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Abstract

Quantization is an effective way to compress neural networks. By reducing the
bit width of the parameters, the processing efficiency of neural network models at
edge devices can be notably improved. Most conventional quantization methods
utilize real datasets to optimize quantization parameters and fine-tune. Due to
the inevitable privacy and security issues of real samples, the existing real-data-
driven methods are no longer applicable. Thus, a natural method is to introduce
synthetic samples for zero-shot quantization (ZSQ). However, the conventional
synthetic samples fail to retain the detailed texture feature distributions, which
severely limits the knowledge transfer and performance of the quantized model.
In this paper, a novel ZSQ method, TexQ is proposed to address this issue. We
first synthesize a calibration image and extract its calibration center for each class
with a texture feature energy distribution calibration method. Then, the calibration
centers are used to guide the generator to synthesize samples. Finally, the mixup
knowledge distillation module is introduced to diversify the synthetic samples for
fine-tuning. Extensive experiments on CIFAR10/100 and ImageNet show that
TexQ is observed to perform state-of-the-art in low bit width quantization. For
example, when ResNet-18 is quantized to 3-bit, TexQ achieves a 12.18% top-1
accuracy increase on ImageNet compared to state-of-the-art methods.

1 Introduction

Limited by the computing capability of edge devices such as mobile phones, deep neural network
models inevitably require compression for terminal scenarios [, 2]. Compared to popular com-
pressing methods such as pruning and distillation, quantization is easier to achieve lightweight and
hardware compatibility [B3, 4, 5, 6]. By compressing floating-point parameters to low-bit fixed-point
integer, quantization reduces the resource footprint and improves computing efficiency. For exam-
ple, when moving the parameters tensor (weights and activation) from 32 to 4 bits, the memory
consumption is reduced by a factor of 8, while the computational overhead of matrix multiplication
goes down by a factor of 64 at a squared rate. Most research on quantization focuses on quantization-
aware training (QAT) [, 8, U, I0] and post-training quantization (PTQ) [T, 12, I3, 14, 19, T6]. QAT
introduces fake quantization nodes when training and achieves performance close to full precision.
However, it relies on the full training set and lacks a uniform specification, making it unfriendly
to deploy. Thus, PTQ has gained attention, which only requires a small part of the training set to
statistically optimize the quantization parameters [, I8, T9, 20].

Due to privacy and security constraints, access to certain real data might be prohibited [2T], such
as patient medical images, confidential business information, etc. Therefore, zero-shot quantization
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(ZSQ) [22, 3, 1, 24, P5] is proposed to circumvent this limitations. Among previous studies, syn-
thetic sample-based methods [T, D4, 5] have attracted attention by their excellent performance.
Most studies synthesize samples that resemble the distribution of the real samples by extracting
statistics in the full precision model, such as batch-normalization statistics [2Z1], categorical labels
[24], intermediate features [5], etc. However, despite a good fit to the model statistics and high
classification confidence, there is still a huge gap between the texture feature distribution they con-
tain and that of real samples. Such a phenomenon is likely to result in bad performance, as studies
show that CNNs rely on texture feature to make decisions, for texture feature is "easy to learn" for
CNNss [26, 72, P8]. In addition, the conventional multiple-constraint paradigm limits the diversity
of synthetic samples [29, B0].

To tackle the above problems, the following exploratory experi-

ments were carried out. Firstly, local binary pattern (LBP) [37]
was introduced to characterize the texture feature. A batch of real IntraQ .
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of texture feature. As shown in Figure [, same model was re- =
spectively quantized with real samples and conventional synthetic W
samples, and tested in four image patterns: original, greyscale :
(removes color feature), binary (removes color and texture fea-

ture), and edge (retains shape feature and restores a few texture
feature). It illustrates that removing texture feature causes a sharp
performance decrease. The model quantized with synthetic sam-
ples drops off a lot on performance while restoring some of the
texture feature in Figure Od can recover its performance. These
experiments imply that the ZSQ model is strongly biased towards
texture feature and tends to make decisions with it. Inspired by the experiments, an intuitive idea
is to calibrate the synthetic samples to retain the texture feature distribution, which facilitates the
model to learn and improve its performance.

Figure 1: LBP feature cluster-
ing of samples from CIFARI10,
IntraQ and our method. Visual-
ization with t-SNE [31/]

Top-1 Accuracy (%) 79.62 Real samples Synthetic samples
77.03

(a) Original (b) Greyscale (c) Binary (d) Edge
Figure 2: Test results of real/synthetic samples quantized model on CIFAR10 in 4 image patterns.

In this work, we propose TexQ, a zero-shot quantization method using synthetic calibration centers
to calibrate samples and retain texture feature distributions. We first generate a calibration images
and its center for each class. Further, the centers guide the generator to synthesize samples. The
two-stage synthetic sample paradigm alleviates the homogeneity caused by multiple constraints.
Finally, mixup knowledge distillation is introduced to enhance sample diversity and avoid overfitting.
With the above methods, the proposed TexQ performs state-of-the-art on various datasets and model
settings.

2 Related work

2.1 Texture feature extraction

Texture feature is powerful visual cue that provides useful information in identifying objects or
regions of interest in images [33]. To make use of these cues, texture feature extraction methods



has been widely used in natural image processing, among which filtering approaches are proven to
be successful, including LAWS filters, dyadic Gabor filter banks, wavelet transforms and so on [34].
Studies [BS, B, B7] have shown that image texture feature are conductive to image classification
and are class separable. For instance, [38] introduce GLCM and Gabor texture feature from regions
of interest for better mammogram classification. Recently, many studies [BY, &0, &1] identify the
importance of textures feature for CNNs. [BY] found that texture representations could capture
the statistical characteristics of images for CNNs. [A0] showed that classic CNNs were unable to
recognize sketches where textures are missing and shapes are left. Similarly, [21, 2] validated that
CNNs were biased towards textures than shapes, for example, ResNet-50 biased 77.9% texture.

2.2 Zero-shot quantization

Most zero-shot quantization (also called data-free quantization) studies try to recover the quantiza-
tion error from three perspectives. The first perspective designs quantization parameters by using
model properties [22, 23, &3, 4] without acquiring any data. For instance, Nagel et al. [27] pro-
posed a scale-equivariance property of activation functions to equalize the weight ranges of the
network. Meller et al. [44] highlighted an inversely proportional factorization of convolutional
neural networks to decrease the degradation caused by quantization. The above methods avoid the
access to data but suffer from severe performance degradation in low bit widths. For example, DFQ
achieved a 0.11% top-1 accuracy in the 4-bit MobileNetV2 case [22, 24]. Therefore, more ZSQ
methods resort to synthetic samples. The second perspective adopts optimization-based methods to
synthesize samples by aligning the statistics in the full-precision network [21], 30, P9]. ZeroQ [2T]
adopted batch normalization statistics alignment to optimize the standard Gaussian noise. DSG [B0]
proposed a slack distribution alignment to diversify samples. IntraQ [29] highlighted the intra-class
heterogeneity and retained this property in the synthetic samples for better performance. The third
perspective adopts a generator to synthesize samples [24, &5, 46, &7/, B¥]. For example, GDFQ [24]
proposed a knowledge-matching generator to produce synthetic data with labels by introducing the
cross-entropy loss. ClusterQ [43] utilized the feature distribution alignment to imitate the distribu-
tion of real data. AdaDFQ [&7] proposed a zero-sum game to adaptively regulate the adaptability of
synthetic samples. The existing studies provide us effective method to fit statistics in full-precision
models, however, none of these considered texture feature distribution in synthetic samples, though
it is fundamental for CNNs to learn and make decisions. To the extent of our knowledge, this work
is the first to consider texture feature in ZSQ, introducing a synthetic calibration center to calibrate
synthetic samples.

3 Methodology

3.1 Preliminaries

3.1.1 Quantizer

Following ZeroQ [ZT], asymmetric quantization is adopted. Given a floating-point value x ; (weights
or activations) and quantization bit width BW, the quantized integer , can be obtained as:

x, = Clip(|zs - S — ZP],0,25W —1) (1)

2BW_g

where S = is the scaling factor mapping the floating-point number to a fixed-point

L f max —Z f min
integer, ZP = T fmin - S is the zero point mapping the floating-point minimum to zero, Linput]
rounds its input to the nearest integer. Clip(tensor, T'min, 'maz) clamps the tensor elements to be
between 7, and 7,,,4,. The dequantized value x4 can be obtained as:

Tq+ ZP
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3.1.2 Data synthesis

PTQ requires a small real dataset D = - {(z, y)} containing samples = and labels y. Similarly, most
ZSQ introduce synthetic sample sets D = {(Z, 7)}. To fit the batch normalization statistics (BNS)
in the full-precision model (F'), a basic principle [T, 5, P9] is using BNS alignment loss in Eq. B.

L

Lpns = ZHM(T)—MFH2+ ||01(T)—01FH2, 3)
=1

where 4,7 and o;%" are the running mean and variance stored in the [-th BN layer of F'. The mean
and variance of the synthetic sample batch T in the [-th layer of F' are given by y,;(T) and ().

Given generator (G, standard Gaussian noise z, and a target label 7, the synthetic sample can be
obtained as T = G (z|g). The cross-entropy loss in Eq. B is used to generate label-oriented samples
[, 19].

Lo = Egy)~izg) [Cross-entropy (F(Z), g)] . 4)

3.2 Texture feature distribution calibration

In this section, the calibration method and mixup knowledge distillation module are proposed. The
framework of our TexQ is illustrated in Figure B.
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t I ---------- Backward gradient
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Figure 3: An overview of the proposed framework TexQ. Calibration centers are produced to guide
G to synthesize samples. () is fine-tuned with both calibration samples and synthetic samples.

3.2.1 Texture feature energy distribution calibration loss

To quantitatively measure the texture feature distribution, LAWS texture feature energy [49, 50] is
introduced. We select four 1-dimensional filters provided by LAWS: Es=[-1, -2, 0, 2, 1], S5=[-1, O,
2,0, -1], W5=[-1, 2, 0, -2, 1], R5=[1, -4, 6, -4, 1], which stand for edge, spot, wave, and ripple. By
convolving two 1-dimensional LAWS filters of size 1 x5 with each other, a total of 16 2-dimensional
filters of size 5x5 can be obtained. Each filter extracts a basic element of the texture, for example,
R5R5 denotes a high-frequency point filter, and E5S5 denotes a V shape filter. To be specific, the
calculation procedure of R5R5 is given as an example in Eq. B.

1 1 4 6 -4 1
-4 4 16 24 16 -4
RsRs=Rs"«Rs=| 6 |*[1 4 6 4 1]=|6 24 36 -24 6 6))
-4 4 16 -24 16 -4
1 1 4 6 -4 1
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Figure 5: Visualization of distribu-
tion 7" from different samples.
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Figure 6: Dominant texture elements number distribution of samples from the ImageNet training set,
IntraQ synthetic samples, calibration images as well as synthetic samples generated by our method.
Synthetic samples were obtained with pre-trained ResNet-18.

Straightforward visualization of the texture feature extracted by LAWS texture feature filters is pro-
vided in Figure B. It can be observed that different types of images contain different dominant
texture feature. For example, the trees with lots of leaves including V-shape, high-frequency points
and edge features, and the cat lying on the chair including mainly V-shape and edge features.

It is reasonable to evaluate texture distributions by analyzing basic elements, for complex texture
feature are composed of simple elements. We apply 16 filters to obtain the texture feature energy
distributions " of a sample as shown in Figure B. Assuming that the top-k elements in T" account for
more than 80% are the dominant texture elements, the set of these k elements is recorded as K. As
displayed in Figure B, the real samples (Figure Ba) have at most 9 dominant texture elements, i.e., k
< 9, while there is almost only 1 in the conventional synthetic samples (Figure Bb). To be detailed,
in Figure B, the distribution curve of the conventional synthetic sample presents a clear peak, indi-
cating a single dominant element, which reduces the intra-class heterogeneity and the information
contained. Unlike this, the curve of the real sample presents a detailed texture distribution. To retain
this property, texture feature energy distribution calibration loss of Eq. B is proposed to dynamically
adjust the detailed texture feature distribution of calibration images for each class.

L aws = max (|| Kmax — 0|y — &, 0) + max (|[(1 — Kumax) — 0z, — &, 0), (6)

where K,y is the largest element in K. The hyperparameters 0y, 61, and ¢ control the upper and
lower bounds of the elements in K. Specifically, 8 is the upper bound of K, ., and €y, is the lower
bound of the sum of all elements in K except K,ax. € is the softness factor to alleviate convergence
problem. Both upper and lower bounds are used together to extract detailed distribution.

To introduce the calibration loss, a possible scheme is directly applying constraint to the generator.
However, multiple constraints to generator results in slow iterations and homogeneous samples. We
adopt a two-stage method, which includes an optimization method to synthesize accurate calibra-
tion centers for each class and a generation method to synthesize samples with the constraint on
calibration centers.



3.2.2 Layered BNS alignment constraint

Considering that neural networks extract class-independent low-level features (e.g., texture and con-
tours) in shallow layers and class-related high-level features in deep layers, the layered BNS align-
ment loss (L;.png) is proposed. We adopt loose constraints in shallow layers to facilitate the
expression of texture feature and tightened constraints in deep layers to fit class-related information.

In calibration set generation stage, given the calibration set C = {(Z, )}, the L pns of Eq. @
constraints C' to align the BNS in F.

L
L BNs = l; le ((Te) — MlF)HQ + le ) (Ul(fc> - UlF)‘ 2

_fo21<i<[L] -2
PEL L [E] —2<i<L

N

where L is the number of BN layers, p;(Z.) and o(Z.) denote the mean and variance of C' in the
[-th layer of F. wy is the loss weight for the I-th layer. [input] returns the smallest integer greater
than its input.

In synthetic sample generation stage, £ gng in Eq. B constrains the generator to synthesize
samples that fit the calibration centers of corresponding class label k.

L
£ pns = 3 flwn [ @ly = k) = m® (215 = )],

i L ®)
+ ||wi - o1 (TG = k) — 01 (Ze|ge = k)] || o wi = { 0,1<1<[5]

—2
L [L]-2<i<L”

where ; (Z|g = k) and o; (Z|y = k) denote the mean and variance of the synthetic samples.
wC (£o|ge = k) and 0, (£,|7. = k) are the corresponding mean and variance calibration center.

3.2.3 Mixup knowledge distillation module

Knowledge distillation is commonly used to transfer the output distribution from full-precision
model F' to the quantized model @ in the fine-tuning stage, which requires diversified samples.
Some studies introduce Mixup [51, 8] augmentation to generate samples with mixed labels to fine-
tune the quantized model with cross-entropy loss. However, the labels produced by the such methods
are not accurate enough, and taking such mixed labels to fine-tune the quantized model tends to be
disastrously misleading. Therefore, we advocate discarding mixed labels and taking only mixed
samples to knowledge distillate the quantized model, and name this method mixup knowledge dis-
tillation. Specifically, as presented in Eq. B, new sample 7,,;, is generated by weighted fusion of
2 samples 7; and 7; randomly selected in a batch for distillation. Mixup proportion A is sampled
from a standard uniform distribution. The probability p = 20% is observed to perform best.

- {/\xi + (1 = N)T,, with probability p A~TO, 1) ©)

T;, with probability 1 — p
3.3 Quantization process

3.3.1 Stepl: Calibration set generation

In this stage, the calibration set with Gaussian noise initialization is optimized with the loss in Eq.
M, capturing the preferred texture of each class from F. We fix F' and back-propagate the loss to
the calibration images. For each class, the calibration image is trained for at most 1500 iterations
individually, with a warm-up of 150 iterations at half learning rate without £ oys. Their BNS
are extracted as the calibration centers to guide the generator in the next step.

LY=L aws +ar- LY s +as- LR (10



3.3.2 Step2: Synthetic samples generation

In this stage, generator GG synthesize samples of different classes that fit corresponding calibration
centers via LS png. Following FDDA [I9], BNS-distorted loss in Eq. [l is introduced to avoid
overfitting by Gaussian noise interfering with the calibration center. v,, = 0.5 and v, = 1.0 control
the distortion degree of mean and variance.

L
LYp.pNs =Y ||wl @y =k -N (1 (Telge = k) V)] ||2

=1 (11)
b ey O~ _fo1<i<[5]-2
+ ||lwi - [o0 (@[ = k) = N (00 (ZelGe = k) s vo) ||| o wi = { 1 [E] -2 é 1<

In addition, £ o5 and LY gy are used to align the label and BNS of F. Up to this point, the total
loss employed by generator G can be summarized in Eq. 2.

LY = L p+az LNs +as- LY pys +as - LEp pNs. (12)

3.3.3 Step3: Quantized model fine-tuning

To make full use of the data, we take both samples in D and C' as the input of ) and apply
cross-entropy loss L2 ¢ to fine-tune. Subsequently, both samples in D and C' are input into the
mixup knowledge distillation module to produce mixup samples. With the input of mixup samples,
Kullback-Leibler loss in Eq. I3 is applied to transfer the output of F' to Q.

L9%kp = B, ) cup [Kullback-Leibler (Q@mia), F(Tmia))] - (13)

At this point, the overall loss for fine-tuning () can be summarized as:
L = £Q0E+Oé6-£QKD (14)

4 Experiment

4.1 Experimental settings and details

We report top-1 accuracy on validation sets of CIFAR-10/100 [57] and ImageNet [53]. Networks
selected include ResNet-20 [54] for CIFAR-10/100, ResNet-18, MobileNetV?2 [83] and ResNet-50
for ImageNet. All experiments are implemented with Pytorch [56] via the code of FDDA [I9] and
IntraQ [29], and run on an NVIDIA GeForce RTX 3090 GPU. Calibration images are iterated with
a constant learning rate of 0.05. Generator is imported from GDFQ [24] with a initial learning rate
of le-3 multiplied by 0.1 every 100 epochs. In fine-tuning, batchsize is 128 for CIFAR-10/100 and
16 for ImageNet, adjusting by cosine annealing [57]. We warm up G for 50 epochs, then update G
and @ for 450 epochs. The optimal configurations on trade-off parameters from «; to ag obtained
by grid search are 2, 10, 0.4, 0.02, 1.8, and 20.

4.2 Performance comparison

To demonstrate the efficacy of our TexQ, we conduct experiment in 3/4-bit case, since high accuracy
can be easily achieved with a larger bit width. For instance, the advanced AdaDFQ [&7] trails full
precision with a 0.08% top-1 accuracy in 5-bit ResNet-20 case. In this section, WBAB indicates the
weights and activations are quantized to B-bit. Best results in boldface.

4.2.1 CIFAR-10/100

We compare the performance against the advanced ZSQ methods on CIFAR-10/100. As presented in
Table [, our TexQ is observed to achieve state-of-the-art among the competitors, improving the top-1
accuracy by 3.13%/1.58% in 3-bit CIFAR-10/100 case compared to the advanced AdaDFQ. Similar



results can be observed in the 4-bit case. In particular, the top-1 accuracy of our TexQ exceeds that
of the same framework with real data in 4-bit case, demonstrating that the proposed TexQ can fully
extract the feature distribution in simple datasets.

Table 1: Results of ResNet-20 on CIFAR-10/100.

Top-1 Accuracy(%)
CIFAR-10 CIFAR-100

Bit width Method

Full-precision 93.89 70.33
Real data 91.52 66.80
GDFQ [24] (ECCV 2020) 90.11 63.75
ARC [58] (IJCAI 2021) 88.55 62.76
Qimera [AR] (NeurIPS 2021) 91.26 65.10
W4A4 IntraQ [29] (CVPR 2022) 91.49 64.98
ARC+AIT [69] (CVPR 2022) 90.49 61.05
AdaSG [46] (AAAI2023) 92.10 66.42
AdaDFQ [47] (CVPR 2023) 92.31 66.81
TexQ (Ours) 92.68 67.18
GDFQ [24, &7] (ECCV 2020) 75.11 47.61
ARC [58] (IJCAI 2021) - 40.15
Qimera [&R, &7] (NeurIPS 2021) 74.43 46.13
W3A3 IntraQ [29] (CVPR 2022) 77.07 48.25
ARC+AIT [59] (CVPR 2022) - 41.34
AdaSG [46] (AAAI2023) 84.14 52.76
AdaDFQ [#7] (CVPR 2023) 84.89 52.74
TexQ (Ours) 86.47 55.87

4.2.2 ImageNet

We further compare with competitors on challenging ImageNet, the results are presented in Table D.

Table 2: Results of ResNet-18, MobileNetV2 and ResNet-50 on ImageNet.

Top-1 Accuracy(%)
ResNet-18  MobileNetV2  ResNet-50

Bit width Method

Full-precision 71.47 72.49 77.73
GDFQ [24] (ECCV 2020) 60.60 59.43 54.16
ZAQ [’5] (CVPR 2021) 52.64 0.10 53.02
ARC [BR] (IJCAI 2021) 61.32 60.13 64.37
Qimera [A8] (NeurIPS 2021) 63.84 61.62 66.25
W4A4 IntraQ [29] (CVPR 2022) 66.47 65.10 -
ARC+AIT [R9] (CVPR 2022) 65.73 66.47 68.27
AdaSG [86] (AAAI 2023) 66.50 65.15 68.58
AdaDFQ [&7] (CVPR 2023) 66.53 65.41 68.38
TexQ (Ours) 67.73 67.07 70.72
GDFQ [24, &7] (ECCV 2020) 20.23 1.46 0.31
ARC [BR] (IJCAI 2021) 23.37 14.30 1.63
W3A3 Qimera 8, &7] (NeurIPS 2021) 1.17 - -
AdaSG [26] (AAAI 2023) 37.04 26.90 16.98
AdaDFQ [27] (CVPR 2023) 38.10 28.99 17.63
TexQ (Ours) 50.28 32.80 25.27

Bit width For low bit width case, conventional ZSQ methods suffer from a huge accuracy loss,
while our TexQ performs good generalization capability. Specifically, for 4-bit ResNet-18 case,



TexQ achieving 67.73% accuracy, outperforming AdaDFQ by 1.2%. In 3-bit case, TexQ reaches
50.28% outstanding accuracy, outperforming AdaDFQ by 12.18%, with a standard deviation of
0.34 in 5 repeated experiments. Similar results were obtained in MobileNetV2.

Network Size Larger models are likely lead to poor performance with existing ZSQ methods,
especially in low bit width case. For example, in 3-bit case, Qimera [AX, &7] performs well on
the small ResNet-20, while achieves only 1.17% accuracy on the larger ResNet-18. In contrast,
our TexQ achieved 55.87% ultra-low when quantizing ResNet-18 to 3-bit, and leads AdaDFQ with
7.64% on 3-bit ResNet50 case. These results again demonstrate the effectiveness of our method.

4.3 Ablation study

Hyperparameters After empirical initialization, the hyperparameters k, 0y, 0p, and ¢ are
searched for their optimal value with grid search by quantizing ResNet-18 to 3-bit on ImageNet,
as displayed in Figure . The optimal configurations are k=9, 0;=0.3, 61,=0.5, and £=0.015. The
hyperparameter k represents the number of dominant texture elements, whose optimal value of k=9
is consistent with what we observe in the real samples. The sum of the optimal values of 6y and
601, is 0.8, which fits our assumptions about the proportion of dominant texture elements. To avoid
complex searches, these parameters were used for all experiments. While this may not be optimal
for all networks, it is sufficient to exhibit the advanced performance of TexQ.
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Figure 7: Influence of the hyperparameters.

Modules Ablation on key modules including £ aws (Eq. 6), LY gns (Eq. 7) and mixup
knowledge distillation (MKD, Eq. 9) is conducted. As presented in Table 3, dropping one or two of
them results in an accuracy loss. The largest accuracy loss (8.37%) is observed when both LE L aws
and £ _png are removed, which indicates their cooperative relationship: LC 1 png loosens the
shallow layers constraint, facilitating LE 1 awg to calibrate.

Table 3: Ablations on modules. We report the top-1 accuracy of 3-bit ResNet-18 on ImageNet.

L aws LS.Bnvs MKD  Top-1 Accuracy(%)

v v v 50.94
v v 49.03
v v 43.31
v v 49.63

v 42.65
v 49.00

v 42.57

5 Discussion

5.1 Why does TexQ work?

Mitigating the domain gap Our synthetic samples with calibration match the real distribution
better, as presented in Figure [ and Figure B. Further, Figure B shows our synthetic sample has a
more detailed texture distribution similar to the real one.
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Figure 8: Visualization of synthetic samples. For ImageNet and CIFAR10/100, samples are obtained
with ResNet-18 and ResNet-20, respectively. The advanced IntraQ was selected as a competitor.
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Figure 9: Visualization of the Figure 10: Cosine similarity confusion matrix of samples.

running mean of BNS in ResNet-20. Synthetic samples are obtained with ResNet-18.

Increasing inter-class distance As displayed in Figure Ba, the class centers of samples from con-
ventional methods is unclear, limiting the inter-class distance. The situation is improved by intro-
ducing calibration centers, as shown in Figure Hb.

Enhancing sample diversity Figure [l shows our synthetic samples scatter a lot compared with
IntraQ, implying the enhancement of sample diversity. To put it bluntly, synthetic images from
different methods are visualized in Figure B, showing the improvement in color and texture diversity
of our samples. Further, the intra-class diversity is observed through cosine similarity confusion
matrix of samples in Figure [0, showing that our samples reach a similar diversity to the real ones.

5.2 Limitations and future work

This work is built upon the concept of "texture", and the texture filters adopted are designed man-
vally. Thus, the application to other tasks with different modality would be limited. We envision
adding training process to the filters, which would generalize the calibration method proposed to
other modality. Low-bit quantization remains a challenge. For instance, TexQ achieve 70.72% ac-
curacy by quantizing ResNet-50 to 4-bit, while it drops to 25.27% in 3-bit case. The introduction of
advanced distillation methods holds promise for more better results.

6 Conclusion

In this paper, we observe a non-negligible detailed texture distribution in the real samples. To retain
this property in synthetic samples, we introduce synthetic calibration images and centers to calibrate
the generator. To diversify the samples, mixup knowledge distillation module is introduce to create
diversified samples for fine-tuning. Extensive experiments show our state-of-the-art performance on
mainstream networks and datasets, especially for low bit width quantization.
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