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ABSTRACT

Probabilistic circuits (PCs) are a class of tractable deep probabilistic models that
compute event probabilities by recursively nesting sum and product computations.
Unfortunately, this is numerically unstable. To mitigate this numerical stability
issues, PCs are usually evaluated in log-space via the LogSumExp trick. In this
paper we present an alternative to the ubiquitous LogSumExp trick, which we
dub normalized float trick. Experimentally, we show that by simply changing the
scheme guaranteeing numerical stability (from the LogSumExp to the normalized
float trick) we can consistently and considerably boost the performance of PCs on
common density estimation benchmarks,

1 INTRODUCTION

Probabilistic circuits (PCs) (Darwiche, 2003; Poon & Domingos, 2011) are a class of machine learn-
ing models that perform density estimation by constructing deeply nested mixture models. That
is, they recursively nest mixture models in order to construct joint probability distributions. This
has two advantages. Firstly, the so-obtained model is more expressive than usual shallow mix-
ture models. Secondly, PCs retain interesting properties with regard to tractability, such as any-
order marginalization. Concretely, consider the probability distribution p(x1, . . . , xN ) expressed
as a circuit. The (hierarchical) mixture model nature then allows us to marginalize out in poly-
time (in size of the circuit) any variable xi, i.e. to compute in poly-time the following marginal
p(x1, . . . , xi−i, xi+i, . . . xN ). We give a graphical representation of a probabilistic circuit in Fig-
ure 1 (left).

From a numerical stability perspective, deeply nesting mixture models pose a problem, however.
When evaluation a circuit we end up repeatedly multiplying floating point numbers with each other
that lie in the unit interval [0, 1]. The problem is then that this quickly results into numerical un-
derflow. For this reason virtually all implementations of probabilistic circuits use the log-domain to
perform probabilistic inference (Peharz et al., 2020; Liu et al., 2024). However, naively performing
computations in the log-domain does not entirely resolve numerical stability issues. A common
technique to resolve this is the LogSumExp trick.1

In this paper we introduce an alternative to the LogSumExp trick that we dub the normalized float
trick or NoFlo trick and use it to evaluate probabilistic circuits. A curious experimental finding is
that using our new NoFlo trick instead of the usual LogSumExp trick leads to improved density esti-
mation capabilities of probabilistic circuits – simply by changing the numerically stable computation
scheme.

The remainder of the paper is organized as follows. We first give the necessary preliminaries on
probabilistic circuits (Section 2). We then introduce the NoFlo trick and contrast it to the LogSum-
Exp trick in the context of PCs (Section 3). In Section 4 we give experimental evidence that the
NoFlo trick achieves consistently better density estimation than the LogSumExp trick on a suite of
density estimation benchmarks. We end the paper with concluding remarks in Section 5.

1As the LogSumExp trick is a widely known method for performing computationally stable probabilistic
inference we only discuss it in more detail in Appendix B.
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Figure 1: Left: Layered PC over four binary variables Xi with i ∈ {0, 1, 2, 3} taking values x0
i

or x1
i . Within each partition in the bottom layer three mixtures for each of the four Xi’s are con-

structed using weighted sums (weights are not shown in the graphical representation but are present
on the edges feeding into sum units). The sum and product units in the circuit are the elemental
computing units and make constitute the partitions. The circuit in Figure 1 has, except at the very
top and bottom, three components in each partition. As increasing the number of components per
partition increases the number of parameters (weights on edges feeding into sum units), the number
of components per partition controls the capacity of a circuit. Right: partition tree abstracting the
layered PC on the left.

2 PROBABILISTIC CIRCUITS AS PARTITION CIRCUITS

Inspired by simple feed-forward neural networks, Peharz et al. (2019; 2020) introduced the concept
of layered probabilistic circuits These layered circuits are amenable to trivial parallelization and can
be run on modern discrete GPUs and constitute the de facto standard approach towards constructing
probabilistic circuits. In Figure 1 we give a graphical representation of such a layered circuit where
we follow the construction introduced by Shih et al. (2021). For the sake of conciseness we describe
here only so-called structured decomposable and smooth PCs. For a broader overview we refer the
reader to the excellent work of Vergari et al. (2021).

Layers within a layered PC constitute blocks of computational units that are processed sequentially
in a bottom-up fashion. Layers consist themselves of so-called partitions. The circuit in Figure 1 has
four partitions in the leaf layer (very bottom), two in the subsequent sum and product layers, and a
single partition in the last product layer and in the final root node (top most sum). By construction,
partitions in the same layer have disjoint scopes. That is, they are functions over disjoint sets of
variables. This property is called structured decomposability in the PC literature (Darwiche, 2011).
Note also that layered PCs are by construction smooth (Darwiche, 2001): the union of the scopes of
the partitions within a layer is exhaustive. That is, the union of the scopes equals the set of variables
given as input to the circuit.

A (layered) PC is then parametrized by weighing the inputs to the sum units with positive real
numbers – giving rise to an unnormalized probability distribution over the input variables. Due to
the properties of (structured) decomposability and smoothness the distribution can be normalized
in time polynomial in the size of the circuit (Peharz et al., 2015). Thanks to the properties of
smoothness and (structured) decomposability we can also marginalize out single variables from a
PC. Again in time polynomial in the size of the circuit.

Recently, Zuidberg Dos Martires (2024) introduced the concept of partition trees to abstract away
certain aspects of smooth and structured decomposable probabilistic circuits. We give such a par-
tition tree on the right side of Figure 1. We now take this abstraction a step further and define
the computations performed by the probabilistic circuit not on the atomic computation units of the
circuit itself (i.e. sum and product units) but use the nodes in the partition tree as the elemental
computation units. In other words, we regard the partition tree as a computation graph. To make this
distinction explicit we dub these computation graphs partition circuits.
Definition 2.1 (Partition Circuit). A partition circuit over a set of variables is a parametrized com-
putation graph taking the form of a binary tree. The partition circuit consists of three kinds of
computation units: leaf and internal units, as well as a single root. Units at the same distance from
the root form a layer. Furthermore, let πk denote the root unit or an internal unit. The unit πk

then receives its inputs from two units in the previous layer, which we denote by πkl
and πkr . Each
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computation unit is input to exactly one other unit, except the root unit, which is the input to no other
unit.
Definition 2.2 (Layered Probabilistic Circuit). Let X = {X0, . . . , XM−1} (taking values x =
{x0, . . . , xM−1}) be a set of categorical random variables. Furthermore, let C be a positive integer
denoting the number of components. We define a layered probabilistic circuit as a partition circuit
whose computation units take the following functional form:

πk(xk) =


Wk × one hot(xk), Wk ∈ RC×M

≥0 if k leaf unit, i.e. xk = {xk}
Wk ×

(
πkl

(xkl
)⊙ πkr

(xkr
)
)
, Wk ∈ RC×C

≥0 if k internal unit

Wk ×
(
πkl

(xkl
)⊙ πkr

(xkr
)
)
, Wk ∈ R1×C

≥0 if k root unit.

(1)

Here we use the symbols× to denote the matrix product and Hadamard product, respectively. Addi-
tionally, we necessitate the matrices Wk to be row-normalized. That is, ∀k, i :

∑
j Wkij = 1, where

the i and j indices index the matrix.

Note that in the definition above we used Hadamard products to fold computations from the previous
layer. This is also called canonical polyadic layer (Carroll & Chang, 1970) and the de facto standard
in the PC literature (Shih et al., 2021; Liu & Van den Broeck, 2021). For the sake of exposition
we will limit ourselves to canonical polyadic layers and refer the reader to (Mari et al., 2023) for
alternatives.
Proposition 2.3. Layered PCs are valid probability distributions.

Proof. The proof follows a similar structure to proving that probabilistic circuits with explicit sum
and product nodes are valid probability distributions. For the sake of completeness we provide this
proof for PCs as partition circuits in Appendix A

3 THE NORMALIZED FLOAT TRICK FOR PROBABILISTIC CIRCUITS

3.1 THE LOGSUMEXP TRICK FOR PROBABILISTIC CIRCUITS

In order to guarantee numerical stability probabilistic circuits are usually evaluated in log-space.
This means that we evaluate layers of the circuits by computing log-probabilistic instead of (linear)
probabilities. We briefly re-derive the computations performed in the internal units such that they
output indeed log-probabilities.

πk = Wk ×
(
πkl
⊙ πkr

)
⇔ log πk = log

(
Wk ×

(
πkl
⊙ πkr

))
(2)

⇔ λk = log
(
Wk ×

(
expλkl

⊙ expλkr

))
(3)

⇔ λk = log
(
Wk × exp

(
λkl

+ λkr

))
, (4)

where we omitted the dependency of πk on xk- Note also that πk ∈ RC
≥0 and that the logarithm

and exponential are applied element-wise on the vectors. Unfortunately, the right-hand side of
Equation 4 is numerically unstable, and we need to adopt the LogSumExp trick:

λk = log
(
Wk × exp

(
λkl

+ λkr − αk + αk

))
(5)

⇔ λk = log
(
Wk × exp

(
λkl

+ λkr − αk

))
+ αk, (6)

where αk ∈ R, with αk = maxi pki being the standard choice. Here, i indexes the vector elements.
Equation 6 now tells us how to compute the log-probability (λk) in the current layer k given the
incoming log-probabilities (λkl

and λkr ) in a numerically stable fashion.

3.2 INTRODUCING THE NOFLO TRICK

We now propose an alternative to the LogSumExp trick: the NoFlo trick. The basic idea is to rep-
resent a probability vector, i.e. a vector whose entries fall into the [0, 1] interval using a normalized

3
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probability vector and an extra scalar:

πk =
πk

maxi πki︸ ︷︷ ︸
=:π̂k

exp
(
logmax

i
πki

)
︸ ︷︷ ︸

=:βk

(7)

= π̂ke
βk (8)

This means we identify each πk via the vector π̂k and the scaling factor expβk. We now apply this
decomposition to the expression for computing a layer in a probabilistic circuit:

πk = Wk ×
(
πkl
⊙ πkr

)
⇔ π̂ke

βk = Wk ×
(
π̂kl

eβkl ⊙ π̂kr
eβkr

)
(9)

= Wk ×
(
π̂kl
⊙ π̂kr

)︸ ︷︷ ︸
=:π̃k

eβkr+βkr (10)

= π̃ke
βkr+βkr (11)

Here we have to be careful now as computing π̃k consists of multiplying (and adding) together
numbers in the [0, 1] interval. If this is done repeatedly, for instance during the evaluation of the
various layers in a probabilistic circuit, we risk again to run into underflow issues. For this reason
we normalize π̃k again:

πk =
π̃k

γk
eβkr+βkr+log γk , (12)

with γk := maxi π̃ki.

We can now compute at each layer a representation for πk by decomposing it into the product π̂ke
βk

and identifying π̂k with π̃k/γk and βk with βkr
+ βkr

+ log γk. This then simply means we need to
compute at each unit in the PC the following two equations:

π̂k =
π̃k

γk
(13)

βk = βkr + βkr + log γk (14)

Finally, at the root node we are then usually interested in the log-probability λroot = log πroot

instead of the two quantities π̂root and βroot. Fortunately, we can readily resolve this issue:

λroot = log πroot = log
(
π̂roote

βroot
)

(15)

= log π̂root + βroot, (16)

where π̂root and βroot are computed using Equations 13 and 14. We give the pseudocode to compute
λroot using the NoFlo trick in Algorithm 2 and the for the evaluation with the LogSumExp trick in
Algorithm 1.

3.3 ESTIMATING THE RELATIVE COMPUTATIONAL COSTS

Using Algorithm 1 and Algorithm 2 we can also estimate the computational cost of both approaches
towards numerical stability. To this end we estimate the cost needed to perform the computations
present in an internal unit. We denote these costs by κLogSumExp and κNoFlo, respectively.

When using the LogSumExp trick, we first compute the element-wise addition of two vectors of
length C, which gives us a cost of C · κadd, cf. Line 5, Algorithm 1. We then obtain the maximum
value of the resulting vector by performing C comparisons, cf. Line 5, Algorithm 1. Subsequently,
the maximum value in subtracted from each individual element, allowing us to take the element-wise
exponential before performing a matrix-vector multiplication. Finally, we take the element-wise
logarithm and add the maximum value back to each element of the vector. We can hence estimate
the cost of performing the computations in an internal unit of a PC using the LogSumExp trick as
follows:

κLogSumExp = C · κadd + C · κcomp + C · κsub + C · κexp+ (17)
C · (C · κmul + C · κadd)+ (18)
C · κlog + C · κadd, (19)
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Algorithm 1 Circuit Evaluation with LogSum-
Exp

Input: set of computation units K, ran-
dom variable values x

Output: λroot(x)

1: for k in topological sort(K) do
2: if k is leaf unit then
3: λk ← log [Wk × one hot(xk)]
4: else ▷ k is internal unit or root unit
5: λk ← λkl

+ λkr

6: α← maxi λki

7: λk ← log [Wk× exp(λk−α)] +α
8: end if
9: end for

10: return λroot

Algorithm 2 Circuit Evaluation with NoFlo
Input: set of computation units K, ran-

dom variable values x
Output: λroot(x)

1: for k in topological sort(K) do
2: if k is leaf unit then
3: π̂k ← log [Wk × one hot(xk)]
4: γ ← maxi π̂ki

5: π̂k ← π̂k · 1/γ
6: βk ← log γ
7: else ▷ k is internal unit or root unit
8: π̂k ←Wk ×

(
π̂kl
⊙ π̂kr

)
9: γ ← maxi π̂ki

10: π̂k ← π̂k · 1/γ
11: βk ← βkl

+ βkl
+ log γ

12: end if
13: end for
14: return log π̂root + βroot

Table 1: Clock cycles needed for different floating point operations using the x86 instruction set.
Numbers retrieved from (Agner, 2022).

FADD FSUB FMUL FDIV FYL2X F2XM1 FUCOMI
addition subtraction multiplication division y log2 x 2x−1 comparison
κadd κsub κmul κdiv κlog κexp κcomp

3 3 5 19 29 ≈ 68 2

where the expression in Equation 18 describes the cost of performing the matrix-vector product.
Note that as C grows the cost will be dominated by the matrix-vector product, due to its quadratic
dependency on C.

An analogous analysis of Algorithm 2 gives us the following expression for the computational cost
of evaluating an internal circuit unit using the NoFlo trick:

κNoFlo = C · κmul+ (20)
C · (C · κmul + C · κadd)+ (21)
C · κcomp + ·κdiv + C · κmul+ (22)
κlog + 2C · κadd, (23)

with the expression in Equation 21 describing again the cost for the matrix-vector multiplication.

In order to render κLogSumExp and κNoFlo commensurable we estimate the cost of the individual oper-
ations, e.g. κadd via the clock cycles needed to compute them. We summarize the clock cycles for
the different operations in Table 1. This gives us the following cost estimates:

κLogSumExp ≈ 8C2︸︷︷︸
matrix−vector

+108C κNoFlo ≈ 8C2︸︷︷︸
matrix−vector

+18C + 48. (24)

We see that in terms of clock cycles the NoFlo trick is slightly cheaper but also that the cost for both
is (unsurprisingly) dominated by the matrix-vector product for larger C. Both approaches do also
have a similar memory footprint with the NoFlo being slightly more expensive in this regard as do
not only need to store a vector of size C but also an extra float βk.

Note that these are extremely rough estimates and should only be used to estimate the order of mag-
nitude of the cost. Note also, that modern hardware usually has also access SIMD instructions (on
CPU) and parallelizable kernels (on GPU), allowing for performing matrix-vector multiplications
in parallel. Furthermore, we did not take into account any cost associated with reading from and
writing to memory.

5
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Figure 2: Graphical representation of the partition tree for eight variables using the cross structure.

4 EXPERIMENTAL EVALUATION

For the experimental evaluation we implemented probabilistic circuits using the NoFlo trick as well
as the LogSumExptrick in PyTorch. We set up our experiments in Lightning2 and ran them on
a DGX-2 machine with V100 Nvidia cards. Our experimental evaluation is performed using the
MNIST family of datasets. That is, the original MNIST (Deng, 2012), FashionMNIST (Xiao et al.,
2017), and also EMNIST (Cohen et al., 2017).

4.1 DENSITY ESTIMATION WITH THE NOFLO AND LOGSUMEXP TRICKS

We compare the density estimation capabilities of PCs using the NoFlo trick to the ones using the
traditional LogSumExp trick. To this end we encode gray-scale pixels by associating each of the 256
possible pixel values to the outcome of a categorical random variable. For MNIST this means that
we have 28× 28 categorical random variables. These form the leaves of the probabilistic circuits.

We then construct two circuits with two distinct structures. The first structure, which we dub
neighbor merges in an alternating fashion neighboring rows and columns of the 2D image.
Specifically, in the first layer rows 0 and 1 get merge and rows 2 and 3 and so on. In the next
layer the columns get merged. This pattern repeats until only a single partition is left, and we reach
the root. In the case of layers with an uneven number of rows/columns we also allow for merging
three neighboring rows/columns

For the second circuit structure, to which we will refer as cross, we merge rows/columns by
merging consecutive evenly and unevenly numbered rows/columns. This means, for instance, that
in the first layer rows 0 and 2 are merged, rows 1 and 3, rows 4 and 6, and so on. In alternating
layers we then alternate between merging rows and columns. We exemplify the cross structure in
Figure 2 for the 1D case.3

We then train both circuit structures by maximizing the log-likelihood using, on the one hand the
NoFlo trick ,and on the other hand the LogSumExp trick. We compare the two schemes for nu-
merical stability using the bits per dimension metric, which is calculated from the average negative
log-likelihood (NLL) as follows: bpd=NLL/(log 2×D) (D=282 for MNIST datasets).

Furthermore, we used the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 0.05 and
otherwise default hyperparameters. The batch size was set to 50 and the maximum number of epochs
was set to 50 as well. The best model was selected using a 95 − 5 train-validation data split where
we monitored the negative log-likelihood on the validation set. The validation split was also used
for early stopping: training stopped preemptively when there has not been any improvement on the
validation set for five epochs.

We report our results in Tables 2 (neighbor) and Table 3 (cross), where we can see that in-
dependent of the structure used (Table 2 vs. Table 3), independent of any of the six dataset, and
independent of the number of components per partition (64, 128, 256), the NoFlo trick yields lower

2https://lightning.ai/
3The cross structure is taken from (Zuidberg Dos Martires, 2024), which they implemented for their

experiments, even though they described the neighbor structure in the paper itself.
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Table 2: Test set bpd for MNIST datasets (lower is better) using the neighbor structure and a 0.05
learning rate. The three columns show the bpd for different numbers of components per partition (64,
126, 256).We report the average over 5 runs and omit the variance as it was negligible. The bottom
row shows the average difference (per data set) between using the NoFlo trick and LogSumExp
trick.

64 128 256
NoFlo LogSumExp NoFlo LogSumExp NoFlo LogSumExp

mnist 1.49 1.52 1.46 1.51 1.44 1.50
fmnist 3.96 3.99 3.95 3.99 3.97 4.02
emnist:mnist 2.50 2.52 2.47 2.50 2.44 2.49
emnist:letters 2.54 2.57 2.51 2.55 2.48 2.53
emnist:balanced 2.59 2.62 2.56 2.60 2.53 2.58
emnist:byclass 2.49 2.51 2.44 2.47 2.40 2.43

avg. improvement 0.03 0.04 0.05

Table 3: Test set bpd for MNIST datasets (lower is better) using the cross structure and a 0.05
learning rate. The three columns show the bpd for different numbers of components per partition (64,
126, 256). We report the average over 5 runs and omit the variance as it was negligible. The bottom
row shows the average difference (per data set) between using the NoFlo trick and LogSumExp
trick.

64 128 256
NoFlo LogSumExp NoFlo LogSumExp NoFlo LogSumExp

mnist 1.18 1.22 1.16 1.20 1.14 1.19
fmnist 3.39 3.43 3.35 3.40 3.34 3.39
emnist:mnist 1.72 1.76 1.66 1.71 1.62 1.67
emnist:letters 1.72 1.77 1.65 1.70 1.61 1.67
emnist:balanced 1.75 1.80 1.68 1.73 1.65 1.70
emnist:byclass 1.66 1.71 1.56 1.61 1.47 1.53

avg. improvement 0.05 0.05 0.05

bpd than the LogSumExptrick. We repeated the experiment for varying learning rates using the
cross structure and found similar behavior. These results are reported in Appendix C.

4.2 MEASURING THE COMPUTATIONAL COSTS

In Section 3.3 we gave a rough estimate of the computational cost based on the operations involved.
Here we now measure them. To this end we measured the wall clock time needed for one training
epoch on the MNIST dataset using the NoFlo trick and the LogSumExp trick, respectively. We
report the measured times in Figure 3 (left). We also report in Figure 3 (right) the peak memory per
epoch. As there were no significant differences between the methods for the latter we only plot the
peak memory consumption for the NoFlo trick.4

In Figure 3 (left) we see that both methods follow a similar and almost linear scaling. This is due
to the fact that the matrix-vector multiplications involved can be parallelized on the GPU to be
performed in linear time. We also observe a constant off-set between the NoFlo circuit evaluations
and the LogSumExpcircuit evaluations. This indicates that there is a fixed computational overhead
for the NoFlo trick that can probably be improved upon with a more efficient implementation. As
already mentioned, we did not see any significant difference between the memory footprints of both
methods, cf. Figure 4 (right).

4To measure the memory we used the max memory allocated function from PyTorch https://
pytorch.org/docs/stable/generated/torch.cuda.max_memory_allocated.html
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Figure 3: Left: run time per epoch in seconds for different numbers of components per partition.
Right: peak memory usage for or different numbers of components per partition for circuit evalua-
tions with the NoFlo trick. The cross circuit structure was used.
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Figure 4: Bits per dimension on the test dataset for two models. Left: the model was trained using the
NoFlo trick. Right: the model was trained using the LogSumExp trick. The legend ”LogSumExp
on NoFlo” means that we evaluate a model that was trained using the NoFlo trick by using the
LogSumExp trick on the test set. Analogously for the remaining three legends.

4.3 A CURIOUS ABLATION STUDY

In order to find the root cause for the improved performance in terms of density estimation of the
NoFlo trick over the LogSumExptrick we performed the following ablation study. We first trained
a circuit (using the cross structure) with the NoFlo trick. On the test set we then evaluated the
circuit with the NoFlo trick as well as with the LogSumExp trick. We performed this experiments
on the MNIST dataset for varying number of components per partition. We report the results in
Figure 4 (left). We also performed the analogous experiment where we performed the training with
the LogSumExp trick and evaluated on the test set with both tricks. These results can be found in
Figure 4 (right).

Inspecting the histograms in Figure 4 we observe some curious behavior. We do not only obtain
lower bpd with the NoFlo vs. the LogSumExp trick, when comparing the blue bars from the left
and right figures. We also obtain higher bpd when evaluating NoFlo-trained circuits using the Log-
SumExp trick and lower bpd when evaluating LogSumExp-trained circuits using the LogSumExp
trick.

Initially we suspected numerical precision issues to be the reason for this discrepancy between eval-
uations of one and the same circuits but with different numerical stable computation schemes. How-
ever, when repeating the experiment with 64 bit precision instead of 32 bits, this phenomenon still
manifested itself.
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As of now we are not certain where exactly the circuit evaluations with the LogSumExp trick lose the
probability mass that leads to these lower bpd. We stipulate that it might be related to the repeated
application of logarithms and exponentiation and that these operations are not exact reciprocals of
each other when using finite precision. A counterargument to this thesis, however, is that increasing
the precision from 32 to 64 should then have alleviated the issue. However, we were not able to
observe such an improvement when increasing the precision.

5 CONCLUSIONS

In this paper we introduced normalized float trick, a new scheme to ensure numerically stable com-
putations when evaluating probabilistic circuits. Experimentally we have shown that simply using
the NoFlo trick instead of the standard LogSumExp trick leads to improved performance on suite
of density benchmarks at very limited computational overhead. For practitioners this means that
using the NoFlo trick constitutes a sensible implementation choice for boosting the performance of
probabilistic circuits. However, it is also unclear where exactly this increase in performance exactly
originates from. We leave the resolution of this open question to future work.

REPRODUCIBILITY

We describe the NoFlo trick in pseudo-code in Algorithm 2 and have implemented it for probabilis-
tic circuits in Python. We will release the source code upon acceptance. Our lab’s policy is not
to publicly share anonymous code repositories prior to acceptance. The code base will be made
available to the reviewers through an anonymous link.
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A PROOF OF PROPOSITION 2.3

Proposition 2.3. Layered PCs are valid probability distributions.

Proof. If πroot(x) is the computation unit at the root of the layered PC, the unit forms a proba-
bility distribution if π(x) ≥ 0, for every x ∈ Ω(X) and if

∑
x∈Ω(X) π(x) = 1. The first con-

dition is trivially satisfied as the circuit only performs linear operations on matrices and vectors
(one hot(xk),Wk) with positive entries only. For the condition

∑
x∈Ω(X) π(x) = 1 we observe that

we can simply push down the summation for each variable to the respective leaf unit. This yields
the following summation in the leaves:∑

xk∈Ω(Xk)

Wk × one hot(xk) = Wk ×
∑

xk∈Ω(Xk)

one hot(xk) = Wk × 1M = 1C . (25)

Here 1C denotes the C dimensional vector having as entries only ones. For the last step in the
equation above we exploited the fact that the weight matrices Wk are row-normalized.

Passing on the marginalized leaves to the next layer gives us:

Wk ×
(

1C ⊙ 1C
)
= Wk × 1C = 1C (26)

Repeating this process until we reach the root will eventually result in
∑

x∈Ω(X) π(x) = 1 and
thereby also showing that the second condition is satisfied.

B LOG-PROBABILITIES AND THE LOGSUMEXP TRICK

The naive way of performing probabilistic inference is simple addition and multiplication of real-
valued numbers from the unit interval [0, 1]. Unfortunately, due to the finite precision of physical
machines, this leads to numerical stability issues in practice. The go-to technique to avoid such
numerical stability issues is to map probabilities to log-probabilities:

λ = log π (27)

where π ∈ (0, 1] and λ ∈ (−∞, 0]. We can now also map operations in linear space to adequate
operations in log-space. For linear space multiplication we have:

π1 × π2 = π3 ⇔ log π1 + log π2 = log π3 (28)
⇔ λ1 + λ2 = λ3. (29)

In other words multiplication in linear space maps to addition in log-space. Moreover, for the
addition we have:

π1 + π2 = π3 ⇔ log (π1 + π2) = log π3 (30)
⇔ log (exp log π1 + exp log π2) = λ3 (31)
⇔ log (expλ1 + expλ2)︸ ︷︷ ︸

LSE(λ1,λ2)

= λ3 (32)

We see that the log-space operation that is equivalent to addition in linear space requires first expo-
nentiation, then addition, followed by taking the logarithm. This is often abbreviated as LSE(·, ·).
Unfortunately, exponentiation here is numerically unstable. In order to compute
log (expπ1 + expπ2) in a numerically stable fashion the usual trick is to make use of the
LogSumExp trick:

log (expλ1 + expλ2) = log (exp(λ1 − a+ a) + exp(λ2 − a+ a)) (33)
= log (exp(λ1 − a) + exp(λ2 − a)) + a. (34)

Here a is a constant and usually chosen to be max(λ1, λ2). The effect of subtracting a from the log-
probabilities before exponentiation is that we avoid numerical underflow issues and the computation
of LSE(·, ·) becomes numerically stable.
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C DENSITY ESTIMATION USING DIFFERENT LEARNING RATES

Table 4: Test set bpd for MNIST datasets (lower is better) using the cross structure and a 0.005
learning rate. The three columns show the bpd for different numbers of components per partition (64,
126, 256). We report the average over 5 runs and omit the variance as it was negligible. The bottom
row shows the average difference (per data set) between using the NoFlo trick and LogSumExp
trick.

64 128 256
NoFlo LogSumExp NoFlo LogSumExp NoFlo LogSumExp

mnist 1.20 1.24 1.19 1.24 1.18 1.23
fmnist 3.43 3.47 3.42 3.47 3.42 3.47
emnist:mnist 1.76 1.79 1.72 1.76 1.70 1.75
emnist:letters 1.74 1.78 1.69 1.74 1.67 1.72
emnist:balanced 1.77 1.81 1.73 1.77 1.71 1.76
emnist:byclass 1.65 1.69 1.55 1.60 1.48 1.53

avg. improvement 0.04 0.04 0.05

Table 5: Test set bpd for MNIST datasets (lower is better) using the cross structure and a 0.01
learning rate. The three columns show the bpd for different numbers of components per partition (64,
126, 256). We report the average over 5 runs and omit the variance as it was negligible. The bottom
row shows the average difference (per data set) between using the NoFlo trick and LogSumExp
trick.

64 128 256
NoFlo LogSumExp NoFlo LogSumExp NoFlo LogSumExp

mnist 1.20 1.23 1.18 1.22 1.17 1.22
fmnist 3.42 3.46 3.40 3.45 3.39 3.44
emnist:mnist 1.74 1.78 1.71 1.75 1.69 1.73
emnist:letters 1.72 1.77 1.68 1.72 1.65 1.70
emnist:balanced 1.75 1.80 1.71 1.75 1.69 1.74
emnist:byclass 1.64 1.69 1.54 1.59 1.47 1.51

avg. improvement 0.04 0.05 0.05

Table 6: Test set bpd for MNIST datasets (lower is better) using the cross structure and a 0.1
learning rate. The three columns show the bpd for different numbers of components per partition
(64, 126, 256). We report the average over 5 runs and omit the variance as it was negligible. The
bottom row shows the average difference between using the NoFlo and LogSumExp tricks.

64 128 256
NoFlo LogSumExp NoFlo LogSumExp NoFlo LogSumExp

mnist 1.20 1.24 1.17 1.22 1.15 1.20
fmnist 3.43 3.47 3.40 3.45 3.38 3.43
emnist:mnist 1.74 1.79 1.68 1.73 1.64 1.69
emnist:letters 1.75 1.80 1.68 1.73 1.63 1.69
emnist:balanced 1.78 1.83 1.71 1.76 1.67 1.73
emnist:byclass 1.71 1.76 1.61 1.67 1.53 1.59

avg. improvement 0.05 0.05 0.06
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