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ABSTRACT

Linear Transformers have emerged as efficient alternatives to standard Transform-
ers due to their inference efficiency, achieving competitive performance across
various tasks, though they often struggle with recall-intensive tasks. Recently, two
mechanisms—the gating mechanism and the delta update rule—have been used
to enhance linear Transformers. We found these two mechanisms to be comple-
mentary: the gating mechanism enables fast, adaptive memory erasure, while the
delta rule allows for more precise and targeted memory updates. In this work, we
introduce the gated delta rule, which combines both mechanisms, and extend the
delta rule’s parallel algorithm to incorporate gating. Our experiments demonstrate
that linear Transformers with the gated delta rule, dubbed Gated DeltaNet, consis-
tently outperform Mamba2 (a gated linear transformer) and DeltaNet in language
modeling, common sense reasoning, and real-world in-context recall-intensive
tasks. Additionally, we explore hybrid models that combine Gated DeltaNet lay-
ers with sliding window attention or Mamba2 layers, further enhancing retrieval
capabilities.

1 INTRODUCTION

The Transformer architecture has significantly advanced the capabilities of Large Language Models
(LLMs), showcasing exceptional performance across a wide range of tasks due to its effective
attention mechanism. This mechanism excels in precise sequence modeling and leverages the parallel
processing capabilities of modern GPUs during training. However, the self-attention component
scales quadratically with sequence length, leading to substantial computational demands that pose
challenges for both training and inference.

To mitigate these issues, researchers have explored alternatives like Linear Transformers (Katharopou-
los et al., 2020a), which replace traditional softmax-based attention with kernelized dot-product-based
linear attention, substantially reducing memory requirements during inference by reframing as a
linear RNN with matrix-valued states. While early versions of Linear Transformers underperformed
in language modeling tasks compared to standard Transformers, recent enhancements—such as
incorporating data-dependent gating mechanisms akin to those in LSTMs, exemplified by models like
GLA (Yang et al., 2024a) and Mamba2 (Dao & Gu, 2024a)—have shown promising improvements.
Despite these advancements, challenges remain in effectively managing stored information over long
sequences, particularly in tasks requiring associative recall/learning where traditional Transformers
still hold an advantage (Arora et al., 2023a; 2024a; Jelassi et al., 2024; Wen et al., 2024; Akyürek
et al., 2024).

This phenomenon is not surprising: linear Transformers can be interpreted as implementing an
outer-product-based key-value association memory, reminiscent of tensor product representation
(Smolensky, 1990). However, the number of orthogonal key-value pairs they can store is bounded by
the model’s dimensionality. When the sequence length exceeds this dimension, memory collisions
become inevitable, hindering exact retrieval (Schlag et al., 2021a).

Mamba2 addresses this limitation by introducing a simple gated update rule, St = αtSt−1 + vtk
⊺
t ,

which uniformly decays all key-value associations at each time step by a dynamic ratio, αt. However,
this approach does not account for the varying importance of different key-value associations,
potentially leading to inefficient memory utilization. If the model needs to forget a specific key-value
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association, all key-value associations are equally forgotten, making the process less targeted and
efficient.1

In contrast, the linear Transformer with the delta rule (Widrow et al., 1960), known as DeltaNet
(Schlag et al., 2021a; Yang et al., 2024b), selectively updates memory by (softly) replacing an
old key-value pair with the incoming one in a sequential manner. This method has demonstrated
impressive performance in synthetic benchmarks for in-context associative retrieval and learning.
However, since this process only modifies a single key-value pair at a time, the model lacks the ability
to rapidly clear outdated or irrelevant information, especially during context switches where previous
data needs to be erased. Consequently, DeltaNet has been found to perform moderately on real-world
recall-intensive tasks and struggles to generalize to sequences longer than those seen during training
(Yang et al., 2024b), likely due to the absence of a robust memory-clearing mechanism.

Recognizing the complementary advantages of the gated update rule and the delta rule in memory
management, we propose the gated delta rule, a simple and intuitive mechanism that combines both
approaches. The Linear Transformer with the gated delta rule, referred to as Gated DeltaNet, gains
the flexibility to promptly clear memory by setting αt → 0, while selectively updating memory when
needed without affecting other content by setting αt → 1 (i.e., switching to the pure delta rule).

The remaining challenge lies in implementing the gated delta rule in a hardware-efficient manner.
Yang et al. (2024b) proposed an efficient algorithm that parallelizes the computation of the delta
rule over the sequence length dimension using the WY representation (Bischof & Loan, 1985). We
carefully extend this algorithm to incorporate the gating terms, resulting in an approach that still
supports chunkwise parallelism (Hua et al., 2022; Sun et al., 2023a; Yang et al., 2024a), allowing for
hardware-efficient training.

Our experiments demonstrate that linear Transformers with the gated delta rule, dubbed Gated
DeltaNet, consistently outperform models like Mamba2 (a gated linear transformer) and DeltaNet
in language modeling, commonsense reasoning, and real-world in-context recall-intensive tasks.
Additionally, we explore hybrid models that combine Gated DeltaNet layers with sliding window
attention or Mamba2 layers, further enhancing retrieval capabilities.

2 PRELIMINARY

2.1 LINEAR ATTENTION WITH CHUNKWISE PARALLEL FORM

It is known that the linear transformer (Katharopoulos et al., 2020b) can be formulated as the following
linear recurrence when excluding normalization and query/key activations:

St = St−1 + vtk
⊺
t ∈ Rdv×dk , ot = Stqt ∈ Rdv

where dk and dv represent the (head) dimensions for query/key and value, respectively. By expanding
the recurrence, we can express it in both vector form (left) and matrix form (right) as follows:

ot =

t∑
i=1

(vik
⊺
i )qt =

t∑
i=1

vi(k
⊺
i qt) ∈ Rdv , O = (QK⊺ ⊙M)V ∈ RL×dv

where L is the sequence length, and M ∈ RL×L is the causal mask defined by Mij = 0 when i < j,
and 1 otherwise.

This formulation makes it clear that linear attention eliminates the softmax operation used in traditional
attention mechanisms and instead leverages the linearity and associativity of matrix multiplications,
leading to linear complexity. However, both the recurrent and parallel forms are not ideal for efficient
training (Yang et al., 2024a), which motivates the use of the chunkwise parallel form (Hua et al.,
2022; Sun et al., 2023a; Yang et al., 2024a) for hardware-efficient, linear-time training, as introduced
below.

Chunkwise parallel form. To summarize, the chunkwise parallel form splits inputs and outputs
into several chunks of size C, and computes outputs for each chunk based on the final state of the

1While a fine-grained gating mechanism (i.e., assigning each dimension its own decay ratio) could alleviate
this issue, as seen in Mamba1, it limits the use of tensor cores, preventing efficient scaling of the state size.
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previous chunk and the query/key/value blocks of the current chunk. Following the notation of
Sun et al. (2023b); Yang et al. (2024a;b), let’s take the query block, q, as an example. We denote
Q[t] := qtC+1:(t+1)C+1 as the query block for chunk t, and qr

[t] := qtC+r as the r-th query within
chunk t. The initial state of chunk t is defined as S[t] := S0

[t] = SC
[t−1]. By partially expanding the

recurrence, we have

Sr
[t] = S[t] +

r∑
i=1

vi
[t]k

i⊺
[t] ∈ Rdv×dk , or

[t] = Sr
[t]q

r
[t] = S[t]q

r
[t] +

r∑
i=1

vi
[t]

(
ki⊺
[t]q

r
[t]

)
∈ Rdv

Equivalently, in matrix form:

S[t+1] = S[t] +V[t]K
⊺
[t] ∈ Rdv×dk , O[t] = Q[t]S

⊺
[t] +

(
Q[t]K

⊺
[t] ⊙M

)
V[t] ∈ RC×dv

where M ∈ RC×C is the causal mask. The above equations are rich in matrix multiplications
(matmuls), and by setting C to a multiple of 16, one can take advantage of tensor cores—specialized
GPU units for efficient half-precision matmul operations—for hardware-efficient training. Typically,
C is set to a small constant (e.g., 64 as implemented in FLA (Yang & Zhang, 2024)), ensuring that the
overall computational complexity remains linear with respect to sequence length, enabling efficient
modeling of extremely long sequences.

2.2 MAMBA2: LINEAR ATTENTION WITH SCALAR-VALUED DATA-DEPENDENT DECAY

Mamba2 (Dao & Gu, 2024a) can be represented by the following linear recurrence (up to specific
parameterization):

St = αtSt−1 + vtk
⊺
t , ot = Stqt

where αt ∈ (0, 1) is a data-dependent scalar-valued decay term. In the following, we will highlight
the decay terms in red to facilitate a clearer comparison with vanilla linear attention. Define the
cumulative decay product γj =

∏j
i=1 αi, and by expanding the recurrence, we can express the result

in both a vector form (left) and a matrix parallel form (right):

ot =

t∑
i=1

(
γt
γi
vik

⊺
i

)
qt =

t∑
i=1

vi

(
γt
γi
k⊺
i qt

)
, O = ((QK⊺)⊙ Γ)V

Here, Γ ∈ RL×L is a decay-aware causal mask where Γij =
γi

γj
if i ≥ j and Γij = 0 otherwise.

This parallel and recurrent formulation is referred to as state space duality (SSD) in Dao & Gu
(2024a). Notably, this recurrence structure has also been employed in Gated RFA (Peng et al., 2021),
xLSTM (Beck et al., 2024), and Gated RetNet (Sun et al., 2024b).

Chunkwise parallel form. Slightly abusing the notation, we define the local cumulative product of

decays within the chunk as γj
[t] =

∏tC+j
i=tC+1 αi. Additionally, we define (Γ[t])ij =

γj
[t]

γi
[t]

for i ≥ j and

0 otherwise. By partially expanding the recurrence, we obtain the following equations:

Sr
[t] = γr

[t]S[t] +

r∑
i=1

γr
[t]

γi
[t]

vi
[t]k

i⊺
[t], or

[t] = γr
[t]S

r
[t]q

r
[t] = S[t]q

r
[t] +

r∑
i=1

vi
[t]

(
γr
[t]

γi
[t]

ki⊺
[t]q

r
[t]

)
This can be equivalently expressed in matrix form as:

S[t+1] = γC
[t]S[t] +V⊺

[t]Diag

(
γC
[t]

γ[t]

)
K[t]

O[t] = Diag
(
γ[t]
)
Q[t]S

⊺
[t] +

(
Q[t]K

⊺
[t] ⊙ Γ[t]

)
V[t]

We observe that the (cumulative) decay term can be seamlessly integrated into the matmuls with
minimal computational overhead. This ensures that the chunkwise parallel form remains efficient and
compatible with high-performance tensor core-based acceleration.

3
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2.3 DELTA NETWORKS: LINEAR ATTENTION WITH DELTA RULE

The delta update rule (Widrow et al., 1960; Schlag et al., 2021b) dynamically erases the value (vold
t )

associated with the current input key (kt) and writes a new value (vnew
t ), which is a linear combination

of the current input value and the old value. This process updates a key-value association pair at each
time step, where the scalar βt ∈ (0, 1) determines the extent to which the old association is replaced
by the new one, as shown below.

St = St−1 − (St−1kt)︸ ︷︷ ︸
vold
t

k⊺
t + (βtvt + (1− βt)St−1kt))︸ ︷︷ ︸

vnew
t

k⊺
t = St−1 (I− βtktk

⊺
t ) + βtvtk

⊺
t

Chunkwise parallel form. By partially expanding the recurrence, we have

Sr
[t] = S[t]

(
r∏

i=1

I− βi
[t]k

i
[t]k

i
[t]

⊺

)
︸ ︷︷ ︸

:=Pr
[t]

+

r∑
i=1

βi
[t]v

i
[t]k

i
[t]

⊺
r∏

j=i+1

(
I− βj

[t]k
j
[t]k

j
[t]

⊺
)

︸ ︷︷ ︸
:=Hr

t

(1)

We observe that Pj
[t] involves a cumulative matrix product of transition matrices, which Yang et al.

(2024b) identify as being in the form of a (generalized) Householder matrix. This structure allows
for a memory-efficient and compact computation using the classical WY representation (Bischof &
Loan, 1985). Inspired by the WY representation, Yang et al. (2024b) introduce two new compact
representations designed to optimize this process:

Pr
[t] = I−

r∑
i=1

wi
[t]k

i⊺
[t] ∈ Rdk×dk Hr

[t] =

r∑
i=1

ui
[t]k

i⊺
[t] ∈ Rdv×dk (2)

wr
[t] = βr

[t]

(
kr
[t] −

r−1∑
i=1

(
wi

[t](k
i⊺
[t]k

r
[t])
))

ur
[t] = βr

[t]

(
vr
[t] −

r−1∑
i=1

(
ui
[t](k

i⊺
[t]k

r
[t])
))

(3)

where wr
[t] ∈ Rdk ;ur

[t] ∈ Rdv . Put them back to Eq.1, we have the following matrix form:

S[t+1] = S[t] +
(
U[t] −W[t]S

⊺
[t]

)⊺
K[t] (4)

O[t] = Q[t]S
⊺
[t] + (Q[t]K

⊺
[t] ⊙M)

(
U[t] −W[t]S

⊺
[t]

)
(5)

where M is the standard causal mask.

3 GATED DELTA NETWORKS

3.1 GATED DELTA RULE

The proposed gated delta rule offers a simple yet effective approach:

St = St−1 (αt(I− βtktk
⊺
t )) + βtvtk

⊺
t (6)

In comparison to the standard delta rule, it introduces a multiplicative, data-dependent scalar-valued
decay term (or forget gate) αt ∈ (0, 1), applied to the hidden state. This combination effectively
merges the advantages of the gating mechanism with the flexibility of the delta update rule, enjoying
the best of the two worlds.

However, despite its conceptual simplicity, the WY representation used for the delta rule no longer
applies in this context, necessitating adaptations, which we will introduce below, with all changes
highlighted in red.

Chunkwise parallel form. Likewise, by partially expanding the recurrence, we have

Sr
[t] = S[t]

(
r∏

i=1

αi
[t]

(
I− βi

[t]k
i
[t]k

i
[t]

⊺
))

︸ ︷︷ ︸
:=Pr

[t]

+

r∑
i=1

βi
[t]v

i
[t]k

i
[t]

⊺
r∏

j=i+1

αj
[t]

(
I− βj

[t]k
j
[t]k

j
[t]

⊺
)

︸ ︷︷ ︸
:=Hr

[t]
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We adapt the WY representation in Eq. 2-3 to incorporate the decay term as below,

Pr
[t] = γr

[t]

(
I−

r∑
i=1

wi
[t]k

i⊺
[t]

)
Hr

[t] =

r∑
i=1

γr
t

γi
t

ui
[t]k

i⊺
[t] (7)

where

wr
[t] = βr

[t]

(
kr
[t] −

r−1∑
i=1

(
wi

[t](k
i⊺
[t]k

r
[t])
))

ur
[t] = βr

[t]

(
vr
[t] −

r−1∑
i=1

(
ui
[t](

γr
[t]

γi
[t]

ki⊺
[t]k

r
[t])

))
(8)

and the proof of correctness can be found at Appendix. Then we have the following vector form:

Sr
[t] = γr

[t]S
0
[t] +

r∑
i=1

γr
[t]

γi
[t]

(
ur
[t] −

(
γi
[t]

(
S0
[t]w

i
[t]

)))
ki⊺
[t]

or
[t] = Sr

[t]q
r
[t] = γr

[t]S
0
[t]q

r
[t] +

r∑
i=1

(
ur
[t] −

(
γi
[t]

(
S0
[t]w

i
[t]

)))(γr
[t]

γi
[t]

ki⊺
[t]q

r
[t]

)
Equivalently, in matrix form:

S[t+1] = γC
[t]S[t] +

(
U[t] −Diag

(
γ[t]
)
W[t]S

⊺
[t])

⊺K[t] (9)

O[t] = Diag
(
γ[t]
)
Q[t]S

⊺
[t] + (Q[t]K

⊺
[t] ⊙ Γ[t])

(
U[t] −Diag

(
γ[t]
)
W[t]S

⊺
[t]

)
(10)

Hardware optimization using UT transform. Eq. 9 and 10 are are rich in matrix matmuls,
making them well-suited for tensor core-based GPU acceleration. However, the construction of
the extended WY representation is strictly sequential and, at first glance, cannot be represented as
matmuls. Nonetheless, minimizing non-matmul FLOPs and maximizing matmul operations is critical
to leveraging tensor cores effectively, as emphasized in works like Dao (2023); Fu et al. (2023); Yang
et al. (2024a).

Fortunately, by applying the UT transform (Joffrain et al., 2006), we observe that much of the
computation can be rewritten as matmuls. This technique, which has been used to optimize the
WY transform on modern hardware (Dominguez & Orti, 2018), allows us to reframe most of the
operations in a more hardware-friendly manner.

W[t] = AW
[t] Diag(β[t])K[t], AW

[t] =
(
I− lower(Diag(β[t])K[t]K

⊺
[t])
)−1

U[t] = AU
[t] Diag

(
β[t]

)
V[t], AU

[t] =
(
I− Γ[t] ⊙ lower

(
Diag(β[t])K[t]K

⊺
[t]

))−1

where lower(·) := tril(·,−1); and the inverse of a lower triangle matrix can be calculated efficiently
by back substitution.

Remarks on Speed. As we can see in . UT transform can be used to speedup the computation for
both delta rule and gated delta rule. We observe that the running speed of the gated delta rule is nearly
identical to that of the delta rule, as the introduced overhead is minimal—all matmul operations
remain intact, with only additional efficient elementwise operations required to handle the gating
terms. This is analogous to the comparison between Mamba2 and vanilla linear attention. As a result,
Gated DeltaNet maintains similar training throughput to DeltaNet.

3.2 NEURAL ARCHITECTURE

Token Mixer Block Design. The basic Gated DeltaNet follows the macro architecture of the
Llama Transformer, stacking token mixer layers with SwiGLU MLP layers, but replaces the standard
self-attention mechanism with a gated delta rule token mixing layer. Fig. 1 (right) illustrates a single
gated delta rule token mixing layer. First, the hidden states are projected to create the query, key,
and value vectors. Additionally, two more projections are made to generate the forget gate α and
the output gate g. The forget gate is parameterized similarly to Mamba2, with some details omitted
for brevity. The transformed query, key, and value vectors are then projected into a new space

5
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Gated Delta Rule

Linear

Conv

L2
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Gated DeltaNet

MLP

Sliding Window
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MLP
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MLP

Gated DeltaNet

MLP

Sliding Window
Attention
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Gated DeltaNet-H1 Gated DeltaNet-H2 Block Design

q k v α

g

Norm

Linear Linear Linear

Figure 1: Visualization of the architecture and block design of Gated DeltaNet models. Gated DeltaNet-H1
and Gated DeltaNet-H2 consist of Gated DeltaNet + SWA and Mamba2 + Gated DeltaNet + SWA patterns,
respecrively. We use L2 normalization and SiLU feature map in the block design.

using a short convolution, consisting of a 1D convolution followed by a SiLU activation function, as
employed in both Mamba2 and DeltaNet. To ensure that the eigenvalues of the transition matrices
remain less than one, as recommended by Yang et al. (2024b), L2 normalization is applied to the
query and key vectors, resulting in the final query q, key k, and value v. Subsequently, q, k, v, and
α are used to produce the output o based on the recurrence in Eq. 6. To stabilize training, RMS
normalization is applied to the output o, a technique shown to be effective by Qin et al. (2022) and
Sun et al. (2023a). This is followed by a Swish-activated output gating mechanism, which has also
proven effective in prior work (Sun et al., 2023a; Peng et al., 2023), as shown below.

o′
i = RMSNorm(oi)⊙ Swish(gi)

This representation o′ is then passed through the output projection layer.

Hybrid Architectures. Linear transformers face challenges in handling local shifts and comparisons
as effectively as attention-based mechanisms (Arora et al., 2024a). To address this, we follow the
recent trend of hybridizing linear recurrent layers with sliding window attention (SWA), as seen in
models like Griffin (De et al., 2024) and Samba (Ren et al., 2024). We propose two hybrid models,
Gated DeltaNet-H1 and Gated DeltaNet-H2, as illustrated on the left-hand side of Fig.1. For an
ablation study on various design integration patterns in the Gated DeltaNet-H2 model, please refer to
the Appendix.

4 EXPERIMENTS

4.1 SETUP

Training We trained models from scratch with 400M and 1.3B parameters for 15B and 100B
tokens, respectively on the same subset of the FineWeb-Edu dataset (Penedo et al., 2024). Our
experiments include a wide variety of recent SOTA models from purely Transformer and RNN-based
to hybrid approaches. Specifically, we compare against the following baseline: RetNet (Sun et al.,
2023a), Mamba (Gu & Dao, 2023), Mamba2 (Dao & Gu, 2024b), Samba (Ren et al., 2024) and
DeltaNet (Yang et al., 2024b).

Evaluation Tasks To evaluate the effectiveness of model, we evaluate the zeroshot performance
on various commonsense reasoning benchmarks. These tasks include PIQA (Bisk et al., 2020),
HellaSwag (Hella.; Zellers et al., 2019), WinoGrande (Wino.; Sakaguchi et al., 2021), ARC-easy
(ARC-e) and ARC-challenge (Arc-c) (Clark et al., 2018), SIQA (Sap et al., 2019), BoolQ (Clark
et al., 2019) Wikitext (Wiki.; Merity et al., 2016) and LAMBADA (LMB.; Paperno et al., 2016). All
evaluations are performed by using lm-evaluation-harness (Gao et al., 2021).

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Furthermore, we evaluate the performance of models for associative-recall tasks on SWDE (Lockard
et al., 2019), SQuAD (Rajpurkar et al., 2018), FDA (Arora et al., 2023b), TriviaQA (Joshi et al.,
2017), Drop (Dua et al., 2019) and NQ (Kwiatkowski et al., 2019). Specifically, SWDE is designed
to extract structured relations in HTML files while FDA is focused on key-value information retrieval
of PDF files. In addition, SQuAD, TriviaQA, Drop and NQ are question-answering tasks that
are designed for in-context information grounding in documents. Since our pretrained models are
not instruction-tuned, we use the script provided by Arora et al. (2024b) with Cloze Completion
Formatting prompts for evaluation, which aligns more closely with the next-word-prediction training
objective of these language models.

Hyperparameters For all models, we use the AdamW optimizer with a peak learning rate of 4e-4,
weight decay of 0.1 and gradient clipping of 1. Cosine annealing is used with warm up over 150M and
1B tokens for models with 340M and 1.3B parameters, respectively. We also use global batch sizes of
512 and 1024 for 340M and 1.3B model, respectively. In addition, all models have a vocabulary size
of 32000, use the Llama2 tokenizer and trained with sequence length of 4096. Models denoted with
SWA use a local sliding window attention of size 2048. We use 128 and 32 NVIDIA A100 GPUs for
training all 1.3B and 340M models, respectively.

Model Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c SIQA BoolQ Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑

400M params / 15B tokens
Transformer++ 30.63 37.37 29.64 64.27 37.72 51.53 54.95 27.36 38.07 61.59 45.64
RetNet 29.92 46.83 29.16 65.23 36.97 51.85 56.01 27.55 37.30 59.66 45.47
HGRN2 32.33 47.14 26.12 64.52 35.45 52.24 55.97 25.51 37.35 59.02 44.52
Mamba 29.22 39.88 29.82 65.72 37.93 50.11 58.37 26.70 37.76 61.13 45.94
Mamba2 26.34 33.19 32.03 65.77 39.73 52.48 59.00 27.64 37.92 60.72 46.91
DeltaNet 27.69 44.04 29.96 64.52 37.03 50.82 56.77 27.13 38.22 60.09 45.57

Gated DeltaNet 25.47 29.24 34.40 65.94 40.46 51.46 59.80 28.58 37.43 60.03 47.26
Gated DeltaNet-H2 24.19 28.09 36.77 66.43 40.79 52.17 59.55 29.09 39.04 58.56 47.69
Gated DeltaNet-H1 24.06 28.72 36.00 65.50 40.73 51.30 60.69 28.49 37.71 61.77 47.88

1.3B params / 100B tokens
Transformer++ 18.53 18.32 42.60 70.02 50.23 53.51 68.83 35.10 40.66 57.09 52.25
RetNet 19.08 17.27 40.52 70.07 49.16 54.14 67.34 33.78 40.78 60.39 52.02
HGRN2 19.10 17.69 39.54 70.45 49.53 52.80 69.40 35.32 40.63 56.66 51.79
Mamba 17.92 15.06 43.98 71.32 52.91 52.95 69.52 35.40 37.76 61.13 53.12
Samba 16.13 13.29 44.94 70.94 53.42 55.56 68.81 36.17 39.96 62.11 54.00
Mamba2 16.56 12.56 45.66 71.87 55.67 55.24 72.47 37.88 40.20 60.13 54.89
DeltaNet 17.71 16.88 42.46 70.72 50.93 53.35 68.47 35.66 40.22 55.29 52.14

Gated DeltaNet 16.42 12.17 46.65 72.25 55.76 57.45 71.21 38.39 40.63 60.24 55.32
Gated DeltaNet-H2 15.91 12.55 48.76 72.19 56.88 57.77 71.33 39.07 41.91 61.55 56.18
Gated DeltaNet-H1 16.07 12.12 47.73 72.57 56.53 58.40 71.75 40.10 41.40 63.21 56.40

Table 1: Zero-shot performance comparison of 400M and 1.3B parameter models that are trained for 15B and
100B tokens respectively. Gated DeltaNet-H1 and Gated DeltaNet-H2 denote hybrid variants comprising of
Gated DeltaNet + SWA and Mamba2 + Gated DeltaNet + SWA, respectively. All models are trained from scratch
on FineWeb-Edu dataset (Penedo et al., 2024).

4.2 EMPIRICAL RESULTS

Commonsense Reasoning. In Table 1, we present the language modeling perplexity and zero-shot
accuracy on commonsense reasoning benchmarks for models with 400M and 1.3B parameters. Gated
DeltaNet consistently outperforms other linear models, including RetNet, HGRN2, Mamba, Mamba2,
and DeltaNet, at both scales. As expected, the hybrid variant further enhances performance.

In-context recall-intensive tasks. Table 2 presents the results of recall-intensive tasks. As expected,
linear models exhibit a notable performance gap compared to Transformers, with Mamba2 standing
out as a strong baseline recurrent model, outperforming all other pure recurrent baseline models.

State size is strongly correlated with final performance. With a 128×Ld state size and 400M
parameters, Gated DeltaNet clearly outperforms DeltaNet, underscoring the importance of the gating
mechanism. When using a 256×Ld state size, Gated DeltaNet outperforms Mamba2 across both
model scales, demonstrating the effectiveness of the delta update rule. However, for the 0.4B models,
Gated DeltaNet with a 128×Ld state size underperforms compared to Mamba2 with a 256×Ld state
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Models State size SWDE SQuAD FDA TriviaQA NQ Drop Avg
↑ ↑ ↑ ↑ ↑ ↑

400M params / 15B tokens
Transformer++ N/A 22.1 28.3 30.2 43.1 15.6 17.5 26.1
Samba 2062×Ld 23.1 29.9 31.0 45.1 16.3 16.7 27.0
RetNet 512×Ld 6.0 19.6 1.5 39.4 8.7 14.9 15.0
HGRN2 128×Ld 6.1 15.3 1.0 36.9 7.6 12.1 13.1
Mamba 32×Ld 6.8 15.7 1.1 37.8 8.0 12.2 13.6
Mamba2 256×Ld 12.0 24.9 10.8 43.3 11.8 17.3 20.1
DeltaNet 128×Ld 7.4 22.4 6.5 41.8 12.3 16.7 17.8

Gated DeltaNet 128×Ld 11.3 26.0 4.5 42.2 10.2 18.0 18.7
Gated DeltaNet 256×Ld 13.6 26.5 9.8 48.3 13.7 16.0 21.3
Gated DeltaNet-H2 1418×Ld 20.1 31.8 41.0 48.9 17.5 19.1 29.7
Gated DeltaNet-H1 2112×Ld 20.7 33.2 33.1 49.8 19.5 18.9 29.2

1.3B params / 100B tokens
Transformer++ N/A 29.5 38.0 52.2 58.3 22.5 21.6 37.0
Samba 2062×Ld 33.0 39.2 50.5 57.7 23.5 20.2 37.3
RetNet 512×Ld 14.0 28.5 7.0 54.4 16.2 17.3 22.9
HGRN2 128×Ld 8.3 25.3 4.8 51.2 14.2 16.9 20.1
Mamba 32×Ld 9.8 25.8 3.7 54.3 14.9 17.4 21.0
Mamba2 256×Ld 19.1 33.6 25.3 61.0 20.8 19.2 29.8
DeltaNet 128×Ld 17.9 30.9 18.4 53.9 17.3 18.6 26.2

Gated DeltaNet 256×Ld 25.4 34.8 23.7 60.0 20.0 19.8 30.6
Gated DeltaNet-H2 1461×Ld 38.2 40.4 50.7 63.3 24.8 23.3 40.1
Gated DeltaNet-H1 2176×Ld 35.6 39.7 52.0 60.1 24.6 22.2 39.0

Table 2: Performance comparison on associative-recall tasks for models with 400M and 1.3B parameter models
which are trained on 15B and 100B tokens, respectively. Gated DeltaNet-H1 and Gated DeltaNet-H2 denote
hybrid variants comprising of Gated DeltaNet + SWA and Mamba2 + Gated DeltaNet + SWA, respectively. In
state size column, L denotes the number of layer while d denotes model dimension.

size. This highlights the importance of maintaining consistent state sizes for fair model comparisons,
and we recommend future work ensure state size consistency when evaluating models.

For models utilizing sliding window attention (SWA), the KV cache size is used as the state size.
Recurrent models enhanced by SWA exhibit larger state sizes and significantly higher recall per-
formance: Samba outperforms Transformer++ in both configurations, while Gated DeltaNet-H1
surpasses Samba. Interestingly, Gated DeltaNet-H2 exceeds Gated DeltaNet-H1 despite a smaller
state size, indicating the potential benefits of hybridizing multiple models. Further exploration of this
hybridization is left as a direction for future research.

2 8 14 20 26 32

14

16

18

Position Bucket (K)

PP
L

(↓
)

Mamba DeltaNet
Mamba2 Gated DeltaNet

Figure 2: Length extrapolation results in PG19 test set.

Length extrapolation. As observed
in Yang et al. (2024b) and illustrated
in Fig. 2, DeltaNet struggles to extrap-
olate to sequences longer than its train-
ing length (in this case, 4K tokens).
We speculate that this limitation arises
from its slow forgetting mechanism,
which hinders the model’s ability to
efficiently clear outdated memory con-
tent. As a result, when the evaluated
sequence length exceeds the training
length, the model’s memory becomes
saturated, leaving no room to accom-
modate new information.

Similarly, Mamba2 faces a related is-
sue, with perplexity increasing as sequence length grows, though to a lesser extent than DeltaNet,
due to its forgetting mechanism. This suggests that while the simple gated update rule improves
memory management, it does not fully solve the challenge of handling extended contexts. In contrast,
Mamba1 does not exhibit a significant increase in perplexity with longer sequences, thanks to its more
fine-grained gating mechanism, which allows for different decay rates for each hidden dimension.
However, this fine-grained control prevents efficient use of tensor cores and limits the state size,
ultimately resulting in higher perplexity due to these computational constraints.
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Gated DeltaNet demonstrates clear advantages over these approaches, due to the superiority of the
gated delta rule in memory management. This enables the model to effectively process much longer
sequences with a finite state size, making it more adaptable to extended contexts.

Ablation Study. Table 3 shows the ablation study of the Gated DeltaNet block. We found that
both the short convolution and output gate are crucial to performance, while output normalization
provides a slight improvement. Similar to Yang et al. (2024b), we observed that L2 normalization is
essential for optimal performance, whereas the specific choice of feature map is less critical. That
said, SiLU consistently performed the best, in line with findings by Qin et al. (2023). Regarding head
dimension, we found that setting it to 128 strikes a good balance between performance and efficiency.

5 RELATED WORK

Table 3: Ablation study on the Gated DeltaNet block.
Avg-PPL and Avg-Acc denote average perplexity and zero-
shot commonsense reasoning accuracy (as in Table 1), re-
spectively. All models have 400M parameters and are
trained for 15B tokens on the same subset of FineWeb-Edu
dataset (Penedo et al., 2024).

Gated DeltaNet Ablations (400M) Avg-PPL (↓) Avg-Acc (↑)

Gated DeltaNet w Head Dim 128, 27.35 47.26

Macro Design
w. naive Delta Rule 30.87 45.12
w/o. Short Conv 28.95 46.16
w/o. Output Gate 29.12 45.46
w/o. Output Norm 27.55 47.07

Normalization & Feature Map
w. L1-norm & ReLU 30.79 45.92
w. L1-norm & 1+ELU 30.34 46.05
w. L1-norm & SiLU 30.18 46.09
w. L2-norm & ReLU 27.67 46.94
w. L2-norm & 1+ELU 27.58 47.17

Model Dimensions
w. Head Dim 64 28.31 46.35
w. Head Dim 256 27.13 47.38

Gated Linear RNN. Large linear recurrent
language models have garnered significant at-
tention due to their training and inference
efficiency. The field of linear RNNs has
rapidly evolved from using data-independent
decay mechanisms, as seen in models like
S4 (Gu et al., 2022), S5 (Smith et al., 2023),
RWKV4/5 (Peng et al., 2023), and RetNet, to
adopting data-dependent decay mechanisms
in more recent models like HGRN1/2 (Qin
et al., 2024a;b), Mamba1/2, RWKV6 (Peng
et al., 2024), and GSA (Zhang et al., 2024).
This shift is largely due to the unique advan-
tages of gating/forgetting mechanisms (re-
ferred to as selective mechanisms in Mamba),
a classical concept that originated in the gated
RNN literature (Gers et al., 2000) and whose
significance has been repeatedly validated
(Greff et al., 2015; Jing et al., 2017; van der
Westhuizen & Lasenby, 2018; Qin et al.,
2024b).

Modern forget gates differ from traditional
designs like those in LSTM by removing the
dependency on the previous hidden state, re-
lying solely on input data. This enables efficient parallelism across sequence lengths (Martin &
Cundy, 2018; Qin et al., 2024b; De et al., 2024). The absence of a forget gate has been a key limitation
in DeltaNet, and our gated extension of DeltaNet addresses this gap in a way that is both natural and
effective.

Delta Rule. The delta learning rule has been shown to offer superior memory capacity compared to
the Hebbian learning rule (Gardner, 1988; Prados & Kak, 1989). While linear transformers rely on a
Hebbian-like learning rule, DeltaNet utilizes the delta rule, and this advantage in memory capacity
is empirically evident in synthetic in-context learning tasks. Moreover, this superiority extends
across various applications, including language modeling (Irie et al., 2021; Yang et al., 2024b),
reinforcement learning (Irie et al., 2022), and image generation (Irie & Schmidhuber, 2023). Yang
et al. (2024b) further parallelized delta rule computations across sequence lengths and highlighted the
increased expressiveness of DeltaNet’s data-dependent identity-plus-low-rank structured transition
matrix (I− βtktk

⊺
t ) compared to Mamba2’s data-dependent diagonal matrices (αtI). This shift from

diagonal to structured dense matrices significantly enhances the model’s ability to tackle complex
reasoning tasks, such as regular language processing (Fan et al., 2024) and state-tracking tasks beyond
the TC0 complexity class (Merrill et al., 2024), which are critical for applications like coding.

The delta rule also exhibits an interesting connection to online (meta) learning via gradient descent
(Munkhdalai et al., 2019). Recent studies, such as Longhorn (Liu et al., 2024) and TTT (Sun et al.,
2024a), revisit this link by framing state space learning as a gradient-based online learning problem.
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Notably, Longhorn’s closed-form solution with L2 loss closely mirrors the delta update rule, while
the TTT-linear variant recovers the delta rule when layer normalization is excluded.

Despite these strengths, the delta rule still faces theoretical limitations, as highlighted by Irie et al.
(2023), and has shown moderate performance on real-world data (Yang et al., 2024b). Extensions of
DeltaNet, such as the Recurrent DeltaNet (Irie et al., 2021) and the Modern Self-referential Weight
Matrix (Irie & Schmidhuber, 2023), introduce strict recurrence to improve expressiveness, albeit at
the cost of parallelizability during training. In contrast, our proposed Gated DeltaNet incorporates
a gating mechanism that enhances DeltaNet’s expressiveness while preserving efficient training on
modern hardware.

6 CONCLUSION

In this work, we introduced Gated DeltaNet, which combines the gated update mechanism from
Mamba2 with the delta update rule from DeltaNet to create more expressive recurrent models. We
extended the delta rule parallel algorithm (Yang et al., 2024b) to incorporate gating terms, enabling
chunkwise parallelism and hardware-efficient training. Experiments on commonsense reasoning and
recall-intensive tasks demonstrate the advantages of Gated DeltaNet over both Mamba2 and DeltaNet,
validating its effectiveness in enhancing model performance.
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A APPENDIX

A.1 EXTENDED WY REPRESENTATION FOR GATED DELTA RULE

To reduce notation clutter, we only consider the first chunk here.

For St, the extended WY representation is

St =

t∑
i=1

γt
γi
uik

⊺
i , ut = βt

(
vt −

t−1∑
i=1

γt
γi
uik

T
i kt

)
We proof this by mathmetical induction.

Proof.
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has already been proved in Yang et al. (2024b).

A.2 ABLATION STUDY

In this section, we present an ablation study for different hybrid integration patterns that were
considered for designing the Gated DeltaNet-H2 model. This model comprises of Gated DeltaNet,
Mamba2 and SWA blocks. However, it is not readily clear how these different blocks should be
integrated. As shown in Table S.1, we study four different patterns based on different ordering of the
aforementioned blocks. In addition, with a 12 layer network architecture, we keep the number of layer
comprising of each block type the same to ensure fairness. Hence, the total number of parameters
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increase to 500M and the performance is generally better than 400M parameter models that were
introduced in Table 1.

As seen in Table S.1, the model with Mamba2 + Gated DeltaNet + SWA hybrid design pattern
outperforms other models in term of average accuracy. In addition, it shows better perplexity values.
Hence, we chose this pattern as part of the Gated DeltaNet-H2 model.

Model Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c SIQA BoolQ Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑

Hybrid Ablations (500M/15B)

Gated DeltaNet + SWA + Mamba2 24.02 28.20 34.77 67.08 40.84 50.74 60.35 28.83 38.94 61.49 47.88
Gated Gated DeltaNet + Mamba2 + SWA 23.69 26.83 36.17 67.51 41.51 51.85 61.19 29.77 38.58 53.73 47.54
Mamba2 + SWA + Gated DeltaNet 24.14 25.21 36.79 64.96 41.18 52.01 60.90 30.03 38.07 59.44 47.92
Mamba2 + Gated DeltaNet + SWA 23.54 24.11 36.92 66.48 41.70 52.72 61.06 30.54 39.91 60.51 48.73

Table S.1: Ablation studies of Gated DeltaNet models. All evaluations are performed by using
lm-evaluation-harness (Gao et al., 2021). All models use the Mistral tokenizer and are trained on the
same subset of the FineWeb-Edu dataset (Penedo et al., 2024).
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