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ABSTRACT

By properly utilizing the learned environment model, model-based reinforcement
learning methods can improve the sample efficiency for decision-making prob-
lems. Beyond using the learned environment model to train a policy, the success
of MCTS-based methods shows that directly incorporating the learned environ-
ment model as a planner to make decisions might be more effective. However,
when action space is of high dimension and continuous, directly planning accord-
ing to the learned model is costly and non-trivial. Because of two challenges: (1)
the infinite number of candidate actions and (2) the temporal dependency between
actions in different timesteps. To address these challenges, inspired by Differen-
tial Dynamic Programming (DDP) in optimal control theory, we design a novel
Policy Optimization with Model Planning (POMP) algorithm, which incorporates
a carefully designed Deep Differential Dynamic Programming (D3P) planner into
the model-based RL framework. In D3P planner, (1) to effectively plan in the
continuous action space, we construct a locally quadratic programming problem
that uses a gradient-based optimization process to replace search. (2) To take the
temporal dependency of actions at different timesteps into account, we leverage
the updated and latest actions of previous timesteps (i.e., step 1, · · · , h − 1) to
update the action of the current step (i.e., step h), instead of updating all actions
simultaneously. We theoretically prove the convergence rate for our D3P plan-
ner and analyze the effect of the feedback term. In practice, to effectively apply
the neural network based D3P planner in reinforcement learning, we leverage the
policy network to initialize the action sequence and keep the action update conser-
vative in the planning process. Experiments demonstrate that POMP consistently
improves sample efficiency on widely used continuous control tasks. Our code is
released at https://github.com/POMP-D3P/POMP-D3P.

1 INTRODUCTION

Model-based reinforcement learning (RL) (Janner et al., 2019a; Yu et al., 2020; Schrittwieser et al.,
2020; Hafner et al., 2021) has shown its promise to be a general-purpose tool for solving sequential
decision-making problems. Different from model-free RL algorithms (Mnih et al., 2015; Haarnoja
et al., 2018), for which the controller directly learns a complex policy from real off-policy data,
model-based RL methods first learn a predictive model about the unknown dynamics and then lever-
age the learned model to help the policy learning. With several key innovations (Janner et al., 2019a;
Clavera et al., 2019), model-based RL algorithms have shown outstanding data efficiency and perfor-
mance compared to their model-free counterparts, which make it possible to be applied in real-world
physical systems when data collection is arduous and time-consuming (Moerland et al., 2020).

There are mainly two directions to leverage the learned model in model-based RL, though not mutu-
ally exclusive. In the first class, the models play an auxiliary role to only affect the decision-making
by helping the policy learning (Janner et al., 2019b; Clavera et al., 2019). In the second class, the
model is used to sample pathwise trajectory and then score this sampled actions (Schrittwieser et al.,
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2020). Our work falls into the second class to directly use the model as a planner (rather than only
help the policy learning). Some recent papers (Dong et al., 2020; Hubert et al., 2021; Hansen et al.,
2022b) have started walking in this direction, and they have shown some cases to support the mo-
tivation behind it. For example, in some scenarios (Dong et al., 2020), the policy might be very
complex while the model is relatively simple to be learned.

These idea is easy to be implemented in the discrete action space where MCTS is powerful to do
the planning by searching (Silver et al., 2016; 2017; Schrittwieser et al., 2020; Hubert et al., 2021).
However, when the action space is continuous, the tree-based search method can not be applied
trivially. There are two key challenges. (1) Continuous and high-dimensional actions imply that the
number of candidate actions is infinite. (2)The temporal dependency between actions implies that
the action update in previous timesteps can influence the later actions. Thus, trajectory optimization
in continuous action space is still a challenge and lacks enough investigation.

To address the above challenges, in this paper, we propose a Policy Optimization with Model Plan-
ning (POMP) algorithm in the model-based RL framework, in which a novel Deep Differentiable
Dynamic Programming (D3P) planner is designed. Since model-based RL is closely related to the
optimal control theory, the high efficiency of differential dynamic programming (DDP) (Pantoja,
1988; Tassa et al., 2012) algorithm in optimal control theory inspires us to design an algorithm about
dynamic programming. However, since the DDP requires a known model and a high computational
cost, applying the DDP algorithm to DRL is nontrivial.

The D3P planner aims to optimize the action sequence in the trajectory. The key innovation in D3P
is that we leverage first-order Taylor expansion of the optimal Bellman equation to get the action
update signal efficiently, which intuitively exploits the differentiability of the learned model. We
can theoretically prove the convergence rate of D3P under mild assumptions. Specifically, (1) D3P
uses the first-order Taylor expansion of the optimal Bellman equation but still constructs a local
quadratic objective function. Thus, by leveraging the analytic formulation of the minimizer of the
quadratic function, D3P can efficiently get the local optimal action. (2) Besides, a feedback term is
introduced in D3P with the help of the Bellman equation. In this way, D3P updates the action in
current step by considering the action update in previous timesteps during planning. Note that D3P
is a plug-and-play algorithm without introducing extra parameters.

When we integrate the D3P planner into our POMP algorithm under the model-based RL framework,
the practical challenge is that the neural network-based learned model is always highly nonlinear and
with limited generalization ability. Hence the planning process may be misled when the initialization
is bad or the action is out-of-distribution. Therefore, we propose to leverage the learned policy
to provide the initialization of the action before planning and provide a conservative term at the
planning to admit the conservation principle, in order to keep the small error of the learned model
along the planning process. Overall speaking, our POMP algorithm integrates the learned model,
the critic, and the policy closely to make better decisions.

For evaluation, we conduct several experiments on the benchmark MuJoCo continuous control tasks.
The results show our proposed method can significantly improve the sample efficiency and asymp-
totic performance. Besides, comprehensive ablation studies are also performed to verify the neces-
sity and effectiveness of our proposed D3P planner.

The contributions of our work are summarized as follows: (1) We theoretically derive the D3P plan-
ner and prove its convergence rate. (2) We design a POMP algorithm, which refines the actions in the
trajectory with the D3P planner in an efficient way. (3) Extensive experimental results demonstrate
the superiority of our method in terms of both sample efficiency and asymptotic performance.

2 RELATED WORK

The full version of the related work is in Appendix A, we briefly introduce several highly related
works here. In general, model-based RL for solving decision-making problems can be divided into
three perspectives: model learning, policy learning, and decision-making. Moreover, optimal control
theory also concerns the decision-making problem and is deeply related to model-based RL.

Model learning: How to learn a good model to support decision-making is crucial in model-based
RL. There are two main aspects of the work: the model structure designing (Chua et al., 2018; Zhang
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et al., 2021; 2020; Hafner et al., 2021; Chen et al., 2022) and the loss designing (D’Oro et al., 2020;
Farahmand et al., 2017; Li et al., 2021).

Policy learning: Two methods are always used to learn the policy by using the learned model. One
is to serve the learned model as a black-box simulator to generate the data (Janner et al., 2019b;
Yu et al., 2020; Lee et al., 2020). Another way is to use the learned model to calculate the policy
gradient (Heess et al., 2015b; Clavera et al., 2019; Amos et al., 2021).

Decision-making: When making the decision, we need to generate the actions that can achieve
our goal. Many of the model-based RL methods make the decision by using the learned policy
solely (Hafner et al., 2021). Similar to our paper, some works also try to make decisions by using
the learned model, but the majority only focus on the discrete action space. The well-known MCTS
method achieves a lot of success. For example, the well-known Alpha Zero (Silver et al., 2017),
MuZero (Schrittwieser et al., 2020). There are only a few works that study the continuous action
space, such as the Continuous UCT (Couëtoux et al., 2011), the sampled MuZero (Hubert et al.,
2021), the TreePI (Springenberg et al., 2020), and the TD-MPC (Hansen et al., 2022a).

Optimal control theory: Beyond deep RL, optimal control also considers the decision-making
problem but rather relies on the known and continuous transition model. In modern optimal control,
Model Predictive Control (MPC) (Camacho & Alba, 2013) framework is always adopted when the
environment is highly non-linear. In MPC, the action is planned during the execution by using the
model, and such a procedure is called trajectory optimization. Plenty of previous works (Byravan
et al., 2021; Chua et al., 2018; Pinneri et al., 2021; Nagabandi et al., 2020) use MPC framework to
solve the continuous control tasks, but most of them are based on zero-order or sample-based method
to do the planning. The most relevant works are DDP (Murray & Yakowitz, 1984), iLQR (Li
& Todorov, 2004), and iLQG (Todorov & Li, 2005; Tassa et al., 2012). We discuss the detailed
differences between our method and these methods in Appendix A.

Since our planning algorithm relies on the learned model and learned policy, we build our algorithm
based on these works on model learning and policy learning. Our POMP algorithm tries to solve
a more challenging task compared to the related work on decision-making: efficiently optimize the
trajectory in continuous action space when the environment model is unknown. Different from our
works, the MPC with DDP as trajectory optimizer from optimal control theory requires the known
environment model, and also requires the hessian matrix for online optimization from scratch.

3 PRELIMINARIES

Reinforcement Learning. We consider a discrete-time Markov Decision Process (MDP)M, de-
fined by the tuple (X ,A, f, r, γ), where X is the state space, A is the action space, f : xt+1 =
f(xt, at) is the transition model, r : X × A → R is the reward function, γ is the discount factor.
We denote the future discounted return at time t as Rt =

∑∞
t′=t γ

t′−trt′ , and Reinforcement Learn-
ing (RL) aims to find a policy πθ : X × A → R+ that can maximize the expected return J . where
maxθ J(θ) = maxθ Eπθ

Rt = maxθ Eπθ

[∑∞
t′=t γ

t′−tr(xt′ , at′)
]
.

Bellman Equation. We define the optimal value function V ∗(x) = maxE[Rt|xt = x]. The optimal
value function obeys an important identity known as the Bellman optimality equation V ∗(x) =

maxat E
[
r(xt, at|xt = x) + γV ∗(xt+1)

]
. The idea behind this equation is that if we know the

r(xt, at) for any at and next step value function V ∗(xt+1) for any st+1, we can recursively select
the action at which maximizes r(xt, at|xt = x)+γV ∗(xt+1). Similarly, we can denote the optimal
action-value function Q∗(x, a) = maxE[Rt|xt = x, at = a], and it obeys a similar Bellman
optimility equation Q∗(x, a) = maxat+1 E

[
r(xt, at|xt = x, at = a) + γQ∗(xt+1, at+1)

]
.

Model-based RL. Model-based RL method distinguishes itself from model-free counterparts by
using the data to learn a transition model. Following Janner et al. (2019a) and Clavera et al.
(2019), we use parametric neural networks to approximate the transition function, reward func-
tion, policy function and Q-value function with the following objective function to be optimized
Jf (ψ) = E

[
log f(xt+1|xt, at)

]
, Jr(ω) = E

[
log r(rt|xt, at)

]
, Jπ(θ) = E

[∑H−1
t=0 γtr(xt, at) +
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γHQ(xH , aH)
]

and JQ = E
[
∥Q(xt, at) − (r + Q̃(xt+1, at+1))∥2

]
, respectively. In Jπ(θ), we

truncate the trajectory in horizon H to avoid long time model rollout.

Notations. For one-dimensional state and action case, we denote the partial differentiation of
function by using its output with subscripts, e.g., rx ≜ ∂r(x,a)

∂x , ra ≜ ∂r(x,a)
∂a , fx ≜ ∂f(x,a)

∂x ,
fa ≜ ∂f(x,a)

∂a , Qx ≜ ∂Q(x,a)
∂x and Qa ≜ ∂Q(x,a)

∂a . See Appendix E for the multi-dimension case.

4 PLANNING IN CONTINUOUS ACTION SPACE

In this section, we present our POMP algorithm and the D3P planner in detail. First, we derive the
D3P planner which relies on the Bellman equation. Then, we theoretically prove its convergence
property. Finally, we show how to effectively apply D3P planner in our POMP algorithm in RL.

4.1 DEEP DIFFERENTIAL DYNAMIC PROGRAMMING

In this subsection, we will theoretically derive the D3P planner and prove its convergence property.
There are mainly two challenges in continuous action space planning: (1) the infinite number of
candidate actions, and (2) the temporal dependency between actions in different timesteps.

Here, we briefly introduce the main idea of our D3P planner to solve the above challenges. We
first define an objective function and formulate it as an optimization problem based on the Bellman
equation. Then, we convert it to a local optimization problem and approximate the objective function
via Taylor expansion. To avoid the computation of the hessian matrix, we use the first-order Taylor
expansion to construct a quadratic function. Since the analytical solution of a quadratic function is
easy to get, we can efficiently get the local optimal action sequence and thus overcome the challenge
(1) to some extent. To get over challenge (2), we introduce a feedback term into the objective
function to depict the state change induced by the action update in prior timesteps. By considering
the feedback term that explicitly involves the information of prior action updates, we can correct
the action update in time. The remaining question is whether the D3P planner can indeed optimize
the original objective after we make several approximations when deriving the algorithm. Through
theoretical analysis, we show that the convergence rate of the proposed algorithm can be guaranteed.

We now introduce how we derive the D3P planner. For clarification, we use the finite horizon MDP
as a proof of concept setting. The state and action are one-dimensional variables. The infinite
horizon MDP with multi-dimensional state and action can be derived similarly and we put it in Ap-
pendix E. Recall the goal of RL methods, our planning algorithm aims to find the action sequences
{a1, · · · aH} that can maximize the value function V (x1, 1) ≜ maxa1,···aH

∑H
h=1 r(xh, ah), where

xh+1 = f(xh, ah).

Due to challenge (1), such an optimal action sequence is in general hard to find. Hence our D3P
planner treats this optimal action sequence searching problem as an optimization problem that lever-
ages the optimal Bellman equation to formulate the following objective function,

V (xh, h) = max
ah

[r(xh, ah) + V (f(xh, ah), h+ 1)]. (1)

Since the reward function and the transition function is unknown, we will use neural network to
approximate them. However, the optimization problem is highly non-convex. Thus, we consider an
auxiliary goal that is to find the local optimal a + δa in the neighbourhood of current action a to
improve the action from a to a + δa. Denote Q(xh, ah) = r(xh, ah) + V (f(xh, ah), h + 1), our
goal can be re-expressed as δah = argmaxδa [Q(xh, ah + δa)].

To accelerate the optimization process, D3P planner constructs a quadratic objective function to
get the local optimal action analytically. Specifically, we propose to use the first-order Taylor
expansion to avoid computing the hessian matrix. However, the first-order Taylor expansion can
not lead to a quadratic objective function directly, hence we first seek a surrogate objective function
D(x, a) ≜ (Q(x, a)− Vmax)2, where Vmax is a constant and set to larger than the upper bond of
Q(x, a). It is easy to check that argminδaD(x, a+ δa) ≜ argmaxδaQ(x, a+ δa).

For challenge (2), intuitively, after updating the action at in prior timestep, state xt+1 will change
and we should update the action at+1 accordingly. Such a manner is often called “feedback”. To
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Algorithm 1 Deep Differential Dynamic Programming (D3P)
Require: Initial action sequences {at}t=1···H , initial state x1, iteration number Nd, valid horizon

H , maximum expected improvement Vmax −Q(x, a).
1: for i = 1, · · · , H do # Initialize the trajectory.
2: Calculate ri = rω(xi, ai), xi+1 = fψ(xi, ai).
3: end for
4: for i = 1, · · · , Nd do # Optimize the trajectory.
5: Calculate Qx(xH , aH), Qa(xH , aH). # Backward process.
6: for j = H − 1, · · · , 1 do
7: Calculate ra, rx, fa, fx.
8: Calculate Qa, Qx, k, K, Vx using Equation 3, 4, 5 and 9.
9: end for

10: δx1 = 0. # Forward process.
11: for j = 1, · · · , H do
12: Calculate δaj using Equation 3, and aj ← aj + δaj .
13: Calculate xj+1 ← fψ(xj , aj), and δxj+1 = xj+1 − xj .
14: end for
15: end for
16: return The last best action a1.

achieve the feedback control, we now consider Q(x+ δx, a+ δa), in which δx represents the state
change due to the prior action update. Applying first-order Taylor expansion for the Q function in D
function we can get a quadratic function of δa(recall the notations in Preliminary)

D̃(x+ δx, a+ δa) = (Q(x, a) +Qa(x, a)δa+Qx(x, a)δx− Vmax)2. (2)

we now get the optimal action update δa∗ as a function of the feedback δx, denote kh =
Q(xh,ah)−Vmax

Qa(xh,ah)
and Kh = Qx(xh,ah)

Qa(xh,ah)
,

δa∗h = −kh −Khδxh = −Q(xh, ah)− Vmax
Qa(xh, ah)

− Qx(xh, ah)

Qa(xh, ah)
δxh. (3)

The remaining part is how to calculate the Qx(x, a), Qa(x, a) in the update rule,

Qa(xh, ah) = ra(xh, ah) + Vx(f(xh, ah), h+ 1) · fa(xh, ah), (4)
Qx(xh, ah) = rx(xh, ah) + Vx(f(xh, ah), h+ 1) · fx(xh, ah). (5)

By leveraging the differentiable model including the reward and transition function, only the gradient
of value function Vx(f(xh, ah), h+1) is hard to calculate. We use the Bellman equation and Taylor
expansion once again to calculate Vx(f(xh, ah), h+ 1). Putting δa∗h into Bellman equation (1) and
using Taylor expansion ,

V (xh + δxh, h) = Q(xh + δxh, ah + δa∗h) (6)
≈ Q(xh, ah) +Qx(xh, ah)δxh +Qa(xh, ah)δa

∗
h (7)

= (Q(xh, ah)−Qa(xh, ah)kh)︸ ︷︷ ︸
zero-order term

+(Qx(xh, ah)−Qa(xh, ah)Kh)δxh.︸ ︷︷ ︸
first-order term

(8)

We can now use the coefficient of the first-order term in Taylor expansion of V (xh + δxh, h) to
calculate the Vx

Vx = Qx(xh, ah)−Qa(xh, ah)Kh. (9)

The whole D3P planner is shown in Algorithm 1. Noting that the current presentation of our
method is applied in the deterministic environment, but our D3P planner can be easily extended
to the stochastic environment with reparameterization tricks (such as normal distribution noise in
Kingma & Welling (2013)). Since we adopt some approximation in the derivation of the algorithm,
we need some convergence guarantee.
Theorem 1. Let {xh, ah}h=1,··· ,H , denote the current state and action in a sequence of length T.
Let {a′h = ah + δah}h=1,··· ,H denote the new actions updated once by D3P planner. Under mild
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assumptions, we can prove that for h ∈ {1, · · · , H}, there exist constant C and B such that

∥a′h − a∗h∥ ≤ C
H∑
k=1

∥ak − a∗k∥2 +B

H∑
k=1

∥ak − a∗k∥, (10)

where C proportional to the Lipschitz (denoted L1) and smoothness (denoted L2) constant of the
transition function and reward function C = O(L1, L2), B proportional to the scale of the second
order derivation of the transition and reward function B = O(faa, fax, fxx, raa, rax, rxx).

The above theorem shows that if we can choose a good initialization point for the planning process,
we can guarantee the asymptotic convergence of the planning process. For the finite sample case,
the convergence rate is at least linear convergence. If the second derivative of the transition function
is near zero (B is sufficient small), the convergence rate is near quadratic convergence. The intuition
is shown in Lemma 2. In this situation, the 2nd order derivative of D can be approximated by the
multiplication of the 1st order derivative of Q and thus of f and r. For example Daa ≈ QaQa .

We further analyze the influence of the feedback term in terms of the convergence rate.

Corollary 1. If we do not consider the feedback term (δx = 0), the convergence rate is ∥a′
h −a∗

h∥ ≤
C
∑H

k=1 ∥ak−a∗
k∥2+B

∑H
k=1 ∥ak−a∗

k∥+
Qx(xh,ah)
Qa(xh,ah)

∑1
i=h−1 Π

h−1
j=i+1fx(xj , aj)

[
fa(xi, ai)δai + Cδa2

i

]
.

The corollary shows that if we do not consider the temporal dependency between actions in different
timestep, or in other words δx = 0, the convergence rate will be slower than Equation (12) with an
extra error term. The intuition is, since we are optimizing the action sequence along a trajectory,
the action update will change the trajectory. Given our objective is a function of state and action,
the different states will lead to the different optimal actions. Therefore, if we do not consider the
state change due to the action update in the previous timesteps, the action update direction will not
be toward the true gradient direction. Besides, the influence is proportional to the magnitude of the
state change which is determined by the system property (fx, fa) and previous action update δai.

4.2 POLICY OPTIMIZATION WITH MODEL PLANNING: A PRACTICAL IMPLEMENTATION

In this subsection, we show how we apply our D3P planner to the deep RL framework. Since the D3P
planner is a plug-and-play algorithm, compared to the traditional model-based RL algorithm like
MAAC (Clavera et al., 2019), only the decision-making parts are different. The POMP algorithm
is summarized in Appendix B. Note that D3P planner module does not introduce any additional
neural networks. All network structure, including model, critic, and policy are the same as MAAC
(Clavera et al., 2019) and MBPO (Janner et al., 2019b).

One key problem that needs to be resolved before applying the D3P planner is how to avoid mis-
leading planning due to the limited generalization ability of the learned model. Such a problem can
not be ignored as long as the ground-truth model is unknown, which can only be learned by data
with function approximation. We consider two components in the algorithm to alleviate the effect
of the model error: the initialization strategy and the conservative planner objective.

For the initialization strategy, we propose to use the policy network and learned model to initialize
the state-action trajectory. That is, the initial action used by D3P planner is the output of the learned
policy. The motivations are as follows. (1) Since the policy is trained to maximize the return-to-
go as general model-based RL, the proposed action would be reasonable and competitive, which is
better than random initialization. (2) Since the data used to train policy is sampled from the replay
buffer, the action outputted by the policy network should lead to a small model prediction error.

For the conservative planner objective, constraining the actions outputted by D3P planner near the
training data can keep the model prediction error small and provide an additional regularization for
the planner. Specifically, since the policy output is a multivariate Gaussian, we can easily calculate
the log-likelihood logP(xi, ai) for a given state action pair. The log-likelihood is used as an
auxiliary reward, and we add it to the output of the reward function when doing planning in the
evaluation phase. Specifically, we add an additional reward at the first step, and the optimization
objective of D3P becomes Jc({ai, · · · , ai+H−1}) =

∑i+H−2
h=i r(xh, ah) +Q(xi+H−1, ai+H−1) +

α logP(xi, ai), where α is a hyper-parameter. Please note that we only use this conservative term
during evaluation, as we want to encourage exploration when training.

6



Published as a conference paper at ICLR 2023

5 EXPERIMENTS

In this section, we aim to answer the following questions: (1) Compared to state-of-the-art methods,
how does our method perform on benchmark continuous control tasks? (2) Is planning necessary to
make a better decision in continuous control? (3) Is our D3P planner advantageous in continuous
control? (4) How the learned model quality affects decision-making? (5) Does our D3P efficiently
optimize the trajectory quality? (6) Is the policy network necessary in our framework? To answer
the above questions, we evaluate our method on continuous control benchmark tasks in the MuJoCo
simulator (Todorov et al., 2012). Our method is built on top of MAAC(Clavera et al., 2019),
which means the procedure of model learning, policy optimization, and the corresponding hyper-
parameters are the same as MAAC. More details are left in Appendix C.3. Due to space limitation,
we leave the detailed description of the baseline methods in Appendix C.4.

5.1 COMPARISONS WITH EXISTING METHODS
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Figure 1: Learning curves of our method and other baseline methods on six continuous control
tasks. The solid lines represent the mean of 10 (for our method)/5 (for other baseline methods) trails
with different seeds, and the shaded regions correspond to STD among trials. Our method achieves
the best results among these strong model-free and model-based reinforcement learning methods.

To answer the first question, we compare our method with six SOTA baseline methods, and the
results are shown in Fig. 1. Specifically, no matter on asymptotic performance or on the sample
efficiency, our method shows a significant performance improvement against MAAC, of which our
method is built on top, on all six tasks. Moreover, on two control tasks with high-dimensional
action space, Ant and Humanoid, the improvement of our method are more obvious. In general, our
method achieves better performance than all other model-based and model-free baseline methods,
which demonstrates the effectiveness and generality of our method. Note that in humanoid task,
MAGE achieves better sample efficiency than ours in early training phase, but our method achieves
a better final result than MAGE and MAGE is worse than our method on all other tasks.

5.2 ABLATION STUDIES

In this section, we conduct several ablation experiments to answer questions (2) (6) posted before
and show the necessity and effectiveness of the proposed components in our method.

Is planning necessary to make a better decision in continuous control? We design experiments
to verify the effectiveness of two possible ways to make a better decision: (1) Using the model to
do planning and (2) Increasing the Np in Algorithm 2, which is the number of update times of the
policy net after we collect 1 data from the real environment, and then relying on the policy to make
the decision. Here we increase Np from 10 (in MAAC original implementation) to {20, 50, 100} to
see whether increasing the update times of the policy could help policy optimization, and the results

7



Published as a conference paper at ICLR 2023

0 25k 50k 75k 100k
Steps

0

1000

2000

3000

4000

5000

Av
er

ag
e 

Re
tu

rn

Walker2d

0 25k 50k 75k 100k
Steps

0

2000

4000

6000

8000

10000

12000

14000

Av
er

ag
e 

Re
tu

rn

Cheetah

0 25k 50k 75k 100k 125k 150k
Steps

0

1000

2000

3000

4000

5000

6000

7000

Av
er

ag
e 

Re
tu

rn

Ant

MAAC (Np = 10) MAAC (Np = 20) MAAC (Np = 50) MAAC (Np = 100) OURS

Figure 2: Ablation about the update timesNp of policy in each iteration. We can see that increasing
Np cannot help policy optimization.

are presented in Figure 2. As shown in the figure, Np = 10 in the original MAAC is a rather good
choice, and increasing Np even would harm the policy optimization. However, our method, which
uses the learned model as a planner could consistently improve the policy.

Is our D3P planner advantageous in continuous control? D3P planner considers the temporal
dependency and constructs a local quadratic objective function to optimize the initial trajectory pro-
posed by the policy network. To validate the advantage of our method, we replace the D3P planner
in our method with an SGD-like planner, which directly optimizes the action sequence with gradient
ascend; a random-shooting planner (Press et al., 2007), which randomly samples some actions in
the entire action space and then scores these actions according to the reward and critic function;
a cross-entropy method (CEM) planner (Rubinstein & Kroese, 2004; Hansen et al., 2022a), which
adaptively and iteratively adjusts the sampling distribution in a sophisticated manner. Noting that
we only change the planner in all these variants, and keep the model and policy learning unchanged
for a fair comparison. The results are shown in Figure 3, and we can see that SGD-like planner
(denoted by POMP with SGD planner) performs similarly to policy network (denoted by MAAC)
and the improvement over policy (MAAC) is limited. Our method (denoted by POMP with D3P
planner) is more effective than SGD-like planner. Moreover, the gaps between our method and
the CEM planner (denoted by CEM), the random-shooting planner (denoted by Random-shooting)
clearly show the efficiency of the first-order method (compared to the zero-order method).

How the learned model quality affect decision-making? As our method optimizes the tra-
jectory via planning in a learned environment model, a key part is to see how the learned model
quality affects the planning results. To answer this question, we pick 4 types of the learned model
with different amount of training data ( the more training data, the better the quality of the learned
model). Then we cluster the policy network according to their performance into 6 groups. Finally,
we combine the different quality models with each policy group to see the average performance
improvement after we applying the D3P planner on the learned model and policy. First, for each
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Figure 3: Ablation studies about D3P planner. We replace the D3P planner in our method with a
SGD-like planner, a CEM planner, and a random-shooting planner, the results show the advantage
of our D3P planner.
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Figure 4: (a) The improvement of applying learned model with different training steps on policy
with different quality. “Improvement” means the evaluation return using our D3P planner to sub-
tract the return that without our D3P planner. “Policy quality” means the average episode return
of the policy when applying the policy in the environment, and “ik∼(i + 1)k” denotes the policy
cluster whose average return lies in ik∼(i + 1)k. “Model ik” denotes the learned model which
is trained using ik data. (b) The improvement of different iteration number Nd in D3P (Line 4 in
Algorithm 1). “Model quality” means the number of training data used to train the model, and
“ik∼jk” denotes the learned model with ik∼jk training data. (c) Ablation about the policy usage
in our method. “RAND” denotes POMP with a randomly initialized trajectory rather than a policy
generated trajectory in D3P. “Nd = i” denotes POMP with iteration number i and “Nd = i w/o
cons” denotes POMP with iteration number i and without the conservative term when evaluation.

model and each policy, we evaluate the average return using 10 trajectories. Then, we cluster the
learned model and policy according to their training data and the average return and then calculate
the average performance improvement in each cluster. From the result shown in Figure 4(a): (1) the
improvement of the model trained on only 10k train data is similar to those of models trained by
more data (except 5k∼6k is slightly worse), which means it is enough to use an early stage model in
our D3P planner; (2) our D3P planner could consistently improve the performance of the decision
made by policy network directly, especially in early and middle stage.

Does our D3P efficiently optimize the trajectory quality? Similarly, we cluster the learned model
according to their used training data, and combine it with a fixed policy (with an average return
about 4k) and see the impact of different iteration numbers Nd used in our D3P planner. From the
results shown in Figure 4(b): (1) the performance improvements increase as we use more iteration
numbers, which shows the effectiveness of our method; (2) the improvements are almost the same
after Nd >= 6, , and we do not need more iterations, which demonstrate the efficiency of our
method; (3) the results also show that the early stage model is enough for our D3P planner.

Is the policy network necessary in our framework? There are two usages for the policy network
in our D3P planner: (1) initialize the trajectory to be optimized, (2) add a conservative term as an
auxiliary reward during evaluation. We conduct an ablation experiment to verify the necessity of
the policy network in our method, and the results are shown in Figure 4(c). First, when we use a
trajectory randomly generated rather than proposed by a policy network, the D3P failed to find any
meaningful action (denoted by “RAND”), which proves the importance of trajectory initialization.
Second, as we increase the iteration number in D3P planner, the performance with our conservative
term is consistently better than those without it, especially at the later stage when the policy network
is near optimal. This means the generality of the learned model is limited when we use a large
iteration number Nd, and we need to constrain the optimization space of the method.

6 CONCLUSIONS AND FUTURE WORK

In this work, we first derived the D3P planner which is effective and efficient for continuous control
and proved its convergence rate. Then, we proposed the POMP algorithm, which leverages our
D3P planner in a practical model-based RL framework. Extensive experiments and ablation studies
on benchmark continuous control tasks demonstrate the effectiveness of our method and show the
benefit of utilizing the model planning in continuous control. For future work, given the model
uncertainty can effectively trade-off the exploration and exploitation, how to properly estimate and
incorporate the uncertainty of the learned model into planning is a meaningful topic.
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A RELATED WORK

Model-based RL methods for solving decision-making problems focus on three key perspectives:
how to learn the model? how to use the learned model to learn the policy? And how to make the
decision using the learned model and policy? Besides, decision-making that relies on the model is
also investigated in the optimal control theory field which is deeply related to model-based RL.

Model learning: How to learn a good model to support decision-making is a crucial problem in
model-based RL. There are two main aspects of the work: the model structure designing and the
loss designing. For model structure designing, ensemble-based model (Chua et al., 2018), dropout
mechanisms (Zhang et al., 2021), auto-regressive structure (Zhang et al., 2020), stochastic hidden
model (Hafner et al., 2021), and transformer based model (Chen et al., 2022) are always considered
to improve the model robustness and prediction accuracy. For loss designing, decision awareness
(D’Oro et al., 2020; Farahmand et al., 2017) and gradient awareness (Li et al., 2021) are always
considered to reduce the gap between model learning and model utilization.

Policy learning: Two methods are always used to learn the policy by using the learned model. One
is to serve the learned model as a black-box simulator to generate the data. Janner et al. (2019b)
is a representing work of this line. Yu et al. (2020), Lee et al. (2020) also follow such a manner
by extending it to offline-RL setting. Another way is to use the learned model to calculate the
policy gradient. Heess et al. (2015b) presents an algorithm to calculate the policy gradient by back-
propagating through the model. Clavera et al. (2019) and Amos et al. (2021) share similar methods
but use promising actor and critic learning strategy to achieve better performance.

Decision-making: When making the decision, we need to generate the actions that can achieve our
goal. Most of the model-based RL methods make the decision by using the learned policy solely
(Janner et al., 2019b; Yu et al., 2020; Clavera et al., 2019; Hafner et al., 2021). Similar to our paper,
some works also try to make decisions by using the learned model, but the majority only focus on
the discrete action space. For example, the well-known Alpha Zero system (Silver et al., 2017) uses
MCTS to derive the action by using the known model. In MuZero and (Schrittwieser et al., 2020),
the authors propose to use a learned model combined with an MCTS planner to achieve significant
performances in a broad range of tasks within discrete action space. There are only a few works
that study the continuous action space. Couëtoux et al. (2011) extends the MCTS framework to
continuous action space but also needs to know the real model and handle the model. In Hubert
et al. (2021), the author proposed a sampled MuZero algorithm to handle the complex action space
by planning over sampled actions. In Hansen et al. (2022a), the authors propose to learn a value
function that can be used as long term return in the Cross-Entropy (CE) method for planning.

Optimal control: Beyond deep RL, optimal control also considers the decision-making problem
but rather relies on the known and continuous transition model. In modern optimal control theory,
Model Predictive Control (MPC) (Camacho & Alba, 2013) framework is always adopted when the
environment is highly non-linear. In MPC, the action is planned during the execution by using the
model, and such a procedure is called trajectory optimization. There are plenty of previous works
that use the MPC framework to solve continuous control tasks. For example, Byravan et al. (2021)
proposes to use sampling-based MPC for high-dimensional continuous control tasks with learned
models and a learned policy as a proposal distribution. Pinneri et al. (2021) proposes an improved
version of the Cross-Entropy Method for efficient planning. Nagabandi et al. (2020) proposes a
PDDM method that uses a gradient-free planner algorithm combined with online MPC method to
learn flexible contact-rich dexterous manipulation skills.

Differential Dynamical Programming: The most relevant works are DDP (Murray & Yakowitz,
1984), iLQR (Li & Todorov, 2004), and iLQG (Tassa et al., 2012). Differentiable Dynamic Pro-
gramming (DDP) (Tassa et al., 2012) employs the Bellman equation structure (Murray & Yakowitz,
1984; Pantoja, 1988; Aoyama et al., 2021) and has fast convergence property. It becomes more
and more popular in the control field. iLQR (Li & Todorov, 2004), and iLQG (Tassa et al., 2012;
Todorov & Li, 2005) are two variants of the DDP. In iLQR and iLQG, the second-order derivative
of the environment model is ignored (set as zero). Therefore, iLQR and iLQG are more computa-
tionally efficient compared to the original DDP method. Since both iLQG and our D3P planner are
motivated by DDP, they look similar naturally. But our method has several key differences com-
pared with theirs, and these differences are well-designed to incorporate the neural network model.
(1) DDP, iLQR, and iLQG are both pure planning algorithms that require a known environment
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model. (2) Computing the second-order derivative of the neural network based model is compu-
tationally costly (Hessian matrix). In our method, we only rely on the first-order derivative of the
model. (3) The previous methods use the second-order Talyor expansion of the Q-value function to
handle the local optimization problem. But it is hard to guarantee that the hessian matrix is a nega-
tive definite matrix, which is a necessary condition for convergence. Here, we construct an auxiliary
target function D and use a first-order Talyor expansion for the Q function inside of the D function
to guarantee the non-positive definite matrix.

B POMP ALGORITHM

In this subsection, we present the details of POMP algorithm. Overall speaking, POMP algorithm
learn three components: model, critic, and actor with the neural network function approximator, and
leverage the D3P planner module to integrate all three components to make a better decision.

The POMP algorithm runs as follows. We first learn the model, the policy, and the critic using
pre-given or random-policy-generated data. Then, we leverage the D3P planner to generate actions
based on the model, the critic, and the policy network to interact with the environment and add these
data to the true replay buffer. Next, we will use the data from the true replay buffer to train the
model. We also generate fake data by using the learned model and add these data to the fake replay
buffer. After that, we will sample the data from both real buffer and fake buffer to train the critic and
policy. We will repeat the training process until certain convergence conditions are satisfied. When
doing planning and rollout with the learned model to generate fake data, we follow the method
used by Janner et al. (2019a); Clavera et al. (2019) to truncate the trajectory and use Q-function
to approximate the return after the truncation. When updating the policy, we calculate the policy
gradient by back-propagating through the model which is inspired by Clavera et al. (2019). When
updating the critic, we follow the SAC (Haarnoja et al., 2018) to construct two Q-functions with two
target Q-functions and apply the soft Q-update.

Algorithm 2 POMP
Require: Policy update times Np, total interaction number N , model train frequency k.

1: Initialize the learnable model fψ , the reward function rω , the policy network πθ, the critic Qϕ,
true replay buffer Denv ← ∅, fake replay buffer Dmodel ← ∅.

2: for i = 1, · · · , N do
3: Initialize the action sequence using policy net πθ, and learned model fψ .
4: Interact with real environment Ereal using D3P planner (Algorithm 1), and add the transition

to Denv.
5: if i mod k == 0 then
6: repeat
7: Update ψ ← ψ − αf∇ψJf , ω ← ω − αr∇ωJr using data from Denv.
8: until The learnable model and reward function converge.
9: end if

10: Sample transitions with fψ , and add them to Dmodel.
11: D ← Denv ∪ Dmodel
12: for j = 1, · · · , Np do
13: Update θ ← θ − απ∇θJπ using data from D.
14: Update ϕ← ϕ− αQ∇ϕJQ using data from D.
15: end for
16: end for
17: return Optimal parameters ψ⋆, ω⋆, θ⋆ and ϕ⋆.

C EXPERIMENT SETUP

C.1 IMPLEMENTATION DETAILS

How to set Vmax−Q(x, a)? In our D3P method, we introduce a constant Vmax and set it larger than
the upper bound ofQ(x, a). However, we can not know the true value of the upper bound ofQ(x, a),
and setting a too large or small Vmax is not perfect for planning. In our implementation, we fist define

14
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InvertedPendulum Hopper Walker2d Cheetah Ant Humanoid

Training Steps 15000 100000 100000 100000 150000 150000
Batch Size 256 256 256 256 256 256
Learning Rate 3e− 4 3e− 4 3e− 4 3e− 4 3e− 4 3e− 4
Horizon 4 3 4 4 4 4
Np 10 10 10 10 10 10
Nd 10 10 10 10 10 10
Model train freq k 250 250 250 250 250 250
Ensemble Size 7 7 7 7 7 7
Maximum Vmax −Q(x, a) 50 20 10 20 20 50

Table 1: The detailed hyper-parameters in our experiments.

a maximum expected improvement ∆ and then grid search Vmax−Q(x, a) := {exp ( log∆
K × i)|i =

1, · · · ,K} to get the best Vmax according to our planning objective function. Please note that the
grid search are implemented in parallel.

C.2 DESCRIPTIONS OF OUR EXPERIMENT ENVIRONMENTS

Following prior model-based RL work, we conduct our experiments on 6 classical continuous con-
trol tasks from MuJoco (Todorov et al., 2012), and the descriptions of these environments are sum-
marized as follows1:

1. Inverted Pendulum: This environment involves a cart that can be moved linearly, with a
pole fixed on it at one end and having another end free. The cart can be pushed left or right,
and the goal is to balance the pole on the top of the cart by applying forces on the cart. The
action space dimension and state space dimension are 1 and 4, respectively.

2. Hopper: The hopper is a two-dimensional one-legged figure that consists of four main
body parts - the torso at the top, the thigh in the middle, the leg in the bottom, and a single
foot on which the entire body rests. The goal is to make hops that move in the forward
(right) direction by applying torques on the three hinges connecting the four body parts.
The action space dimension and state space dimension are 3 and1 11, respectively.

3. Walker2D: The walker is a two-dimensional two-legged figure that consists of four main
body parts - a single torso at the top (with the two legs splitting after the torso), two thighs in
the middle below the torso, two legs in the bottom below the thighs, and two feet attached
to the legs on which the entire body rests. The goal is to make coordinate both sets of
feet, legs, and thighs to move in the forward (right) direction by applying torques on the
six hinges connecting the six body parts. The action space dimension and state space
dimension are 6 and 17, respectively.

4. Half Cheetah: The HalfCheetah is a 2-dimensional robot consisting of 9 links and 8 joints
connecting them (including two paws). The goal is to apply a torque on the joints to make
the cheetah run forward (right) as fast as possible, with a positive reward allocated based
on the distance moved forward and a negative reward allocated for moving backward. The
torso and head of the cheetah are fixed, and the torque can only be applied on the other
6 joints over the front and back thighs (connecting to the torso), shins (connecting to the
thighs), and feet (connecting to the shins). The action space dimension and state space
dimension are 6 and 17, respectively.

5. Ant: The ant is a 3D robot consisting of one torso (free rotational body) with four legs
attached to it with each leg having two links. The goal is to coordinate the four legs to
move in the forward (right) direction by applying torques on the eight hinges connecting
the two links of each leg and the torso (nine parts and eight hinges). The action space
dimension and state space dimension are 8 and 27, respectively.

6. Humanoid: The 3D bipedal robot is designed to simulate a human. It has a torso (ab-
domen) with a pair of legs and arms. The legs each consist of two links, and so do the arms

1Please refer to https://www.gymlibrary.dev/environments/mujoco/ for more details.
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(representing the knees and elbows respectively). The goal of the environment is to walk
forward as fast as possible without falling over. The action space dimension and state space
dimension are 17 and 376, respectively.

C.3 EXPERIMENTAL DETAILS

In our method, for a fair comparison, except the D3P planning, we keep the model learning , pol-
icy learning, and Q-function learning to be the same as prior work (Janner et al., 2019b; Clavera
et al., 2019). Specifically, the learnable prediction model is parameterized by an ensemble of 7
individual 5-layer MLPs, and is trained by Adam optimizer (Kingma & Ba, 2014) with all history
transition data from replay buffer after certain hundreds of timesteps (the timesteps vary depend-
ing on the specific task); after each interaction with the environment, the policy is optimized using
the pathwise derivative of the imagined trajectory produced by the learned model and the learned
policy; the Q-function is learned by minimizing the TD-error for each history data saved in replay
buffer and imagined data from learned model and policy function. The detailed hyper-parameters
are summarized in Table 1, and refer to Janner et al. (2019b); Clavera et al. (2019) for more details.

Noting that our planner is built upon the framework of MBPO and MAAC. Therefore, the sample
efficiency of our method is comparable with MBPO and MAAC which also used the same state
augmentation strategy. So, the improvement of the sample efficiency is not relevant to the state
augmentation strategy.

C.4 THE DESCRIPTION OF BASELINE METHODS

To show the effectiveness of our algorithm, we compare our method on six classical continuous
control tasks against the following state-of-the-art model-free and model-based RL algorithms: (i)
Soft Actor-Critic (SAC) (Haarnoja et al., 2018), a popular off-policy actor-critic RL algorithm
based on maximum entropy RL framework; (ii) SVG(1) (Heess et al., 2015a), which first uses
dynamics derivatives in model-based RL; (iii) STochastic Ensemble Value Expansion (STEVE)
method (Buckman et al., 2018), which utilizes the learned models only when the uncertainty of
the learned model is not too high; (iv) Model-based Action-Gradient-Estimator policy optimization
(MAGE) method (D’Oro & Jaśkowski, 2020), which computes gradient targets in temporal differ-
ence learning by backpropagating through the learned dynamics; (v) Model-Based Policy Optimiza-
tion (MBPO) method (Janner et al., 2019b), which shows that using short model-generated rollouts
branched from real data could benefit model-based algorithms; (vi) Model-Augmented Actor-Critic
(MAAC) (Clavera et al., 2019) method, which exploits the learned model by computing the analytic
gradient of the returns with respect to the policy.

D MORE EXPERIMENTAL RESULTS

D.1 STUDIES ON THE ROBUSTNESS OF OUR METHOD.

We test the sensitivity of our method when we change the hyperparameter used in the training
phase. The ablation studies about iteration number Nd used in our training phase and the maximum
expected improvement Vmax−Q(x, a) (which we denote by ∆) are shown in Figure 5 and Figure 6,
respectively. We can see that our method consistently outperforms MAAC, and the hyper-parameter
choice is not much sensitive to our method.

D.2 COMPARISON WITH CONTINUOUS MUZERO

MuZero (Schrittwieser et al., 2020) is a successful model-based RL method for discrete action tasks,
which carefully trades off the exploitation and exploration. To compare these tree-based methods
with our gradient-based method, we conduct a comparison with MuZero combined with Continuous
UCT (Progressive Widening (Couëtoux et al., 2011) in our experiments)2. We gird search several
important hyper-parameters for the continuous MuZero variant, and the detailed hyper-parameters
are summarized in Table 2. The results are shown in Figure 7. From this figure, we can see that as

2We use a commonly used public code https://github.com/werner-duvaud/
muzero-general/tree/continuous.
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Figure 5: Ablation studies on hyperparameter iteration number Nd in training.
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Figure 6: Ablation studies on hyperparameter ∆.

the dimension increases, the gap between our method and the continuous MuZero variant is more
and more obvious, which shows the advantage of our method. This also implies that employing
Muzero in continuous domain effectively is non-trivial. Since UCT is a principled way to do the
exploration in the discrete domain, combining it with our D3P planner for continuous domain will
be an interesting research direction in the future.

Hyper-parameter Values

α in Progressive widening {0.3, 0.4, 0.5, 0.6, 0.7, 0.8 }
c1 in UCB {1.0, 1.25, 1.5, 2.0 }
Simulation step l in MCTS { 64, 128, 256, 512}

Table 2: We grid search several important hyper-parameters for the continuous MuZero variant.

D.3 STUDIES ON THE PLANNING HORIZON

We fix the planning horizon H to be the same as those in MAAC Clavera et al. (2019), since they
have systematically studied this hyper-parameter in Section 5.2 of their paper: the gradient error
scales poorly with the horizon, and large horizons are detrimental since it magnifies the error on the
models. We also add an ablation study to show how the planning horizon influence the performance
of our method in Figure 8. The results are consistent with prior work Janner et al. (2019b); Clavera
et al. (2019).
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Figure 7: The comparison of a continuous MuZero variant with our method. The dimension of
action space for Swimmer, Hopper and Walker2d are 2, 3, and 4, respectively. We can see that as the
dimension increases, the gap between of our method and the continuous MuZero variant are more
obvious, which shown the advantage of our method.
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Figure 8: The studies on planning horizon H .

D.4 PLOTTING RESULTS OF DIFFERENT RANDOM SEEDS

Since all the RL literature compare different methods by plotting the mean and standard deviation
in their paper, we follow the common practice in our paper. Besides, we also provide the individual
run curve in Figure 9. Obviously, if we plot individual runs for each method, it will be messy and
unclear for visualization.
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Figure 9: The individual 10 runs of our method.
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D.5 THE IMPACT OF THE NUMBER OF EXPERIMENT RUNS

We have shown the performance of our method with 10 seeds and plotted the mean curve and shaded
region with deviation in Figure 1 (the individual 10 runs are also shown in Figure 9). One may still
wonder whether the limited number of runs would influence the experimental results. Thus, we
run each task with another 20 more seeds (30 seeds, totally), and show the results in Figure 11.
Comparing the results of 30 seeds with the results of 10 seeds (shown in Figure 10), we can see
that the impact of the number of experiment runs is limited to our method, which does not alter
our experimental conclusion. Last, as the RL committee always shows the results with the mean
and deviation values, we acknowledge that more runs of each task are needed to show robust and
consistent experimental results for RL algorithms.
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Figure 10: The experimental results with 10 seeds of our method.
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Figure 11: The experimental results with 30 seeds of our method.

E VECTOR FORM OF OUR D3P PLANNER

For brevity and clear clarification, we treat the action and state as one-dimensional scalars in our
main paper. Here we provide the vector form of the derivation of the D3P algorithm.

Consider the state and action are both multi-dimensional vector with dimension dx and da. The
transition function is now a mapping: Rdx+da → Rdx , the reward function is now a mapping:
Rdx+da → R1. In this situation, fa is the Jacobin matrix of shape dx × da, whose (i, j)-th entry is
faij = dfi

daj
. Similarly fx is the Jacobin matrix of shape dx× dx, whose (i, j)-th entry is fxij = dfi

dxj
.
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ra is the Jacobin matrix of shape 1×da, whose (1, j)-th entry is ra1j
= dr

daj
. rx is the Jacobin matrix

of shape 1× dx, whose (1, j)-th entry is rx1j = dr
dxj

.

The objective function of our D3P planner is

V (x, h) = max
ah

[r(xh,ah) + V (f(xh,ah), h+ 1)]. (11)

Denote Q(xh,ah) = r(xh,ah) + V (f(xh,ah), h+ 1), our goal can be re-expressed as

δah = argmax
δa

[Q(xh,ah + δa)] . (12)

We seek a surrogate objective functionD(x,a) ≜ (Q(x,a)− Vmax)2, and we then apply first-order
Taylor expansion for the Q function Q(x,a) in D(x,a),

D̃(x,a+ δa) = (Q(x,a) +Qa(x,a)δa− Vmax)2. (13)

So, the optimal action update is δa∗ = −(Q(x,a)− Vmax)(Q⊤
a (x,a)Qa(x,a))

−1Q⊤
a (x,a).

Then we introduce a feedback term δx, denote

k = (Q(x,a)− Vmax)(Q⊤
a (x,a)Qa(x,a))

−1Q⊤
a (x,a);

K = (Q⊤
a (x,a)Qa(x,a))

−1Q⊤
a (x,a)Qx(x,a),

(14)

where the shape of k is da × 1 and the shape of K is da × dx. The update rule of the action is given
by:

δa∗h = −k−Kδx. (15)

The update rule of Qa(xh,ah) and Qx(xh,ah) is

Qa(xh,ah) = ra(xh,ah) + Vx(f(xh,ah), h+ 1) · fa(xh, ah);
Qx(xh,ah) = rx(xh,ah) + Vx(f(xh,ah), h+ 1) · fx(xh,ah),

(16)

and we can calculate Vx by

Vx = Qx(xh,ah)−Qa(xh,ah)Kh. (17)

F PROOF OF THEOREM

In this section, we present the proof of the Theorem 1 and Corollary 1 in Section 4. First of all, we
summarize the necessary assumptions here.

Assumption 1. The transition f(x, a) and reward function r(x, a) are both continuous and with
continuous first and second order derivative. The first and second order derivative are bounded by
L1 and L2 respectively.

∥fx∥+ ∥fa∥+ ∥rx∥+ ∥ra∥ ≤ L1 (18)
∥fxx∥+ ∥fxa∥+ ∥faa∥+ ∥rxx∥+ ∥rxa∥+ ∥raa∥ ≤ L2 (19)

Assumption 2. The variables Qa calculated in the iteration of D3P are always non-zero.

F.1 PROOF OF THE THEOREM 1

Overall speaking, we will use the mathematical induction method to prove the theorem. We will
first prove the convergence rate given the trajectory length H = 2 . Then, we assume the theorem is
true in trajectory with length H = l, and prove it still holds in trajectory with length H = l + 1.

In the proof, we denote the trajectory length as H , and denote the location in the trajectory using
h where h ∈ {1, 2, · · · , H}. We denote the action in h after update as a′h where a′h = ah + δah.
We denote the optimal action as a∗h where a∗h = argmaxah r(x

∗
h, ah) + V (f(x∗h, ah), h+1) where

x∗h+1 = f(x∗h, a
∗
h) and x∗1 = x1.
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In the proof, we will use A with subscript like A1 to denote some formulation for simplicity and we
will give its expression in before we use it. We will use B with subscript like B1 to denote the term
related to the error due to using the first-order derivative to approximate the second order derivative.
We will use C with subscript like C1 to denote the general constant.

Before the proof, we first recall the update rule of the D3P planner.

δah = −kh −Khδxh = −Q(xh, ah)− Vmax
Qa(xh, ah)

− Qx(xh, ah)

Qa(xh, ah)
δxh, (20)

Qa(xh, ah) = ra(xh, ah) + Vx(xh+1, h+ 1)fa(xh, ah), (21)
Qx(xh, ah) = rx(xh, ah) + Vx(xh+1, h+ 1)fx(xh, ah), (22)

Vx(xh, ah) = Qx(xh, ah)−Qa(xh, ah)K = Qx(xh, ah)−Qa(xh, ah)
Qx(xh, ah)

Qa(xh, ah)
. (23)

First of all, we consider the case when trajectory length H=2. We calculate the error of a′1 and a′2 in
terms of its

a′2 − a∗2 = a2 − a∗2 + δa2 (24)

= a2 − a∗2 −
Q(x2, a2)− Vmax

Qa(x2, a2)
− Qx(x2, a2)

Qa(x2, a2)
δx (25)

=
1

Q2
a(x2, a2)

[
Q2
a(x2, a2)(a2 − a∗2)−Qa(xa, a2) (Q(x2, a2)− Vmax)−Qa(x2, a2)Qx(x2, a2)δx2

]
.

(26)

Denote D(x2, a2) = 1
2 (Q(x2, a2) − Vmax)2. Given the H = 2, we have Q(x2, a2) = r(x2, a2).

Therefore, we have Qa(xa, a2) (Q(x2, a2)− Vmax) = Da(x2, a2). Also, Qa(x∗2, a
∗
2) = 0, accord-

ing to the definition of a∗h,

By using lemma 1, we have that

Da(x2, a2) = Da(x2, a2)−Da(x
∗
2, a

∗
2) (27)

=

∫ 1

0

Daa(x2, a
∗
2 − t(a∗2 − a2))(a2 − a∗2) +Dax(x

∗
2 − t(x∗2 − x2), x2)(x2 − x∗2)dt.

(28)

DenoteA1 =
∫ 1

0
Daa(x2, a

∗
2−t(a∗2−a2))(a2−a∗2)dt andA2 =

∫ 1

0
Dax(x

∗
2−t(x∗2−x2), x2)(x2−

x∗2)dt and consider the first and second term in equation 26, we have

Q2
a(x2, a2)(a2 − a∗2)−Qa(xa, a2) (Q(x2, a2)− Vmax) (29)

=Q2
a(x2, a2)(a2 − a∗2)−Da(x2, a2) (30)

=Q2
a(x2, a2)(a2 − a∗2)−A1 −A2. (31)

We first consider the A1 term. Denote h1(x, a) = Q2
a(x, a) − Daa(x, a). Denote B1 =∫ 1

0
h1(x2, a

∗
2 − t(a∗2 − a2))dt.
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Q2
a(x2, a2)(a2 − a∗2)−A1 (32)

=(a2 − a∗2)
[
Q2
a(x2, a2)−

∫ 1

0

Daa(x2, a
∗
2 − t(a∗2 − a2))dt

]
(33)

=(a2 − a∗2)
[∫ 1

0

Q2
a(x2, a2)−Daa(x2, a

∗
2 − t(a∗2 − a2))dt

]
(34)

≤∥a2 − a∗2∥
∥∥∥∥∫ 1

0

Q2
a(x2, a2)−Daa(x2, a

∗
2 − t(a∗2 − a2))dt

∥∥∥∥ (35)

≤∥a2 − a∗2∥
[∫ 1

0

Q2
a(x2, a2)−Q2

a(x2, a
∗
2 − t(a∗2 − a2)) +Q2

a(x2, a
∗
2 − t(a∗2 − a2))−Daa(x2, a

∗
2 − t(a∗2 − a2))dt

]
(36)

≤∥a2 − a∗2∥
[∫ 1

0

L2(1− t)(a2 − a∗2)dt+
∫ 1

0

h1(x2, a
∗
2 − t(a∗2 − a2))dt

]
(37)

≤∥a2 − a∗2∥2
L2

2
+B1∥a2 − a∗2∥. (38)

Now, we will consider theA2 term and the third term in equation 26. Denote h2(x, a) = Dax(x, a)−
Qa(x, a)Qx(x, a). Denote B2 =

∫ 1

0
h2(x

∗
2 − t(x∗2 − x2), a2)dt.

−A2 −Qa(x2, a2)Qx(x2, a2)δx2 (39)

=−
∫ 1

0

Dax(x
∗
2 − t(x∗2 − x2), a2)(x2 − x∗2)dt−Qa(x2, a2)Qx(x2, a2)δx2 (40)

=−
∫ 1

0

Dax(x
∗
2 − t(x∗2 − x2), a2)(x2 − x∗2)dt−Qa(x2, a2)Qx(x2, a2) (x′2 − x2) (41)

=−
∫ 1

0

Qa(x
∗
2 − t(x∗2 − x2), a2)Qx(x∗2 − t(x∗2 − x2), a2)(x2 − x∗2)dt (42)

−Qa(x2, a2)Qx(x2, a2) (x′2 − x2) +
∫ 1

0

h2(x
∗
2 − t(x∗2 − x2), a2)(x2 − x∗2)dt (43)

=−Qa(x2, a2)Qx(x2, a2)(x2 − x∗2)−Qa(x2, a2)Qx(x2, a2) (x′2 − x2) (44)

+
L2
2L1

2
(x2 − x∗2)2 +

∫ 1

0

h2(x
∗
2 − t(x∗2 − x2), a2)(x2 − x∗2)dt (45)

=Qa(x2, a2)Qx(x2, a2)(x
∗
2 − x′2) +

L2
2L1

2
(x2 − x∗2)2 +

∫ 1

0

h2(x
∗
2 − t(x∗2 − x2), a2)(x2 − x∗2)dt

(46)

≤L3
1 ∥a′1 − a∗1∥+

L2
2L

3
1

2
∥a1 − a∗1∥

2
+B2∥a1 − a∗1∥. (47)

Summarize the conclusion, we can prove now
a′2 − a∗2 ≤ O

(
(a2 − a∗2)2 + (a2 − a∗2) + (a1 − a∗1)2 + (a′1 − a∗1)

)
. (48)

The next task is to prove the a′1 − a∗1 ≤ O
(
(a′1 − a∗1)

2
+ (a′2 − a∗2)

2
+ (a′1 − a∗1) + (a′2 − a∗2)

)
.

Similarly, we have

a′1 − a∗1 = a1 + δa1 − a∗1 (49)

= a1 − a∗1 +
Q(x1, a1)− Vmax

Qa(x1, a1)
(50)

=
1

Q2
a(x1, a1)

[
Q2
a(x1, a1)(a1 − a∗1) +Qa(x1, a1)(Q(x1, a1)− Vmax)

]
. (51)
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We have Qa(x1, a∗1) = 0 according to the definition of a∗1.

Using Lemma 1, denote B3 =
∫ 1

0
h1(x1, a

∗
1 − t(a∗1 − a1))dt. we have

Q2
a(x1, a1)(a1 − a∗1) +Qa(x1, a1)(Q(x1, a1)− Vmax) (52)

=(a1 − a∗1)
∫ 1

0

Q2
a(x1, a1)−Daa(x1, a

∗
1 − t(a∗1 − a1))dt (53)

≤∥a1 − a∗1∥2
L2

2
+B3∥a1 − a∗1∥. (54)

Thus, we have

∥a′1 − a∗1∥ ≤
1

Q2
a(x1, a1)

[
L2

2
∥a1 − a∗1∥2 +B3∥a1 − a∗1∥

]
(55)

∥a′2 − a∗2∥ ≤
1

Q2
a(x2, a2)

[
L2

2
∥a2 − a∗2∥2 +B1∥a2 − a∗2∥ (56)

+

(
L2L

3
1

2Q2
a(x1, a1)

+B1L1

)
∥a1 − a∗1∥2 +

(
B3L

3
1

Q2
a(x1, a1)

+B2

)
∥a1 − a∗1∥

]
. (57)

For simplicity, we can write

∥a′h − a∗h∥ ≤ C(∥a1 − a∗1∥2 + ∥a2 − a∗2∥2) +B(∥a1 − a∗1∥2 + ∥a2 − a∗2∥) for h = 1, 2. (58)

Up to here, we prove the theorem is true in trajectory with horizon H = 2.

Now, using induction method, suppose the theorem is true for H = l− 1. The induction hypothesis
means that for the following problem (denote as P (l − 1)), there exist two constant C and B, such
that for ∀h ∈ {1, 2, · · · l − 1}, we have ∥a′h − a∗h∥ ≤ C

∑l−1
k=1 ∥ah − a∗h∥2 +B

∑l−1
k=1 ∥ah − a∗h∥.

min
a1,··· ,al−1

l−1∑
k=1

r(xk, ak) (59)

xk+1 = f(xk, ak) k = 1, · · · , l − 2. (60)

What we need to prove is for the new problem with H = l (denote as p(l)), the theorem still holds.

The main idea is to merge the reward function in last two timesteps into one, and then prove the
δal−1 is the same as the one in the problem P (l − 1) which is denoted as δ̂al−1. Then, according
to the update rule, for h < l − 1, the δah = δ̂ah also holds. For h = l, the theorem can be proved
using the exact the same process as we prove a′2 − a∗2 in H = 2. Combining all these conclusions,
we can then prove the theorem holds for the problem p(l) and thus the proof finished.

Here we show how can we construct a new reward function by merge two reward function. Denote
R(xl−1, al−1) = r(xl−1, al−1) + r(xl, al − Q(xh,ah)−Vmax

Qa(xl,al)
− Qx(xl,al)

Qa(xl,al)
(x′l − xl)) where x′l =

f(xl−1, al−1).

In new problem, the update for action

δal−1 = −kl−1 −Kl−1δxl−1. (61)

kl−1 =
Q(xl−1 − Vmax)
Qa(xl−1, al−1)

(62)

Kl−1 =
Qx(xl−1, al−1)

Qa(xl−1, al−1)
. (63)
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Qa(xl−1, al−1)) = Ra(xl−1, al−1) + Vx(xl, l)fa(xl−1, al−1) (64)

= ra(xl−1, al−1)− ra(xl, al)
Qx(xl, al)

Qa(xl, al)
fa(xl−1, al−1) + Vx(xl, l)fa(xl−1, al−1)

(65)

= ra(xl−1, al−1)− ra(xl, al)
Qx(xl, al)

Qa(xl, al)
fa(xl−1, al−1) + rx(xl, al)fa(xl−1, al−1).

(66)

Qx(xl−1, al−1)) = Rx(xl−1, al−1) + Vx(xl, l)fx(xl−1, al−1) (67)

= rx(xl−1, al−1)− ra(xl, al)
Qx(xl, al)

Qa(xl, al)
fx(xl−1, al−1) + Vx(xl, l)fx(xl−1, al−1)

(68)

= rx(xl−1, al−1)− ra(xl, al)
Qx(xl, al)

Qa(xl, al)
fx(xl−1, al−1) + rx(xl, al)fx(xl−1, al−1).

(69)

It can be easily verified, δal−1 = δ̂al−1.

F.2 PROOF OF THE COROLLARY 1

If we do not consider the feedback term, K = 0. The new update rule will be

δah = −kh = −Q(xh, ah)− Vmax
Qa(xh, ah)

(70)

Qa(xh, ah) = ra(xh, ah) + Vx(xh+1, h+ 1)fa(xh, ah) (71)
Qx(xh, ah) = rx(xh, ah) + Vx(xh+1, h+ 1)fx(xh, ah) (72)
Vx(xh, ah) = Qx(xh, ah). (73)

According the proof of Theorem 1, for ∀h,

a′h − a∗h ≤ C1

H∑
k=1

∥ak − a∗k∥2 + C2

H∑
k=1

∥ak − a∗k∥+
∥∥∥∥Qx(xh, ah)Qa(xh, ah)

x′h − xh
∥∥∥∥ (74)

≤ C1

H∑
k=1

∥ak − a∗k∥2 + C2

H∑
k=1

∥ak − a∗k∥+
∥∥∥∥Qx(xh, ah)Qa(xh, ah)

∥∥∥∥ ∥x′h − xh∥ . (75)

where x′h = f(x′h−1, ah−1 + δah−1), xh = f(xh−1, ah−1). Using Taylor expansion, there exist a
constant C such that

x′h − xh =fx(xh−1, ah−1)(x
′
h−1 − xh−1) + fa(xh−1, ah−1)(δah−1) + C((x′h−1 − xh−1)

2 + (a′h−1 − ah−1)
2).

(76)

If x′h−1 − xh−1 ≤ 1, we can ignore the error of the first-order Taylor expansion,

x′h − xh =

1∑
i=h−1

Πh−1
j=i+1fx(xj , aj)

[
fa(xi, ai)δai + C(δa2i )

]
. (77)

And the corollary can be proved.
Lemma 1. Denote the function f(x) have continues derivative. Denote the first order derivative of
function f(x) as fx(x) . Then we have

f(x2)− f(x1) =
∫ 1

0

fx(x1 − t(x1 − x2))(x2 − x1)dt. (78)
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For multi-variable function f(x, y), we have

f(x2, y2)− f(x1, y1) =
∫ 1

0

fx(x1 − t(x1 − x2), y2)(x2 − x1) + fy(x2, y1 − t(y1 − y2))(y2 − y1)dt.

(79)

Proof of the Lemma 1. We first prove the single-variable version. Denote g(t) = f(x1−t(x1−x2)),
it is easy to verify that

f(x2)− f(x1) = g(1)− g(0). (80)

According to the fundamental theorem of calculus, we have

g(1)− g(0) =
∫ 1

0

dg(t)

dt
dt (81)

=

∫ 1

0

df(x1 − t(x1 − x2))
dt

dt (82)

=

∫ 1

0

df(x1 − t(x1 − x2))
dx

d(x1 − t(x1 − x2))
dt

dt (83)

=

∫ 1

0

fx(x1 − t(x1 − x2))(x2 − x1)dt. (84)

Then, we prove the multi-variable version. Denote g(t) = f(x1 − t(x1 − x2), y1 − t(y1 − y2)).

f(x2, y2)− f(x1, y1) (85)
=g(1)− g(0) (86)

=

∫ 1

0

dg(t)

dt
dt (87)

=

∫ 1

0

df(x1 − t(x1 − x2), y1 − t(y1 − y2))
dt

dt (88)

=

∫ 1

0

df(x1 − t(x1 − x2))
dx

d(x1 − t(x1 − x2))
dt

+
df(x1 − t(x1 − x2))

dy

d(y1 − t(y1 − y2))
dt

dt

(89)

=

∫ 1

0

fx(x1 − t(x1 − x2), y2)(x2 − x1) + fy(x2, y1 − t(y1 − y2))(y2 − y1)dt. (90)

Lemma 2. Denote D(x, a) = 1
2 (Q(x, a) − Vmax)

2, denote h1(x, a) = Daa(x, a) − Q2
a(x, a),

h2(x, a) = Dax −Qa(x, a)Qx(x, a), we have

h1 = Qaa(Q(x, a)− Vmax), (91)
h2 = Qax(Q(x, a)− Vmax) (92)

Proof of Lemma 2.

Dax =
d2D(x, a)

dadx
=
d2

[
1
2 (Q(x, a)− Vmax)2

]
dadx

=
d [Qa(x, a)(Q(x, a)− Vmax)]

dx
(93)

= Qa(x, a)Qx(x, a) +Qax(Q(x, a)− Vmax) (94)

Similarly, we can prove that

Daa = Qa(x, a)Qa(x, a) +Qaa(Q(x, a)− Vmax). (95)
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