at.

F.3.3 PHASE 3: LEARNING AN INVARIANT POLICY

After having obtained spt for at across Etr, under Assumption 2c, the invariant predictor w can be
learned by solving the following optimization problem:

min
w

∑
e∈Etr

E(spt )e,at [ℓ(w((s
p
t )

e), at)] , (20)

where ℓ(·) could be any loss. Since p(at|sp) is assumed to be invariant across Eall, the learned w is
guaranteed to perform well across Eall. See the theorems in Appendix H.

When in an unseen testing environment, spt is required to be inferred from xt before applying w for
prediction. This is done by leveraging the invariant pf (xt|st) (Assumption 2b) through solving the
following optimization problem:

Φ(xt) = argmax
spt ,sct

log pf (xt|spt , sct) + λ1||spt ||22 + λ2||sct ||22, (21)

where the parameters f learned from Etr are fixed, and the hyperparameters λ1, λ2 > 0 control that
the learned spt and sct have a reasonable scale, both of which are selected on training/validation data.
Note that, here Φ can be viewed as a representation function that gives spt from xt.

F.4 MORE ON THE CONFOUNDER Ct−1

Following the above, it is straightforward to obtain a corresponding generative model:
pθ(xt, st|at, ct−1, e) = pf (xt|st)pT ,λ(st|at, ct−1, e), (22)

pf (xt|st) = pϵ(xt − f(st)). (23)
The corresponding evidence lower bound (ELBO) is
LELBO

phase1(θ,ϕ) := EDEtr

[
Eqϕ(st|xt,at,ct−1,e) [log pf (xt|st) + log pT ,λ(st|at, ct−1, e)− log qϕ(st|xt, at, ct−1, e)]

]
,

(24)
where qϕ(st|xt, at, ct−1, e) is an approximate conditional distribution for st given by a recognition
network with parameters ϕ. To guarantee the identifiability result, the prior pT ,λ(st|at, ct−1, e) is
assumed to satisfy Assumption 3 (i.e. Eq. (15)). Considering the unknown normalization constant Z
in this prior, we use score matching (Hyvärinen, 2005; Vincent, 2011) to learn (T ,λ) by minimizing
LSM

phase1(T ,λ) := EDEtr

[
Eqϕ(st|xt,at,ct−1,e)

[
||∇st log qϕ(st|xt, at, ct−1, e)−∇st log pT ,λ(st|at, ct−1, e)||2

] ]
.

(25)
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In practice, as described in Lu et al. (2022), we can jointly learn (θ,ϕ) by combining Eq. (24) and
Eq. (25) in the following objective:

Lphase1(θ,ϕ) = LELBO
phase1(f , T̂ , λ̂,ϕ)− LSM

phase1(f̂ ,T ,λ, ϕ̂),

where f̂ , T̂ , λ̂, ϕ̂ are copies of f ,T ,λ,ϕ that are treated as constants and whose gradient is not
calculated during learning.

G GENERALIZATION IN REINFORCEMENT LEARNING

G.1 MORE EXPLANATIONS ON ASSUMPTION 4

The practicality of Assumption 4 can be detailedly explained in a similar way to that of Assumption 2.
Importantly, it is worth noting here that we do not include that rt+1 ⊥⊥ e|spt (Fig. 4 in green, dashed
line). In other words, p(rt+1|spt , at) might change across Eall in various ways. Technically, in an
environment e ∈ Eall, the causal module pe(rt+1|spt , at)

.
= p(rt+1|spt , at, e = e) can be represented

by the following structural causal model (SCM) (Pearl, 2009):
ret+1 = f((spt )

e, at, ϵe;θe), (26)
where ϵ is a disturbance term and has a non-zero variance (i.e., the model is not deterministic), and
θ denotes the effective parameters in the model/mechanism f . That they all, except at, have the
superscript e explicitly indicates that all of them could be affected by e (i.e., they might vary across
Eall). Any change on these three terms on the RHS of Eq. (26) in the new environment e∗ ∈ Eall will
produce a different distribution pe

∗
(rt+1|spt , at), i.e., a different reward function re

∗

t+1. The different
ways the reward changes lead to the three types of generalization problems we study in the RL setting,
which will be respectively discussed in the subsequent sections.

G.2 IDENTIFYING LATENT VARIABLES IN THE RL SETTING

Under Assumption 4b, it is straightforward to obtain a corresponding generative model by directly
substituting (x, z, y) with (xt, st, rt+1) in Eqs. (4-5):

pθ(xt, st|rt+1, e) = pf (xt|st)pT ,λ(st|rt+1, e), (27)
pf (xt|st) = pϵ(xt − f(st)). (28)

The corresponding evidence lower bound (ELBO) is
LELBO

phase1(θ,ϕ) := EDEtr

[
Eqϕ(st|xt,rt+1,e) [log pf (xt|st) + log pT ,λ(st|rt+1, e)− log qϕ(st|xt, rt+1, e)]

]
,

(29)
where qϕ(st|xt, rt+1, e) is an approximate conditional distribution for st given by a recognition
network with parameters ϕ. To guarantee the identifiability result, the prior pT ,λ(st|rt+1, e) is
assumed to satisfy Assumption 3 (i.e. Eq. (15)). Considering the unknown normalization constant Z
in this prior, we use score matching (Hyvärinen, 2005; Vincent, 2011) to learn (T ,λ) by minimizing
LSM

phase1(T ,λ) := EDEtr

[
Eqϕ(st|xt,rt+1,e)

[
||∇st log qϕ(st|xt, rt+1, e)−∇st log pT ,λ(st|rt+1, e)||2

] ]
.

(30)
In practice, as described in Lu et al. (2022), we can jointly learn (θ,ϕ) by combining Eq. (29) and
Eq. (30) in the following objective:

Lphase1(θ,ϕ) = LELBO
phase1(f , T̂ , λ̂,ϕ)− LSM

phase1(f̂ ,T ,λ, ϕ̂),

where f̂ , T̂ , λ̂, ϕ̂ are copies of f ,T ,λ,ϕ that are treated as constants and whose gradient is not
calculated during learning.

G.3 POLITY GENERALIZATION

Note that, unlike the IL setting where we learn the invariant policy in the supervised way, in the RL
setting we follow Zhang et al. (2020b) and combine our MSR sAt with the soft actor-critic (SAC)
algorithm (Haarnoja et al., 2018) to devise a practical RL method, termed iCaRL-RL-P, as shown
in Algorithm 1 of the appendix. In principle, our MSR could be combined with any RL algorithm,
including the model-free DQN (Mnih et al., 2015) or model-based PETS (Chua et al., 2018). When
deploying the learned invariant policy in an unseen testing environment, we first infer sAt for xt by
leveraging the assumed invariant pf (xt|st) (Assumption 4b). This can be done by means of the
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representation function Φ that is obtained by directly substituting (spt , sct) with (sAt , s¬A
t ) in Eq. (21),

where s¬A
t are the remaining factors in st that are not the causal ancestors of the reward.

H THEOREMS AND PROOFS

Unless stated otherwise, it is straightforward that all the theorems presented in this section can be
easily proved using the same technique in Lu et al. (2022). To avoid redundancy, we refer readers to
Lu et al. (2022) for the proofs.

H.1 GENERALIZATION IN IL

Theorem 1. Assume that we observe data sampled from a generative model defined according to
Eqs. (16, 17, 15), with parameters θ := (f ,T ,λ), where pT ,λ(st|at, e) satisfies Assumption 3.
Furthermore, assume the following holds: (i) The set {xt ∈ X |φϵ(xt) = 0} has measure zero, where
φϵ is the characteristic function of the density pϵ defined in Eq. (17). (ii) Function f in Eq. (17)
is injective, and has all second-order cross derivatives. (iii) The sufficient statistics in Tf are all
twice differentiable. (iv) There exist k + 1 distinct points (at, e)0, . . . , (at, e)k such that the matrix
L =

(
λ((at, e)1)− λ((at, e)0), . . . ,λ((at, e)k)− λ((at, e)0)

)
of size k × k is invertible, where k

is the dimension of T . Then the parameters θ are identifiable up to a permutation and a “simple
transformation” of the latent variables s, defined as a componentwise nonlinearity making each
recovered Ti(s

i
t) in Tf (st) equal to the original up to a linear operation.

Theorem 2. Assume that the following holds: (i) The family of distributions qϕ(st|xt, at, e) contains
pθ(st|xt, at, e), and qϕ(st|xt, at, e) > 0 everywhere. (ii) We maximize Lphase1(θ,ϕ) with respect to
both θ and ϕ. Then in the limit of infinite data, we learn the true parameters θ∗ up to a permutation
and simple transformation of the latent variables st.
Theorem 3. Assume the hypotheses of Theorem 1 and Theorem 2 hold, then in the limit of infinite
data, we identify the true latent variables s∗t up to a permutation and simple transformation.
Proposition 4. Under Assumption 2 and the assumptions of Theorems 1 and 2, the imitation policy
learned by iCaRL-IL across Etr in the limit of infinite data has optimal OOD generalization across
Eall.

H.1.1 ON THE CONFOUNDER Ct−1

Theorem 4. Assume that we observe data sampled from a generative model defined according to
Eqs. (16, 17, 15), with parameters θ := (f ,T ,λ), where pT ,λ(st|at, ct−1, e) satisfies Assumption
3. Furthermore, assume the following holds: (i) The set {xt ∈ X |φϵ(xt) = 0} has measure zero,
where φϵ is the characteristic function of the density pϵ defined in Eq. (17). (ii) Function f in Eq.
(17) is injective, and has all second-order cross derivatives. (iii) The sufficient statistics in Tf are all
twice differentiable. (iv) There exist k + 1 distinct points (at, ct−1, e)0, . . . , (at, ct−1, e)k such that
the matrix L =

(
λ((at, ct−1, e)1)− λ((at, ct−1, e)0), . . . ,λ((at, ct−1, e)k)− λ((at, ct−1, e)0)

)
of

size k× k is invertible, where k is the dimension of T . Then the parameters θ are identifiable up to a
permutation and a “simple transformation” of the latent variables s, defined as a componentwise
nonlinearity making each recovered Ti(s

i
t) in Tf (st) equal to the original up to a linear operation.

Theorem 5. Assume that the following holds: (i) The family of distributions qϕ(st|xt, at, ct−1, e) con-
tains pθ(st|xt, at, ct−1, e), and qϕ(st|xt, at, ct−1, e) > 0 everywhere. (ii) We maximize Lphase1(θ,ϕ)
with respect to both θ and ϕ. Then in the limit of infinite data, we learn the true parameters θ∗ up to
a permutation and simple transformation of the latent variables st.
Theorem 6. Assume the hypotheses of Theorem 4 and Theorem 5 hold, then in the limit of infinite
data, we identify the true latent variables s∗t up to a permutation and simple transformation.

H.2 GENERALIZATION IN RL

Theorem 7. Assume that we observe data sampled from a generative model defined according to
Eqs. (27, 28, 15), with parameters θ := (f ,T ,λ), where pT ,λ(st|rt+1, e) satisfies Assumption 3.
Furthermore, assume the following holds: (i) The set {xt ∈ X |φϵ(xt) = 0} has measure zero, where
φϵ is the characteristic function of the density pϵ defined in Eq. (28). (ii) Function f in Eq. (28) is
injective, and has all second-order cross derivatives. (iii) The sufficient statistics in Tf are all twice
differentiable. (iv) There exist k + 1 distinct points (rt+1, e)0, . . . , (rt+1, e)k such that the matrix
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L =
(
λ((rt+1, e)1)− λ((rt+1, e)0), . . . ,λ((rt+1, e)k)− λ((rt+1, e)0)

)
of size k × k is invertible,

where k is the dimension of T . Then the parameters θ are identifiable up to a permutation and a
“simple transformation” of the latent variables s, defined as a componentwise nonlinearity making
each recovered Ti(s

i
t) in Tf (st) equal to the original up to a linear operation.

Theorem 8. Assume that the following holds: (i) The family of distributions qϕ(st|xt, rt+1, e)
contains pθ(st|xt, rt+1, e), and qϕ(st|xt, rt+1, e) > 0 everywhere. (ii) We maximize Lphase1(θ,ϕ)
with respect to both θ and ϕ. Then in the limit of infinite data, we learn the true parameters θ∗ up to
a permutation and simple transformation of the latent variables st.
Theorem 9. Assume the hypotheses of Theorem 1 and Theorem 2 hold, then in the limit of infinite
data, we identify the true latent variables s∗t up to a permutation and simple transformation.

H.2.1 POLICY GENERALIZATION IN RL

Proposition 5. Under Assumptions 4,12&5 and the assumptions of Theorems 7&8, the policy learned
across Etr in the limit of infinite data has optimal OOD generalization across Eall.

Proof. This proof is straightforward. Under Assumptions 4&12 and the assumptions of Theorems
7&8, Theorems 9 guarantees that the latent variables s can be identified across Etr. Then, by leverag-
ing the method in Phase 2, we can discover the minimum sufficient states sA. Since Assumption 5
indicates that all the environments share the same reward function and transition dynamics on top of
sA, the learned policy across Etr is guaranteed to generalize to Eall.

H.2.2 REPRESENTATION GENERALIZATION IN RL

Proposition 6. Under Assumptions 4,12&6 and the assumptions of Theorems 7&8, the representation
function Φ learned across Etr in the limit of infinite data is able to generalize to Ete.

Proof. Under Assumptions 4&12 and the assumptions of Theorems 7&8, it is theoretically guaranteed
that the latent variables s can be identified across Etr and the representation function Φ can be also
identified. Then, by leveraging the method in Phase 2, we can discover the minimum sufficient states
sA. Also, under Assumption 4b, Φ is invariant across Eall. Therefore, it is guaranteed that sA can
be inferred using Φ across Eall. Under Assumption 6, we also know that all the environments share
the same set of sA, which is the only information required for policy learning across Ete. Hence, the
learned representation function Φ is guaranteed to generalize to Ete.

H.2.3 DYNAMICS GENERALIZATION IN RL

Proposition 7. Under Assumptions 4,12,7&8 and the assumptions of Theorems 7&8, the local
dynamics model learned across Etr in the limit of infinite data has optimal OOD generalization
across Eall.

Proof. This proof is also straightforward. Under Assumptions 4&12 and the assumptions of Theorems
7&8, it is theoretically guaranteed that the latent variables s can be identified across Etr. Then, by
leveraging the method in Phase 2, we can discover the direct causes sPi for each state si under
Assumption 7. Because Assumption 8 indicates that there exists some (local) dynamics model
p(sit+1|s

Pi
t , at) that is invariant across Eall. This shows that the learned local dynamics model has

optimal generalization across Eall.

I EXPERIMENTAL RESULTS

I.1 IDENTIFIABILITY ANALYSIS ON SYNTHETIC DATA

In this section, we empirically verify the identifiability of states in both IL and RL setting. For
this, we conduct a series of experiments on synthetic data generated according to a family of MDPs,
as shown in Fig. 3 of the appendix. Details of the ground truth data generating process are given
in Appendix J.1. We train on two environments with different soft interventions on states. To
measure identifiability, we compute the mean correlation coefficient (MCC) used in Khemakhem
et al. (2020), which can be obtained by calculating the correlation coefficient between all pairs of true
and recovered latent factors and then solving a linear sum assignment problem by assigning each

23



Published at the ICLR 2022 workshop on Objects, Structure and Causality

VA
E

β
-V
A
E

iVA
E

N
F-iVA

E
-IL

N
F-iV

A
E
-IL *

0

1

M
C
C

IL Setting

(a) MCC in IL

VA
E

β
-V
A
E

iVA
E

N
F-iVA

E
-R
L

N
F-iV

A
E
-R
L *

0

1

M
C
C

RL Setting

(b) MCC in RL

V
A
E

β
-V
A
E

iV
A
E

N
F
-iV
A
E
-R
L

N
F
-iV
A
E
-R
L
*

0

1

M
C
C

Instantaneous Effect

(c) MCC in RL

5 10 15 20
Number of Trajectories

0.2

0.3

0.4

0.5

0.6

Pe
rfo

rm
an

ce
 (S

ca
le

d)

VDICE
EDM
BC
RCAL
ICIL
iCaRL-IL

(d) BeamRider

Figure 7: (a-b) Mean correlation coefficient (MCC) scores for VAE, β-VAE, iVAE, NF-iVAE-I/RL, and NF-
iVAE-I/RL∗ on synthetic data in IL and RL settings. Note that, NF-iVAE-I/RL∗ is a NF-iVAE-I/RL additionally
conditioning on the previous observation-action pair ct−1. (c) Similar to (b), but with instantaneous effects
between states on synthetic data. (d) Evaluation for policy generalization on OpenAI gym environments in the IL
setting. x-axis indicates the number of trajectories with expert demonstrations from each training environment
and y-axis is average return of the learned imitation policy on the test environment, scaled between 1 (expert
performance) and 0 (random policy performance).

recovered latent factor to the true latent factor with which it best correlates. By definition, higher
MCC scores indicate stronger identifiability. In the IL setting, Fig. 7a shows that the states are better
identified by NF-iVAE-I/RL than by those commonly used VAE (Kingma & Welling, 2013) and
β-VAE (Higgins et al., 2016). It is worth noting that when additionally conditioning on the previous
observation-action pair ct−1, the result, denoted by NF-iVAE-IL∗, empirically confirms that it helps
further identify the states. We can obtain the similar conclusion in the RL setting, as shown in Fig. 7b.
Even when there exist instantaneous effects between state variables as mentioned in Section 2.1.2,
we can see from Fig. 7c that NF-iVAE-RL works as well.

I.2 GENERALIZATION IN IMITATION LEARNING

In the IL setting, we follow Bica et al. (2021) and evaluate generalization of our approach on the
following two control tasks from OpenAI gym (Brockman et al., 2016): LunarLander (Brockman
et al., 2016) and BeamRider (Bellemare et al., 2013) (Fig. 7d in the appendix). For each task, we also
use pre-trained RL agents from RL Baselines Zoo (Raffin, 2018) and Stable OpenAI Baselines (Hill
et al., 2018) to obtain expert policies, and then follow an approach similar to the one in Zhang et al.
(2020a) to obtain datasets with demonstrations from the expert in two different environments. We
follow the same setting of Bica et al. (2021) to add spurious correlations. We train on demonstrations
from two training environments and test on an unseen testing environment. Further details can
be found in Appendix J.2. Similar to Bica et al. (2021), we also compare our iCaRL-IL with 1)
Behaviour Cloning (BC) (Pomerleau, 1991), 2) RCAL (Piot et al., 2014), 3) ValueDICE (VDICE)
(Kostrikov et al., 2019), 4) Energy-based Distribution Matching (EDM) (Jarrett et al., 2020), 5)
IRM (Arjovsky et al., 2019), and 6) ICIL (Bica et al., 2021). As shown in Fig. 2a, our iCaRL-IL
consistently outperforms the benchmarks and can generalize better to the unseen testing environment.

I.3 GENERALIZATION IN REINFORCEMENT LEARNING

I.3.1 POLICY GENERALIZATION

In this section, we report experimental results on cartpole swingup from the DeepMind Control
(DMC) suite (Tassa et al., 2018) in two settings (i.e., simple distractors and natural video distractors,
see Appendix J.3). we compare our iCaRL-RL-P against several baselines: 1) Stochastic Latent
Actor-Critic (SLAC) (Lee et al., 2020), 2) DeepMDP (Gelada et al., 2019), 3) Model-Irrelevance
State Abstractions (MISA) (Zhang et al., 2020a), 4) Deep Bisimulation for Control (DBC) (Zhang
et al., 2020b), and 5) Invariant Policy Optimization (IPO) (Sonar et al., 2021). We first train policies
on two cartpole swingup environments with different simple distractors and then evaluate them
on the average return obtained by deploying the learned policies on another cartpole swingup
environment with natural video distractors. Fig. 2b empirically verifies that the police learned by our
method are able to generalize to the unseen testing environment.

I.3.2 REPRESENTATION GENERALIZATION

We also evaluate the generalization performance of the learned representation function Φ on the DMC
suite. Following Zhang et al. (2020b), this is done by training SAC with new reward functions on
walker run using the fixed representation Φ learned from two walker walk environments with
different simple distractors. Note that, here these new reward functions satisfy Assumption 6. As
shown in Fig. 2c, our method, termed iCaRL-RL-R, learn a representation function which has better
generalization power.
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I.3.3 DYNAMICS GENERALIZATION

We now test the generalization capacities of the learned dynamics on cheetah run from the DMC
suite. We first learn dynamics models on two cheetah run environments with different simple
distractors and then follow Zhang et al. (2020a) to evaluate them in terms of model errors obtained
by deploying the learned dynamics models on another cheetah run environment with natural
video distractors. As shown in Fig. 2d, our method is more stable than the others in that the model
error is consistently small.

J MORE DETAILS ABOUT EXPERIMENTS

J.1 SYNTHETIC DATA

The synthetic data are generated according to a family of MDPs, as shown in Fig. 3. Details of the
ground truth data generating process are as follows:

e ∼ U {0.2, 2} , (31)

s10 ∼ N (s10|e, 1), (32)

s20 ∼ N (s20|e, 1), (33)

s30 ∼ N (s30|e, 1), (34)

at ∼ N (at|s1t + s2t , 1), (35)

s1t+1 ∼ N (s1t+1|at + s1t + E, 1), (36)

s2t+1 ∼ N (s2t+1|at + s1t + s2t , 2), (37)

s3t+1 ∼ N (s3t+1|s2t + s3t + 2E, 2), (38)

rt+1 ∼ N (rt+1|at + 2s2t , 1), (39)

xt = g(s1t , s
2
t , s

3
t ), (40)

where U{·} denotes the discrete uniform distribution, N (·) the Gaussian distribution, and g(·) is
given by a neural network with 3-dimensional input and 10-dimensional output, whose parameters are
randomly set in advance. We create a dataset consisting of samples from two training environments
by drawing 2000 steps from each of the two environments E = {0.2, 2}.
Note that, in the experiments with instantaneous effects between states, we include an additional
relationship between s2t and s1t by replacing Eq. (37) with

s2t+1 ∼ N (s2t+1|at + s1t + s2t + 2s1t+1, 2). (41)

In all the experiments on synthetic data, we set the number of the latent variables to n = 3. The
architecture we used is as follows.

NF-iVAE-I/RL λf -Nonlinear Prior

• Input layer: Input batch (batch size, input dimension)
• Layer 1: Fully connected layer, output size = 6, activation = ReLU
• Output layer: Fully connected layer, output size = 3

NF-iVAE-I/RL Encoder

• Input layer: Input batch (batch size, input dimension)
• Layer 1: Fully connected layer, output size = 6, activation = ReLU
• Mean Output layer: Fully connected layer, output size = 3
• Log Variance Output layer: Fully connected layer, output size = 3

NF-iVAE-I/RL Decoder

• Input layer: Input batch (batch size, input dimension)
• Layer 1: Fully connected layer, output size = 6, activation = ReLU
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• Mean Output layer: Fully connected layer, output size = output dimension

• Variance Output layer: 0.01 × 1, where 1 is a vector full of 1 with the length of output
dimension

NF-iVAE-I/RL Predictor w

• Input layer: Input batch (batch size, input dimension)

• Layer 1: Fully connected layer, output size = 6, activation = ReLU

• Output layer: Fully connected layer, output size = 1

J.2 GENERALIZATION IN IMITATION LEARNING

Unless stated otherwise, we used the exact experimental setting and implementation details that
are described in Bica et al. (2021) for the benchmarks. For a fair comparison, we use the same
architecture for the encoder in our NF-iVAE-IL. We reverse the architecture of the encoder as a
decoder. We set the number of the latent variables to n = 50. We do the hyperparameter search by
exactly following the guides given in Bica et al. (2021). In addition, the architectures of the prior and
the predictor are as below.

NF-iVAE-IL TNN -Prior

• Input layer: Input batch (batch size, input dimension)

• Layer 1: Fully connected layer, output size = 50, activation = ReLU

• Output layer: Fully connected layer, output size = 45

NF-iVAE-IL λNN -Prior

• Input layer: Input batch (batch size, input dimension)

• Layer 1: Fully connected layer, output size = 50, activation = ReLU

• Output layer: Fully connected layer, output size = 45

NF-iVAE-IL λf -Prior

• Input layer: Input batch (batch size, input dimension)

• Layer 1: Fully connected layer, output size = 50, activation = ReLU

• Output layer: Fully connected layer, output size = 20

Predictor w

• Input layer: Input batch (batch size, input dimension)

• Layer 1: Fully connected layer, output size = 100, activation = ReLU

• Output layer: Fully connected layer, output size = 1

J.3 GENERALIZATION IN REINFORCEMENT LEARNING

For convenience, here we restate the description of the two settings: simple distractors and natural
video distractors. See more in Zhang et al. (2020b).

Simple Distractors Setting. We include simple background distractors, shown in Figure 3 of Zhang
et al. (2020b) (middle row), with easy-to-predict motions. We use a fixed number of colored circles
that obey the dynamics of an ideal gas (no attraction or repulsion between objects) with no collisions.
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Algorithm 1 iCaRL-RL-P

1: while forever do
2: for e ∈ Etr do
3: at ← π(xet )
4: xet+1, rt+1 ← step(xet , at)
5: store(xe

t , at, rt+1, xet+1)
6: end for
7: for e ∈ Etr do
8: Sample batch from replay buffer
9: Estimate the representation function sAt = Φ(xt) according to Section 3.2

10: end for
11: Train policy according to a modified SAC ▷ Algorithm 2
12: end while

Algorithm 2 Train Policy (changes to SAC in red)

1: Get value: V = mini=1,2 Q̂i(Φ(xt))− α log π(at|Φ(xt))
2: Train critics: J(Qi,Φ) = (Qi(Φ(xt))− rt+1 − γV )2

3: Train actor: J(π) = α log p(at|Φ(xt))−mini=1,2 Qi(Φ(xt))
4: Train alpha: J(α) = −α log p(at|Φ(xt))
5: Update target critic: Q̂i ← τQQi + (1− τQ)Q̂i

Natural Video Setting. We incorporate natural video from the Kinetics dataset (Kay et al., 2017)
as background (Zhang et al., 2018), shown in Figure 3 of Zhang et al. (2020b) (bottom row).

Unless stated otherwise in the main text, we used the exact experimental setting and implementation
details that are described in Bica et al. (2021) and Zhang et al. (2020a) for the benchmarks. For a
fair comparison, we use the same architecture for the encoder in our NF-iVAE-RL. We reverse the
architecture of the encoder as a decoder. We set the number of the latent variables to n = 50. We do
the hyperparameter search by exactly following the guides given in Bica et al. (2021). In addition,
the architectures of the prior and the predictor are as below.

NF-iVAE-RL TNN -Prior

• Input layer: Input batch (batch size, input dimension)
• Layer 1: Fully connected layer, output size = 50, activation = ReLU
• Output layer: Fully connected layer, output size = 45

NF-iVAE-RL λNN -Prior

• Input layer: Input batch (batch size, input dimension)
• Layer 1: Fully connected layer, output size = 50, activation = ReLU
• Output layer: Fully connected layer, output size = 45

NF-iVAE-RL λf -Prior

• Input layer: Input batch (batch size, input dimension)
• Layer 1: Fully connected layer, output size = 50, activation = ReLU
• Output layer: Fully connected layer, output size = 20

Predictor w

• Input layer: Input batch (batch size, input dimension)
• Layer 1: Fully connected layer, output size = 100, activation = ReLU
• Output layer: Fully connected layer, output size = 1
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