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Abstract

Time series outlier detection has been extensively studied with many advanced
algorithms proposed in the past decade. Despite these efforts, very few studies have
investigated how we should benchmark the existing algorithms. In particular, using
synthetic datasets for evaluation has become a common practice in the literature,
and thus it is crucial to have a general synthetic criterion to benchmark algorithms.
This is a non-trivial task because the existing synthetic methods are very different
in different applications and the outlier definitions are often ambiguous. To bridge
this gap, we propose a behavior-driven taxonomy for time series outliers and cate-
gorize outliers into point- and pattern-wise outliers with clear context definitions.
Following the new taxonomy, we then present a general synthetic criterion and
generate 35 synthetic datasets accordingly. We further identify 4 multivariate real-
world datasets from different domains and benchmark 9 algorithms on the synthetic
and the real-world datasets. Surprisingly, we observe that some classical algo-
rithms could outperform many recent deep learning approaches. The datasets, pre-
processing and synthetic scripts, and the algorithm implementations are made pub-
licly available at https://github.com/datamllab/tods/tree/benchmark.

1 Introduction

Detecting outliers from time series data has broad applications in various domains, such as manufac-
turers [1], edge devices [2] and HVAC systems [3, 4, 5]. Many algorithms have been proposed for time
series outlier detection, including prediction-based models such as auto-regression [6] and recurrent
neural networks [7], majority modeling approaches such as isolation forest [8] and autoencoder [9],
and discords analysis methods such as subsequence clustering [10] and matrix profile [11].

Despite these efforts of advancing algorithm design, very few studies have investigated how we should
benchmark the existing algorithms. While some real-world datasets could be used for benchmarking,
they often exhibit a mixture of different types of outliers, making it challenging to understand the
pros and cons of algorithms. For example, in the NYC taxi dataset [12] (left-hand side of Figure 1),
the subsequence highlighted in grey is an outlier because it has significantly smaller values and forms
a downhill while the majority subsequences are uphills; whereas the subsequence marked in blue is
an outlier because of its wider valley. Simply obtaining an overall performance on this dataset will
not help explain which types of outliers an algorithm can or cannot deal with. Moreover, labeling
datasets are often laborious and expensive. In practice, as pointed out in [13], real-world datasets can
be mislabeled with flaws. Thus, researchers often resort to synthetic datasets [2, 14, 15, 16, 17, 18]
since they can conveniently isolate the outlier types to clearly interpret how the algorithms behave.
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Figure 1: The three collective outliers of shapelet, seasonal, and trend in two real-world datasets [12]
have very different behaviors but are regarded as the same type of outlier with the existing definition.

However, it is non-trivial to properly generate synthetic datasets for time series data due to the
ambiguity of outlier definitions. The synthetic methods can be very different in the literature [2, 14,
15, 16, 17, 18] because it highly depends on how the outliers are defined. Most papers in this research
line simply follow and extend the outlier definitions in non-sequential data and categorize them
into point, contextual, and collective outliers [19, 20, 21, 22], illustrated in Figure 3. Unfortunately,
this categorization often still relies on the similarity among points and does not model the general
temporal structures in time series data [23, 24, 25]. As such, the definitions can be unclear due to the
ambiguity of contexts1. For example, in Figure 1, the outliers marked in grey, blue and green have
very different behaviors with an unusual shape, lower seasonality, and decreasing trend, respectively.
However, these three outliers will be all regarded as collective outlier under the existing taxonomy.
Following this, it would be challenging to synthesize these outliers due to the ambiguity of contexts.

Some previous efforts [26, 27, 28, 29] have discussed how we should generate synthetic datasets.
For example, researchers have synthesized time series data with anomalous individual points to
simulate the failures or intrusions in domains such as electricity load monitoring [14], edge device
faults [2] and server intrusion monitoring [15]. Meanwhile, previous work has tried injecting synthetic
collections of points to a sinusoidal wave to simulate the unusual events and behaviors in applications
such as power plant and ECG monitoring [16, 17, 18]. While these studies have shed light on how to
synthesize data, their outlier definitions only focus on their specific applications, and the resulting
synthetic outliers are often only designed for a target domain. Therefore, it remains unclear how to
synthesize outliers to benchmark the algorithms since we do not have a general synthetic criterion.

To bridge this gap, we aim to take a closer look into the outlier definitions in time series data and
benchmark the synthetic methods and the existing algorithms. In particular, we will investigate the
following questions: 1) Can we develop a taxonomy that can better categorize the outliers (e.g., the
seasonal, shapelet, and trend outliers shown in Figure 1) to guide the design of synthetic datasets? 2)
How can we effectively synthesize different types of outliers to better understand the capabilities of
different algorithms. Through answering these questions, we make the following contributions:

• We propose a behavior-driven taxonomy for time series outliers, illustrated in Figure 2b. It views
time series data with empirical observations and spectral analysis, and categorizes outliers into
point- and pattern-wise outliers accordingly with clear context definitions.

• Following the behavior-driven taxonomy, we present a general synthetic criterion based on the
new definitions. We also generate 35 synthetic datasets for benchmarking.

• In addition to synthetic datasets, we identify four multivariate real-world datasets that cover both
point- and pattern-wise outliers from different application domains.

• We conduct extensive experiments on the synthetic and the real-world datasets to benchmark
9 algorithms, including prediction-based models, majority modeling approaches, and discords
analysis methods. We surprisingly observe that some classical algorithms could outperform
many recent deep learning approaches for all types of outliers. We also interestingly observe
that some algorithms are able to detect certain types of pattern-wise outliers even if they are
designed for point outliers. With the hope that these insights could motivate future works, we
have open-sourced all the datasets, the pre-processing and synthetic scripts, and the algorithm
implementation in TODS [30].

1In this work, context generally refers to a specific pattern of the rest of the data points, and can be the values
of the data points globally or in a surrounding window, or general patterns such as trend and seasonality.
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(b) Behavior-Driven Taxonomy
Figure 2: Comparison of the behavior-driven taxonomy with the existing taxonomy. We categorize
sequential outliers into point and patten-wise behaviors with clear definitions of contexts.

Figure 3: Examples of point (left), contextual (middle), and collective (right) outliers.

2 Background

This section gives a background of the previous outlier definitions in time series data. Outliers in
non-sequential data are often defined as the data instances that significantly deviate from the majority
of the instances [31, 32, 33, 34, 35, 36]. However, it is non-trivial to define outliers in time series
data due to the temporal correlations among observations. Existing studies often follow the outlier
definitions in non-sequential data. Specifically, they define the outliers in sequential data with behavior
analysis [19, 20, 21, 22, 37, 38, 39, 40] and categorize them into point, contextual, and collective
outliers. Figure 3 illustrates the three types of outliers that often serve as a de-facto-standard:

• Point outlier is defined as the individual instance that is anomalous with respect to the rest of the
data. The extreme values could lead to serious consequences, and therefore point outlier is often
the focus of sequential outlier detection research.

• Contextual outlier is the individual instance that is anomalous under a specific context, such as
the discord points within the same harmonic pattern. Contextual outliers usually have relatively
larger/smaller values in their own context but not globally. Identifying contextual outliers is often
considered more challenging and is extensively explored in the literature [41, 42, 43, 44].

• Collective outlier is defined as a collection of related data instances that is anomalous with
respect to the entire data set. Specifically, the individual points of a collective outlier may not be
anomalous by themselves but the co-occurrence of them becomes an outlier. Collective outliers
are ubiquitous in sequential data since there are often strong dependencies among time points.

Although the above categorization has covered both individual instances and collections of instances,
it remains non-trivial to clearly define the collective and contextual outliers due to the ambiguity of
contexts. The contexts of the contextual outliers are often very different in the literature. They can be
a small window containing the neighboring points [45] or the points with similar relative positions
in terms of seasonality [41]. Similarly, collective outliers can only be clearly defined with a clear
context. For example, in Figure 1, the shapelet, seasonal and trend outliers have totally different
behaviors under different contexts. However, the current taxonomy will categorize all of them as
collective outliers since they are all outliers for multiple time points. To bridge this gap, this work
aims to refine the sequential outlier definitions with clear and unified definitions of the contexts.

3 Revisiting Outlier Definition and Synthesizing Criteria

This section introduces a new taxonomy for time series outliers. We first revisit and motivate the
behaviors of time series data with empirical observations and spectral analysis. Then we propose a
new taxonomy for point- and pattern-wise outliers with clear context definitions. Finally, we discuss
the existing synthetic methods and present a general synthetic criterion based on our new definitions.
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3.1 Behaviors in Sequential Data

The most common way to model time series data is based on empirical observation [46], which treats
the data as a series of data points and studies the relationships among the points. Formally, a time
series data X with t timestamps can be represented as an ordered sequence of data points:

X = (x1, x2, · · · , xt), (1)

where xi is the data point at timestamp i (i 2 T , where T = {1, 2, ..., t}). This formulation can
be naturally extended to a multivariate counterpart by adding a dimension to xi. Previous work
often follows empirical observation to study point, contextual, or collective outliers [19, 20, 21, 22].
However, such formulation does not consider the temporal structure of the data such as trend and
seasonal information. For example, given two anomalous subsequences with unusual shapelet and
abnormally high frequency respectively, they will be both identified as collective outliers. This makes
it difficult to analyze the cause of outliers and understand the performance of detection algorithms.

To better model the temporal structure of the time series data, we can alternatively view the data
with spectral analysis [23]. The most common way of spectral analysis is to formulate the time
series data as a combination of sinusoidal wave [24]: X =

P
n Asin(2⇡!nT ) + Bcos(2⇡!nT ),

where sin(2⇡!nT ) and cos(2⇡!nT ) are shapelet functions that transform a series of timestamps
T = {1, 2, ..., t} into values, and A and B are coefficients to define the value range. X is obtained by
summing up the values of multiple waves with different frequencies, and !n denotes the frequency of
wave n. Although the sinusoidal wave can well represent the shapelets and seasonality of the data,
it can not model trend. To tackle this issue, we adopt structural modeling [23, 25, 24] with spectral
analysis to represent the time series as the combination of trend, seasonality and shapelets:

X = ⇢(2⇡!T ) + ⌧(T ), (2)

where ⇢(2⇡T,!) =
P

n[Asin(2⇡!nT ) +Bcos(2⇡!nT )] is the base shapelet function to approxi-
mate de-trend series (here, ! = {!1,!2, ..,!n} for brevity), and ⌧(·) denotes a trend function that
models the general direction of the series. This formulation can represent various shapelet patterns,
such as sawtooth wave and square wave, with various trends. For example, for square sine wave with
linearly increasing trend, we can set A = 1

2n+1 , B = 0, !n = 2n+ 1 (n 2 {0, 1, ..., N}), and ⌧ as a
linear function ⌧(T ) = T , where N controls the level of squareness.

3.2 Refining Sequential Outlier Definitions

The existing taxonomy for time series data mainly focuses on individual data points, e.g., point and
contextual outliers. While collective outlier considers subsequences, it simply regards a subsequence
as a combinatorial behavior of multiple points, which ignores the spectral information of subsequences.
In this subsection, we propose a new taxonomy, shown in Figure 2b. We refine the outlier definitions
in time series and identify five types of outliers that cover point- and pattern-wise behaviors.

3.2.1 Point-wise Outliers

Point-wise outliers refer to unexpected incidents on individual time points. Anomalous behaviors
of one time point can be a glitch or spike, where spike is an individual point with extreme value
comparing to the rest of the points and glitch is an individual point with relatively deviated value
from its neighboring points. Following this intuition, given a time series X = (x1, x2 · · · , xt), two
outlier types can be defined under point-wise behavior with different thresholds �:

|xt � x̂t| > �, (3)

where x̂t is the expected value, which can be the output of a regression model, or simply the global
mean value or mean value of a context window.

Global outliers refer to the points that significantly deviate from the rest of the points. They are
usually the spikes in the series and therefore the threshold can be defined as

� = � · �(X), (4)

where �(X) is the standard deviation of the time series and � controls the range.
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(a) Shapelet Outliers (b) Seasonal Outlier (c) Trend Outlier

Figure 4: Illustration of three types of pattern outliers.

Contextual outliers are the points that deviate from its corresponding context, which is defined as
the neighboring time points within certain ranges. This type of outlier are the small glitches in the
sequential data and can be defined as:

� = � · �(Xt�k,t+k), (5)

where Xt�k,t+k = (xt�k, xt�k+1, xt�k+2 · · · , xt+k) refers to the context of the data point xt with
a context window size k, and � controls the threshold.

3.2.2 Pattern-wise Outliers

Pattern-wise outliers are anomalous subsequences, which are typically discords or inharmonies.
There are three major causes of pattern-wise outliers: basic shapelet, seasonality changes and trend
alternations. Specifically, given a time series data X , an underlying subsequence Xi,j starting from
timestamp i to j can be represented by a shapelet function with trend and seasonality:

Xi,j = ⇢(2⇡!Ti,j) + ⌧(Ti,j), (6)

where ⇢ defines the basic shape of the subsequence, ! is the seasonality of the subsequence, ⌧ is the
trend function describing overall direction of Xi,j . By analyzing three components individually, we
identify three types of outliers in pattern-wise behavior, illustrated in Figure 4.

Shapelet outliers refer to the subsequences with dissimilar basic shapelets compared with the normal
shapelet, which can be defined as

s(⇢(.), ⇢̂(.)) > �, (7)
where s is a function measures the dissimilarity between two subsequences, such as dynamic time
warping [47]. ⇢̂ is the basic shapelets of expected subsequence, and � is a threshold.

Seasonal outliers are the subsequences with unusual seasonalities compared with the overall season-
ality. They have similar basic shapelet and trend but with unusual seasonalities, defined as

s(!, !̂) > �, (8)

where !̂ is the seasonality of expected subsequences, and � is a threshold.

Trend outliers indicate the subseuqences that significantly alter the trend of the time series, leading
to a permanent shift on the mean of the data. This type of outlier retains basic shapelet and seasonality
of the normalities but the slope of the trend changes drastically, which can be defined as:

s(⌧(.), ⌧̂(.)) > �, (9)

where ⌧̂ is the trend of normal subsequences, and � is a threshold.

3.3 Synthesizing Outliers

Introducing synthetic outliers into anomaly-free data is a very common strategy to evaluate detection
algorithms. One of the synthesizing strategy is to inject sporadic outliers in an additive manner [14,
15]. Specifically, outliers are synthesized by adding the original data point with mean and standard
deviation of the whole data to ensure their outlierness. Another strategy [16, 17, 18] is to replace
the existing subsequences with dishormonic patterns, e.g., randomly replacing a subsequence of a
cosine wave with a sinusoidal wave. Table 1 compares the synthetic methods adopted from different
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Attributes
Domain Edge Device [2] Electric Load [14] Server Log[15] Power Plants [16, 17] ECG [18] SEQ (ours)

Point Behavior X X X 7 7 X
Pattern Behavior 7 7 7 X X X
Point Global X 7 X 7 7 X
Point Contextual 7 X X 7 7 X
Pattern Shapelet 7 7 7 X X X
Pattern Seasonality 7 7 7 7 X X
Pattern Trend 7 7 7 7 7 X

Table 1: Comparison to synthetic methodologies in existing works from different domains.

applications. While these studies have introduced various synthetic strategies, they only focus on their
specific applications, and can not serve as a general synthetic criterion for benchmarking. Moreover,
none of them consider the trend outlier. In this subsection, we introduce a general and unified
synthetic criterion to benchmark the evaluation of different types of outliers.

Global Outlier. Following Equation 4, we can synthesize a global outlier by letting x̂t = µ(X)
and � = � · �(X), i.e., xt = µ(X) ± � · �(X), where µ(X) denotes the mean, �(X) denotes the
standard deviation, and � controls how much xt deviates from the expected value.

Contextual Outlier. Contextual outliers are expected to locally rather than globally deviate from
the expected value. Based on Equation 5, we can set x̂t = µ(Xt�k,t+k), � = � · �(Xt�k,t+k), i.e.,
xt = µ(Xt�k,t+k)± � · �(Xt,t+k), where µ and � are instead obtained from a subsequence.

Shapelet Outlier. Following Equation 7, we can synthesize a shapelet outlier from timestep i to j
by setting ⇢ to be other shapelets with Xi,j = ⇢(2⇡!̂Ti,j) + ⌧̂(Ti,j), where !̂ denotes the expected
seasonality, ⌧̂ denotes the expected trend, and ⇢ is another shapelet. For instance, we can set ⇢ to be
square wave to synthesize a shapelet outlier in a sine wave, illustrated in Figure 4a.

Seasonal Outlier. Based on Equation 8, we can similarly synthesize a seasonal outlier from timestamp
i to j with Xi,j = ⇢̂(2⇡!Ti,j)+⌧̂(Ti,j), where ! is another seasonality while ⇢̂ and ⌧̂ are the expected
ones. Figure 4b gives an example of seasonal outlier by setting the seasonality as 2!̂.

Trend Outlier. Similarly, we can follow Equation 9 to synthesize the trend outliers with Xi,j =
⇢̂(2⇡!̂Ti,j)+ ⌧(Ti,j). Figure 4c shows the example with ⌧(Ti,j) = {�1,�2,�3, · · · ,�(j� i+1)}.

Discussion. Unlike the existing definitions and synthetic methods, we introduced a structural time
series model to describe pattern-wise behaviors for the following reasons. First, this formulation
can provide clear contexts to describe the structural patterns and define the shapelet, seasonal, and
trend outliers, which cannot be achieved by simply regarding a subsequence as a collection of points.
Second, following this formulation, we can synthesize different types of outliers by inserting other
shapelet, seasonal, or trend patterns. This enables us to isolate the outlier types and focus on a specific
type, making it convenient to analyze and interpret how the existing algorithms behave.

4 Benchmark Experiments

In this section, we introduce 35 synthetic datasets based on the proposed criterion and identify four
real-world multivariate sequential data which cover both point- and pattern-wise outliers. We further
benchmark 9 existing algorithms implemented in TODS project [30] on these datasets. In what
follows, we first describe the details of the synthetic datasets and the real-world datasets, and then
elaborate on the included algorithms. Finally, we present the benchmark results and analysis.

4.1 Descriptions of the Datasets

We conduct benchmark experiments in unsupervised setting. Each of the algorithm is trained and
tested on the same dataset. The outliers are identified based on the outlierness score generated by
individual algorithms with a given contamination ratio. The benchmark experiments are conducted
on both synthetic and real-world datasets as follows:

Synthetic Datasets. The goal of synthetic datasets is to examine the ability of algorithms to identify
5 type of proposed outliers. We generate 35 synthetic datasets with 20 univariate and 15 multivariate
datasets to examine the existing algorithms in detail. Specifically, we adopt sinusoidal wave as the
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base shapelet to generate 20 univariate sequential data with different ratio of outliers, where each
dataset only include one kind of outlier. Then, we also generate 15 multivariate sequential data which
combine different kinds of outliers into single dataset.

Real-world Datasets. We identify four public available real-world datasets from four different
application scenario with two event-driven application and two time-based application: credit card
fraud detection, IoT for drinking water monitoring, server attack monitoring and extreme space
weather detection. The credit card transaction data [48] 2 and server monitoring data [49] 3 are
event-driven sequential data, which contain point-wise outliers. The IoT data [50] 4 and space
weather data [51] 5 are time series data, which contain pattern-wise outliers.

More datasets details are provided in Appendix B.

4.2 Sequential Outlier Detection Algorithms

Existing sequential outlier detection algorithms can be categorized into three types based on their
working mechanisms: prediction deviation, majority modeling and discords analysis.

Prediction Deviation identifies the outliers by measuring the gaps between the predicted values
and the original data. The assumption behind this type of algorithms is that the given data is
reconstructable through regression analysis; if an individual instance is not regressable, then it is
very likely to be an outlier. Autoregression (AR) [6] assume that each individual instance is linearly
correlated to its past few instances. Gradient boosting regression (GBRT) [52] handles time series
data in windowed-fashion and perform regression based on segmented subsequences. Derived from
autoregression, recurrent neural networks with long short term memory units (LSTM-RNN) [7] is
adopted to model the nonlinear temporal correlations between data instances.

Majority Modeling assumes that normal data instances are compact in hyperspace [53, 54]. It aims
at identifying the decision boundary between outliers and normalities through modeling the regular
data distribution. One-class SVM (OCSVM) [55, 56, 57] maximizes the margin between origin
and the normalities and define the decision boundary as the hyper-plane that determines the margin.
Isolation forest (IForest) [8, 58] builds an ensemble of binary trees to isolate the data points and
defines the decision boundary as the closeness of an individual instance to the root. Autoencoder
(AE) [9] maps the data points into low dimensional latent space, reconstructs the data points from the
latent space representations, and defines the decision criteria by assuming the reconstruction error of
outliers are significantly larger than normalies. Generative adversarial nerwork (GAN) [59] performs
min-max optimization with a generator and a discriminator, where discriminator aims at modeling
the normalities and generator targets on generating outliers that can be identified as normalities by
discriminator. The decision criterion is defined as the discriminator loss on individual instances.

Discords Analysis measures the similarity [60] between subsequences and aims at identifying
discords as outliers. Specifically, sequential data will be segmented into subsequences by a sliding
window. Then, different distance computation will be performed to evaluate the discordance of each
subsequence. Discords analysis is usually adopted to identify pattern-wise outliers. Subsequence
clustering [10] leverages unsupervised algorithms such as OCSVM [57] and IForest [58] with
segmented subsequences to detect pattern-wise outliers. Matrix profile (MP) [11, 61] constructs
distance profiles by computing minimum distances of each subsequence to the rest of subsequences,
then identifies anomalous subsequence based on the distance profile. In the benchmark, we adopt
subsequence clustering with OCSVM (NOCSVM) and IForest (NIForest)).
For synthetic datasets, we align the contamination of all algorithms with anomaly ratio of individual
dataset. As for real-world dataset, we establish 6 contamination ratio 0.01, 0.05, 0.1, 0.15, 0.2, 0.25
and report the best result for each algorithm. More details about hyperparameters of individual
algorithms are provided in Appendix C.

4.3 Results and Analysis

2
https://www.openml.org/d/1597

3
https://www.unb.ca/cic/datasets/ids-2017.html

4
https://bit.ly/3fOeRvI

5
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/EBCFKM
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Figure 5: Summary of benchmark results on univariate (a-e) and multivariate (f ) synthetic datasets.
NIForest and NOCSVM are the subsequence clustering with the two algorithms. Figure a-e report
the F1 score with respect to different ratio of outliers within the dataset and figure f report the F1
score with different number of outlier types within the data. We report only prediction deviation and
majority modeling-based algorithms for the point outliers. More details are provided in Appendix D.

Figure 6: Before (upper) and
after (lower) applying local
z-normalization.

We report the F1 score on the datasets with different outlier ratios
or the numbers of involved outlier types in Figure 5 and tabulate the
results of real-world datasets in Table 2. Due to the space limitation,
the detailed benchmark results of synthetic datasets are tabulated
in Appendix D.

Synthetic Datasets. Figure 5 summarizes the benchmark result
on 35 synthetic datasets with F1 score. Specifically Figure 5a
to 5e concludes the F1 score with respect to outlier ratio on 20
univariate sequential data and figure 5f shows the average F1 score
with respect to number of involved outlier type on 15 multivariate
synthetic datasets. We make the following observations.

First, classical algorithms generally outperform deep learning based
methods on all of the synthetic datasets. Specifically, AR outper-
forms all other algorithms in detecting contextual and shapelet
outliers; OCSVM and IForest outperform the rests in global outliers
and multiple outliers on multivariate setting; and discord analysis
algorithms perform the best in seasonal and trend outlier tasks.

Second, detecting contextual outliers is challenging for most of the
algorithms. Among all of the algorithms, only AR is able to achieve good performance. A possible
reason is AR adopts contextual points to perform self regression and modeling the normalies in the
context window, which benefits detecting contextual outlier.

Third, prediction-based algorithms which are designed to detect point-wise outliers are also applicable
to some of the pattern-wise outliers. For example, AR outperforms all of other algorithms when
detecting shapelet outlier. The reason behind this is that we adopt square sine as the anomalous
shapelet to increase the difficulty. However, since the seasonality and trend of shapelet outliers
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Dataset (Best) Credit Card CICIDS GECCO SWAN-SF
Metrics Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

AR 0.113 0.652 0.192 0.016 0.310 0.030 0.392 0.314 0.349 0.421 0.354 0.385
GBRT 0.113 0.657 0.193 0.018 0.351 0.034 0.175 0.140 0.156 0.447 0.375 0.408
LSTM-RNN 0.004 0.110 0.007 0.024 0.383 0.046 0.343 0.275 0.305 0.527 0.221 0.312

IForest 0.098 0.569 0.168 0.010 0.040 0.016 0.439 0.353 0.391 0.569 0.598 0.583
OCSVM 0.107 0.620 0.183 0.004 0.046 0.007 0.185 0.743 0.296 0.474 0.498 0.485
AutoEncoder 0.103 0.598 0.176 0.011 0.042 0.017 0.424 0.340 0.377 0.497 0.522 0.509

NIForest 0.039 0.226 0.066 0.011 0.168 0.020 0.392 0.315 0.390 0.406 0.425 0.416
NOCSVM 0.002 0.305 0.004 0.000 0.000 0.000 0.021 0.341 0.040 0.193 0.001 0.001
MatrixProfile 0.006 0.514 0.012 0.007 0.080 0.013 0.046 0.185 0.074 0.167 0.175 0.171

Table 2: Benchmark results on four real-world multivariate sequential data. N represents the
subsequence clustering based the algorithm.

remain identical to normalies, the right angle part of the synthetic outlier will be deemed as contextual
outliers by AR and therefore yield an superior performance.

Fourth, local z-normalization adopted by MP may damage the performance for identifying trend
outliers with different directions on zero-centered sequence when the window size is not properly set.
As shown in Figure 6, with the window size that smaller than the range of outlier, the value range of
the trend outlier will be similar to normal subsequences after applying the local z-normalization on
the two trend outliers. Moreover, the original trend shift of the two outliers are transferred to their
neighboring points, which make it hard for MP to identify the true trend outlier.

Lastly, deep learning methods such as RNN and GAN can only handle limited type of outliers. In
the Figure 5f, the average F1 score of GAN and RNN tend to decrease when more types of outliers
are involved. This suggests that the two algorithms might have limited performance on real-world
datasets with numerous kinds of outliers or mixed type of outliers.

Real-world Datasets. Table 2 tabulates the best result for each algorithm on the real-world datasets.
In the real-world experiments, we search the contamination ratio for all of the algorithms in {0.01,
0.05, 0.1, 0.15, 0.2, 0.25} and select the best precision, recall and F1-score to report for each dataset.
Since GAN cannot identify any outliers from all of the four real-world datasets, we exclude the
algorithm in the benchmark result. Based on the Table 2 we can make two observations as follows.

First, classical algorithms generally outperform deep learning methods. Except for the web attack
dataset, all of other datasets are dominated by AR, IForest and OCSVM. Although this is reflected in
the synthetic benchmark, it is surprising that GAN cannot identify any of the outliers within the four
datasets. A possible explanation is that the outliers in real-world datasets are very complex with very
different patterns, which is aligned with the result in multivariate synthetic benchmark in Figure 5f
that GAN may not be able to detect outliers from dataset with numerous kinds of outliers.

Second, subsequence clustering algorithms are not robust to real-world data when combined with
OCSVM. As shown in the table NOCSVM has the worst performance among all of the datasets
with a huge gap to other algorithms. This is because the OCSVM assumes that all of the normal
subsequences can be mapped into the same cluster in hyperspace, which may be not true in real-world
datasets. Specifically, we observe that OCSVM with subsequence segmentation costs more than ten
times of training time compared with vanilla OCSVM. This suggests that it is very challenging to
find a hyperspace to cluster all normal subsequences into one class and therefore the training iteration
will never stop if no maximum is set.

5 Discussion

As mentioned in [13], real-world outliers are complex and may not be well-labeled. This is caused by
the unclear definition of the existing taxonomy, and may lead to confusion of the ability of algorithms.
To better study algorithms, one approach could be creating realistic synthetic dataset with synthetic
outliers, which is proposed in [13]. However, validating in real-world datasets could be preferred by
researchers. To achieve this, one may leverage the proposed taxonomy on existing datasets to re-label
the real-world data directly. For example, in the Taxi and the CPU datasets shown in Figure 1, the
original labels are on individual points with ambiguous meanings. To address the problem, one may
take a closer look to the original labeled outliers and adopt our synthetic criteria to each of the outliers
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to identify the context/range of the outlier. Then, we can re-label the outliers based on the identified
range/context of individual outliers towards clearer labels. Furthermore, data annotators may also
refer to the proposed taxonomy and criteria to refine the labels before publishing the datasets.

6 Conclusion

In this work, we revisit the outlier definition in sequential data and propose a behavior-driven
taxonomy to categorize time series outliers. The clear context definitions in the point- and pattern-
wise behaviors make the proposed taxonomy ideal for synthesizing outliers. Based on the taxonomy,
we present a general synthetic criterion with 35 corresponding synthetic datasets and identify 4
multivariate real-world datasets from different domains. We then benchmark 9 algorithms using these
datasets and empirically show that classical algorithms are generally and surprisingly be superior in
both synthetic and real-world datasets. We hope this insight gleaned from our benchmark experiments
could motivate future algorithm design. To facilitate the reproducibility and fast experimental pipeline
in time series outlier detection, we have made all the datasets, scripts, and algorithm implementations
publicly available, and we will actively maintain this project. In the future, we will enrich our
benchmark with more datasets and polish the definition of outliers with more delicate synthetic
criteria. We will also benchmark more state-of-the-art algorithms and leverage this platform to design
more effective algorithms to tackle different types of outliers.
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