
Dataset Decomposition: Faster LLM Training with
Variable Sequence Length Curriculum

Hadi Pouransari1,◦ Chun-Liang Li1 Jen-Hao Rick Chang1
Pavan Kumar Anasosalu Vasu1 Cem Koc1 Vaishaal Shankar2,† Oncel Tuzel1

1Apple 2Anthropic

Abstract

Large language models (LLMs) are commonly trained on datasets consisting of
fixed-length token sequences. These datasets are created by randomly concate-
nating documents of various lengths and then chunking them into sequences of a
predetermined target length (concat-and-chunk). Recent attention implementations
mask cross-document attention, reducing the effective length of a chunk of tokens.
Additionally, training on long sequences becomes computationally prohibitive due
to the quadratic cost of attention. In this study, we introduce dataset decomposition,
a novel variable sequence length training technique, to tackle these challenges. We
decompose a dataset into a union of buckets, each containing sequences of the same
size extracted from a unique document. During training, we use variable sequence
length and batch-size, sampling simultaneously from all buckets with a curriculum.
In contrast to the concat-and-chunk baseline, which incurs a fixed attention cost at
every step of training, our proposed method incurs a computational cost propor-
tional to the actual document lengths at each step, resulting in significant savings
in training time. We train an 8k context-length 1B model at the same cost as a 2k
context-length model trained with the baseline approach. Experiments on a web-
scale corpus demonstrate that our approach significantly enhances performance
on standard language evaluations and long-context benchmarks, reaching target
accuracy with up to 6× faster training compared to the baseline. Our method not
only enables efficient pretraining on long sequences but also scales effectively with
dataset size. Lastly, we shed light on a critical yet less studied aspect of training
large language models: the distribution and curriculum of sequence lengths, which
results in a non-negligible difference in performance.*

1 Introduction

Large language models (LLMs) are often pretrained autoregressively (i.e., predicting the next token
given a context) on large text corpora sourced from the web. Examples include The Pile [19],
RefinedWeb [46], RedPajama [14], and DOLMA [57]. Each of these datasets comprises multiple
documents, ranging from Wikipedia articles to books and code repositories. While the individual
lengths of the documents vary from a few words (e.g., a message) to hundreds of thousands of words
(e.g., a book), the training infrastructure often supports only a limited sequence length in a batch.
To facilitate efficient training, document chunking is necessary. In this paper, we investigate the
influence of document chunking, propose alternative strategies, and evaluate the proposed strategies
with careful experiments.

◦Corresponding author: mpouransari@apple.com, †Work is done when at Apple.
*Code to be available at https://github.com/apple/ml-dataset-decomposition.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/apple/ml-dataset-decomposition

233 234 235 236 237 238 239 240

of seen tokens

40

45

R
eg

ul
ar

ev
al

(%
)

Baseline-8k

Dataset Decomposition

>4⨉ data
efficiency

+2.4

(a) Data Efficiency

0 1000 2000 3000 4000 5000
GPU-Hours

40

45

R
eg

ul
ar

ev
al

(%
)

Baseline-8k

Dataset Decomposition

>6⨉ training speed-up

(b) Computational Efficiency

Figure 1: Scaling the training of the OpenLM-410M model to 1.1 trillion tokens on the RefinedWeb
dataset. Note that each point on the figure represents a separate training from scratch (not different
checkpoints of a single run). For the largest run, some tokens are seen more than once (the dataset
has approximately 525 billion tokens). For dataset decomposition, we use the Grow-P2 curriculum
with 8 cycles. Maximum context length is 8192 and all hyper-parameters are the same for DD and
the baseline. (a) Regular metrics average when training with the baseline method and the proposed
method. We observe more than 4× data efficiency compared to the baseline. Also, even at 1.1 trillion
tokens, DD has a +2.4 accuracy improvement compared to the baseline (which has a plateauing
accuracy curve even on a logarithmic x-axis). (b) Comparison of model average accuracy versus
training cost (GPU-hours). DD reaches the best accuracy of the baseline more than 6× faster. This is
the combined effect of DD accuracy and speed gains.

Recent works [43, 37, 59, 60] popularized the concat-and-chunk approach to convert text datasets with
variable document lengths into sequences with a fixed target length. In this approach, during a data
preparation stage before training, we first randomly shuffle and concatenate all tokenized documents.
Consecutive concatenated documents are separated by a special token <EOT>, allowing the model
to detect document boundaries. We then chunk the concatenated sequence into subsequences with
a target sequence length. For example, 2048 and 4096 for the Llama-1 and Llama-2 models,
respectively. The model is then pretrained on batches of sequences with fixed length.

The concat-and-chunk approach has several shortcomings. First, randomly concatenating documents
can lead to the model attending to a context from an unrelated document to predict the next token.
While well-trained models learn to avoid cross-document attention, this is not explicitly enforced,
leading to potential spurious modeling. Second, the cross-document attention spends unnecessary
computation on attending to unrelated tokens that do not facilitate learning. This is especially crucial
due to the quadratic complexity of the attention mechanism. Even with an implementation of attention
that supports cross-document attention masking, the computational cost for each optimization step
would be bottlenecked by the longest document in the global batch, leading to significant under-
utilization of devices with shorter documents. Third, even if a document is shorter than the target
sequence length, it may still be broken into two chunks when they are at the boundary of two
sequences. This results in significantly smaller average chunk lengths compared to the original
document length average (see Fig. 3a), which hinders the model’s capability.

Recent and concurrent works on LLM training try to improve the concat-and-chunk approach:
document-masking is possible with recent implementation of attention [29] as adopted in some recent
pre-training recipes [39], best-fit packing [17] to reduce document chunking, and concatenating
semantically related documents instead of randomly [55]. However, none of them address all three
issues mentioned above together.

In this work, we introduce dataset decomposition (DD), a novel approach to decompose data based
on their length and train with variable sequence length (VSL) and length-based curriculum to address
the above issues. We obtain significant both significant accuracy improvement and straining speed-up
as shown in Fig. 1. DD decomposes a given dataset containing documents of variable lengths into
a union of datasets/buckets, each with sequences of a fixed length. Specifically, a dataset D is
decomposed into buckets ∪iDi, where each bucketDi contains sequences of length 2i, each extracted
from a unique document. During training with VSL, at every step of the optimization process, we
sample i (based on a curriculum) to form a batch with b/2i sequences from the bucket Di, which

2

concat-and-chunkoriginal documents dataset decomposition

<latexit sha1_base64="nFp3aHz68n1OhxJhj1CLZTrzGPo=">AAAB/nicbVDLSsNAFJ3UV42vqLhyM9gIrkrSRXVZ1IXLCvYBbQiT6aQdOpmEmYlQQsBfceNCEbd+hzv/xkmbhbYeGDiccy/3zAkSRqVynG+jsra+sblV3TZ3dvf2D6zDo66MU4FJB8csFv0AScIoJx1FFSP9RBAUBYz0gulN4fceiZA05g9qlhAvQmNOQ4qR0pJvndi2OYyQmmDEstvcz9zctG3fqjl1Zw64StyS1ECJtm99DUcxTiPCFWZIyoHrJMrLkFAUM5Kbw1SSBOEpGpOBphxFRHrZPH4Oz7UygmEs9OMKztXfGxmKpJxFgZ4sksplrxD/8wapCq+8jPIkVYTjxaEwZVDFsOgCjqggWLGZJggLqrNCPEECYaUbM3UJ7vKXV0m3UXeb9eZ9o9a6LuuoglNwBi6ACy5BC9yBNugADDLwDF7Bm/FkvBjvxsditGKUO8fgD4zPH9mllCQ=</latexit>

D1
<latexit sha1_base64="7SO8TkJnM4K89i5X4tkANgL5Kvk=">AAAB/nicbVDLSsNAFJ3UV42vqLhyM9gIrkrSRXVZ1IXLCvYBbQiT6aQdOpmEmYlQQsBfceNCEbd+hzv/xkmbhbYeGDiccy/3zAkSRqVynG+jsra+sblV3TZ3dvf2D6zDo66MU4FJB8csFv0AScIoJx1FFSP9RBAUBYz0gulN4fceiZA05g9qlhAvQmNOQ4qR0pJvndi2OYyQmmDEstvczxq5adu+VXPqzhxwlbglqYESbd/6Go5inEaEK8yQlAPXSZSXIaEoZiQ3h6kkCcJTNCYDTTmKiPSyefwcnmtlBMNY6McVnKu/NzIUSTmLAj1ZJJXLXiH+5w1SFV55GeVJqgjHi0NhyqCKYdEFHFFBsGIzTRAWVGeFeIIEwko3ZuoS3OUvr5Juo+426837Rq11XdZRBafgDFwAF1yCFrgDbdABGGTgGbyCN+PJeDHejY/FaMUod47BHxifP9stlCU=</latexit>

D2
<latexit sha1_base64="yCfMh6vCIQCzQ7VEb65tp8Zwcbk=">AAAB/nicbVDLSsNAFJ34rPEVFVduBhvBVUkqVJdFXbisYB/QhjCZTtqhk0mYmQglBPwVNy4Ucet3uPNvnLRZaOuBgcM593LPnCBhVCrH+TZWVtfWNzYrW+b2zu7evnVw2JFxKjBp45jFohcgSRjlpK2oYqSXCIKigJFuMLkp/O4jEZLG/EFNE+JFaMRpSDFSWvKtY9s2BxFSY4xYdpv72UVu2rZvVZ2aMwNcJm5JqqBEy7e+BsMYpxHhCjMkZd91EuVlSCiKGcnNQSpJgvAEjUhfU44iIr1sFj+HZ1oZwjAW+nEFZ+rvjQxFUk6jQE8WSeWiV4j/ef1UhVdeRnmSKsLx/FCYMqhiWHQBh1QQrNhUE4QF1VkhHiOBsNKNmboEd/HLy6RTr7mNWuO+Xm1el3VUwAk4BefABZegCe5AC7QBBhl4Bq/gzXgyXox342M+umKUO0fgD4zPH9y1lCY=</latexit>

D3

Figure 2: Each cell in the figure represents a token. Left: Original documents with variable lengths.
Middle: Concat-and-chunk baseline to form sequences with a fixed target length (here = 4). Right:
Dataset decomposition method with D1, D2, and D3 buckets .

keeps the total number of tokens in a batch constant (2i × b/2i = b), regardless of which Di is
sampled.

This approach gives us several advantages and resolves the aforementioned issues of the concat-
and-chunk method. First, DD is simple and has negligible computational overhead during the data
preparation stage, making it easy to scale to large datasets. Second, tokens in each sequence are
ensured to be from the same document by construction, which avoids cross-document attention.
Furthermore, we have access to the sequence length distribution (an auxiliary prior knowledge) which
can be used to create different mixtures/curricula for training. Finally, our VSL training strategy
accelerates training time: the latency for one optimization step is less when sampling from Di with
smaller i (due to attention’s quadratic complexity). Following is a summary of our contributions:

• We introduce DD, a method to efficiently decompose a dataset of variable-length documents into a
union of buckets with fixed-length sequences. DD enables efficient and robust training via VSL
and length-based curriculum.

• We perform large-scale experimentation using different models, datasets, and evaluation tasks to
demonstrate the efficacy of the proposed method. We show (see Fig. 1) significant gains in data
efficiency (> 4×) and compute efficiency (11% to 45%), resulting in combined LLM pretraining
acceleration of up to 6× (time to reach certain accuracy compared to baseline).

• Through careful experimentation, we study the importance of sequence length distribution and
mixture during pretraining for different natural language and long-context tasks. We show the effect
of concatenation and chunking operations to synthetically alter sequence length (Section 3.2).

2 Method

2.1 Dataset decomposition

Given a dataset D of tokenized documents {d1, d2, . . . , dn}, the goal of dataset decomposition (DD)
is to reorganize D as a union of buckets, ∪iDi, such that: (1) each bucket Di consists of sequences
of tokens with length li; (2) each sequence s ∈ Di is a subsequence of one document d ∈ D; and
(3) each token in D appears in exactly one Di. This decomposition produces sequences that each
belong to a unique document, ensuring no cross-document attention within a sequence during training.
Additionally, all sequences in a given bucket Di have the same length li, enabling efficient batching.

Dataset decomposition as defined above is not unique. We propose a specific decomposition, with
li = 2i, to optimally maintain the original document sequence length distribution while also enabling
efficient batch pretraining, as explained in Section 2.2. We apply decomposition at the document
level, which makes it very easy to integrate the method into any existing data preparation pipeline
(a stage before model training) and is scalable to large datasets. For a tokenized document d ∈ D
with length l, where l = 2i1 + 2i2 + . . .+ 2ik represents its binary decomposition, we break d into k
adjacent sequences s1, . . . , sk, with lengths of 2i1 , . . . , 2ik , respectively. Each sequence sj of length
2ij is then assigned to bucket Dij . Fig. 2 shows a schematic representation of this method.

With our proposed dataset decomposition approach, each bucket Di contains sequences extracted
from an original document d such that the length of d is at least 2i. In Fig. 3b, we show the distribution

3

25 26 27 28 29 210 211 212 213 214

Sequence length

10−7

10−6

10−5

10−4

10−3

10−2

10−1

P
D

F

3.8%

0.3%
0.6%

Orig. Docs
mean=598

Baseline-2k
mean =463

Baseline-8k
mean =558

Pack-8k
mean =585

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Bucket number

2

4

6

8

10

12

14

16

T
ok

en
s

%

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

(b)

25 26 27 28 29 210 211 212 213

Context length

10−5

10−4

10−3

P
D

F

Baseline-8k
mean=930

Pack-8k
mean=1064

DD≥256

mean=1344

(c)

Figure 3: For the RefinedWeb dataset [46]: (a) Distribution of chunk lengths using different dataset
preparation methods. Peaks show the percentage of chunks for each method with the same length
as the target sequence length. (b) Distribution of tokens over Di’s in DD. Color/pattern shows the
⌊log2 l⌋, where l is the length of the original document each token is extracted from. (c) Probability
distribution of context length (number of tokens from the same document a token can attend to)
observed during training for the concat-and-chunk baseline with target sequence length 8192 and DD
with ≥ 256 mixture defined in Table 1.

of RefinedWeb dataset tokens over different buckets, where D9 (corresponding to sequences with
length 512) has the maximum tokens. We also highlight the original document lengths from which
tokens are extracted. Most tokens in a bucket Di are extracted from documents with length l such
that 2i ≤ l < 2i+1, and some tokens are rolled over from documents with length l ≥ 2i+1. This
demonstrates the efficacy of the method in retaining original document length, especially for long
documents, which are scarce.

In Fig. 3a, we show the distribution of original document lengths and chunks within 2048 and
8192 target sequence lengths formed by the concat-and-chunk approach. We also present the length
distribution using the bin-packing approximate algorithm introduced by a concurrent work [17].
Additionally, in Fig. 3c, we show the distribution of context length (the number of tokens from the
same document a token can attend to during pretraining) when using baselines with a target sequence
length of 8192 and DD. See Appendix F for additional discussion on sequence length statistics.

In contrast to the concat-and-chunk approach, which results in a static dataset, DD enables us to use
sequence length distribution as prior knowledge and optimize the best mixture for the target task. In
Section 3.2, we show the bias of each target evaluation toward a sequence length and the effect of
concatenation and chunking on model performance. In Section 3.3, we study the effect of different
sequence mixtures for LLM pretraining, a less-studied topic in LLM pretraining.

2.2 Variable sequence length training

Following the setup in Section 2.1, we assume a set of k buckets such that Di, containing sequences
with length 2i, are available. Let b be the target batch size – the number of tokens used per optimization
step. In variable sequence length (VSL) training, at every step of optimization, we first sample i from
available choices, then pick b/2i sequences from bucket Di. Since Di consists of sequences with
length 2i, the number of seen tokens per optimization step remains b, independent of the choice of i.
Training LLMs with the VSL algorithm comes with several advantages.

First, since the total number of seen tokens per optimization step does not change, VSL does not alter
optimization dynamics, and the same hyperparameters as the baseline can be utilized (see Section 3).

Second, in Section 3.1, we show that the time to complete one optimization step (forward+backward)
for a fixed b (tokens per step) varies by sequence length due to the quadratic cost of attention [63].
With VSL training, the cost of every optimization step depends on the bucket Di sampled for that step
(and hence the sequence length). Thus, the more expensive steps (corresponding to long sequences)
are compensated with less expensive steps (corresponding to short sequences).

4

26 27 28 29 210 211 212 213

Context length

200

400

600

800

1000

O
ne

st
ep

tr
ai

ni
ng

la
te

nc
y

(m
s)

+35%

+88%

+23%

OpenLM-1B

OpenLM-3B

OpenLM-7B

(a) (b)

Figure 4: (a) Average time for one optimization step (b = 8× 8192 tokens) on an 8×H100 node with
FSDP and FlashAttention2 for different context lengths. (b) OpenLM-1B/3B/7B models trained on
137B tokens. Accuracy and training speed gains are shown.

Finally, the sampling component in VSL (which Di to choose at every optimization step) enables
different curricula of sequence lengths. In Section 3.4, we show the significance of such curricula on
model stability and generalization accuracy.

3 Experiments and analysis

In this section, we show the efficacy of the proposed method to train LLMs of different sizes on large-
scale datasets and provide additional analyses. For all experiments, except the results in Section 3.5,
we use RefinedWeb [46] filtering of Common Crawl [1] with a total of ∼ 525 billion tokens using the
EleutherAI/gpt-neox [9] tokenizer (vocabulary size is 50,432). Model architectures and training code
are based on the OpenLM [22]†. For all experiments, other than model scaling in Section 3.5, we use
the OpenLM-1B model with an 8k context length. Please refer to Appendix B for implementation
details of all experiments.

Positional encoding We use Rotary Positional Embedding (RoPE) [58] to encode positions in
queries and keys before the attention module. RoPE rotates the consecutive components of queries
and keys with a base frequency fb = 10, 000. Recent studies [48, 64, 36] have suggested increasing
fb to better adapt a pretrained model for longer sequences through fine-tuning. We find that using a
larger fb is also beneficial when training LLMs from scratch. In Table 4, we show that increasing fb
to 100,000 improves performance for both the baseline and DD methods.

Evaluation We evaluate each model on a comprehensive set of standard benchmarks, mainly using
LLM Foundry [2]. We report averaged accuracies over each category, as well as the regular average,
which is the average of 14 regular language modeling benchmarks detailed below:

• Commonsense Reasoning (CSR): PIQA-0-shot [8], COPA-0-shot [52], and OpenBookQA-10-
shots [40].

• Language Understanding (LU): Lambada-OpenAI [44], Hellaswag-0-shot [65], Winograd-3-
shots [30], and WinoGrande-5-shots [54].

• Reading Comprehension (RC): SQuAD-3-shots [50], BoolQ-0-shot [12], and CoQA-0-shot [51].
• World Knowledge (WK): Jeopardy-3-shots [3], ArcEasy-3-shots [13], ArcChallenge-3-

shots [13], and WikiDataQA-3-shots [4]

To evaluate model on longer context tasks, we adopt the following real-world benchmarks:

• Multi-Document Question Answering (MDQA): We follow the exact setup as in Liu et al. [35],
where for each question from NaturalQuestions-Open [28, 27], r Wikipedia documents are retrieved
such that one of them has the answer to the question, and the other r − 1 documents are distractors.
We report MDQA-10, MDQA-20, and MDQA-30 accuracy corresponding to r = 10, 20, and 30,

†https://github.com/mlfoundations/open_lm

5

https://github.com/mlfoundations/open_lm

(a) (b) (c)
Figure 5: (a) Performance of OpenLM-1B model trained on 234 tokens from buckets with different
sequence lengths. (b) distribution of lengths of documents for different benchmarks. (c) Effect of
chunking (D13→10) and concatenating (D7→13) sequences during pretraining on model performance.

respectively. For each query, we evaluate the model by changing the location of the target document
among distractors and report the averaged accuracy.

• TOEFL: This dataset is a multiple-choice question answering dataset from An et al. [5]. The
dataset contains QA pairs for 15 longest lectures in Tseng et al. [61], Chung et al. [11]. Only one of
the choices is the correct response. We estimate the correct choice by picking the choice with the
lowest mean log probability value.

• QuALITY: This dataset is a multiple-choice question answering dataset from An et al. [5]. The
dataset contains a long passage for context, followed by a question with multiple choices. Only one
of the choices is the correct response. We estimate the correct choice by picking the choice with the
lowest mean log probability value.

3.1 Training efficiency

We first verify that VSL training enables a higher throughput than the baseline concat-and-chunk
method. We enumerate model sizes (OpenLM-1B/3B/7B) and different context lengths (26 to 213)
and measure the time to train 100 batches with a fixed global batchsize of b = 8× 8192 distributed
over 8 GPUs in a single node. We repeat this 5 times and report the average time per optimization step
in Fig. 4a (with STD mostly < 1ms). See Appendix C.1 for additional results with different batchsizes
b. For each model, we highlight the training time overhead (due to attention’s quadratic complexity
with an optimized FlashAttention2 kernel [15]) when training with 8192 context lengths compared to
64 context lengths: +35%, +88%, and +23% for OpenLM-1B, -3B‡, and -7B, respectively. Training
overhead grows for longer context lengths (see Fig. 7 for results up to 16k context length).

The concat-and-chunk baseline method always operates at a fixed sequence length. For example, for
the OpenLM-1B model, an optimization step with concat-and-chunk takes 243ms and 304ms for
target context lengths of 2048 and 8192, respectively. The expected time for VSL, on the other hand,
is the weighted average over different sequence lengths depending on the mixture. In Table 1, we
report the training step time for different mixtures. For example, with the natural length distribution
resulting from DD (Fig. 3b), training up to length 8192 sequences takes a similar time (244ms) as
baseline training with length 2048 (with 243ms per step) per step—equivalent to a 20% training time
reduction compared to baseline training with a fixed length of 8192 (with 304ms per step).

3.2 Sequence length bias

In this section, we study the effect of pretraining data sequence length on model performance in
isolation. Using a single bucket Di as the dataset, we train an LLM from scratch on sequences with
length 2i for a total of 234 seen tokens. Note that the number of tokens per optimization step is fixed
at 256, irrespective of sequence length. We use the same training hyperparameters for all runs. In
Appendix C.2, we show that our conclusions do not depend on the choice of hyperparameters. To

‡OpenLM-3B has 32 heads (×2 that of OpenLM-1B), and a per-head dimension of 2560/32=80, not suitable
for FlashAttention. This makes attention a significant bottleneck for this model.

6

Name
Number of tokens ×230 Avg.

Seq.
Len

Avg.
Ctx.
Len

Step
Time
(ms)

Regular MDQA

D6 D7 D8 D9 D10 D11 D12 D13 CSR LU RC WK Avg. 10 20 30 Avg.

Natural 3 6 10 17 21 17 13 9 482 1018 244 62.4 65.4 43.8 43.9 54.0 26.7 20.7 18.5 21.9

Equal 12 12 12 12 12 12 12 12 257 1020 244 61.9 64.3 43.1 43.5 53.3 25.1 21.4 17.4 21.3

1k-only 0 0 0 0 96 0 0 0 1024 512 234 60.8 66.4 43.2 44.7 54.0 0.2 0.1 0.2 0.2

≤2k 16 16 16 16 16 16 0 0 195 336 231 62.8 63.7 41.8 43.5 53.1 23.5 0.4 0.4 8.1

≥256 0 0 16 16 16 16 16 16 780 1344 250 61.5 65.6 43.4 44.1 53.8 25.0 18.4 17.2 20.1

Mid 0 0 24 24 24 24 0 0 546 480 233 61.9 65.5 42.5 43.8 53.6 19.1 0.0 0.1 6.4

≥1k 0 0 0 0 24 24 24 24 2185 1920 263 61.9 65.0 45.8 43.3 54.0 26.7 21.6 18.1 22.1

Table 1: Effect of pretraining dataset mixture on model performance. Each row corresponds to a
model trained on a specific mixture of dataset decomposition buckets. All models are OpenLM-1B,
have seen a total of 96× 230 tokens, use RoPE with a base frequency of 10k, and are trained with the
same hyperparameters. The definition of average context length is given in Appendix F.

reduce statistical error, we train each model twice from scratch with different random seeds and
report the average metric for each benchmark (observing an average standard deviation of ∼ 0.3 for
regular benchmarks and ∼ 1.6 for multi-document QA). Results are demonstrated in Fig. 5a.

We show a significant correlation between pretraining sequence length and different benchmarks.
Specifically, the accuracy of commonsense reasoning, language understanding, and world knowledge
shows an inverted U-shape behavior with respect to pretraining sequence length, while reading
comprehension benefits from longer sequences. This behavior can be associated with training-test
distribution alignment with respect to sequence length. In Fig. 5b, we show the length distribution
for different benchmarks where RC demonstrates a heavier tail compared to CSR, LU, and WK.
Multi-document QA benchmarks show a vivid correlation with respect to sequence length: test
accuracy is ≈ 0 unless pretraining sequence length is greater than the test context length, which is ∼
2k, 4k, and 6k for MDQA-10, -20, and -30, respectively.

It could be argued that data selection based on sequence lengths could introduce bias since the content
(or source) of the documents might change based on the sequence lengths. To better understand the
effect of sequence length on common metrics, we created two new buckets, D13→10 and D7→10,
from existing bucketsD13 andD7, respectively. The bucketD13→10 contains sequences of length 210

created by chunking sequences from D13 into 8 subsequences and then performing a global shuffle.
The bucket D7→10 also includes sequences of length 210, each formed by concatenating 8 random
sequences from D7.

In Fig. 5c, we compare the regular average metric of models pretrained on these buckets; for each
bucket, we train two models from scratch using different random seeds and report the averaged results.
D13→10 gains 2.6 points compared to D13 while including the same content. This demonstrates the
pure effect of sequence length on model accuracy. Furthermore, training on D13→10 underperforms
D10 by 0.9 points, even though they are of the same length, indicating that long documents (used to
construct D13→10) correlate less with our benchmarks than short documents (used to construct D10).
Finally, we show that concatenation, as opposed to chunking, does not mitigate length correlation.
This is evident from the fact that D7→10 scores the same as D7 and still significantly worse than D10.

Our analysis suggests that effective base model pretraining requires a mixture of different sequence
lengths to perform well on all benchmarks. Next, we systematically study the effect of dataset mixture
from the sequence length perspective.

3.3 Data mixture

A key benefit of dataset decomposition is access to and control over sequence length distribution.
We form datasets with different mixtures of sequence lengths and explore the performance of a
model trained on each mixture. Table 1 shows the results. For all experiments, the total seen tokens
and hyperparameters are fixed, and only the distribution over sequence length is changed. First,
we observe that mixtures with small average context length (we provide the exact definition in
Appendix F) perform poorly on MDQA, which requires long context understanding. For example,
as for “1k-only”, “≤2k”, and “Mid” distributions that do not include long sequences from D12 and
D13. Larger average context length (e.g., as in “≥1k”) also correlates positively with performance on

7

Name Sampling Odds Num.
Cycles

Regular MDQA
D8 D9 D10 D11 D12 D13 CSR LU RC WK Avg. 10 20 30 Avg.

Uniform 1 1 1 1 1 1 1 62.2 65.2 43.4 44.0 53.8 27.3 22.0 19.6 23.0

Grow-Linear 6 5 4 3 2 1 1 60.9 64.2 46.6 42.9 53.6 30.9 26.0 23.9 26.9
8 62.7 65.0 45.4 44.7 54.5 30.1 25.3 22.8 26.1

Grow-P2 32 16 8 4 2 1 1 60.9 64.3 46.5 44.1 54.0 29.6 25.0 23.1 25.9
8 62.8 65.2 45.3 44.2 54.4 32.3 26.9 24.6 28.0

Grow-P100 1005 1004 1003 1002 100 1 1 60.8 65.0 47.3 43.4 54.1 30.6 26.9 23.5 27.0
8 63.2 65.4 46.3 44.6 54.9 30.2 23.2 18.9 24.1

Shrink-P100 1 100 1002 1003 1004 1005 1 60.0 62.2 37.6 40.7 50.3 24.5 18.7 15.6 19.6

Table 2: Effect of length-based curriculum. All models are OpenLM-1B and have seen a total of
96× 230 tokens, with exactly 234 tokens from each Di for i = 8, . . . , 13. We use RoPE with a base
frequency of 100k and the same default hyperparameters.

reading comprehension tasks, consistent with our observation in Fig. 5a, but comes at the cost of a
longer training step time.

Furthermore, “1k-only”, that is training using only the best sequence length (= 1024) from the
study in Section 3.2 results in good performance on regular evaluations, especially for language
understanding and world knowledge tasks, but is poor for long context tasks. Finally, we observe
that “natural” mixture, that is aligned with the distribution resulting from dataset decomposition (see
Fig. 3b), obtains near-optimal performance on both regular and MDQA tasks, demonstrating the
scalability of the proposed approach to large datasets without a need for intervention on the natural
underlying length distribution.

3.4 Length-based curriculum

We can think of short sequences as being "easier" compared to longer ones; hence motivating a
curriculum learning [7, 18] that prioritizes short sequences. A similar idea (training with image
resolutions from low to high) is explored in vision to train CLIP [49] models more efficiently [33]. In
VSL, we can easily implement curriculum learning through sampling designs. At every optimization
step, we sample without replacement a batch with b tokens from bucket Di with probability pi. If a
bucket is empty, we exclude it from sampling. We study different curricula for the "≥ 256" mixture
(with an equal number of tokens in D8, . . . ,D13). Results are shown in Table 2. For each curriculum,
we determine the odds of picking a batch from each bucket (= pi’s when normalized). Details of our
length-based sampling and curriculum are provided in Algorithm 1. We consider curricula that shift
from short to long sequences at different paces controlled by pi’s changing linearly, with powers of 2,
and with powers of 100 between buckets.

Due to the presence of other hyperparameter schedules during the course of training (e.g., learning
rate and weight decay), a curriculum on length may result in a potential implicit bias. For example,
if we only see long sequences toward the end of training, long sequence learning occurs only when
the learning rate is too small. To address this potential issue, we also explore cyclic curricula, where
a curriculum is applied in cycles similar to cyclic learning rate schedules [56] as shown in Fig. 6.
Note that when we train on a sequence of length l, we have l next-token prediction losses (applied in
parallel) with context lengths 0, 1, . . . , l − 1. This already implies some mixing: when training on a
“hard” example (i.e., a long sequence), we also include “easy” examples (its shorter sub-sequences).
Therefore, even towards the end of each cycle, we still have some losses with short contexts.

Our results show that the cyclic "Grow-P2" curriculum is near optimal with different metrics. An
additional benefit of curriculum is training stability. Li et al. [31] noticed that long sequences
contribute to extreme gradient variance, especially at the beginning of training, resulting in instability.
We also observe (see Appendix E) that our proposed approach with curriculum results in more stable
training dynamics, thus enabling more efficient training with larger batch sizes and learning rates.

3.5 Scaling

Dataset scaling In Fig. 1a, we show the performance of models trained with 234, 235, 236, 237, and
238 total tokens using DD and baseline. We use the “≥ 256” mixture and “Grow-Linear” curriculum
with 8 cycles for DD, and a fixed target sequence length 8192 for the baseline. Results show > 2×
data efficiency: our proposed method reaches the same accuracy as the baseline using less than half
the tokens.

8

Model
Size Method Num Time

∆
Regular

∆
MDQA

∆GPUs (hours) Avg. Avg.

160M Baseline-8k 16 18.3 - 39.3 - 9.7 -
DD 15.7 -14% 40.0 +0.7 11.4 +1.7

410M Baseline-8k 16 38.9 - 48.3 - 14.8 -
DD 29.6 -24% 49.4 +1.1 18.8 +4.0

1B Baseline-8k 32 44.4 - 56.7 - 25.6 -
DD 35.4 -20% 58.4 +1.7 25.6 -

Table 3: Comparing baseline training with DD on an alter-
native pretraining dataset and model sizes.

Method fb
Regular MDQA

Avg. Avg.

Baseline-8k 10k 51.3 19.0
100k 51.5 24.4

DD≥256
10k 53.8 20.1

100k 53.8 24.9

Table 4: Effect of RoPE base fre-
quency, fb, in pretraining.

Model scaling We report results on OpenLM-1B, -3B, and -7B trained from scratch for a total of
237 tokens in Fig. 4b. We compare baseline training with a fixed target sequence length 8192 and
VSL training with a DD≥256 mixture and the "Grow-Linear" curriculum with 8 cycles. Training with
DD results in significant accuracy gains and reductions in training wall-clock time at different scales.

Alternative dataset We demonstrate the efficacy of our proposed method on another large-scale
dataset, DataComp-LM [32]. We train models with different numbers of parameters: OpenLM-160M,
-410M, and -1B, for a total of 137B tokens. We compare the baseline with a DD≥256 mixture
trained with the "Grow-P2" curriculum with 8 cycles. Results are reported in Table 3, demonstrating
significant accuracy and training efficiency gains.

3.6 Comparison with state-of-the-art

We compare our proposed method, data decomposition, with other approaches for handling various
document lengths of pretraining data, including document masking (DM), best-fit sequence pack-
ing [17], and in-context pretraining (ICLM) [55]. We describe the details of our implementation of
the best-fit packing in Appendix D. For ICLM, we use the official implementation§ applied to the
RefinedWeb dataset. The results are shown in Table 5.

Pre-training context length is an important factor in determining a model’s long-context performance.
We empirically validate this in the results shown in Fig. 5a, where models trained on longer sequences
perform better on multi-document QA. Our proposed method has an average context length (as
defined in Eq. (2)) of 1,344 for the RefinedWeb dataset, compared to 930 for the baseline (see Fig. 3c)
and 1,064 when packing [17] is applied. This explains why the dataset decomposition mixture, even
without any length-based curriculum (the first row in Table 2), outperforms Baseline-8k-DM and
Pack-8k+DM (second and third rows in Table 5). Here, DM refers to applying document masking
during training to avoid cross-document attention.

Document masking improves the baseline on regular evaluations from 51.5 to 52.4 by preventing
cross-document attention. However, Xiong et al. [64] demonstrate that including concatenated
unrelated documents can still enhance long-context metrics compared to training solely with shorter
sequences. Therefore, DM experiences a slight decline in long-context evaluations, dropping from
27.5 to 27.1. Baseline-8k multi-document QA performance is even slightly better than our proposed
dataset decomposition mixture when used without length-based curriculum (the first row in Table 2).

In-context pre-training LMs (ICLM) [55] proposes document sorting based on content similarity.
Although the benefits of ICLM with large-scale Common Crawl data (used in our experiments) are
marginal in regular evaluation, we observe that ICLM results in slightly better multi-document QA
performance than Baseline-8k when 30 documents are in the context compared with Baseline-8k
(22.0% vs. 20.5%). The average long-context metric boosts from 27.5 for Baseline-8k to 28.7 for
ICLM. However, the similarity finding step proposed by ICLM is resource-intensive at scale¶.

Finally, as shown in in Table 2 our proposed cyclic length-based curriculum, for example, Grow-P2
with 8 cycles, results in a significant improvement in the model’s long-context capability. Our
proposed method avoids cross-document attention to unrelated content, maintains coherent long
sequences, and benefits from a length-based curriculum, effectively improving performance in both
regular and long-context evaluations compared to all baselines. We further summarize long-context
performance of different methods discussed above in Table 6.

§https://github.com/swj0419/in-context-pretraining
¶Processing 400B tokens with the official repository required over a week using 96 CPUs and 16 GPUs.

9

https://github.com/swj0419/in-context-pretraining

Regular Long Context Step
Time
(ms)

Data
Prep.
CostMethod CSR LU RC WK Avg. MDQA TOEFL QuALITY Avg.

10 20 30

Baseline-8k 60.6 62.5 41.5 41.3 51.5 29.0 23.8 20.5 26.2 32.0 27.5 304 $
Baseline-8k+DM 60.2 64.1 42.8 41.8 52.4 24.4 20.0 16.0 29.2 32.0 27.1 304 $
Pack-8k+DM [17] 60.3 64.0 44.6 41.8 52.7 25.6 19.8 16.9 29.2 33.1 27.7 304 $$

ICLM [55] 60.6 62.1 44.7 40.0 51.7 26.7 20.0 22.0 28.7 34.6 28.7 304 $$$
DD (ours) 62.8 65.2 45.3 44.2 54.4 32.3 26.9 24.6 30.7 34.2 30.9 244 $

Table 5: Comparison with baseline and state-of-the-art methods. All models are trained with the same
hyperparameters, RoPE with fb = 100k, and for 103B tokens. DM denotes training with document
masking. DD uses the "Grow-P2" curriculum with 8 cycles. Dataset preparation cost is symbolic to
compare methods and does not reflect the wall-clock time.

4 Related works

Method Doc
Masking

Average
Context

Docs in a
Sequence Curr. MDQA-

30 (%)

Baseline ✓ 930 Mult-random ✗ 16.0

Pack-
8k+DM [17] ✓ 1064 Mult-packing ✗ 16.9

DD-Uniform ✗ 1344 Single ✗ 19.6

Baseline ✗ 4096 Mult-random ✗ 20.5

ICLM [55] ✗ 4096 Mult-semantic ✗ 22.0

DD-Grow-P2 N/A 1344 Single ✓ 24.6

Table 6: Summary of long-context performance
for different methods from Table 2 and Table 5.

Recent works have raised concerns regarding
cross-document attention. For example, Llama-
3 [39], ICLM [55], and [17], which we dis-
cussed in Section 3.6. Similarly, [26] dis-
cuss challenges with the baseline concat-and-
chunk approach and propose an approximate
bin-packing algorithm.

Related to our study on sequence length bias,
[62] shows the importance of train-vs-test time
distribution shift from a sequence length per-
spective on a string editing task. [6, 66, 25, 36]
highlight the challenge of generalizing to lengths beyond what the model has seen during training
and discuss the importance of positional encoding. Several works [41, 67, 23, 64, 10, 47, 48, 53, 34]
address enabling LLM inference with long context (see [45] for an overview). These approaches
are orthogonal to our contribution and can be applied post-pretraining to adapt to longer lengths.
GrowLength [24] proposes accelerating LLM pretraining by progressively growing context length us-
ing the baseline sequence formation method, but does not show results on LLMs. Similarly, increasing
sequence length has been shown in BERT model training [42] to improve compute efficiency.

The idea of dynamic batching has been explored in other domains. In vision, methods like NaViT [16,
38] use images with variable resolutions (a similar concept to context length for LLMs). In seq-to-seq
tasks (e.g., automatic speech recognition, text-to-speech, and neural machine translation), the inputs
have different lengths. An efficient approach is to sort inputs by their length and form batches of
inputs with similar lengths during training (after possible padding). Batchsize is dynamically adjusted
inversely proportional to input lengths [20, 21]. Different from these works, in dataset decomposition,
we do not simply put documents with similar lengths into the same bucket. Instead, we decompose
each document into multiple subsequences and form multiple buckets. We form batches with different
lengths during training by sampling from these buckets using a target mixture and curriculum.

5 Conclusion and limitations

In this paper, we explore the shortcomings of a popular LLM pretraining approach, concat-and-
chunk, and introduce dataset decomposition, a method to decompose a dataset of text documents into
buckets containing fixed sequence lengths. We show results of variable sequence training using DD
with different mixtures, curricula, datasets, and models, demonstrating significant LLM pretraining
speedup and a final model accuracy boost on a wide range of benchmarks. Furthermore, we provide
analysis on sequence length bias and attention masking. We compare our proposed method with
recent works that also address concat-and-chunk shortcomings in a unified experimental setup and
show gains in data preparation cost, training time, and final model accuracy.

Limitations. The training speed gains compared to the baseline are significant only when the target
sequence length is long enough. Otherwise, the attention cost is not a dominant fraction of training,
and hence no significant training speedup is expected.

10

Acknowledgements

We thank Tatiana Likhomanenko, Jason Ramapuram, Alexander Toshev, Barry Theobald, and Fartash
Faghri from Apple for their valuable feedback and suggestions.

References
[1] Common crawl. https://commoncrawl.org.

[2] Llm foundry v0.7.0. https://github.com/mosaicml/llm-foundry.

[3] Jeopardy. https://huggingface.co/datasets/jeopardy. [Used custom curated
version by LLM Foundry].

[4] Big-bench qa wikidata. https://github.com/google/BIG-bench/tree/main/
bigbench/benchmark_tasks/qa_wikidata. [Used through LLM Foundry].

[5] C. An, S. Gong, M. Zhong, M. Li, J. Zhang, L. Kong, and X. Qiu. L-eval: Instituting
standardized evaluation for long context language models, 2023.

[6] C. Anil, Y. Wu, A. Andreassen, A. Lewkowycz, V. Misra, V. Ramasesh, A. Slone, G. Gur-Ari,
E. Dyer, and B. Neyshabur. Exploring length generalization in large language models. Advances
in Neural Information Processing Systems, 35:38546–38556, 2022.

[7] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In Proceedings of
the 26th annual international conference on machine learning, pages 41–48, 2009.

[8] Y. Bisk, R. Zellers, J. Gao, Y. Choi, et al. Piqa: Reasoning about physical commonsense in
natural language. In Proceedings of the AAAI conference on artificial intelligence, volume 34,
pages 7432–7439, 2020.

[9] S. Black, S. Biderman, E. Hallahan, Q. Anthony, L. Gao, L. Golding, H. He, C. Leahy,
K. McDonell, J. Phang, et al. Gpt-neox-20b: An open-source autoregressive language model.
arXiv preprint arXiv:2204.06745, 2022.

[10] S. Chen, S. Wong, L. Chen, and Y. Tian. Extending context window of large language models
via positional interpolation. arXiv preprint arXiv:2306.15595, 2023.

[11] Y.-A. Chung, H.-Y. Lee, and J. Glass. Supervised and unsupervised transfer learning for question
answering. In M. Walker, H. Ji, and A. Stent, editors, Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, 2018.

[12] C. Clark, K. Lee, M.-W. Chang, T. Kwiatkowski, M. Collins, and K. Toutanova. Boolq:
Exploring the surprising difficulty of natural yes/no questions. arXiv preprint arXiv:1905.10044,
2019.

[13] P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick, and O. Tafjord. Think
you have solved question answering? try arc, the ai2 reasoning challenge. arXiv preprint
arXiv:1803.05457, 2018.

[14] T. Computer. Redpajama: An open source recipe to reproduce llama training dataset, 2023.
URL https://github.com/togethercomputer/RedPajama-Data.

[15] T. Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

[16] M. Dehghani, B. Mustafa, J. Djolonga, J. Heek, M. Minderer, M. Caron, A. Steiner, J. Puigcerver,
R. Geirhos, I. M. Alabdulmohsin, et al. Patch n’pack: Navit, a vision transformer for any aspect
ratio and resolution. Advances in Neural Information Processing Systems, 36, 2024.

[17] H. Ding, Z. Wang, G. Paolini, V. Kumar, A. Deoras, D. Roth, and S. Soatto. Fewer truncations
improve language modeling. arXiv preprint arXiv:2404.10830, 2024.

11

https://commoncrawl.org
https://github.com/mosaicml/llm-foundry
https://huggingface.co/datasets/jeopardy
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/qa_wikidata
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/qa_wikidata
https://github.com/togethercomputer/RedPajama-Data

[18] J. L. Elman. Learning and development in neural networks: The importance of starting small.
Cognition, 48(1):71–99, 1993.

[19] L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster, J. Phang, H. He, A. Thite,
N. Nabeshima, et al. The Pile: An 800GB dataset of diverse text for language modeling. arXiv
preprint arXiv:2101.00027, 2020.

[20] Z. Ge, L. Kaushik, M. Omote, and S. Kumar. Speed up training with variable length inputs by
efficient batching strategies. In Interspeech, pages 156–160, 2021.

[21] P. Gonzalez, T. S. Alstrøm, and T. May. On batching variable size inputs for training end-to-
end speech enhancement systems. In ICASSP 2023-2023 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 1–5. IEEE, 2023.

[22] S. Gururangan, M. Wortsman, S. Y. Gadre, A. Dave, M. Kilian, W. Shi, J. Mercat, G. Smyr-
nis, G. Ilharco, M. Jordan, R. Heckel, A. Dimakis, A. Farhadi, V. Shankar, and L. Schmidt.
OpenLM: a minimal but performative language modeling (lm) repository, 2023. URL
https://github.com/mlfoundations/open_lm/. GitHub repository.

[23] C. Han, Q. Wang, W. Xiong, Y. Chen, H. Ji, and S. Wang. Lm-infinite: Simple on-the-fly length
generalization for large language models. arXiv preprint arXiv:2308.16137, 2023.

[24] H. Jin, X. Han, J. Yang, Z. Jiang, C.-Y. Chang, and X. Hu. Growlength: Accelerating llms
pretraining by progressively growing training length. arXiv preprint arXiv:2310.00576, 2023.

[25] A. Kazemnejad, I. Padhi, K. Natesan Ramamurthy, P. Das, and S. Reddy. The impact of
positional encoding on length generalization in transformers. Advances in Neural Information
Processing Systems, 36, 2024.

[26] M. M. Krell, M. Kosec, S. P. Perez, and A. Fitzgibbon. Efficient sequence packing without
cross-contamination: Accelerating large language models without impacting performance.
arXiv preprint arXiv:2107.02027, 2021.

[27] T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. Parikh, C. Alberti, D. Epstein,
I. Polosukhin, J. Devlin, K. Lee, et al. Natural questions: a benchmark for question answering
research. Transactions of the Association for Computational Linguistics, 7:453–466, 2019.

[28] K. Lee, M.-W. Chang, and K. Toutanova. Latent retrieval for weakly supervised open domain
question answering. arXiv preprint arXiv:1906.00300, 2019.

[29] B. Lefaudeux, F. Massa, D. Liskovich, W. Xiong, V. Caggiano, S. Naren, M. Xu, J. Hu,
M. Tintore, S. Zhang, P. Labatut, D. Haziza, L. Wehrstedt, J. Reizenstein, and G. Sizov.
xformers: A modular and hackable transformer modelling library. https://github.com/
facebookresearch/xformers, 2022.

[30] H. Levesque, E. Davis, and L. Morgenstern. The winograd schema challenge. In Thirteenth
international conference on the principles of knowledge representation and reasoning, 2012.

[31] C. Li, M. Zhang, and Y. He. The stability-efficiency dilemma: Investigating sequence length
warmup for training gpt models. Advances in Neural Information Processing Systems, 35:
26736–26750, 2022.

[32] J. Li, A. Fang, G. Smyrnis, M. Ivgi, M. Jordan, S. Gadre, H. Bansal, E. Guha, S. Keh, K. Arora,
et al. Datacomp-lm: In search of the next generation of training sets for language models. arXiv
preprint arXiv:2406.11794, 2024.

[33] X. Li, Z. Wang, and C. Xie. An inverse scaling law for clip training. Advances in Neural
Information Processing Systems, 36, 2024.

[34] H. Liu, W. Yan, M. Zaharia, and P. Abbeel. World model on million-length video and language
with blockwise ringattention. arXiv preprint arXiv:2402.08268, 2024.

[35] N. F. Liu, K. Lin, J. Hewitt, A. Paranjape, M. Bevilacqua, F. Petroni, and P. Liang. Lost in
the middle: How language models use long contexts. Transactions of the Association for
Computational Linguistics, 12:157–173, 2024.

12

https://github.com/mlfoundations/open_lm/
https://github.com/facebookresearch/xformers
https://github.com/facebookresearch/xformers

[36] X. Liu, H. Yan, S. Zhang, C. An, X. Qiu, and D. Lin. Scaling laws of rope-based extrapolation.
arXiv preprint arXiv:2310.05209, 2023.

[37] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
and V. Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

[38] S. Mehta, F. Abdolhosseini, and M. Rastegari. Cvnets: High performance library for computer
vision. In Proceedings of the 30th ACM International Conference on Multimedia, pages
7327–7330, 2022.

[39] Meta. Introducing meta llama 3: The most capable openly available llm to date, 2024. URL
https://ai.meta.com/blog/meta-llama-3.

[40] T. Mihaylov, P. Clark, T. Khot, and A. Sabharwal. Can a suit of armor conduct electricity? a
new dataset for open book question answering. arXiv preprint arXiv:1809.02789, 2018.

[41] A. Mohtashami and M. Jaggi. Random-access infinite context length for transformers. Advances
in Neural Information Processing Systems, 36, 2024.

[42] K. Nagatsuka, C. Broni-Bediako, and M. Atsumi. Pre-training a bert with curriculum learning
by increasing block-size of input text. In Proceedings of the International Conference on Recent
Advances in Natural Language Processing (RANLP 2021), pages 989–996, 2021.

[43] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier, and M. Auli. fairseq: A fast,
extensible toolkit for sequence modeling. In Proceedings of NAACL-HLT 2019: Demonstrations,
2019.

[44] D. Paperno, G. Kruszewski, A. Lazaridou, Q. N. Pham, R. Bernardi, S. Pezzelle, M. Baroni,
G. Boleda, and R. Fernández. The lambada dataset: Word prediction requiring a broad discourse
context. arXiv preprint arXiv:1606.06031, 2016.

[45] S. Pawar, S. Tonmoy, S. Zaman, V. Jain, A. Chadha, and A. Das. The what, why, and how of
context length extension techniques in large language models–a detailed survey. arXiv preprint
arXiv:2401.07872, 2024.

[46] G. Penedo, Q. Malartic, D. Hesslow, R. Cojocaru, A. Cappelli, H. Alobeidli, B. Pannier,
E. Almazrouei, and J. Launay. The RefinedWeb dataset for Falcon LLM: outperforming curated
corpora with web data, and web data only. arXiv preprint arXiv:2306.01116, 2023. URL
https://arxiv.org/abs/2306.01116.

[47] B. Peng and J. Quesnelle. Ntk-aware scaled rope allows llama models to have ex-
tended (8k+) context size without any fine-tuning and minimal perplexity degradation.
2023. URL https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/
ntkaware_scaled_rope_allows_llama_models_to_have.

[48] B. Peng, J. Quesnelle, H. Fan, and E. Shippole. Yarn: Efficient context window extension of
large language models. arXiv preprint arXiv:2309.00071, 2023.

[49] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervision.
In International conference on machine learning, pages 8748–8763. PMLR, 2021.

[50] P. Rajpurkar, R. Jia, and P. Liang. Know what you don’t know: Unanswerable questions for
squad. arXiv preprint arXiv:1806.03822, 2018.

[51] S. Reddy, D. Chen, and C. D. Manning. Coqa: A conversational question answering challenge.
Transactions of the Association for Computational Linguistics, 7:249–266, 2019.

[52] M. Roemmele, C. A. Bejan, and A. S. Gordon. Choice of plausible alternatives: An evaluation
of commonsense causal reasoning. In 2011 AAAI Spring Symposium Series, 2011.

[53] A. Ruoss, G. Delétang, T. Genewein, J. Grau-Moya, R. Csordás, M. Bennani, S. Legg, and
J. Veness. Randomized positional encodings boost length generalization of transformers. arXiv
preprint arXiv:2305.16843, 2023.

13

https://ai.meta.com/blog/meta-llama-3
https://arxiv.org/abs/2306.01116
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_ rope_allows_llama_models_to_have
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_ rope_allows_llama_models_to_have

[54] K. Sakaguchi, R. L. Bras, C. Bhagavatula, and Y. Choi. Winogrande: An adversarial winograd
schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

[55] W. Shi, S. Min, M. Lomeli, C. Zhou, M. Li, V. Lin, N. A. Smith, L. Zettlemoyer, S. Yih, and
M. Lewis. In-context pretraining: Language modeling beyond document boundaries. arXiv
preprint arXiv:2310.10638, 2023.

[56] L. N. Smith. Cyclical learning rates for training neural networks. In 2017 IEEE winter
conference on applications of computer vision (WACV), pages 464–472. IEEE, 2017.

[57] L. Soldaini, R. Kinney, A. Bhagia, D. Schwenk, D. Atkinson, R. Authur, B. Bogin, K. Chandu,
J. Dumas, Y. Elazar, V. Hofmann, A. H. Jha, S. Kumar, L. Lucy, X. Lyu, N. Lambert, I. Magnus-
son, J. Morrison, N. Muennighoff, A. Naik, C. Nam, M. E. Peters, A. Ravichander, K. Richard-
son, Z. Shen, E. Strubell, N. Subramani, O. Tafjord, P. Walsh, L. Zettlemoyer, N. A. Smith,
H. Hajishirzi, I. Beltagy, D. Groeneveld, J. Dodge, and K. Lo. Dolma: an Open Corpus of Three
Trillion Tokens for Language Model Pretraining Research. arXiv preprint, 2024.

[58] J. Su, M. Ahmed, Y. Lu, S. Pan, W. Bo, and Y. Liu. Roformer: Enhanced transformer with
rotary position embedding. Neurocomputing, 568:127063, 2024.

[59] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,
E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971, 2023.

[60] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288, 2023.

[61] B.-H. Tseng, S.-S. Shen, H.-Y. Lee, and L.-S. Lee. Towards machine comprehension of spoken
content: Initial toefl listening comprehension test by machine, 2016.

[62] D. Variš and O. Bojar. Sequence length is a domain: Length-based overfitting in transformer
models. arXiv preprint arXiv:2109.07276, 2021.

[63] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[64] W. Xiong, J. Liu, I. Molybog, H. Zhang, P. Bhargava, R. Hou, L. Martin, R. Rungta, K. A.
Sankararaman, B. Oguz, et al. Effective long-context scaling of foundation models. arXiv
preprint arXiv:2309.16039, 2023.

[65] R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi. Hellaswag: Can a machine really
finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

[66] Y. Zhou, U. Alon, X. Chen, X. Wang, R. Agarwal, and D. Zhou. Transformers can achieve
length generalization but not robustly. arXiv preprint arXiv:2402.09371, 2024.

[67] D. Zhu, N. Yang, L. Wang, Y. Song, W. Wu, F. Wei, and S. Li. Pose: Efficient context window
extension of llms via positional skip-wise training. arXiv preprint arXiv:2309.10400, 2023.

14

A Broader impacts

This work enables faster training of LLMs, which are among the most compute-intensive applications
in the field. A positive societal/environmental impact of this work is training LLMs with a smaller
carbon footprint.

Another potential societal advantage of this work is training LLMs with fewer hallucinations. While
we did not directly measure this potential benefit, a concurrent work [17] shows such a benefit when
cross-document attention is not allowed during LLM pretraining.

B Implementation details

B.1 Training details

Software and hardware details All experiments in this paper are conducted using the OpenLM||

repository, which is based on PyTorch. We use Fully Sharded Data Parallelism (FSDP) with Bfloat16
mixed precision for all experiments. We use the Xformers [29] implementation for attention. For
hardware, we use one or more nodes of 8× NVIDIA H100 GPUs (Hopper architecture), each with
80GB memory, and 192 CPU cores with 2000GB of RAM. Nodes are connected through Elastic
Fabric Adapter (EFA) for efficient inter-node communication hosted by AWS.

Model architecture details We provide details of all architectures used in the paper in Table 7 to
Table 11.

Model Name OpenLM-160M
Hidden dimension 768
Number of Layers 12
Number of Heads 12

Number of Parameters 162,435,840

Table 7: OpenLM-160M.

Model Name OpenLM-410M
Hidden dimension 1024
Number of Layers 24
Number of Heads 16

Number of Parameters 411,665,408

Table 8: OpenLM-410M.

Model Name OpenLM-1B
Hidden dimension 2048
Number of Layers 24
Number of Heads 16

Number of Parameters 1,439,893,504

Table 9: OpenLM-1B.

Model Name OpenLM-3B
Hidden dimension 2560
Number of Layers 32
Number of Heads 32

Number of Parameters 2,796,096,000

Table 10: OpenLM-3B.

Model Name OpenLM-7B
Hidden dimension 4096
Number of Layers 32
Number of Heads 32

Number of Parameters 6,889,672,704

Table 11: OpenLM-7B.

Baseline hyper parameters We list our baseline hyperparameters in Table 12 and iterate over
changes for each section next. Note that we did not explicitly optimize hyperparameters for any of
the experiments, and we always use the same hyperparameters when using either the baseline method
or ours.

||https://github.com/mlfoundations/open_lm

15

https://github.com/mlfoundations/open_lm

Optimizer AdamW
AdamW-β1 0.9
AdamW-β2 0.95

learning-rate schedule cosine+warmup
Maximum learning rate 3× 10−3

cooldown learning rate 3× 10−5

Warm-up steps 5000
Grad Norm Clipping 1.0

Global batchsize (num tokens per step) 219

Weight Decay 0.1
Z-Loss Coefficient 10−4

Table 12: Baseline hyper-parameters.

Implementation details of Section 3.2 experiments Experiments in this section are done using
the same hyperparameters as in Table 12 for a total of 234 tokens on the OpenLM-1B model. We
trained each model twice with different random seeds and report the averaged results. For models in
this section, we use RoPE with fb = 10, 000. In Table 12, we show that our results and conclusions
in this section are not sensitive to hyperparameters, including the RoPE base frequency fb.

Implementation details of Section 3.3 and Section 3.4 experiments Experiments in this section
are done with OpenLM-1B model, trained for total of 96× 1034 ≈ 103B tokens. Hyper-parameters
are the same as Table 12, except we used 20000 warmup steps for all models presented in this section.
We use RoPE with fb = 10, 000 for all models in Section 3.3 and fb = 100, 000 for models in
Section 3.4.

Implementation details of Section 3.5
Dataset scaling: Experiments in this section are trained with the OpenLM-1B model, RoPE with
fb = 100, 000, and the baseline setup as in Table 12 except for the following changes for different
dataset sizes:

• total tokens = 234, warmup steps = 5, 000
• total tokens = 235, warmup steps = 5, 000
• total tokens = 236, warmup steps = 10, 000
• total tokens = 237, warmup steps = 20, 000
• total tokens = 238, warmup steps = 40, 000

Model scaling: Experiments in this section are trained with the OpenLM-1B, OpenLM-3B, and
OpenLM-7B models, 237 ≈ 137B total seen tokens, RoPE with fb = 100, 000, and the baseline
setup as in Table 12 except for the following changes for different model sizes:

• OpenLM-1B, warmup steps = 20, 000, max-lr = 3 × 10−3, batchsize b = 219, with 32
H100 GPUs

• OpenLM-3B, warmup steps = 20, 000, max-lr = 2 × 10−3, batchsize b = 220, with 64
H100 GPUs

• OpenLM-7B, warmup steps = 20, 000, max-lr = 1 × 10−3, batchsize b = 222, with 128
H100 GPUs

Alternative dataset: Experiments in this section are trained with the OpenLM-160M, OpenLM-
410M, and OpenLM-1B models, 237 ≈ 137B total seen tokens, RoPE with fb = 100, 000, and the
baseline setup as in Table 12 except for the following changes for different model sizes:

• OpenLM-160M, warmup steps = 20, 000, max-lr = 5× 10−3, weight-decay = 0.033, with
16 H100 GPUs

• OpenLM-410M, warmup steps = 20, 000, max-lr = 4× 10−3, weight-decay = 0.066, with
16 H100 GPUs

• OpenLM-1B, warmup steps = 20, 000, max-lr = 3× 10−3, weight-decay = 0.1, with 32
H100 GPUs

For the DD experiments we used “Grow-P2” length curriculum which is visualized in Fig. 6.

16

Figure 6: Comparison of length-based curriculum schedule with learning rate schedule. Sequence
length varies between 256 and 8192 based on the Grow-P2 curriculum with 8 cycles. Note that the
choice of bucket (and hence the sequence length) is random, with sampling probabilities determined
by the curriculum. In the figure, we show the length of the sampled sequence at every 9 optimization
steps. For the learning rate, we use a cosine learning rate with a warm-up for 4k steps. The job
corresponds to training for a total of 236 tokens, with 220 tokens seen per optimization step.

Implementation details of Section 3.6 All experiments in this section are done with the OpenLM-
1B model, trained for a total of 96 × 1034 ≈ 103B tokens. Hyperparameters are the same as in
Table 12, except we used 20,000 warmup steps for all models presented in this section. We use RoPE
with fb = 100, 000.

B.2 Length based sampling and curriculum algorithm

We present the details of our length-based sampling and curriculum in Algorithm 1.

Algorithm 1 Length based sampling and curriculum

Require:
• Di: list of buckets such that Di includes sequences with length 2i

• ni: total number of tokens to be picked from each bucket (see Table 1)
• oi: sampling odd for each bucket (see Table 2)
• c: number of cycles
• b: number of tokens per optimization step

si,j ← random subset of Di with ni/c tokens ▷ non-overlapping subsets of Di

for j ∈ [1, 2, . . . , c] do ▷ loop over cycles
while at least one si,j is non-empty do

odds← [oi if si,j is not empty else 0 for i = 1, 2, 3, . . .]
probs← odds/odds.sum()
randomly sample index i with probability probs[i]
sample b/2i sequences from si,j w/o replacement for training

end while
end for

B.3 Evaluation details

Multi Document Question Answering (MDQA) We follow the open-book evaluation setup
described in [35]. The document containing the answer is part of the context. The evaluation script
provided by the official repository processes the model’s response by using only the text before the
first occurrence of a newline character as the answer. We noticed that sometimes the model responds
with multiple newline characters before providing any valid text. In view of this behavior, we updated
the evaluation script to look for the first non-empty text output from the model instead of the first
string after newline character. Apart from this change in processing the model output, the rest of the
evaluation follows the official implementation [35].

TOEFL We follow the setup described in [5]. As described in Section 3, the dataset contains
multiple-choice QA pairs for the 15 longest lectures in [61, 11]. To obtain a response from the
model, we follow MMLU-style prompting, where the choices are appended to the original prompt
individually and the mean log-probability is computed for each choice. The choice corresponding to

17

64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

sequence length

1

2

4

8

16

32

64

128

256

nu
m

b
er

of
se

qu
en

ce
s

p
er

b
at

ch

100 99 100 100 100 107 153 304 719

99 100 100 101 106 143 265 566

100 102 100 105 138 243 487

100 100 106 137 232 445

102 105 135 227 426

105 135 225 416

136 224 411

224 409

410

(a) Average time for OpenLM-1B

64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

sequence length

1

2

4

8

16

32

64

128

256

nu
m

b
er

of
se

qu
en

ce
s

p
er

b
at

ch

144 143 143 144 154 203 344 777 2218

143 143 144 151 190 292 589 1452

143 144 152 185 267 501 1095

144 150 180 254 449 924

149 180 245 428 832

180 242 411 789

246 406 758

412 751

760

(b) Average time for OpenLM-3B

64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

sequence length

1

2

4

8

16

32

64

128

256

nu
m

b
er

of
se

qu
en

ce
s

p
er

b
at

ch

269 270 269 273 286 348 562 1091

269 268 274 285 344 538 993

269 274 285 341 526 938

273 284 340 520 911

285 340 516 899

340 515 891

515 888

889

(c) Average time for OpenLM-7B

64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

sequence length

1

2

4

8

16

32

64

128

256

nu
m

b
er

of
se

qu
en

ce
s

p
er

b
at

ch

0.53 0.22 0.18 0.17 0.52 0.09 0.23 2.02 2.60

0.13 0.25 0.45 0.45 0.10 0.36 0.77 0.62

0.27 1.05 0.24 0.19 0.25 0.67 1.00

0.10 0.18 0.38 0.04 0.50 0.63

0.38 0.31 0.15 0.59 0.72

0.42 0.25 0.46 0.62

0.16 0.59 0.54

0.48 0.55

0.39

(d) STD for OpenLM-1B

64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

sequence length

1

2

4

8

16

32

64

128

256

nu
m

b
er

of
se

qu
en

ce
s

p
er

b
at

ch

0.62 0.44 0.42 0.29 0.54 0.34 0.59 4.58 4.58

0.35 0.28 0.26 0.23 0.63 0.21 1.11 3.34

0.48 0.40 0.36 0.40 0.28 0.65 0.94

0.29 0.49 0.33 0.44 0.92 0.68

0.34 0.34 0.39 0.60 0.76

0.53 0.61 1.04 0.56

0.45 0.82 1.17

0.82 0.86

0.79

(e) STD for OpenLM-3B

64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

sequence length

1

2

4

8

16

32

64

128

256

nu
m

b
er

of
se

qu
en

ce
s

p
er

b
at

ch

0.47 0.64 0.40 0.40 0.41 1.10 2.25 1.89

0.28 0.35 0.32 0.38 0.39 0.64 1.20

0.58 0.31 0.30 0.24 0.37 0.63

0.31 0.41 0.32 0.26 0.79

0.39 0.32 0.33 0.35

0.34 0.67 0.37

0.69 0.65

0.87

(f) STD for OpenLM-7B

Figure 7: Top row: Average time (ms) for each node to train one batch on a 8×H100 machine using
FSDP. Bottom row: measured standard deviation for each setup.

the argmax of mean log-probability is then chosen as the model’s response. After we obtain the
response, the computation of accuracy follows the official implementation [5].

QuALITY We follow the setup described in [5]. The dataset contains long documents with each
document containing multiple-choice QA pairs. Sometimes the context for a QA pair can be longer
than 8192 tokens. To account for the longer sequence length, we increase the base frequency of
RoPE positional encoding from 100k to 200k without any fine-tuning. To obtain a response from the
model, we follow MMLU-style prompting, where the choices are appended to the original prompt
individually and the mean log-probability is computed for each choice. The choice corresponding to
the argmax of mean log-probability is then chosen as the model’s response. After we obtain the
model output, the rest of the evaluation follows the official implementation [5].

C Additional results

C.1 Additional results for training efficiency

We enumerate model sizes (OpenLM-1B, OpenLM-3B, OpenLM-7B), the number of sequences in a
batch (from 1 to 256), and sequence lengths (26 to 214) and measure the time to train 100 batches. We
repeat this 5 times and report the average and standard deviation time per batch in Fig. 7. Notice that
in the figure, each diagonal corresponds to a fixed b (number of tokens seen per optimization step).

C.2 Additional results for sequence length bias experiments

In this section, we show that changing hyperparameters does not alter our conclusions in Section 3.2.
We observed that pretraining on a sequence length of 1024 results in optimal performance with
respect to regular metrics, compared to both longer and shorter lengths. For example, the regular
average metric is 48.0 when pretraining with a 1024 sequence length, but it is 47.0 when pretraining
with a 2048 sequence length. We explore whether this gap can be filled by using potentially
better hyperparameters when training with a 2048 sequence length. Results are shown in Table 13,

18

demonstrating that the gap cannot be simply filled by choosing a different hyperparameter and is
fundamental to the choice of pretraining sequence length.

Maximum Learning Rate RoPE fb Regular Average
3× 10−3 10,000 47.0
3× 10−3 100,000 47.1
10−3 10,000 45.9
10−2 10,000 46.5

Table 13: Sensitivity to hyperparameters for Sec-
tion 3.2 experiments. All models are trained twice
with different random seeds, and averaged results
are reported.

C.3 Additional results for scaling experiments

In this section, we show additional results for the experiments presented in Section 3.5. Table 14
shows results for dataset scaling, Table 15 for model scaling, and Table 16 for experiments on an
alternative dataset.

Seen tokens Method Regular average MDQA average

234
Baseline-8k 45.2 7.8

DD 47.0 16.0

235
Baseline-8k 47.6 15.4

DD 50.6 23.3

236
Baseline-8k 50.2 19.9

DD 52.1 22.3

237
Baseline-8k 51.9 23.2

DD 54.9 25.9

238
Baseline-8k 53.6 25.8

DD 56.0 29.4

Table 14: Dataset scaling for OpenLM-1B.

Model size Method Regular average MDQA average

1B Baseline-8k 51.9 23.1
DD 54.9 24.2

3B Baseline-8k 57.5 17.8
DD 59.0 31.1

7B Baseline-8k 59.8 31.7
DD 62.5 34.7

Table 15: Model scaling for total of 137B tokens.

Size Method PIQA COPA OBQA LamOAI HelSwg WinG WinGE SQuaAD BoolQ CoQA Jeop ArcE ArcC WikiQA MDQA
0-shot 0-shot 10-shots 0-shot 0-shot 3-shots 5-shots 3-shots ,0-shot 0-shot 3-shots 3-shots 3-shots 3-shots 10 20 30

160M Baseline 66.5 61 29.2 40.5 37.2 63.4 51.9 12.9 55.6 18.2 2.3 49.5 25.9 36.2 12.8 9.3 7.1
DD 66.4 66 30.2 43.6 37.7 66.3 52.2 14.3 50.7 19.1 4.3 51.5 24 34 16.2 9.9 8.2

410M Baseline 69.8 68 37.4 53.0 50.4 74.0 55.8 30.0 59.7 28.5 12.1 59 29.8 48.3 18.9 13.4 12
DD 71.5 70 38 55.8 51.6 74.7 56.3 27 59.5 26.2 17.6 60.4 30.5 52.2 24.4 18.1 14

1B Baseline 74.9 74 43.4 63 62.7 80.2 63.4 41.8 64.1 35.3 29.7 65.7 38.4 56.7 31.3 24.8 20.8
DD 76.7 75 42.6 64.7 64.7 82.8 65 41.8 66.4 38.3 32.6 68.4 39.8 58.7 31.6 24.7 20.4

Table 16: Small model performance trained on an improved refined-web pipeline applied to Common
Crawl. All models are trained for a total of 237 tokens.

D Comparison to best-fit sequence packing

Some recent works have employed a bin packing-based strategy [17] which aims to reduce document
cross-attention by minimizing unnecessary document truncation. To achieve this, they implement
a known approximation algorithm called best-fit decreasing, which packs document chunks into
sequences as tightly as possible. To compare with our method, we created a new dataset based on
our implementation of the best-fit decreasing algorithm and trained a new model using this dataset.
We present our implementation of the best-fit decreasing algorithm, the dataset we created, and the
model we trained for comparison.

Given a dataset D, the input to the algorithm is a list of tokenized document chunks C =

{c1, c2, . . . , cK} such that
⋃K

i=1 ci = D, where each chunk is at most context size n (e.g., 2048) in
length. The output of the algorithm is a list of bins B = {b1, b2, . . . , bM} such that ci ∈ bj . As a
pre-processing step, we first tokenize the documents and convert them into chunks. Truncation is
applied during this step only when necessary. Next, we sort the chunks from largest to smallest and
start from the first chunk to pack into bins of size n. We track the remaining capacities for each

19

bin while we iterate over the chunks. In each iteration, the algorithm finds the best bin that is both
feasible and optimal for placing the chunk. Feasible bins are those that can accommodate the chunk,
and optimal bins are those left with the minimum remaining capacity after placing the chunk. If
such a bin is not found, we open a new bin and place the chunk inside. After all the chunks have
been placed, we select the bins that have non-zero remaining capacities and fill them with pad tokens
<PAD>.

We process the RefinedWeb [46] dataset using the aforementioned procedure and create training
sequences by concatenating all chunks in a bin. Figure 3 shows that while best-fit packing results in
a higher average context length compared to the baseline concat-and-chunk, it is still much lower
compared to our method dataset decomposition. Furthermore, the best-fit packing method does not
prevent tokens from different documents from appearing in training sequences, whereas our method
does. The presence of padding tokens in best-fit packed sequences also means that some context is
wasted during each optimization step.

E Training stability with VSL and curriculum

[31] presents the stability-efficiency dilemma: efficient LLM pretraining with massive data parallelism
results in a large batch size and requires a high learning rate. However, such a setup can result in
training instability, leading to poor generalization. They observe a correlation between training
instability and long sequences, especially at the early stages of training, suggesting that training on
long sequences when the model is not well-trained can be a main source of training instability.

Here, we show that dataset decomposition alleviates this problem when used with a curriculum:
starting training by sampling more from short sequence buckets. We empirically demonstrate this
by training an OpenLM-1B model from scratch with a high learning rate (= 10−2) and no gradient
clipping, once with baseline-8k and once with DD using the "Grow-P100" curriculum. Training loss
is shown in Fig. 8, demonstrating the stability of training with DD in comparison to the baseline.
This suggests that our proposed method can also be beneficial for large-scale pretraining with large
batches and high learning rates in terms of efficiency.

Lo
ss

Baseline-8k

DD-Grow-P100

Figure 8: We compare the training loss when training with Baseline-8k versus DD with the "Grow-
P100" curriculum. Both models are trained with identical hyperparameters, a high learning rate
(= 10−2), and no gradient clipping. It is evident that DD results in greater stability.

F Average sequence length vs average context length

We compute the mean of length (Fig. 3a) and context (Fig. 3c) distributions as follows. Assume
a list of sequences with lengths l1, l2, . . . , lN , which are, for example, the chunk lengths in the
concat-and-chunk approach or the sequence lengths in different buckets of the dataset decomposition
approach. We define the average sequence length as follows:

Average sequence length =
1

N

N∑
i

li (1)

In auto-regressive training on a sequence with length l, we apply l losses for next-token prediction on
each token in parallel. Hence, for a sequence with length l, we see contexts with lengths equal to

20

0, 1, 2, . . . , l − 1. We define the average context length, which is different from the average sequence
length, as follows:

Average context length =

 N∑
i=1

li−1∑
j=0

j

 /

(
N∑
i=1

li

)
=

(
N∑
i=1

li(li − 1)

)
/

(
2

N∑
i=1

li

)
. (2)

In Fig. 3a, Fig. 3c, and Table 1, we report the average sequence length and average context length for
original documents, concat-and-chunk, and dataset decomposition with different mixtures.

21

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Method proposed in Section 2.1 and experiments provided in Section 3 support
all claims in the abstract.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide limitations in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: Our work does not have any theorem/proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.

22

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all experimental details in Appendix B. Further, we will be
releasing the code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Our results are based on OpenLM repository (https://github.com/
mlfoundations/open_lm) and RefinedWeb [46] data, both publicly available. We
will be releasing our (small) changes to the repository after acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not

23

https://github.com/mlfoundations/open_lm
https://github.com/mlfoundations/open_lm
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all implementation details in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Training LLM at scale is computationally expensive. We repeat all experiments
at 17B total tokens scale twice (with different random seeds) and report mean and variance
in Section 3.2. For efficiency benchmarks we repeat 5 times, report standard deviation in
Fig. 7.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Answer: [Yes]
Justification: We provide software/hardware details in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: All experiments fully respect NeurIPS code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss broader impacts of this work in Appendix A.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not believe the models/code related to this work poses any risk that
requires safeguarding.
Guidelines:

• The answer NA means that the paper poses no such risks.

25

https://neurips.cc/public/EthicsGuidelines

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We do our best to appropriately cite/acknowledge all external code/data used
in this work.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Aside from code, this work does not intend to release any asset.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not include any crowdsourcing or research with Human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

26

paperswithcode.com/datasets

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not applicable to this work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

27

	Introduction
	Method
	Dataset decomposition
	Variable sequence length training

	Experiments and analysis
	Training efficiency
	Sequence length bias
	Data mixture
	Length-based curriculum
	Scaling
	Comparison with state-of-the-art

	Related works
	Conclusion and limitations
	Broader impacts
	Implementation details
	Training details
	Length based sampling and curriculum algorithm
	Evaluation details

	Additional results
	Additional results for training efficiency
	Additional results for sequence length bias experiments
	Additional results for scaling experiments

	Comparison to best-fit sequence packing
	Training stability with VSL and curriculum
	Average sequence length vs average context length

