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ABSTRACT

We introduce a novel algorithm for learning the Pareto front in multi-objective
Markov decision processes. Our algorithm decomposes learning the Pareto front
into a sequence of single-objective problems, each of which is solved by an ora-
cle and leads to a non-dominated solution. We propose a procedure to select the
single-objective problems such that each iteration monotonically decreases the
objective space that possibly still contains Pareto optimal solutions. The final al-
gorithm is proven to converge to the Pareto front and provides an upper bound on
the distance to undiscovered non-dominated policies in each iteration. We intro-
duce several practical designs of the required oracle by extending single-objective
reinforcement learning algorithms. When evaluating our algorithm with these or-
acles on benchmark environments, we find that it leads to a close approximation
of the true Pareto front. By leveraging problem-specific single-objective solvers,
our approach holds promise for applications beyond multi-objective reinforcement
learning, such as in pathfinding and optimisation.

1 INTRODUCTION

In many real-world decision-making problems, there are multiple and conflicting objectives to op-
timise for. Formulating effective environmental policies, for example, involves a complex trade-off
between economic and climate metrics (Cui et al., 2017). Given that there is often no single policy
that maximises all objectives simultaneously, it is common to compute a set of candidate optimal
policies. This set is subsequently presented to a decision maker who selects their preferred policy
from it. This approach has multiple advantages such as systematically exploring the space of trade-
offs and empowering a decision-maker to examine the outcomes of their decisions with respect to
their objectives (Hayes et al., 2022). We consider the problem of learning such a set of policies with
reinforcement learning in the context of multi-objective Markov decision processes (MOMDPs).

Depending on the specific setting, the set of policies allowed and prior knowledge about the decision
maker, it is possible to define different types of solution sets for this purpose (Roijers & Whiteson,
2017). A solution set that is often considered in MOMDPs is the convex hull (Yang et al., 2019;
Alegre et al., 2023), which has been shown to be optimal whenever decision-makers have linear
utility functions or when stochastic policies are allowed. When the preferences over objectives
may be non-linear and deterministic policies are required for interpretability or safety reasons, it is
appropriate to learn a Pareto front of policies (Hayes et al., 2022).

In multi-objective optimisation, one of the most successful paradigms for computing a Pareto front
is to decompose the multi-objective problem into single-objective problems which may be solved
and combined at a later stage (Santiago et al., 2014). Such algorithms can usually be efficiently
parallelised and scale well with additional computing power. Moreover, it is often possible to adapt
well-known single-objective methods to solve the decomposed problems, thereby creating a strong
connection between progress in multi-objective and single-objective methods.

In the same spirit, we propose a novel multi-objective reinforcement learning (MORL) algorithm,
Iterated Pareto Referent Optimisation (IPRO), that learns the Pareto front by decomposing the prob-
lem into a sequence of single-objective problems. IPRO iteratively proposes reference points to a
Pareto oracle and uses the solution returned by the oracle to trim sections from the search space.
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To the best of our knowledge, this is the first algorithm that comes with an upper bound on the ap-
proximation error to the true Pareto front at each iteration and guarantees convergence. We modify
strong single-objective RL algorithms to function as Pareto oracles and evaluate IPRO on standard
benchmarks. We find that it learns high-quality Pareto fronts that closely approximate the true Pareto
front when known and otherwise are competitive to those produced by state-of-the-art methods. We
summarise the core contributions of our algorithm relative to related work in Table 1.

Algorithm Convergence Runtime
guarantees Preferences MOMDPs

PCN (Reymond et al., 2022) ✗ ✗ (Non)linear Deterministic
PG-MORL (Xu et al., 2020) ✗ ✗ Linear General
Envelope (Yang et al., 2019) ✓ ✗ Linear General
GPI-LS (Alegre et al., 2023) ✓ ✓ Linear General
IPRO (ours) ✓ ✓ (Non)linear General

Table 1: A summary of our contributions compared to related work.

Related work. When learning a single policy in MOMDPs, as is necessary for our Pareto ora-
cles, conventional methods often adapt single-objective RL algorithms. For example, Siddique et al.
(2020) extend DQN, A2C and PPO to learn a fair policy by optimising the generalised Gini in-
dex of the multi-objective expected returns. Reymond et al. (2023) extend this approach to general
non-linear functions and establish a policy gradient theorem for this setting. Finally, when max-
imising a concave function of the expected returns, efficient methods exist which guarantee global
convergence (Zhang et al., 2020; Zahavy et al., 2021; Geist et al., 2022).

To learn a Pareto front of policies in deterministic MOMDPs, Reymond et al. (2022) employ a single
neural network to predict deterministic policies for various desired trade-off points. For scenarios
involving stochastic policies, Xu et al. (2020) introduce an evolutionary learning algorithm tailored
to continuous control settings. Their algorithm trains a population of policies and evolves this pop-
ulation using a prediction model, which estimates the expected improvement along each objective.
Furthermore, Lu et al. (2023) demonstrate that for this setting it is possible to add a strongly con-
cave term to the reward function and induce a sequence of single-objective problems with different
weights. Closely related to our approach, Van Moffaert et al. (2013) learn a Pareto front of deter-
ministic policies by decomposing the problem into a sequence of single-objective problems using
the Chebyshev scalarisation function. However, their method has no theoretical guarantees and does
not extend to settings with continuous state or action spaces.

Finally, when learning a convex hull, which is appropriate for decision-makers with linear utility
functions, most techniques rely on the fact that the overall problem can be decomposed into single-
objective problems where the scalar reward is a convex combination of the original reward vector
(Yang et al., 2019; Alegre et al., 2023). The success of decomposition approaches in this setting,
as well as for obtaining a Pareto front in multi-objective optimisation (Zhang & Li, 2007) further
motivates their application to learning a Pareto front.

2 PRELIMINARIES

Pareto dominance. For two vectors v,v′ ∈ Rd we say that v Pareto dominates v′, denoted v≻v′,
when ∀j ∈ {1, . . . , d} : vj ≥ v′

j and vj > v′
j for at least one j. When dropping the strict

condition, we write v⪰v′. We say that v strictly Pareto dominates v′, denoted v > v′ when
∀j ∈ {1, . . . , d} : vj > v′

j . When a vector is not pairwise (strictly) Pareto dominated, we say it is
(strict) Pareto optimal. Finally, a vector is weakly Pareto optimal whenever there is no other vector
that strictly Pareto dominates it.

In multi-objective decision-making, Pareto optimal vectors are especially relevant when considering
decision-makers with monotonically increasing utility functions. In particular, if v≻v′, then v will
be preferred over v′ by all decision-makers. The set of all pairwise Pareto non-dominated vectors is
called the Pareto front, denoted V∗. An ε-Pareto front Vε is an approximate Pareto front such that
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∀v ∈ V∗,∃v′ ∈ Vε : ∥v − v′∥∞ ≤ ε. We refer to the least upper bound of the Pareto front as the
ideal vector vi, and the greatest lower bound as the nadir vector vn.

Achievement scalarising functions. Achievement scalarising functions (ASFs) are functions that
scalarise a multi-objective problem such that an optimal solution to the single-objective problem is
(weakly) Pareto optimal (Miettinen, 1998; Nikulin et al., 2012). Such functions are parameterised by
a reference point r, also called the referent, and the points dominating the referent are referred to as
the target region. We consider two distinct types of ASFs, known as the order representation case and
the order approximation case. Let sr be an order representing achievement scalarising function, then
for any reference point r, the function sr is strictly increasing, i.e. v > v′ =⇒ sr(v) > sr(v

′)
and only returns a non-negative value for a vector v when v⪰ r. On the other hand, the ASF is
order approximating when it is strongly increasing, i.e. v≻v′ =⇒ sr(v) > sr(v

′) but may
give non-negative value to solutions outside the target region. As an example, assume two vectors
v1 = (1, 2) and v2 = (1, 1) such that v1 Pareto dominates v2 (v1≻v2), but not strictly Pareto
dominates it. Hence, for a strictly increasing function sr, it is possible that sr(v1) = sr(v2), while
for a strongly increasing function sr, it is guaranteed that sr(v1) > sr(v2). An ASF cannot be
strongly increasing while also exclusively attributing non-negative values to vectors that are at least
equal to the reference point (Wierzbicki, 1982).

For a set X of feasible solutions, in the order representation case v∗ = argmaxv∈X sr(v) is guar-
anteed to be weakly Pareto optimal. Moreover, in the order approximating case v∗ is guaranteed
to be Pareto optimal. As such, ASFs come with the advantage that any (weakly) Pareto optimal
solution can be obtained by changing the reference point. One example of an ASF that is frequently
employed is the augmented Chebyshev scalarisation function (Nikulin et al., 2012; Van Moffaert
et al., 2013), which we also utilise in this work.

Problem setup. We consider sequential multi-objective decision-making problems, modelled as a
multi-objective Markov decision process (MOMDP). An MOMDP is a tuple M = (S,A, T,R, γ)
where S is the set of states, A the set of actions, T the transition function, R : S × A → Rd

the vectorial reward function with d ≥ 2 the number of objectives and γ the discount factor. In
single-objective RL, it is common to learn a policy that maximises expected return. In an MOMDP,
however, there is generally not a single policy that maximises the expected return for all objectives
(Hayes et al., 2022). As such, we introduce a partial ordering over policies on the basis of Pareto
dominance and say that a policy π ∈ Π Pareto dominates another if its expected return, defined
vπ := Eπ [

∑∞
t=0 γ

tR(st, at)], Pareto dominates the expected return of the other policy.

We aim to learn a Pareto front of memory-based deterministic policies in MOMDPs. Determinis-
tic policies are appropriate for safety-critical settings (Amani et al., 2021), where stochastic poli-
cies may have catastrophic outcomes but can Pareto dominate deterministic policies (Hayes et al.,
2022). Furthermore, for deterministic policies, it can be shown that memory-based policies may
Pareto dominate stationary policies (Roijers & Whiteson, 2017). Formally, we define a determin-
istic memory-based policy as a Mealy machine π = ⟨Q, πα, πµ, qI⟩ where Q is a set of memory
states, πα : S ×Q→ A a deterministic next action function, πµ : S ×Q×A×S → Q the memory
update function and qI the initial memory state. In this setting, it is known that the Pareto front may
be non-convex and thus cannot be fully recovered by methods based on linear scalarisation.

3 PARETO ORACLE

We introduce a novel concept, called a Pareto oracle, which allows us to obtain Pareto optimal
policies in a specified target region. Central to the design of IPRO, presented in Section 4, Pareto
oracles supplement a partial Pareto front by discovering new optimal solutions in unexplored regions
when possible. We relate Pareto oracles to achievement scalarising functions (Wierzbicki, 1982)
and demonstrate their design for our problem setting. Formal proofs of our theoretical results are
presented in Appendix A.

3.1 DEFINITION AND RELATION TO ASFS

We formally define two variants of a Pareto oracle. These oracles allow us to obtain non-dominated
policies in some target region, determined by a reference point r, with the difference between the
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variants defining the quality of the returned policy as well as their adherence to the target region. We
emphasise that our definitions are tailored to reinforcement learning scenarios, where the feasible
solution set consists of policies denoted as Π. However, these definitions can be readily adapted to
apply more broadly across any feasible solution set X .

We first introduce weak Pareto oracles which are guaranteed to return a weakly Pareto optimal
solution that complies exactly with the target region specified by a reference point.
Definition 3.1 (Weak Pareto Oracle). A weak Pareto Oracle O : Rd → Π maps a vector r to a
weakly Pareto optimal policy π, such that vπ ⪰ r when such a policy exists. Otherwise, an arbitrary
feasible policy π′ is returned.

The concept of a weak Pareto oracle is closely related to that of an order representing achievement
scalarising function (see Section 2). In particular, we can frame the evaluation of an oracle O with
referent r as the optimisation of an ASF over a set of allowed policies Π.
Theorem 3.1. Let sr be an order representing achievement scalarising function. Then O(r) =
argmaxπ∈Π sr(v

π) is a valid weak Pareto oracle.

While this result ensures that weakly optimal solutions can be obtained by proposing referents to an
order representing ASF, practical considerations may lead us to favour an order-approximating ASF,
which yields Pareto optimal solutions instead. The following definition introduces the concept of an
approximate Pareto oracle, for which we subsequently demonstrate that order-approximating ASFs
may be used.
Definition 3.2 (Approximate Pareto Oracle). An approximate Pareto Oracle Oε : Rd → Π with
error ε > 0 maps a vector r to a Pareto optimal policy π, such that vπ ⪰ r when a Pareto optimal
policy π′ exists for which vπ′ ⪰ r+ ε. Otherwise, an arbitrary feasible policy π′ is returned.

We stress that an approximate Pareto oracle is only guaranteed to return a Pareto optimal solution
when a solution exists which is at least equal to the referent shifted by some positive value. How-
ever, the returned solution itself does not necessarily dominate the shifted referent but is instead
guaranteed to be at least equal to the original referent. This relaxation allows for the possibility of
obtaining points in the entire target region, rather than only the restricted target region. Finally, in
Definitions 3.1 and 3.2 the relation between the expected returns and the referent is non-strict, i.e.
vπ ⪰ r. When the Pareto oracle instead guarantees that vπ > r, we say the oracle is boundary-free.
Theorem 3.2. Let sr be an order approximating achievement scalarising function and let l ∈ Rd

be a lower bound such that only referents r are selected when r⪰ l. Then there is an oracle error ε̄
such that when ε ≥ ε̄ > 0, Oε(r) = argmaxπ∈Π sr+ε(v

π) is a valid approximate Pareto oracle.
When ε > ε̄ the Pareto oracle is boundary-free as well.

To address the possibility of an order-approximating ASF obtaining a maximum outside the target
region, it is necessary to shift the referent upwards by (at least) a problem-specific ε̄. This ε̄ is
dependent on an approximation parameter in the ASF, which governs the inclusion of additional
points. One potential drawback of Theorem 3.2 then lies in the difficulty of establishing this lower
bound. A more practical alternative is to utilise an order-approximating ASF while still optimising
for argmaxvπ∈Π sr(v

π), as is the case in the weak Pareto oracle. As we demonstrate in Section 5,
this strategy proves effective in learning a Pareto front.

To illustrate the difference between a weak and approximate Pareto oracle, we show a possible eval-
uation of both oracles with a specific referent in Fig. 1. We emphasise that one can devise Pareto
oracles that operate independently of ASFs and therefore treat them as a black box in our theoret-
ical analysis in Section 4. We demonstrate this in Appendix A, where we introduce an alternative
approach for implementing approximate Pareto oracles making use of constrained MDPs.

3.2 DESIGNING A PARETO ORACLE

To design both weak and approximate Pareto oracles, we utilise the well-known augmented Cheby-
shev scalarisation function defined below (Nikulin et al., 2012).

sr(v) = min
j∈{1,...,d}

λj(vj − rj) + ρ

d∑
j=1

λj(vj − rj) (1)
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(a) A weak Pareto oracle. (b) An approximate Pareto oracle.

Figure 1: A bi-objective problem where a referent r is presented to a Pareto oracle. Solutions
inside the target region are in black, while solutions outside the target region are grey. (a) The weak
Pareto oracle returns v4, which is in the target region but is only weakly Pareto optimal as it is still
dominated by v5. (b) The approximate Pareto oracle returns a Pareto optimal solution v5, but may
fail to find v3, highlighted in blue.

In this function, λ > 0 is a weight vector for the different objectives and ρ is an additional parameter
which determines the strength of the augmentation term. We set λ = (vi − r)−1 which normalises
the improvement of a vector v relative to the referent r by the theoretical maximum improvement at
the ideal vi. The purpose of this normalisation is to maintain a balanced scale across all objectives,
preventing the dominance of one objective over another.

An important property of this function is that it is concave, which can be verified by noting that a
pointwise minimum of affine functions is concave and that adding the augmentation term preserves
concavity. Furthermore, it may serve as a boundary-free weak Pareto oracle, or approximate Pareto
oracle, depending on the augmentation parameter ρ. Intuitively, when ρ = 0 the augmentation term
is cancelled and the minimum ensures that only vectors in the target region have non-negative values.
However, optimising a minimum may result in only weakly Pareto optimal solutions (e.g. (1, 2) and
(1, 1) share the same minimum). For ρ > 0, the optimal solution will be Pareto optimal (the sum of
(1, 2) is greater than that of (1, 1)) but may exceed the target region. Due to its versatility, we use
Eq. (1) as the ASF in our experimental evaluation.

3.2.1 DETERMINISTIC MEMORY-BASED POLICIES

When deterministic policies are necessary for safety or interpretability reasons, it is known that
memory-based policies may outperform stationary ones (Roijers & Whiteson, 2017). Intuitively,
this is due to the optimal next action not only depending on the current state but also on what has
occurred previously. Such memory-based policies are not only relevant in MOMDPs, but also in
other related models such as partially observable MDPs.

A common encoding of the memory in MORL is to use the accrued reward at timestep t defined
as R−

t =
∑t−1

k=0 γ
krk (Hayes et al., 2022). As such, the internal memory update accumulates

the observed (discounted) reward, while the policy selects an action based on the current state and
accrued reward. In our practical implementation, the memory is added to the observation at each
timestep. Since for this policy class, there are no established theoretical results similar to those
available for stochastic stationary policies, we propose three modifications of single-objective RL
algorithms that have been shown to be effective in practice.

DQN. We extend the GGF-DQN algorithm, which optimises for the generalised Gini welfare of the
expected returns (Siddique et al., 2020), to optimise any given scalarisation function f . We note that
GGF-DQN is itself an extension of DQN (Mnih et al., 2015). Concretely, we train a Q-network such
that Q(st, at) = r+ γQ(st+1, a

∗) where the optimal action a∗ is computed using both the accrued
reward as well as the scalarisation function,

a∗ = argmax
a∈A

f
(
R−

t+1 + γQ (st+1, a)
)
. (2)

Policy gradient. We modify two well-known policy gradient algorithms, A2C (Mnih et al., 2016)
and PPO (Schulman et al., 2017), to optimise J(π) = f(vπ), where f is a scalarisation function and
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π a parameterised policy with parameters θ. For differentiable f , we can derive the policy gradient
as follows (Reymond et al., 2023),

∇θJ(π) = f ′(vπ) · ∇θv
π(s0). (3)

This gradient update computes the regular single-objective gradient for all objectives and takes the
dot product with the gradient of the scalarisation function with respect to the expected returns.

Rather than learning a policy with the vanilla policy gradient, we propose to use either the A2C or
PPO update per objective instead. For A2C, we use generalised advantage estimation (Schulman
et al., 2018) as a baseline, while for PPO we substitute the policy gradient with a clipped surrogate
objective function. To ensure that the resulting policy is deterministic, we take actions according to
argmaxa∈A π(a|s) during policy evaluation. Although this potentially leads to significant changes
in the policy, effectively employing a policy that differs from the one initially learned, empirical ob-
servations suggest that these algorithms typically converge toward deterministic policies in practice.

4 ITERATED PARETO REFERENT OPTIMISATION

We introduce Iterated Pareto Referent Optimisation (IPRO) to provably learn a Pareto front in
MOMDPs through a decomposition-based approach. IPRO iteratively queries a Pareto oracle and
uses the returned solution to gradually reduce the search space. We prove an upper bound on the
maximum distance between the solutions found by IPRO and the true Pareto front and guarantee
its convergence to a Pareto front. Detailed pseudocode for IPRO can be found in Algorithm 1. We
highlight that while IPRO is introduced within the reinforcement learning context, it does not im-
pose specific assumptions about the underlying problem. In fact, it only requires a problem-specific
Pareto oracle, indicating its potential for broader application.

Algorithm 1 The IPRO algorithm.

Input: A boundary-free Pareto oracle O and a tolerance τ
Output: A τ -Pareto front V

1: Estimate the nadir vn and ideal vi to establish a bounding box B
2: V ← {v1, · · · ,vd}
3: C ← ∅
4: D− ← {v ∈ B | ∃v′ ∈ V,v′⪰v} ▷ Dominated set (see Appendix B.1)
5: D+ ← {v ∈ B | ∃v′ ∈ V ∪ C,v⪰v′} ▷ Dominating set
6: Define L and U to track lower and upper bounds of the Pareto front (see Appendix B.1)
7: while maxu∈U minv′∈V ∥u− v′∥∞ > τ do
8: l← argmaxl∈L h(l) ▷ Heuristic h for referent selection (see Appendix B.2)
9: v← O(l)

10: if v > l then
11: V ← V ∪ {v}
12: else
13: C ← C ∪ {l}
14: Update D−, D+, L and U ▷ Described in Appendix B.1

4.1 OVERVIEW

The execution of IPRO unfolds in two main phases, each serving a specific purpose in the algorithm’s
operation. We provide an overview of these phases below.

Initialisation and bounding. In the initial phase, it is necessary to bound the space in which Pareto
non-dominated solutions may exist. By definition of the nadir vn and ideal vi vectors, the box
B defined by

∏d
j=1[v

n
j ,v

i
j ] contains all such points, possibly with Pareto optimal vectors on its

boundary. Obtaining the ideal (resp. nadir) is possible by maximising (resp. minimising) each
objective independently, effectively reducing the MOMDP to a regular MDP that can be solved with
conventional methods. Additionally, we subtract a small positive value from the nadir to ensure all
potentially Pareto optimal solutions strictly dominate it, implying that they can be retrieved by a
boundary-free Pareto oracle.
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Main loop. In the main loop of IPRO, we iteratively select reference points to present to the Pareto
oracle and use the return value to trim sections from the search space. This process continues
until the maximum approximation error falls below the user-provided threshold. We determine this
maximum approximation error by computing the maximum distance from the points in the upper
set U to their closest point on the learned Pareto front V . Informally, the upper set U contains the
inner corners of the dominating set D+ that dominates the learned Pareto front. By the definition of
a Pareto oracle, we know that the interior of D+ is guaranteed to be infeasible, therefore making the
corners on the boundary of D+ the maximal points which may still exist.

In each iteration, a reference point l is selected from the set of lower points L. Analogous to the upper
set U , the lower set L contains the inner corners of the space dominated by the current Pareto front,
denoted as D−. Moreover, every undiscovered point on the Pareto front must strictly dominate at
least one lower point, thus implying that we may use these points as referents for the Pareto oracle. If
the Pareto oracle finds a solution strictly dominating the referent l, this solution is added to the Pareto
front. Otherwise, the referent is added to the set of completed points C. Finally, the dominated and
dominating sets as well as the lower and upper sets are updated accordingly.

We illustrate the execution of IPRO with different resulting vectors from the Pareto oracle in Fig. 2.
While in this illustration all unexplored sections are contained in isolated rectangles, this is a special
property when d = 2. Moreover, for this special case we can make simplifications, which we detail
in Section 4.3. When d > 2, however, this property does not hold and therefore necessitates more
careful updates of the lower and upper sets and potentially costly referent selection. For an extended
discussion of IPRO we refer to Appendix B.

(a) (b) (c)

Figure 2: (a) The bounding box B, delineated with solid lines, is defined by the nadir vn and ideal
vi and contains all Pareto optimal solutions. At timestep t, the dominated set D−

t and dominating
set D+

t are defined by the approximate Pareto front Vt = {v1,v2,v3} and are shaded. The points
in the lower set L are highlighted in green, while the points in the upper set U are highlighted in
blue. (b) After querying the Pareto oracle with l2, v4 is added to the Pareto front and the set of lower
points L and upper points U are updated to represent the new corners of D− and D+ respectively.
(c) When a Pareto oracle cannot find a feasible solution strictly dominating l4, it is added to the
completed set C and the shaded orange area is added to D+.

4.2 CONVERGENCE AND GUARANTEES

The core idea behind IPRO revolves around the systematic reduction of remaining volume within
the bounding box, achieved through iterative queries to a Pareto oracle. Here, we present theoretical
results proving that IPRO converges to an (approximate) Pareto front, as well as demonstrate an
upper bound on the maximum approximation error at every timestep. Formal proofs for our results
can be found in Appendix C.

Upper bounding the error. Let the true approximation error ε∗t to the Pareto front V∗ at timestep t
be defined as maxv∗∈V∗\Vt

minv∈Vt
∥v∗−v∥∞. Since the upper set U contains the maximal points

which may still be in the Pareto front, we can search for the point having the largest l∞ distance
from the current Pareto front Vt, resulting in an upper bound on the true approximation error. Note
that when using an approximate Pareto oracle Oε and user-provided tolerance τ , we assume that
τ ≥ ε as the overall approximation error is lower bounded by the oracle error ε.
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Theorem 4.1. Let V∗ be the true Pareto front, Vt the approximate Pareto front obtained by IPRO
and ε∗t the true approximation error at timestep t. Then the following inequality holds,

max
u∈Ut

min
v∈Vt

∥u− v∥∞ ≥ ε∗t . (4)

One can verify this result in Fig. 2b where U = {u1,u3,u4} contains the maximal points which
may still be in the Pareto front. Note that while ε-Pareto fronts are commonly computed with regards
to the l∞ norm, the guarantee can be extended more generally to any p-norm.

Convergence to a Pareto front. As IPRO progresses, the sequence of errors generated by Theo-
rem 4.1 can be shown to be monotonically decreasing and converges to zero. Intuitively, this can
be observed in Fig. 2b where the retrieval of a new Pareto optimal point reduces the distance to the
points in the upper set. Additionally, the closure of a section, illustrated in Fig. 2c, results in the
removal of the upper point which subsequently reduces the remaining search space. Since IPRO
terminates when the true approximation error is guaranteed to be at most equal to the tolerance τ ,
this results in a τ -Pareto front.
Theorem 4.2. Given a boundary-free weak (resp. approximate) Pareto oracle and tolerance τ ≥ 0
(resp. τ > 0), IPRO converges to a τ -Pareto front.

While the result concerning weak Pareto oracles might initially appear stronger due to the possibility
of setting the tolerance to zero, it is important to note that such oracles guarantee only weakly
Pareto optimal solutions for each query, potentially making them less appealing in practice. Finally,
we contribute a guarantee that IPRO finishes in a finite number of iterations when the tolerance is
strictly positive, which is especially useful in practical applications.
Corollary 4.2.1. Given a tolerance τ > 0, IPRO finishes in a finite number of iterations using a
boundary-free weak or approximate Pareto oracle.

4.3 IPRO-2D: A SPECIALISED VERSION FOR BI-OBJECTIVE PROBLEMS

While IPRO is applicable to problems with d ≥ 2 objectives, updating the lower and upper sets
as well as selecting a new referent may be costly. Therefore, we introduce a dedicated variant, for
bi-objective problems (d = 2), IPRO-2D, where substantial simplifications are possible.

As shown in Fig. 2, all remaining sections within the bounding box B manifest as isolated rectangles,
with each lower and upper point precisely defining one such rectangle. When a new Pareto optimal
solution is found, updating the lower and upper sets can be done by adding at most two new points
for both sets, each on one side of the adjusted boundary. Moreover, calculating the volume of
each rectangle is straightforward, making it possible to construct a priority queue that prioritises
the processing of larger rectangles to ensure a rapid decrease in the upper bound of the error. The
maximum error can be computed by taking the rectangle with the maximum distance between its
lower and upper point, rather than performing the full max-min operation in Eq. (4).

As a final adjustment, we modify the weighting for the augmented Chebyshev scalarisation function
used in the Pareto oracle. Rather than weighting a vector v by the distance between the referent
l ∈ L, and the ideal vi, we normalise the ASF according to the distance between the lower and
upper points that make up the isolated rectangle.

5 EXPERIMENTS

We assess IPRO and IPRO-2D on three standard benchmark environments (Alegre et al., 2022)
and employ the modified versions of DQN, A2C, and PPO proposed in Section 3.2.1 as Pareto
oracles to optimise the augmented Chebyshev scalarisation function in Eq. (1). Experiments are
repeated across five seeds. We record the hypervolume in each iteration and estimate the search
space coverage by combining the volumes from the dominated and dominating sets and dividing by
the bounding box volume. All experimental details can be found in Appendix D and code will be
made publicly available upon acceptance.

Deep Sea Treasure (d = 2). Deep Sea Treasure (DST) is a benchmark with deterministic dynamics
and a discrete state space where a submarine seeks treasure while minimising fuel consumption. In

8
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Figure 3: The hypervolume and coverage results for IPRO. The shaded area around each curve
indicates the 95-percentile interval. Note that the x-axis is on a log scale.

DST, the true Pareto front is known and includes optimal solutions in concave regions (Vamplew
et al., 2011), making it impossible for convex hull algorithms to recover all Pareto optimal solutions.
When pairing IPRO-2D with any of the three Pareto oracles, the obtained hypervolume closely
approximates that of the true Pareto front (Fig. 3a) and its coverage (Fig. 3d) rapidly approaches
one, indicating a complete overview of the search space.

Minecart (d = 3). Minecart is a stochastic environment with a continuous state space where the
agent collects two ore types while minimising fuel consumption (Abels et al., 2019). Since the
true Pareto front is unknown, we calculate the mean hypervolume using the five best seeds for
two baseline methods, PCN and GPI-LS, from the MORL-Baselines project (Felten et al., 2023).
PCN learns deterministic Pareto optimal policies (Reymond et al., 2022), while GPI-LS learns a
convex hull (Alegre et al., 2023). We find that IPRO achieves a higher hypervolume than PCN
and is competitive with GPI-LS with all Pareto oracles. This outcome is particularly promising
given that GPI-LS leverages the knowledge of the convex nature of the Pareto front in the Minecart
environment, which is not a necessary assumption in IPRO. We highlight that in Fig. 3e, coverage
may decrease in certain iterations. In theory, the sequence of coverages is monotonically increasing.
However, due to a backtracking method added on top of IPRO to improve robustness, coverage may
temporarily drop in practice (see Appendix B.3).

MO-Reacher (d = 4). MO-Reacher is a deterministic environment featuring a continuous state
space with four balls arranged in a circle, with the goal of minimising the distance to each ball.
Here, the true Pareto front is unknown, only leaving the baselines for comparison. We find that
IPRO is competitive to PCN, even surpassing it when paired with the policy gradient algorithms, but
a performance gap remains when compared to GPI-LS. It is worth noting that GPI-LS employs iter-
ative fine-tuning of prior policies, while IPRO constructs a new Pareto optimal policy from scratch
in each iteration. We hypothesise that a similar addition can be made to IPRO and consider this a
promising direction for future work.

6 CONCLUSION

We introduce IPRO, an algorithm that provably learns a Pareto front in MOMDPs by iteratively
proposing referents to a Pareto oracle and using the returned solution to trim sections from the
search space. We formally define such Pareto oracles and present their implementation for different
policy classes. We show that IPRO converges to a Pareto front and comes with strong guarantees
with respect to the approximation error. Our empirical analysis of IPRO finds that it converges close
to the true Pareto front and does so for a variety of Pareto oracles. For future work, we plan to apply
IPRO to problems beyond MORL and explore alternative Pareto oracle implementations.
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7 REPRODUCIBILITY STATEMENT

For the theoretical results presented in this work, we offer formal proofs, accompanying definitions,
and necessary assumptions within their respective sections of the appendix. Specifically, the results
pertaining to Pareto oracles are presented in Appendix A, while the results for IPRO are elaborated
upon in Appendix C. To facilitate the practical implementation of IPRO, we provide an expanded
discussion in Appendix B covering both the pseudocode of the theoretical algorithm as well as
further improvements to ensure robustness. Moreover, we share an anonymised implementation
of IPRO, IPRO-2D and all of our proposed Pareto oracles, and commit to releasing the final code
publicly upon acceptance. Lastly, a detailed account of the experimental evaluation of IPRO is
provided in Appendix D which also encompasses all hyperparameter values used to reproduce the
results when using our implementations of the algorithms.

REFERENCES

Axel Abels, Diederik M. Roijers, Tom Lenaerts, Ann Nowé, and Denis Steckelmacher. Dynamic
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Restelli, Peter Vamplew, and Diederik M. Roijers. A practical guide to multi-objective reinforce-
ment learning and planning. Autonomous Agents and Multi-Agent Systems, 36(1):26, April 2022.
ISSN 1573-7454. doi: 10.1007/s10458-022-09552-y.

10



Under review as a conference paper at ICLR 2024

Haoye Lu, Daniel Herman, and Yaoliang Yu. Multi-objective reinforcement learning: Convexity,
stationarity and pareto optimality. In The Eleventh International Conference on Learning Repre-
sentations, 2023.

Kaisa Miettinen. A posteriori methods. In Nonlinear Multiobjective Optimization, pp. 77–113.
Springer US, Boston, MA, 1998. ISBN 978-1-4615-5563-6. doi: 10.1007/978-1-4615-5563-6 4.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015. doi: 10.1038/nature14236.

Volodymyr Mnih, Adria Puigdomenech Badia, Lehdi Mirza, Alex Graves, Tim Harley, Timothy P.
Lillicrap, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In Maria Florina Balcan and Kilian Q Weinberger (eds.), 33rd International Confer-
ence on Machine Learning, ICML 2016, volume 4, pp. 2850–2869, New York, New York, USA,
September 2016. PMLR. ISBN 978-1-5108-2900-8.

Yury Nikulin, Kaisa Miettinen, and Marko M. Mäkelä. A new achievement scalarizing function
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ceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems,
AAMAS ’22, pp. 1110–1118, Richland, SC, 2022. International Foundation for Autonomous
Agents and Multiagent Systems. ISBN 978-1-4503-9213-6.

Mathieu Reymond, Conor F. Hayes, Denis Steckelmacher, Diederik M. Roijers, and Ann Nowé.
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A THEORETICAL RESULTS FOR PARETO ORACLES

We present formal proofs for the theoretical results in Section 3. These results develop the concept
of a Pareto oracle and relate it to achievement scalarising functions. While we utilise Pareto oracles
as a subroutine in IPRO to provably obtain a Pareto front, they may also be of independent interest
in other settings. As an additional contribution, we relate Pareto oracles to constrained MDPs, thus
demonstrating their applicability beyond the ASFs considered in this work.

A.1 DESIGNING A PARETO ORACLE

In Section 3.1 we defined Pareto oracles and subsequently related them to achievement scalarising
functions. Here, we provide formal proof of the established connections. To establish the notation,
let X be the set of feasible solutions and define a mapping f : X → Rd which maps a solution to its
d-dimensional return. Let us further define the Euclidean distance function between a point v ∈ Rd

and a set S ⊆ Rd as dist(v, S) = infs∈S ∥v − s∥. Finally, let Rd
δ = {v ∈ Rd | dist(v,Rd

≥0) ≤
δ∥v∥}, where δ is a fixed scalar in [0, 1). Using this notation, we define both order representing and
order approximating ASFs following the formalisation by Miettinen (1998).

Definition A.1. We say an ASF sr : Rd → R is order representing when ∀r ∈ Rd,∀x, y ∈ X with
f(x) = x and f(y) = y, sr is strictly increasing such that x > y =⇒ sr(x) > sr(y). In addition,
sr(r) = 0 and

{v ∈ Rd | sr(v) ≥ 0} = r+ Rd
≥0. (5)

Definition A.2. We say an ASF sr : Rd → R is order approximating when ∀r ∈ Rd,∀x, y ∈ X
with f(x) = x and f(y) = y, sr is strongly increasing such that x≻y =⇒ sr(x) > sr(y). In
addition, sr(r) = 0 and with δ > δ̄ ≥ 0

r+ Rd
δ̄ ⊂ {v ∈ Rd | sr(v) ≥ 0} ⊂ r+ Rd

δ . (6)

These definitions can be applied to the reinforcement learning setting where the set of feasible
solutions is a policy class Π and the quality of a policy π ∈ Π is determined by its expected return
vπ . Using these definitions, we provide a formal proof for Theorem 3.1 which we first restate below.

Theorem 3.1. Let sr be an order representing achievement scalarising function. Then O(r) =
argmaxπ∈Π sr(v

π) is a valid weak Pareto oracle.

Proof. Let sr be an order representing achievement scalarising function and define a Pareto oracle
O : Rd → Π such that, O(r) = argmaxπ∈Π sr(v

π) = π∗. Denote the expected return of π∗ as v∗.
We first consider the case when v∗ ⪰̸ r. By Eq. (5) this implies that sr(v∗) < 0. This guarantees
that no feasible weakly Pareto optimal policy π′ exists with expected return v’ such that v’⪰ r, as
otherwise sr(v’) ≥ 0 > sr(v

∗) and thus π∗ would not have been returned as the maximum.

We now consider the case when v∗⪰ r. Then π∗ is guaranteed to be weakly Pareto optimal. By
contradiction, if π∗ is not weakly Pareto optimal, another policy π′ exists such that v’ > v∗. How-
ever, this would imply that sr(v’) > sr(v

∗) and thus π∗ would not have been returned as the
maximum.

We provide a similar result using order-approximating ASFs instead. While such ASFs enable the
Pareto oracle to return Pareto optimal solutions rather than only weakly optimal solutions, the quality
of the oracle with respect to the target region becomes dependent on the approximation parameter
δ of the ASF. The core idea in the proof of Theorem 3.2 is that we can define a lower bound on the
shift necessary to ensure only feasible solutions in the target region have a non-negative value. When
feasible solutions exist in the shifted target region, we can then conclude by the strongly increasing
property of the ASF that the maximum is Pareto optimal.

Theorem 3.2. Let sr be an order approximating achievement scalarising function and let l ∈ Rd

be a lower bound such that only referents r are selected when r⪰ l. Then there is an oracle error ε̄
such that when ε ≥ ε̄ > 0, Oε(r) = argmaxπ∈Π sr+ε(v

π) is a valid approximate Pareto oracle.
When ε > ε̄ the Pareto oracle is boundary-free as well.
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Proof. Let l be the lower bound for all referents r. We define ε̄ to be the minimal shift such that all
feasible solutions with non-negative values for an order-approximating ASF sl+ε̄ with the shifted
referent l + ε̄ are inside the box B(l,vi) defined by the lower bound and ideal. The lower bound
on ε̄ is clearly zero which implies that no shift is necessary. We now define an upper bound for this
shift which ensures that no feasible solution has a non-negative value except potentially l itself.

Recall the definition of Rd
δ = {v ∈ Rd | dist(v,Rd

≥0) ≤ δ∥v∥}, where δ is a fixed scalar in [0, 1).
We refer to l+Rd

δ as the extended target region. Suppose there exists a point in this extended target
region v ∈ l+ Rd

δ such that l≻v. This implies we can write v = l+ x, where x is a non-positive
vector. However, this then further implies that, dist(x,Rd

≥0) = infs∈Rd
≥0
∥x − s∥ = ∥x∥ as 0 is

the closest point in Rd
≥0 for a non-positive vector. However, for δ ∈ [0, 1) it cannot be true that

∥x∥ ≤ δ∥x∥. Therefore, there exists no point in l+Rd
δ that is dominated by l. As such, for all points

v in the extended target region that are not equal to l, there must be a dimension j ∈ {1, . . . , d} such
that vj > lj . Consider now the shift imposed by the l∞ distance between the lower point l and ideal
vi. This ensures that all points in the extended target region except l are strictly above the ideal in at
least one dimension, further implying that they are infeasible by the definition of the ideal. As such,
∥vi − l∥∞ is an upper bound for ε̄.

Let us now formally define ε̄ for an order approximating ASF with approximation constant δ,

ε̄ = inf
{
0 < ε ≤ ∥vi − l∥∞ |

(
l+ ε+ Rd

δ

)
∩ {v ∈ Rd | vi⪰v} ⊆ B(l,vi)

}
. (7)

In Fig. 4 we illustrate that this shift ensures all feasible solutions with non-negative values are inside
the box. Observe, however, that by the nature of this shift, it can also ensure that some feasible
solutions in the bounding box are excluded from the non-negative set.

(a) (b)

Figure 4: (a) A possible non-negative set (shaded) for an order-approximating ASF with referent l.
(b) Shifting l by ε̄ ensures that all feasible solutions with non-negative values are in the box B(l,vi).

Let us now show that the Pareto oracle Oε(r) = argmaxπ∈Π sr+ε(v
π) with ε ≥ ε̄ functions as

required for the referent l. Assume there exists a Pareto optimal optimal π′ with expected return v’
such that v’⪰ l + ε. Then sl+ε(v’) ≥ 0 and therefore the maximisation will return a non-negative
solution π∗ with expected returns v∗. By the definition of ε̄ we know that all feasible solutions
π with non-negative value sl+ε(v

π) satisfy the condition vπ ⪰ l and therefore v∗⪰ l. Moreover,
as the ASF is guaranteed to be strongly increasing, there exists no policy π such that vπ ≻v∗ and
therefore π∗ is Pareto optimal.

Given the lower bound l, for all referents r such that r⪰ l and with ε ≥ ε̄, the Pareto oracle remains
valid. To see this, observe that r = l+ x where x is now a non-negative vector. Then,(

l+ ε+ Rd
δ

)
∩ {v ∈ Rd | vi⪰v} ⊆ B(l,vi)

=⇒
(
l+ ε+ Rd

δ

)
∩ {v ∈ Rd | vi − x⪰v} ⊆ B(l,vi − x).

(8)

This implication can be shown by contradiction. Assume that,

∃v ∈
(
l+ ε+ Rd

δ

)
∩ {v ∈ Rd | vi − x⪰v} and v /∈ B(l,vi − x). (9)
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However, by definition of v, vi − x⪰v and

v ∈
(
l+ ε+ Rd

δ

)
∩ {v ∈ Rd | vi − x⪰v}

=⇒ v ∈
(
l+ ε+ Rd

δ

)
∩ {v ∈ Rd | vi⪰v}

=⇒ v ∈ B(l,vi)

=⇒ v⪰ l.

As v⪰ l and vi − x⪰v this implies v ∈ B(l,vi − x), which is a contradiction. Therefore(
l+ ε+ Rd

δ

)
∩ {v ∈ Rd | vi − x⪰v} ⊆ B(l,vi − x). By a rigid transformation and recall-

ing that r = l+ x, we obtain,(
r+ ε+ Rd

δ

)
∩ {v ∈ Rd | vi⪰v} ⊆ B(r,vi). (10)

We can subsequently apply the same reasoning to establish the validity of the Pareto oracle for the
lower bound l to all dominating referents r.

Finally, for ε > ε̄ the approximate Pareto oracle becomes boundary-free as a consequence of ε̄ being
the infimum ensuring that all feasible solutions have non-negative values.

A.2 DESIGNING A PARETO ORACLE

We formalise the design of Pareto oracles. Firstly, we show that the augmented Chebyshev scalar-
isation function in Eq. (1) can be used as a weak and approximate Pareto oracle. In addition, we
demonstrate that this scalarisation function can also be used to derive theoretically sound Pareto or-
acles for the class of stochastic stationary policies. Finally, we demonstrate that Pareto oracles need
not be designed using an ASF and contribute an alternative approach using constrained MDPs.

A.2.1 AUGMENTED CHEBYSHEV SCALARISATION FUNCTION

We show that the augmented Chebyshev scalarisation function we employ in our work is a boundary-
free weak Pareto oracle or approximate Pareto oracle depending on the augmentation parameter ρ.
The boundary-free property in particular is useful as this allows us to “complete” sections of the
search space in IPRO when the Pareto oracle does not retrieve a solution in the target region. For
clarity, we first restate the scalarisation function below.

sr(v) = min
j∈{1,...,d}

λj(vj − rj) + ρ

d∑
j=1

λj(vj − rj)

Corollary A.0.1. Equation (1) can be used to construct a valid boundary-free weak Pareto oracle
when ρ = 0 and an approximate Pareto oracle when ρ > 0.

Proof. When ρ = 0, Eq. (1) reduces to sr(v) = minj∈{1,...,d} λj(vj − rj), which is a well-known
order-represeting ASF (Miettinen, 1998). Moreover, when v is on the boundary, sr(v) = 0 as there
exists an index j ∈ {1, . . . , d} for which vj = rj . This guarantees that v > r implies sr(v) > 0
and therefore the weak Pareto oracle is boundary-free as well. Finally, when ρ > 0, it is again a
well-known fact that the resulting ASF is order-approximating (Miettinen, 1998).

A.2.2 STOCHASTIC STATIONARY POLICIES

To design a Pareto oracle for stochastic stationary policies π : S → ∆(A), we consider the aug-
mented Chebyshev scalarisation function in Eq. (1) again. Rather than maximising sr directly, we
can instead compute an optimal state-action occupancy measure dπ induced by the policy π over
a set of admissible state-action occupancies K (Zahavy et al., 2021). By the concavity of sr this
results in a convex MDP, shown below.

argmax
dπ∈K

sr

(∑
s,a

r(s, a)dπ(s, a)

)
(11)

The benefit of this reformulation is that it can be solved using a variety of techniques that come with
strong theoretical guarantees. For instance, Zhang et al. (2020) propose a policy gradient method that
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converges to the global optimum. Moreover, Zahavy et al. (2021) introduce a meta-algorithm using
standard RL algorithms that converges to the optimal solution with any tolerance, given reasonably
low-regret algorithms. Finally, it can be shown that, for any convex MDP, a mean-field game can
be constructed such that a Nash equilibrium in the game is an optimum in the convex MDP (Geist
et al., 2022). While we do not focus on this policy class in our experimental evaluation, these results
indicate the potential for designing a Pareto oracle tailored to stochastic stationary policies.

A.2.3 CONSTRAINED MDPS

To accompany our results relating ASFs and Pareto oracles, we provide an additional contribution
which sheds light on the versatility of these oracles. Concretely, we demonstrate that a Pareto
oracle can be implemented using constrained MDPs which may again be solved with conventional
techniques. This further validates the usage of abstract Pareto oracles in the theoretical results for
IPRO, rather than relying on achievement scalarising functions directly.

A constrained Markov decision process (Achiam et al., 2017) is an MDP, augmented with a set C of
m auxiliary cost functions Cj : S×A×S → R and related limit cj . Let JCj (π) denote the expected
discounted return of policy π for the auxiliary cost function Cj . The set of feasible policies from
a given class of policies Π is then ΠC = {π ∈ Π | ∀i, JCj (π) ≥ cj}. Finally, the reinforcement
learning problem in a CMDP is as follows,

π∗ = argmax
π∈ΠC

vπ. (12)

We demonstrate that an approximate Pareto oracle can be implemented using a constrained MDP,
where the constraints ensure that the target region is respected and the scalar reward function is
designed such that only Pareto optimal policies are returned as the optimal solution. Moreover, as
constrained MDPs consider only policies in the shifted target region, the resulting Pareto oracle is
immediately boundary-free with respect to the original target region.
Theorem A.1. Let M = (S,A, T,R, γ) be an MOMDP with d objectives. For a given oracle
error ε > 0 and referent r, we define a constrained MDP with the same states, actions, transition
function and discount factor as M . Furthermore, the set of auxiliary cost functions corresponds
to the original reward vector R with limits r + ε and the scalar reward function is the sum of
the original reward vector. Then Oε(r) = argmaxπ∈ΠC

vπ is a valid boundary-free approximate
Pareto oracle.

Proof. Assume the construction outlined in the theorem and that there exists a Pareto optimal policy
π such that vπ ⪰ r + ε. Then ΠC is non-empty and the Pareto oracle Oε(r) = argmaxπ∈ΠC

vπ

returns a Pareto optimal policy π∗ with expected return v∗ such that v∗≻ r. If π∗ is not Pareto
optimal, there exists a policy π′ with expected return v’ such that v’≻v∗. This then implies that,∑

j∈{1,...,d}

v′j >
∑

j∈{1,...,d}

v∗j (13)

which leads to a contradiction. Furthermore, by definition of a constrained MDP the solution is in
the target region and boundary-free for ε > 0.

B ADDITIONAL DISCUSSION OF IPRO

We offer a more in-depth analysis of our algorithm, Iterated Pareto Referent Optimisation (IPRO).
This extended discussion includes additional pseudocode for IPRO and a breakdown of its imple-
mentation. Additionally, we delve into the topic of referent selection throughout the execution of
IPRO and examine alterations to the theoretical algorithm that ensure IPRO’s practical applicability
when paired with imprecise Pareto oracles.

B.1 IMPLEMENTATION OF IPRO

IPRO follows an inner-outer loop structure. During its execution, IPRO tracks the current Pareto
front and excluded sections and iteratively proposes referents to a Pareto oracle. Finally, the ob-
tained Pareto front is pruned to eliminate dominated solutions. We show detailed pseudocode in
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Algorithm 1. To simplify the notation, we denote the input to IPRO as an oracle O and tolerance
τ but note that it may also be an approximate Pareto oracle Oε with τ ≥ ε and assume O returns
the multi-objective returns of the solution directly, rather than the solution itself. Following Theo-
rem 3.2, we further assume the oracle error ε to be greater than the lower bound error ε̄ when using
an order approximating ASF and where this lower bound is computed with respect to the nadir vn.

Tracking the dominated and dominating set. In the context of IPRO, it is essential to keep track
of the dominated set D− and dominating set D+. These sets encompass points excluded from
further consideration, either because they are dominated by a point on the Pareto front or because
they strictly dominate a point on the front. In the latter case, the definition of both a weak and
approximate Pareto oracle guarantees that no feasible policy exists to attain this result; otherwise, it
would have been returned instead of the point it strictly dominates.

Rather than explicitly monitoring these sets, we maintain the points on the Pareto front V and the
completed set C. From these sets, we can compute the hypervolume covered by D− and D+ which
provides an estimate of the overall coverage achieved by IPRO.

Tracking the lower and upper set. An important concept in IPRO is the notion of the lower and
upper set. Informally, the lower set contains a strict lower bound for all Pareto optimal points not
yet discovered, while the upper set contains a (possibly non-strict) upper bound on these remaining
solutions. Visually, the lower set contains the inner corners of the dominated set, while the upper set
contains the inner corners of the dominating set. We formally demonstrate in Appendix C that this
indeed results in the required lower and upper bounds.

The lower and upper sets play a crucial role in deriving both our convergence guarantee and runtime
guarantee on the largest distance to remaining Pareto optimal solutions. Consequently, tracking
these sets is of paramount importance. After the initialisation phase, the lower set encompasses the
nadir, while the upper set contains the ideal. We now explain in detail how the lower set is tracked
and note that a similar update can be defined for the upper set.

After initialisation, upon introducing a new point v∗ to the Pareto front, we examine the lower set
to identify points that have become strictly dominated by it. If l is such a dominated point, it is
replicated d times, each time adjusting one dimension of the vector to align with the boundary of the
newly added point v∗. We note that this approach may generate points within the dominated set D−.
Therefore, we perform a final pruning step to eliminate points not on the boundary. Pseudocode for
updating the lower set is provided in Algorithm 2.

Algorithm 2 Computing the lower set.

Input: A bounding box B, previous lower set Lt−1 and new point v∗

Output: A lower set Lt

1: Lt ← {}
2: for l ∈ Lt−1 do
3: if v∗ > l then
4: for j ∈ [d] do
5: l′ ← l
6: l′j ← v∗

j

7: Lt ← Lt ∪ {l′}
8: else
9: Lt ← Lt ∪ {l}

10: Lt ← PRUNE(Lt)

Postprocessing. While IPRO inherently requires no postprocessing, there exists a possibility that
weakly Pareto optimal points added during IPRO’s execution may have become dominated by sub-
sequent additions to the Pareto front. While this does not impact the hypervolume of the final
Pareto front, it could pose a challenge for decision-makers in selecting their preferred solution. To
streamline the set presented to decision-makers, we enhance the obtained Pareto front by eliminating
dominated points. In our practical implementation, we further include all solutions rejected by the
Pareto oracle in the approximate Pareto front before the pruning step. While theoretically redundant
with an exact Pareto oracle, this step may, in practice, reveal additional Pareto optimal solutions.
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B.2 REFERENT SELECTION

The iterative process constructed in IPRO involves proposing referents to a Pareto oracle. Naturally,
a crucial question arises: how should these referents be chosen? While our theoretical outcomes
are not contingent on a particular method for selecting referents, we propose the use of the hyper-
volume improvement heuristic. This heuristic suggests referents that, when incorporated into the
dominating set, would yield the greatest increase in hypervolume. Intuitively, referents with a high
hypervolume improvement indicate a large unexplored region that dominates it, suggesting that new
Pareto optimal solutions may be found there. We define this formally in Definition B.1

Definition B.1 (Hypervolume Improvement). Let r ∈ Rd be a reference point and HV (S, r) be the
hypervolume of a set S with respect to the reference point. The hypervolume improvement HV I of
a point v ∈ Rd is defined as the contribution of v to the hypervolume when added to S, i.e.

HV I(v, S, r) = HV (S ∪ {v}, r)−HV (S, r) (14)

It is worth noting that computing the hypervolume improvement for a large number of points can
become prohibitively expensive, as it necessitates a new hypervolume computation for each point.
This computational cost is one of the main reasons why the dedicated 2D variant of IPRO is more
efficient. Concretely, in the two-dimensional case, all remaining area is made up of isolated rect-
angles described by one lower and upper point. For these rectangles, we can efficiently compute
the area and keep a priority queue of rectangles with the greatest remaining area. Selecting the next
referent can then be done by taking the first rectangle from the priority queue and using its lower
point as the referent.

Finally, we highlight that depending on prior knowledge regarding the Pareto front’s shape or spe-
cific regions of interest, the referent selection method can be readily adapted and alternative metrics
for assessing improvement such as sparsity, could be incorporated into the process.

B.3 ROBUSTNESS THROUGH BACKTRACKING

As discussed in Section 5, we introduce a modification to IPRO to accommodate imperfect Pareto
oracles. Specifically, we integrate a backtracking procedure into IPRO, which is triggered whenever
a solution is returned that violates a decision made in a previous iteration.

To implement this robustness feature, we maintain a sequence denoted as {(rt,vt)}t∈N where each
pair records the reference point and the retrieved vector for a given iteration. When, at time step
t+1, the returned vector vt+1 strictly dominates a point c ∈ Ct or v∗ ∈ Vt, it indicates an incorrect
oracle evaluation in a previous iteration. To address this issue, we initiate a replay of the sequence
of pairs. Let t̄ denote the time step at which the incorrect result was initially returned. For all time
steps n ∈ {0, . . . , t̄− 1}, we replay the pairs using the standard IPRO updates and consider vt+1 as
the retrieved solution for rt̄.

Subsequently, for all time steps n ∈ {t̄, . . . , t}, we apply different conditions than in the original
iterations and leverage the transitivity property of Pareto dominance to recycle the pairs. Specifically,
if vn > rn, it guarantees that vn is (weakly) Pareto optimal. This information is used to check
whether there exists a point l ∈ L that is strictly dominated by vn. If such a point is identified,
(l,vn) can be added using the standard IPRO update rule.

Finally, when vn fails to strictly dominate the referent rn, it implies that rn would have been in-
cluded in the completed set. In this scenario, we verify whether there exists a lower point that Pareto
dominates rn. If such a lower point is found, we add l to the completed set instead.

C THEORETICAL RESULTS FOR IPRO

In this section, we provide the omitted proofs for IPRO from Section 4. These results establish both
the upper bound to the true approximation error as well as guarantee convergence to the true Pareto
front in the limit or an approximate Pareto front in a finite number of iterations.
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C.1 DEFINITIONS AND ASSUMPTIONS

Before presenting the proofs for IPRO, it is necessary to formally define the sets that are tracked in
IPRO. Let B =

∏d
j=1[v

n
j ,v

i
j ] be the bounding box defined by a strict lower bound of the true nadir

vn and the ideal vi. The set Vt contains the obtained Pareto front at timestep t while the completed
set Ct contains the referents for which the Pareto oracle failed to find a strictly dominating solution.
We then define the dominated and dominating set D− and D+ as follows.

Definition C.1. The dominated set D−
t at timestep t contains all points in the bounding box that are

dominated by or equal to a point in the current Pareto front, i.e.

D−
t = {v ∈ B | ∃v′ ∈ Vt,v′⪰v} . (15)

Definition C.2. The dominating set D+
t at timestep t contains all points in the bounding box that

dominate or are equal to a point in the union of the current Pareto front and completed referents, i.e.

D+
t = {v ∈ B | ∃v′ ∈ Vt ∪ Ct,v⪰v′} . (16)

Note that in the definition for the dominating set, we consider not only those points dominated by
the current Pareto front but also the points dominated by the referents that failed to result in new
solutions.

During the execution of IPRO, it is necessary to recognise the remaining unexplored sections. For
this, we define the reachable boundaries of the dominated and dominating set which together de-
lineate the remaining search space. Let S be the closure of a subset S in some topological space
and ∂S be its boundary. By a slight abuse of notation, we say that ∂D−

t = (B \D−
t ) ∩D−

t is the
boundary of D−

t in B, which is itself a subset of Euclidean space. Defining the boundary of D+
t

analogously, we define the reachable boundaries as follows.

Definition C.3. The reachable boundary of D−
t , denoted ∂rD−

t at timestep t is defined as,

∂rD−
t = ∂D−

t \D+
t . (17)

Definition C.4. The reachable boundary of D+
t , denoted ∂rD+

t at timestep t is defined as,

∂rD+
t = ∂D+

t \D−
t . (18)

In addition, the interior of D−
t is then defined as intD−

t = D−
t \ ∂D−

t and the interior of D+
t

analogously. We illustrate these subsets in Fig. 5.

(a) (b)

Figure 5: (a) The reachable boundaries of D−
t (green) and D+

t (blue) indicated with solid lines and
their interiors (shaded) when no section is completed. (b) When completing the section at l2, parts
of the reachable boundary at timestep t become unreachable at timestep t+ 1.

For the reachable boundaries of the dominated and dominating set, we define two important subsets,
namely the lower and upper sets. The lower set contains the points on the reachable boundary of the
dominated set D− such that no other point on the reachable boundary exists which is dominated by
it. Similarly, the upper set contains the points on the reachable boundary of D+ such that no other
point exists on the reachable boundary that dominates it. Conceptually, these points are the inner
corners of their respective boundary as can be observed in Fig. 5.
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Definition C.5 (Lower Set). The lower set at timestep t is defined as,

Lt =
{
l ∈ ∂rD−

t | ∄v ∈ ∂rD−
t , l≻v

}
. (19)

Definition C.6 (Upper Set). The upper set at timestep t is defined as,

Ut =
{
u ∈ ∂rD+

t | ∄v ∈ ∂rD+
t ,v≻u

}
. (20)

Before continuing with our proofs, we make two explicit assumptions. First, to ensure that IPRO
still functions as intended when utilising a boundary-free approximate Pareto oracle, we assume that
the user-provided tolerance is at least as high as the oracle tolerance.

Assumption C.1. For a given approximate Pareto oracle Oε with error ε and user-provided toler-
ance τ , we assume that τ ≥ ε.

Finally, we assume that the problem is not trivial and there exist unexplored regions in the bounding
box B after finding the first d weakly Pareto optimal solutions. This assumption is not hindering,
as we can easily verify whether out of the first d weakly Pareto optimal solutions, there is a single
Pareto optimal one and terminate IPRO if this is the case. Note that this assumption utilises a
pruning algorithm PPRUNE which takes as input a set of points and returns only the Pareto optimal
points (Roijers & Whiteson, 2017).

Assumption C.2. For the given MOMDP M with d-dimensional reward function, we assume that
for the initial Pareto front V0 = {v1, . . . ,vd} it is guaranteed that |PPRUNE(V0)| > 1.

C.2 SUPPORTING LEMMAS

We provide supporting lemmas that formalise the contents of the sets defined in Appendix C.1 and
their relation to the remaining feasible solutions. Concretely, we first demonstrate that the interior
of the dominating set contains only infeasible points, which is a consequence of having a strictly
positive distance to the boundary. Combined with the dominating set, which inherently contains
only dominated solutions, we can then significantly reduce the search space that is left to explore.

Lemma C.1. During IPRO’s execution, it is guaranteed that all points in the interior of the domi-
nating set are infeasible.

Proof. Recall that the interior of the dominating set is defined as follows,

intD+
t = D+

t \ ∂D+
t . (21)

Let v ∈ intD+
t be a point in the interior of the dominating set. Then there exists an open ball centred

around v with a strictly positive radius r such that Br(v) ⊆ intD+
t . Let v′ ∈ Br(v) be a point

in the ball such that v > v′ which can be obtained by taking v and subtracting a value δ ∈ (0, r).
Since v′ ∈ intD+

t , the definition of the dominating set (Definition C.2) ensures that there exists
a point v̄ ∈ Vt ∪ Ct such that v′⪰ v̄. By the transitivity of Pareto dominance, we then have that
v > v̄.

Let us now consider the two cases for v̄. Assume first that v̄ ∈ Vt. If v is a feasible solution and
knowing that v > v̄ implies that v̄ is not weakly Pareto optimal. Therefore, v̄ would not have been
returned by a weak or approximate Pareto oracle. As such, v must be infeasible.

Finally, when v̄ ∈ Ct it was added after a Pareto oracle could not find a feasible solution strictly
dominating the lower point l = v̄ implying again that v is infeasible.

Given the result for the infeasible solutions, we now focus instead on the remaining feasible solu-
tions. Here, we demonstrate that all feasible solutions are strictly lower bounded by the lower set
and upper bounded by the upper set.

Lemma C.2. During IPRO’s execution, the lower set contains a strict lower bound for all remaining
feasible solutions, i.e.,

v ∈ B \ (intD+
t ∪D−

t ) =⇒ ∃l ∈ Lt,v > l. (22)
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Proof. Let v be a remaining feasible solution. Then it cannot be in the dominated set, as this implies
it is dominated by a point on the current Pareto front, nor can it be in the interior of D+

t as this was
guaranteed to be infeasible following Lemma C.1. However, v can still be on the reachable boundary
of the dominating set when using a weak Pareto oracle. As such, we may indeed write in Eq. (22)
that v ∈ B \ (intD+

t ∪D−
t ).

Recall that in IPRO, the nadir vn of the bounding box B is initialised to a guaranteed strict lower
bound of the true nadir (see line two of Algorithm 1). Therefore, for all v ∈ B \ (intD+

t ∪ D−
t )

we can connect a strictly decreasing line between v and vn. Moreover, either vn ∈ ∂D−
t or this line

must intersect ∂D−
t at some point v̄ for which it is subsequently guaranteed that v > v̄.

Let v ∈ B \ (intD+
t ∪D−

t ) be a feasible solution and v̄ ∈ ∂D−
t be a point on the boundary of D−

t
such that v > v̄. Suppose, however, that v̄ is not on the reachable boundary. Then, the definition of
the reachable boundary implies that v̄ ∈ D+

t (see Definition C.3). However, as v > v̄ this implies
that v is in the interior of D+

t which was guaranteed to be infeasible by Lemma C.2. Therefore, v̄
must be on the reachable boundary of D−

t . By definition of the lower set, this further implies there
exists a lower point l ∈ Lt for which v̄⪰ l, finally guaranteeing that v > l.

We provide an analogous result for the upper set where we demonstrate that it contains an upper
bound for all remaining feasible solutions.
Lemma C.3. During IPRO’s execution, the upper set contains an upper bound for all remaining
feasible solutions, i.e.,

v ∈ B \ (intD+
t ∪D−

t ) =⇒ ∃u ∈ Ut,u⪰v. (23)

Proof. As the ideal vi is initialised to the true ideal, we may apply the same proof as for Lemma C.2
using Pareto dominance rather than strict Pareto dominance. In contrast to Lemma C.2 however, v
may be on the reachable boundary of the dominating set ∂rD+

t . In this case, the definition of the
upper set guarantees the existence of an upper point u ∈ Ut,u⪰v.

C.3 PROOF OF THEOREM 4.1

We now prove Theorem 4.1 which guarantees an upper bound on the true approximation error at
any timestep. In fact, this upper bound follows almost immediately from the supporting lemmas
shown in Appendix C.2. Utilising the fact that the upper points are a guaranteed upper bound for
the remaining feasible solutions, we can compute the upper point that maximises the distance to
its closest point on the current approximation of the Pareto front. Recall that at timestep t the true
approximation error ε∗t is defined as maxv∗∈V∗\Vt

minv∈Vt
∥v∗−v∥∞.

Theorem 4.1. Let V∗ be the true Pareto front, Vt the approximate Pareto front obtained by IPRO
and ε∗t the true approximation error at timestep t. Then the following inequality holds,

max
u∈Ut

min
v∈Vt

∥u− v∥∞ ≥ ε∗t . (24)

Proof. Observe that all remaining Pareto optimal solutions must be feasible and we can therefore
derive from Lemmas C.1 and C.3 that

∀t ∈ N,∀v∗ ∈ V∗ \ Vt,∃u ∈ Ut : u⪰v∗ . (25)

From Eq. (25) we can then conclude the following upper bound,

max
u∈Ut

min
v∈Vt

∥u− v∥∞ ≥ max
v∗∈V∗\Vt

min
v∈Vt

∥v∗−v∥∞ = ε∗t . (26)

Note that this holds as the maximum over the upper points is guaranteed to be at least as high as the
maximum over all remaining points on the Pareto front.

C.4 PROOF OF THEOREM 4.2 AND COROLLARY 4.2.1

To conclude the theoretical contributions for IPRO, we show that it is guaranteed to converge to a τ -
Pareto front where τ is the user-provided tolerance. Moreover, when using a weak Pareto oracle, the
τ may be set to 0 and the true Pareto front is obtained in the limit. For practical purposes, however,
setting τ > 0 ensures that IPRO converges after a finite number of iterations.
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Theorem 4.2. Given a boundary-free weak (resp. approximate) Pareto oracle and tolerance τ ≥ 0
(resp. τ > 0), IPRO converges to a τ -Pareto front.

Proof. We show that, when ignoring the tolerance parameter τ , the sequence of errors generated by
IPRO is a monotonically decreasing sequence with its infimum at zero. By the monotone conver-
gence theorem, the limit of this sequence is zero. When incorporating the tolerance τ , IPRO stops
when the approximation error is guaranteed to be at most τ therefore resulting in a τ -Pareto front.

Let us first denote,
max
u∈Ut

min
v∈Vt

∥u− v∥∞ = εt (27)

and demonstrate that ∀t ∈ N : εt ≤ εt−1.

By construction of Vt it is guaranteed that Vt−1 ⊆ Vt. Therefore,
max
u∈Ut

min
v∈Vt

∥u− v∥∞ ≤ max
u∈Ut

min
v∈Vt−1

∥u− v∥∞ (28)

Considering Ut instead, it was guaranteed that Ut−1 contains the maximal points which may still be
in the Pareto front at timestep t − 1. Therefore, for all upper points u ∈ Ut there must exist an old
upper point ū ∈ Ut−1 such that ū⪰u. As such, we conclude that

max
u∈Ut

min
v∈Vt

∥u− v∥∞ ≤ max
u∈Ut−1

min
v∈Vt−1

∥u− v∥∞ (29)

and thus ∀t ∈ N : εt ≤ εt−1.

We now show that the sequence of errors (εt)t∈N converges to zero. Clearly, 0 is a lower bound for
the errors as there is no further approximation error when Ut is the empty set. Then, for any β > 0,
we need to show that β is not a lower bound of (εt)t∈N. Suppose there exists such a β. Then we can
write that,

∀v ∈ Vt,∃u ∈ Ut : max(u− v) ≥ β. (30)
For simplicity, assume there is a single ū for which Eq. (30) holds. Let l ∈ Lt be a lower point such
that ū > l. Note that this l must exist by Lemma C.2.

Denote the box spanned by l and ū as B(l, ū). Then there is a point v inside of this box such
that ∥ū − v∥∞ < β. Proposing l to a Pareto oracle, it is guaranteed that either the box B(l, ū) is
closed, rendering the maximum distance to zero, or that a new Pareto optimal point v∗ is retrieved.
If v∗⪰v the distance is below the threshold. Otherwise, IPRO adds a lower point l′ such that l′≻ l
and v ∈ B(l′, ū). Repeating this process, either the box is closed for some future lower point or a
closer Pareto optimal solution is found which decreases the bound.

Recall that we assume a single ū for which Eq. (30) holds. However, if there were multiple u such
that their maximum is greater than β, we can repeat the same argument. This then implies there is no
β > 0 which is a lower bound for (εt)t∈N and therefore the sequence of errors must also converge
to 0 by the monotone convergence theorem.

Theorem 4.1 guarantees that the true approximation error is upper bounded by εt. Since IPRO
terminates when this upper bound is at most equal to the tolerance τ , it is guaranteed to converge to
a τ -Pareto front.

Finally, Theorem 4.2 can be straightforwardly amended to establish IPRO’s convergence in a finite
number of iterations given a strictly positive tolerance.
Corollary 4.2.1. Given a tolerance τ > 0, IPRO finishes in a finite number of iterations using a
boundary-free weak or approximate Pareto oracle.

Proof. This follows immediately from the monotone convergence theorem and Theorem 4.2. Con-
cretely, the decreasing sequence of errors (εt)t∈N converges to 0 and thus for every τ > 0, there
must exist a timestep T such that εT < τ as otherwise τ would be a lower bound.

D EXPERIMENT DETAILS

In this section, we provide details concerning the experimental evaluation presented in Section 5.
Concretely, we discuss the selection of baselines and environments and provide the hyperparameters
used in our experiments.
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D.1 BASELINES

We first discuss the baselines we employed to evaluate the performance of IPRO.

GPI-LS. Generalised Policy Improvement - Linear Support (GPI-LS) is an algorithm designed for
obtaining the convex hull of deterministic policies Alegre et al. (2023). As mentioned in Section 2,
this solution set is appropriate in scenarios where decision-makers are guaranteed to have linear
utility functions. Similar to IPRO, GPI-LS relies on a decomposition approach to reduce the multi-
objective problem into efficiently solvable single-objective problems. However, since GPI-LS as-
sumes convexity of the Pareto front, it enables the utilisation of conventional reinforcement learning
methods. In contrast, IPRO avoids imposing such constraints on the shape of the Pareto front, ne-
cessitating substantial adjustments (see Section 3.2).

GPI-LS is currently the state-of-the-art in various benchmarks. To ensure a fairer comparison be-
tween IPRO and GPI-LS, we retain all Pareto optimal policies generated by GPI-LS during its eval-
uation rather than only the policies in the convex hull. Furthermore, in both Minecart and MO-
Reacher, we observe a relatively small difference in hypervolume between the convex hull and the
Pareto front. This observation further supports the comparison between GPI-LS and IPRO. Finally,
we do not consider GPI-LS in the Deep Sea Treasure environment as the Pareto front is concave and
it is thus only able to retrieve the two extremal policies.

PCN. Pareto Conditioned Networks (PCN) is a method specifically designed to learn a Pareto front
of deterministic policies in MOMDPs. PCN trains a single neural network on a range of desired
trade-offs, to generalise over the full set of Pareto optimal policies. This is achieved by learning
to predict the “return-to-go” from any state and selecting the action that most closely reaches the
returns of the chosen trade-off. While PCN was primarily intended to operate in deterministic envi-
ronments, it can also be evaluated in stochastic environments. We note that, while MO-Reacher is
a deterministic environment, Minecart is not, which may explain its relatively poor performance in
this environment.

D.2 ENVIRONMENTS

To focus solely on IPRO’s performance, we initialise each experiment with predefined minimal and
maximal points to establish the bounding box of the environment. It is important to emphasise that
these points can be obtained using conventional reinforcement learning algorithms without requiring
any modifications, justifying their omission from our evaluation process.

Deep Sea Treasure (DST). As the Pareto front is known in DST, we initialise IPRO with (124,−19)
and (0, 0) as the maximal points and switch these for the minimal points. We set the discount factor
to 1, signifying no discounting, and maintain a fixed time horizon of 50 timesteps for each episode.
The hypervolumes shown in Fig. 3 were calculated using (0,−50) as the reference point. We note
that we one-hot encode the observations due to the discrete nature of the state space. Finally, a
tolerance τ of 0 was set to allow IPRO to find the complete Pareto front in this environment.

Minecart. In the Minecart environment, we set γ = 0.98 to align with related work. Rather than
directly determining the maximal and minimal points from the Pareto front, we provide unattain-
able points that do not contribute to the hypervolume, ensuring a fair comparison with our base-
lines. For minimal points, IPRO is initialised with the nadir (−1,−1,−200) for each dimension.
For maximal points, we consider the nadir and set each dimension to its theoretical maximum:
(1.5,−1,−200), (−1, 1.5,−200), (−1,−1, 0). Our reference point is also the nadir and the time
horizon is 1000. A tolerance of 1× 10−5 was used.

MO-Reacher. In the Reacher environment, where no Pareto front is known, the bounding box again
needs to be estimated. For minimal points, we use (−50,−50,−50,−50) in each dimension, and
similarly, set this vector to 40 for each dimension for the maximal points. The discount factor γ is
set to 0.99. The reference point is again set to the nadir, a time horizon of 50 was used and tolerance
was set to 1× 10−5.
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D.3 HYPERPARAMETERS

To conclude this section, in Table 2 we provide a description of all hyperparameters used in our
Pareto oracles and the algorithms for which they apply. Finally, in Tables 3 to 5 we give the hyper-
parameter values used in our reported experiments.

Table 2: A description of the relevant hyperparameters.

Parameter Algorithm Description

scale DQN, A2C, PPO Scale the output of Eq. (1) to generate a greater learning signal
ρ DQN, A2C, PPO Augmentation parameter from Eq. (1)
global steps DQN, A2C, PPO Number of global steps to learn one policy
critic hidden DQN, A2C, PPO Number of hidden neurons per layer for the critic
lr critic DQN, A2C, PPO The learning rate for the critic
actor hidden A2C, PPO Number of hidden neurons per layer for the actor
lr actor A2C, PPO Learning rate for the actor
n steps A2C, PPO Number of environment interactions before each update
gae lambda A2C, PPO λ parameter for generalised advantage estimation
normalise advantage A2C, PPO Normalise the advantage
e coef A2C, PPO Entropy loss coefficient to compute the overall loss
v coef A2C, PPO Value loss coefficient to compute the overall loss
max grad norm A2C, PPO Maximum gradient norm
clip coef PPO Clip coefficient used in the PPO surrogate objective
num envs PPO Number of parallel environments to run in
anneal lr PPO Anneal the learning rate over time
clip range vf PPO Clipping range for the value function
update epochs PPO Number of update epochs to execute
num minibatches PPO Number of minibatches to divide a batch in
batch size DQN Batch size for each update
buffer size DQN Size of the replay buffer
soft update DQN Multiplication factor for the soft update
epsilon start DQN Starting exploration probability
epsilon end DQN Final exploration probability
exploration frac DQN Explore for a fraction of the given total timesteps
learning start DQN Only start learning after a number of episodes

Table 3: The hyperparameters used in the DQN oracles.

Parameter DST Minecart MO-Reacher

scale 100 10 500
ρ 0.001 0.001 0.01
global steps 6.0e+04 1.0e+06 1.0e+05
critic hidden (256, 256, 256) (128, 128) (256, 256, 256)
lr critic 0.0003 0.0003 0.001
batch size 32 64 32
buffer size 1.0e+04 1.0e+05 5.0e+04
soft update 0.1 0.1 0.1
epsilon start 0.7 0.5 0.5
epsilon end 0.2 0.2 0.1
exploration frac 0.1 0.1 0.3
learning start 1.0e+04 2.0e+03 1.0e+03
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Table 4: The hyperparameters used in the A2C oracles.

Parameter DST Minecart MO-Reacher

scale 100 100 1
ρ 0 0.001 0.01
global steps 2.0e+05 1.5e+06 5.0e+05
critic hidden (128, 128, 128) (128,) (128, 128, 128)
lr critic 0.0005 0.001 0.0007
actor hidden (128, 128, 128) (128,) (128, 128, 128)
lr actor 0.0001 0.001 0.0007
n steps 16 32 128
gae lambda 0.95 1 1
normalise advantage False False True
e coef 0.1 0.1 0.01
v coef 0.5 0.5 0.1
max grad norm 10 50 1

Table 5: The hyperparameters used in the PPO oracles.

Parameter DST Minecart MO-Reacher

scale 500 500 1
ρ 0.005 0.01 0.01
global steps 5.0e+05 1.5e+06 7.5e+05
critic hidden (32, 32, 32) (128, 128) (64,)
lr critic 0.0005 0.0001 0.001
actor hidden (64, 64) (128, 128) (64,)
lr actor 0.0005 0.001 0.001
n steps 128 128 64
gae lambda 0.95 1 0.95
normalise advantage False True False
e coef 0.05 0.01 0.1
v coef 0.3 0.1 0.1
max grad norm 1 0.5 0.5
clip coef 0.5 0.4 0.4
num envs 2 4 8
anneal lr True True True
clip range vf 0.4 0.3 0.3
update epochs 2 16 16
num minibatches 8 4 4
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