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Abstract

Dual encoder architectures like CLIP models map two types of inputs into a shared em-
bedding space and predict similarities between them. Despite their success, it is, however,
not understood how these models compare their two inputs. Common first-order feature-
attribution methods can only provide limited insights into dual-encoders since their predic-
tions depend on feature-interactions rather than on individual features.

In this paper, we first derive a second-order method enabling the attribution of predictions
by any differentiable dual encoder onto feature-interactions between its inputs. Second, we
apply our method to CLIP models and show that they learn fine-grained correspondences
between parts of captions and regions in images. They match objects across input modes
also account for mismatches. This visual-linguistic grounding ability, however, varies heav-
ily between object classes and exhibits pronounced out-of-domain effects. We can identify
individual errors as well as systematic failure categories including object coverage, unusual
scenes and correlated contexts.

1 Introduction

Dual encoder models use independent modules to represent two types of inputs in a common embedding space
and are optimized to predict a scalar similarity measure for them. The training objective is typically a triplet
or contrastive loss (Sohn),2016; van den Oord et al.,|2019). Popular examples include Siamese transformers for
text-text pairs (SBERT) (Reimers & Gurevych, |2019) and Contrastive Language-Image Pre-Training (CLIP)
models (Radford et al., 2021} Jia et al.| [2021) for text-image pairs. The learned representations have proven
to be highly informative for downstream applications, such as image classification (Zhang et al., 2022a)),
visual question answering (Antol et al., |2015; [Tilli & Vu, [2025), image captioning and visual entailment
(Shen et al., |2021)), as well as text or image generation (Chen et al. 2023a; [Yu et al., [2022; |[Rombach et al.,
2022)). In (multi-modal) information retrieval, dual encoders can be applied to perform efficient semantic
search (Baldrati et al., 2022} |Zhu et al} [2024). Their independent processing of the two inputs allows for the
pre-computation and storage of item representations in vector-databases enabling sub-linear search times
via approximate nearest neighbor algorithms (Xiong et al., [2021; |[Johnson et al., [2019)), which can then e.g.
serve Retrieval-Augmented Generation (RAG) |Gao et al.| (2023).

Despite the success of dual encoder models, an open question remains how these models compare the fea-
tures of their two inputs. Ostensibly, common attribution methods can provide insights into such feature
importances. However, different from single-input models, dual encoder predictions depend on feature in-
teractions between two inputs, rather than on individual features. This is due to the comparison of the two
inputs’ embeddings through a cosine-similarity or dot-product, resulting in all terms contributing to the final
output score to contain multiplicative interactions between the two inputs. First-order feature attribution
methods, like Shapley values (Lundberg & Lee, 2017) or integrated gradients (Sundararajan et all [2017)
cannot account for feature interactions, as they can only attribute predictions to individual features (Zheng
et al.l |2020; Ramamurthy et al., [2022; |Janizek et al., [2021; |[Sundararajan et al., [2020)).

Only few works have studied interactions of features in symmetric Siamese encoders (Eberle et al., 2020
Moller et al., [2023; 2024; |Vasileiou & Eberle, [2024) and, to the best of our knowledge, they are yet to be



Under review as submission to TMLR

Our second-order attributions First-order attributions

Attribution slicing Visualization CLipSurgery ECLIP

Image projection
T

span A kid with headphones A kid with headphones A kid with headphones A kid with headphones

selection feeding birds. feeding birds. feeding birds. feeding birds.

g s
e
19}
g
2 I
a H
g Deer next to a woman
e} X
with an umbrella
% W \/
© > e g ECLip
bounding-box
Deer next to a woman Deer next to a woman Deer next to a woman Deer next to a woman
selection
with an umbrella. with an umbrella. with an [HBTEIE. with an umbrella.

Figure 1: (Left) Our second-order attributions can point out interactions between arbitrary spans in captions
and regions in images. We can visualize them by slicing (yellow selection) our 3d attribution tensor with
image dimensions (H,W) and caption dimension S (details in Section . A selection can be projected
onto the image (top) or the caption (bottom) by summation (blue arrows). Heatmaps for these projected
attributions are in shades of red /blue for positive /negative values. (Right) In contrast, first-order attributions
can only attribute the overall similarity between captions and images onto either the image (top) or the
caption (bottom). They cannot assess underlying interactions.

explored in non-symmetric models like vision-language dual encoders such as CLIP.

In this work, we address this research gap and aim at a means to analyze which aspects in two given inputs
dual encoders compare to predict a similarity for them by generalizing previous work for language-only
Siamese encoders (Moller et al, 2023} 2024). Our contributions, illustrated in Figure[1} are the following:
(1) We derive a general second-order feature attribution method that can explain interactions between inputs
of any differentiable dual encoder model. The method does not rely on any modification of the trained model,
nor on additional optimization. Required changes to the original code are minimal and easily transferable
to different architectures (implementation details in Appendix . We will make our code available.

(2) We apply the method to a range of CLIP models and demonstrate that they can capture fine-grained
interactions between corresponding parts of captions and regions in images. They identify matching objects
across the input modes and also penalize mismatches. Using image-captioning datasets with object bounding-
box annotations, we evaluate the extent and limitations of this intrinsic visual-linguistic grounding ability in a
wide range of CLIP models. We find large variation for different object classes and pronounced out-of-domain
effects. An error analysis reveals typical failure categories.

2 Related work

Metric learning refers to the task of producing embeddings reflecting the similarity between inputs
2019). Applications include face identification (Guillaumin et al., 2009; [Wojke & Bewleyl, [2018) and
image retrieval (Zhai & Wul 2018} |Gao et all [2014). Siamese networks with cosine similarity of embeddings
were early candidates (Chen & He|[2021)). The triplet-loss (Hoffer & Ailon| [2015) involving negative examples
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has been proposed as an improvement but requires sampling strategies for the large number of possible triplets
(Roth et all [2020)). |Qian et al| (2019) have shown that the triplet-loss can be relaxed to a softmax variant.
[Sohn| (2016) and [van den Oord et al.| (2019) have proposed the batch contrastive objective which has been
applied in both unsupervised (Caron et all [2020) and supervised representation learning
2020). It has lead to highly generalizable semantic text (Reimers & Gurevych, 2019) and image embeddings

(He et al [2020) and ultimately to the CLIP training paradigm Radford et al. (2021).

Vision-language models process both visual and linguistic inputs. Zhang et al.| (2022b)) were the first
to train a dual-encoder architecture with a contrastive objective on image-text data in the medical domain.
With Crip Radford et al| (2021) have applied this principle to web-scale image captions and the ALIGN
model has achieved similar results with alt-text 2021). In the following, the basic inter-modal
contrastive loss has been extended by, intra-modal loss terms (Goel et al., 2022; [Lee et al. 2022; Yang
2022a)), self-supervision (Mu et al.,[2022)), non-contrastive objectives (Zhou et al.,[2023), incorporating
classification labels (Yang et all 2022b)), textual augmentation (Fan et al., 2023)), a unified multi-modal
encoder architecture (Mustafa et al., |2022) and retrieval augmentation (Xie et al. 2023). Next to more
advanced training objectives, other works have identified the training data distribution to be crucial for
performance: (Gadre et al| (2023)) have proposed the DataComp benchmark focusing on dataset curration
while fixing model architecture and training procedure, have balanced metadata distributions
and [Fang et al|(2024) have introduced data filtering networks for the purpose. The strictly separated dual-
encoder architecture has been extended to include cross-encoder dependencies (Li et al. [2022a; [Pramanick|
et al, [2023), and multi-modal encoders have been combined with generative decoders (Chen et al., [2023a}
Lu et al., 2023; |[Li et al., 2021; Koh et al., [2023; [Alayrac et al., [2022)). The CoCa model combines contrastive
learning on uni-modal vision- and text-representations with a text generative cross-modal decoder

2022).

Local feature attribution methods aim at explaining a given prediction by assigning contributions to
individual input features (Murdoch et al., [2019; Doshi-Velez & Kim) 2017; [Lipton, [2018; |Atanasova et al.|
2020). First-order gradients can approximate a prediction’s sensitivity to such features (Li et al., 2016)
and gradient xinput saliencies can approximate feature importances (Simonyan et al.| 2014)). In transformer
architectures, attention weights were proposed as an explanation for model behavior (Abnar & Zuidemal
; however, subsequent works have contested this view, arguing that attention weights represent only
one aspect of the model’s reasoning (Jain & Wallace, 2019; Wiegreffe & Pinter} [2019} Bastings & Filippoval,
. Layer-wise relevance propagation (LRP) defines layer-specific rules to back-propagate attributions to
individual features (Montavon et al.,[2019; Bach et al., 2015)). In contrast, shapley values (Lundberg & Lee,
and Integrated Gradients (IG) (Sundararajan et al., [2017) treat models holistically and can provide
a form of theoretical guaranty for correctness. This has recently been challenged by [Bilodeau et al| (2024)
who prove fundamental limitations of attribution methods. A widely used attribution method in the vision
domain is Gradient-weighted Class Activation Mapping (Grad-CAM) (Selvaraju et al.,|2017)), which
let al| (2021)) and Bousselham et al. (2024) extend to transformer architectures.

Assigning importances to individual features, first-order attribution methods cannot capture dependencies
on feature interactions. [Tsang et al.| (2018) have proposed to detect such interactions from weight matrices in
feed-forward neural networks, (Cui et al.| (2020) investigated them in Bayesian networks. The Shapley value
has been extended to the Shapley (Taylor) Interaction Index (Grabisch & Roubens, 1999; Sundararajan|
let al.| 2020; [Fumagalli et al. 2024) and [Janizek et al| (2021) have generalized IG to integrated Hessians.
Dual and Siamese encoders represent a special case, as their predictions only depend on feature interactions
due to their multiplicative cosine or dot-product comparison of the two inputs’ embeddings (cf. Equation
below). [Plummer et al. (2020)) and |Zheng et al| (2020) have assessed similarities in Siamese image encoders.
[Eberle et al.| (2020) extended LRP for this class of models (Vasileiou & Eberle] 2024), while Méller et al.|
(20235 2024)) extended IG to Siamese language encoders. In this work, we further generalize this method to
multi-modal dual encoders.

CLIP explainability. Several works have previously pursued the goal of better understanding CLIP mod-
els and contrastive image encoders. Wang et al.| (2023)) and [Kazmierczak et al| (2024) have proposed infor-
mation bottleneck approaches. [Bhalla et al.| (2025)) identified interpretable sparse concepts in the embedding
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space. Rasekh et al.| (2024) predict human-understandable rationales for images. (Quantmeyer et al. (2024)
localized where the text encoder processes negation. |Giulivi & Boracchi| (2024]) create saliency maps for
WordNet concepts. [Chen et al| (2022)) propose an improved CAM variant and analyze which objects the
model looks at. [Materzyniska et al.| (2022) are interested in the entaglement of image representations.
|delsman et al.| (2023) identified the roles of individual attention heads in CLIP’s image encoder and later
investivated second-order effects of neurons (Gandelsman et all [2025). Tu et al| (2024) examined safety
objectives in CLIP models and Mayilvahanan et al.| (2024)) investigated their out-of-domain generalization.
[Zhao et al| (2024) explored a wide range of first-order methods to attribute similarity scores to images and
captions independently and proposed the CLIPSurgery method. [Sammani et al| (2023) and
[Lerman et al.| (2021)) independently introduced a second-order variant of gradCAM that can assess feature
interactions. It can be applied to CLIP; in Appendix[D] we show that it is a special case of our method. Most
closely related to our work, Interaction Local Interpretable Model-Agnostic Explanations (InteractionLIME)
(Joukovsky et all 2023) pioneered the attribution of interactions between captions and images in CLIP
models. However, relying on a local bilinear approximation of CLIP, it does not explain the original model
and requires additional optimization and hyper-parameter tuning (cf. Appendix . Last, the Image-Text
Similarity Map (ITSM) by |Li et al| and the method by Black et al.| (2022) are forward-facing saliency
methods that compute importance values through pair-wise embedding multiplication. We compare these
approaches against ours in Section [£.1]

Visual-linguistic grounding is the identification of fine-grained relations between text phrases and corre-
sponding image parts (Chen et al.;|2023b). Specialized models predict regions over images for a corresponding
input phrase (Sadhu et al.,|2019; |Ye et al.,[2019). This objective has been combined with contrastive caption
matching (Li et al., 2022b Datta et al., [2019), and caption generation (Yang et al) [2022c). The Vision-
Language Transformer with weakly-supervised local-feature Alignment (VoLTA) model internally matches
latent image-region and text-span representations (Pramanick et al., 2023). In multi-modal text generative
models, grounding has been included as an additional pretraining task (Li et al.,|2020; |Su et al., |2019; |Chen
et a1.|, ; alternatively grounding abilities can be unlocked with visual prompt learning (Dorkenwald
et al., [2024). At the intersect of grounding and explainability, Hendricks et al| (2016) have generated textual
explanations for vision models and have grounded them to input images (Hendricks et al., 2018; Park et al.l
. In this paper, we do not optimize models to explicitly ground predictions, but aim at analyzing to
which extent purely contrastively trained dual encoders already acquire this ability intrinsically.

3 Method

In the following, we derive general second-order attributions for dual encoder predictions enabling the as-
sessment of feature-interactions between their two inputs.

Derivation of interaction attributions. Let
s = f(a,b) = g(a) "h(b) (1)

be a differentiable dual-encoder model, with two vector-valued encoders g and h, respective inputs a and b
and a scalar output s. For our purpose, g will be an image encoder with an image input a and h will be a
text encoder with a text representation b as input. To attribute the prediction s onto features of the two
inputs a and b, we also define two uninformative reference inputs r,, the black image, and ry, a sequence of
fixed length padding tokens. We then rigorously start from the following expression:

f(arb) - f(ra’ b) - f(a’rb) + f(raa rb) (2)

Our derivation first proceeds by showing the equality of this initial starting-point to Eq. We then reduce
this equality to our final attributions in Eq. using the approximations discussed below. As a first step,
seeing f as an anti-derivative, we can turn the above formula into an integral over the derivative of f:

[f(a,b) — f(ra,b)] — [f(a ) — f(ra,rb)]
b
_ / 2 [fay) ~ fray)] dy, = / / F () d dy; 3)

, 0y 0x;0y
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Here, x and y are integration variables for the two inputs. We use component-wise notation with indices i
and j for the input dimensions and omit sums over double indices for clarity. We plug in the model definition
from Equation

a ,b 82
gk (x) hy(y) dx; dy; (4)
Za ry 8Xiayj !

Again, we use component-wise notation for the dot-product between the two embeddings g(x) and h(y) and
index output dimensions with k. Since neither embedding depends on the other integration variable, we can

separate the integrals:
2 0gr(x) > ohy(y)
——dx; dy;
[ ot [ )

a b

This step makes explicit use of the strict independence of the two encoders. Cross-encoder architectures
would introduce dependencies between them. Both terms are line integrals from the references to the actual
inputs in the respective input representation spaces; 0g(x)/0x; and 0hy(y)/0y; are the Jacobians of the
two encoders. Following the concept of integrated gradients (Sundararajan et al. 2017), we define the
straight lines between both references and inputs,

x(a) =1, +ala—r,), (6)
y(B) =15+ B(b 1), (7)

parameterized by a and [, and solve by substitution. For the integral over encoder g this yields

' ogy (x(a)) Oxi(0) ' ogy, (x(a))
/0 el 22 o= (a - ra), /O o ) da, (8)

since 0x(a)/0a = (a—r,), which is a constant w.r.t «; hence, we can pull it out of the integral. The integral
over encoder h is processed in the same way. We then define the two integrated Jacobians,

o [ Os(x() 1 N dga(x(an)
Jki_/oc?‘)cidaNN;m’ (9)

and J i ; analogously. In practice, these integrals are calculated numerically by sums over N steps, with
ay, = n/N. This introduces an approximation error which must, however, converge to zero for large N by
definition of the Riemann integral. We plug the results from Equation [§|and the definitions of the integrated
Jacobians into Equation [5}

(a—ra)i 57 (b —13); = Ay (10)

After computing the sum over the output embedding dimensions k, this provides a matrix of interactions
between feature-pairs (7,7) in input a and b, respectively, which we call the attribution matriz A,;. Note
that except for the numerical integration, the equality to Equation [2] still holds. Hence, the sum over all
feature-interaction attributions in A is an exact reformulation of our starting-point. If the references r, and
r, are uninformative, i.e. f(r,,b) =0, f(a,ry) =~ 0, f(rs,rp) ~ 0, we arrive at the final approximation

flab)~ ) A (11)

This provides an approximate decomposition of the model prediction s= f(a, b) into additive contributions
of feature-pair interactions between the two inputs.

Inter-modal attributions. In the derivation above, we treat image and text representations as vectors.
In transformer-based encoders, text inputs are represented as S x D, dimensional tensors, where S is the
length of the token sequence. Image representations are of shape H x W x D,, with H and W being height
and width of the image representation; in vision-transformers both equal the number of patches P. D, and
Dy are the encoders’ embedding dimensionalities. Our pair-wise image-text interaction attributions thus
have the dimensions H X W x Dy, x S x D,, which quickly becomes intractably large. Fortunately, the sum
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A hot dog sitting on a table covered in confetti.
Surrounded by glitter, there is a - in a bun.

A hot dog sitting on a table covered in confetti.

Surrounded by glitter, there is a sausage in a bun.

Figure 2: (Left) Intra-modal text-text attributions between top and bottom captions (top: selections in
yellow, bottom: corresponding attributions in red/blue for positive/negative). (Right) Intra-modal image-
image attributions between left and right image (left: bounding-box selection in yellow, right: heatmaps as
above). More examples can be found in Figure

over dimensions in Equation enables the additive combination of attributions in A. We sum over the
embedding dimensions of both encoders D, and D, and obtain a H x W xS dimensional attribution tensor,
which estimates for each pair of a text token and an image patch how much their combination contributes
to the overall prediction. These attributions are still three-dimensional and thus not straightforward to
visualize. However, again we can use their additivity, slice the 3d attribution tensor along text or image
dimensions and project onto the remaining dimensions by summation. This projection is demonstrated in
Figure [1| schematically and with examples, both for a selection over a token range in the caption (top) and
a selection over a bounding-box in the image (bottom). Importantly, all three examples per caption-image
pair come from the same 3d attribution tensor.

Intra-modal interaction attributions. Albeit vision-language dual-encoders are typically trained to
match images against captions, we can compute attributions for image-image or text-text pairs as well by
applying the same encoder to both inputs. For text-text attributions, after summation over embedding
dimensions, this yields an S; X Se dimensional attribution tensor, with S; and S2 being token sequence
lengths of the two texts. Analogous to above, in Figure 2| (left) we attribute the yellow selected slice in
the top caption onto the bottom caption. For image-image similarities, attribution tensors become four
dimensional taking the shape (HxW);x(HxW ), and containing a contribution for every pair of two patches
from either image. In Figure [2| (right), we attribute the slice of the yellow bounding-box in the left image
onto the image to its right. Appendix [A] includes additional examples.

4 Experiments

In our experiments, we apply our feature-interaction attributions to CLIP models. We focus on evaluating the
interactions between mentioned objects in captions and corresponding regions in images by selecting token-
ranges in captions and analyzing their interactions with image patches. In the first series of experiments, we
compare our attributions against baselines (Section . The second series in Section then utilizes our
method and analyzes CLIP models.

Datasets. We base this evaluation on three image-caption datasets that additionally contain object
bounding-box annotations in images, Microsoft’s Common Objects in Context (Coco) 2014),
the Flickr30k collection (Young et al., 2014; Plummer et al. [2015)), and the Hard Negative Captions (HNC)
dataset by Doénmez et al.| (2023). For HNC, we apply the authors’ approach of generating captions from
scene graphs using templates. Specifically, we use a basic template of the form subject predicate object
to align the generated captions with the domain of the other two datasets. We use HNC for evaluation only,
on Flickr30k we use the test split, and on COCO we use the validation split as the test split does not contain

captionsEI

Uhttps: //www .kaggle.com/datasets/shtvkumar/karpathy-splits|
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Models. We analyze CLIP dual-encoders (Radford et al., 2021) trained with the standard inter-modal
contrastive objective. We evaluate the original OPENAI models, as well as METACLIP (Xu et al., 2024) and
the OPENCLIP reimplementations trained on the LAION(Schuhmann et al.| 2022), DFN(Fang et al.l [2024),
CoMMONPOOL, and DATACOMP(Gadre et al) [2023) datasets [

Fine-tuning. In addition to the unmodified models, we evaluate variants fine-tuned on the Coco and
Flickr30k training splits. We run all tuning for five epochs using AdamW (Loshchilov & Hutter, 2018)),
starting with an initial learning rate of 1 x 10~7 that exponentially increases to 1 x 107°. We set the weight
decay to 1 x 10™% and use a batch size of 64 on a single 50GB NVIDIA A6000.

4.1 Attribution evaluation

In the first series of experiments, we compare our attributions against baselines. Figure [I] already showed
a qualitative comparison of our second-order feature-interaction attributions against first-order variants,
demonstrating how our method can point out correspondence between image regions and spans in a caption,
while the latter can only attribute the overall similarity onto parts of the image or the caption. A detailed
comparison between first-order methods has been presented by [Zhao et al| (2024). We closely follow their
evaluation protocol and extend it to second-order methods. Unless stated otherwise, we attribute to the
second-last hidden representation in the models’ image and text encoders and use N =50 integration steps.

Baselines. We compare our method against four baselines, namely Interaction Class Activation Mapping
(Interaction-CAM), InteractionLIME, ITSM and a variant of it. Interaction-CAM (Sammani et al., [2023])
is also gradient-based and can be seen as a special case of our approach as shown in Appendix [D] Interac-
tionLIME is a bilinear extension of LIME for dual-encoder models (Joukovsky et al., [2023). Code is not
available, therefore, we reimplement it; details are in Appendix ITSM (Sammani et al., 2023) follows the
simple approach of pair-wise multiplication of token and image patch embeddings after applying CLIP’s final
projection layer to the individual embeddings. Originally, it is applied to output representations and we refer
to this variant as ITSM,,;. We also apply it to the same hidden representations that our method attributes
to and refer to this variant as ITSMp;qden. A qualitative comparison between all methods is included in

Figure [T1]

Input perturbation. Following Sammani et al.| (2023), we perform conditional perturbation experiments
by iteratively removing or inserting the most attributed features in one input while keeping the other input
unmodified. Figure [3|plots the decrease in similarity score for conditional image patch deletion (CID). Our
method produces the steepest score decline as a function of the number of patches removed, indicating its
ability to identify the most relevant interactions. Next to CID, we also evaluate conditional image patch
insertion (CII) as well as conditional text token deletion (CTD) and conditional text token insertion (CTT).
All plots are shown in Figures [I6] and [I7] Table [I] provides a summary and reports the area under the
curve (AUC) for the four variants. With the exception of InteractionLIME on the text side, our method
consistently results in the highest AUC values for the insertion experiments and the lowest for deletion. While
InteractionLIME performs good on conditional text attribution, interestingly, its image attributions are not
competitive. We discuss this in Appendix [E] Insertion and deletion experiments have been criticized for
producing out-of-domain inputs [Hooker et al.| (2019)). Therefore, we also construct in-domain perturbations
in the form of hard negative captions (HNC) and evaluate their effect on the model in Section

Object localization. To systematically assess the visual-linguistic grounding abilities of the analyzed dual
encoders, we evaluate the models’ localization ability of objects in images that are also mentioned in a given
caption. For this experiment, we include all object annotations that correspond to a single instance of its
class in the image, and whose bounding-box is larger than one patch. For Coco, we identify class occurrences
in the caption through a dictionary based synonym matching. For HNC, classes exactly match sub-strings in
captions and in Flickr30k, respective spans are already annotated. This results in 3.5k image-caption pairs
from Coco, 8k pairs from Flickr30k, and 500 pairs from HNC. We compute attributions between the token
span to a class mention in the caption and the image. Following [Zhao et al.| (2024), we then employ the

2CLIP family: |https://github.com/openai/CLIP| Open family: |https://github.com/mlfoundations/open_ clip|
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Table 1: The AUC for CID, CII, CTD, and CTI,
on Coco for the fine-tuned LAION and the original
OPENAI model. |: lower is better; 1: higher is bet-
ter. Corresponding plots in Fig. [16]

Figure 3: Decline of similarity scores between images
and captions for iterative conditional image patch
deletions using a model pretrained on LAION and fine-
tuned on Coco. Additional figures displaying CID,
CII, CTD, and CTI can be found in Fig. IE' and@
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Figure 4: (Left) Examples for attributions between selected objects in the caption (yellow) and the image
together with corresponding Coco bounding-boxes (red), PGE and PGA values as described in Section
(Right) Cumulative PGE distributions for the OPENCLIP models on Coco before (dashed) and after (solid)
in-domain fine-tuning.

Point Game (PG) framework by [Zhang et al. (2018) to evaluate how well attributions correspond to human
bounding-box annotations. It defines Point Game Accuracy (PGA) as the fraction of cases where the most
attributed patch falls within the objects’ bounding-box, and Point Game Energy (PGE) as the fraction of
positive attributions within the bounding-box relative to the total attribution across the entire image
|& Chanl [2023; Wang et all 2020). For the latter we compare both full distributions (Figure [4| (right))
and median values (mPGE). The PG-framework is particularly suitable to evaluate the agreement between
attributions and bounding-box annotations because it does not require any thresholding and post-processing
to construct bounding-box estimates that are then compared to annotations by means of intersection over
union or similar metrics.

Figure [] shows examples from different PGE-ranges and the corresponding cumulative distributions over
the Coco dataset for the OPENCLIP models. Very high or low values, unambiguously indicate object
correspondence or clear failure cases, respectively. However, intermediate values often result from attributions
extending beyond the bounding box to contextual elements, such as the tennis court in the second example.

Table compares our method against Interaction-CAM and ITSM for the OPENAI and LAION model.
Results for DATACOMP and DFN are included in Table Our attributions outperform the baselines by
large margins. Figure|15]includes cumulative PGE-distributions for our attributions and the baselines, eval-
uated on a selection of models using the CoOCO test split. Based on these distributions, we test whether the
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Coco Flickr30k Coco Hnc Flickr30k
Training Method mPGE PGA mPGE PGA Train Tuning mPGE PGA mPGE PGA mPGE PGA
TTSMous 181 214 195 233 R\ 723 79.0 570 650 644 721
OpENAT  [TSMhidden 298 381 295 374 Yes 78.0 829 - - 73.4 790
: TLIME 27.9 34.9 25.8 33.1 Laion No 494  63.3 40.0 51.6 382 52.0
IcAM 38.6 54.6 33.5 51.4 Yes 71.1 83.2 - - 54.6 61.8
Ours 72.3 79.0 64.4 72.1
TTSM, .1 298 303 245 287 (b) Results for the Point Game-based vision-language
L q ITSMpigden  30.5 34.6 28.8 36.6 grounding evaluation for the ViT-B-16 models trained
ATON (tuned) ILIME 28.8 37.8 25.8 34.5 by OPENAI and on LAION. Tuning indicates whether a
Toam 325 584 335 514 model was fine-tuned on the train split of a dataset. Im-
Ours 71.1 83.2 54.3 61.8

provement upon fine-tuning are in bold.

(a) PG-based comparison of our attributions against the
ITSM method and Interaction-CAM (ICAM) for the
OPENAI and LAION model.

Table 2: PGA: Point Game Accuracy, mPGE: median Point Game Energy. Extensive results for Table
including additional models are shown in Table 5] Full results of Table 2B can be found in Tables [3 and [

improvement of our method over the baselines is statistically significant using the framework for stochas-
tic order proposed by [Dror et al| (2019) (details in Appendix [C). At the strict criterion of p < 0.001 and
€ =0.01, our method clearly results in significantly better PGE-statistics. This shows that neither a sim-
plified gradient-based approach (Interaction-CAM), nor pair-wise embedding multiplication (ITSM) or the
optimization of a local surrogate model (InteractionLIME) can capture caption-image interactions in CLIP
models as well as our method.

4.2 Model analysis

We now turn to applying our method to gain insights into how CLIP models match images and captions.

Out-of-domain effects. The tested models are trained on large web-based captioning datasets but have
(presumably) not been tuned on the Flickr30k and Coco train splits. To assess domain effects of the mod-
els’ grounding ability, we fine-tune them on the respective train splits. We emphasize that all fine-tuning
is conducted within the standard contrastive framework, neither modifying model architectures nor training
objectives to explicitly perform grounding. Table presents the median PGE and PGA for the OPE-
NAT model and its OPENCLIP LAION counterpart, before and after fine-tuning. Figure [f] shows cumulative
PGE distributions before and after fine-tuning for the OPENCLIP models on the Coco dataset. The results
for all tested OPENAI and OPENCLIP models on all datasets are provided in Appendix To compare
the grounding ability of unmodified models and their fine-tuned counterparts, again we test whether one
PGE-distribution is stochastically larger than the other (cf. Appendix |C)), assuming p<0.001 and e=0.01.

For both OPENAT and OPENCLIP models, fine-tuning increases grounding abilities by a large margin. These
improvements are consistently significant. While the unmodified Crip ViT-B/16 model already demonstrates
strong grounding abilities on Coco and Flickr30k, the off-the-shelf OPENCLIP counterparts perform notably
worse on these datasets. However, their improvement after in-domain fine-tuning is remarkable, which is
apparent in the examples in Figure The off-the-shelf model fails to identify the clock and even assigns
a negative attribution to the surfboard, whereas the fine-tuned version clearly identifies both. This large
improvement in the models’ grounding abilities indicates limitations in the original models’ abilities to
generalize beyond the initial training domain.

Class-wise evaluation. To examine the models’ understanding of individual visual-linguistic concepts on
a more fine-grained level and how it evolves upon in-domain tuning, we break the above analysis down to
individual classes. Figure [5| shows the average PGE-values and their standard deviations for COCO classes
in the OPENCLIP LAION model. The classes are ordered from left to right based on their average grounding
ability in the unmodified model (blue). PGE values range from 0.92+0.08 for sheep to 0.07+0.07 for
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Figure 5: Class-wise average Point Game Energy (PGE) and its standard deviation (error bars) of the
OPENCLIP LAION model before and after in-domain fine-tuning on the CoCoO train split. On the right are
two explicit examples of how the model’s grounding ability changes upon tuning. The corresponding classes
are emphasized with red arrows.

off-the-shelf fine-tuned
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each other out. and pocket change. underneath. looking at the sea.

Figure 6: Attributions between selected parts of a caption (yellow) and a corresponding image. Other
objects that also appear in the image and are mentioned in the caption (underlined) but are not selected
for attribution often receive negative attributions (blue). The histogram on the right shows the distribution
over the sign of such cross-attributions as described in the parageraph Object Discrimination.

snowboard. The model effectively identifies the leftmost classes sheep, bear, elephant, while grounding is
notably weaker for the rightmost classes like snowboard, cell phone, baseball bat. Upon fine-tuning (orange),
most classes show improvements. Using the standardized mean difference of the two PGE values as a measure
for effect size, we observe the largest improvements for the classes horse, bench, giraffe, airplane and clock.
This shows that standard contrastive fine-tuning sharpens the fine-grained visual-linguistic correspondence
of individual concepts in CLIP models. In Appendix (Figure , we replicate this experiment for DFN and
CoMMONPOOL, yielding similar results.

Object Discrimination. We frequently observe that attributions between a given object in the text and
a non-matching one in the image — or vice versa — are not only neutral but negative. Figure [f] includes four
explicit examples. To systematically evaluate this effect, we sample instances from CocoO that include at
least two distinct object classes, each appearing exactly once in the image. We then compute attributions
between the two corresponding bounding-boxes and text spans and also across them, which we refer to as
cross-attribution. Attribution to the actual object’s bounding-box is positive in nearly all cases (97.1%),
while cross-attributions to the other object are negative in 65.6% of instances — rising to 70.1% in the Coco
fine-tuned model (cf. Figure[6](right)). This implies that the models do not only match corresponding objects
across the input modes but can also actively penalize mismatches by assigning them negative contributions.
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Figure 7: Examples for the five failure categories that we can identify (left) and their relative occurrence in
three models (right). More examples for all categories are in included in Figure
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Figure 8: (Left) Histograms for score (dg) and attribution (4) changes in hard negative captions. (Right)
An example attributions for a hard negative caption, with the true object marked in yellow, and the replaced
negative one in magenta. COCO bounding-boxes in red. Details are described in the paragraph Hard negative
captions.

Hard negative captions. On the text side, it is straightforward to produce in-domain perturbations. We
create hard negative captions that replace a single object in a positive caption with a reasonable but differ-
ent object to receive a negative counterpart. To this end, we leverage the automatic procedure by
together with our simplified template (cf. Section [4]) and additionally create a second resource
from CoCO by manually annotating a small yet high-quality evaluation sample of 100 image-caption pairs.
We check whether our negative captions actually result in a decrease of the predicted similarity score com-
pared with their positive counterparts and define the difference as dg. It is negative in 95.2% (89.1%) of
the Coco (HNC) pairs. We then compute attributions between the token range of the original or replaced
object and the object bounding-box in the image and define the attribution difference between the negative
and the positive caption as d4. It is also negative in 95.2% (74.1%) of the Coco (HNC) examples. Full
histograms for dg and 04 as well as an example for a change in attributions is included in Figure [§] These
results show that the model mostly reacts correctly to mistakes in the caption and decreases the attribution
to the corresponding image region.

Qualitative failure analysis. To identify cases where the models’ grounding abilities are systematically
weak, we extract objects with PGE < 0.2 from the Coco validation set and categorize them qualitatively.
For the LatoN, OPENAI , and DFN models, this results in approximately 200 image-caption pairs each.
We can identify five major categories: (1) Visually correlated scenes like baseball courts, bathrooms, offices,
etc., (2) attributions locally exceeding bounding boxes, (3) coverage or partial visibility of objects, (4) actual
object misidentifications, and (5) difficult or unusual scenes. Figure El shows the distribution among these
categories and an example for each. More examples are included in Figure Category (1), correlated
scenes, accounts for approximately half of all failures in all three models, indicating that one of weaknesses
of CLIP models is to differentiate between objects that frequently appear together.

11
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5 Discussion

Interpretation of results. The fact that the model’s intrinsic grounding ability, as measured by our
attributions, can be poor on data outside the initial training domain and largely improves upon in-domain
tuning points out limitations in the generalization capabilities of CLIP models. Despite the billion scale
pre-training, the models seem to require explicit exposure to some object classes to establish a solid corre-
spondence between the vision and language mode for the underlying concepts.

An interesting finding is that CLIP models not only positively match objects but also penalize mismatches
by assigning negative contributions. However, this is not consistently the case and we frequently observe
positive cross-attributions between mismatching objects in correlated scenes like tennis courts, bathrooms,
kitchens, streets, etc. This suggests that CLIP models may struggle to differentiate between objects that
commonly appear together. The contrastive objective may not provide sufficient supervision to learn to tell
them apart. A solution may be to augment the training data with (potentially synthetic) examples specifi-
cally targeting such correlations. Future work should establish a better understanding of this phenomenon.
Among the failure categories that we have identified, attributions locally exceeding bounding-boxes only
imply slight disagreement with human annotations. Wrong attributions due to coverage, actual misidentifi-
cation, and unusual scenes account for only a small fraction of failures. Nevertheless, they may call for more
challenging datasets.

Our baseline experiments showed that analyzing interactions in CLIP models is not trivial. Neither simplified
gradient-based approaches nor pair-wise embedding multiplication is sufficient for the purpose. Interaction-
LIME successfully fits text-side dependencies but cannot reliably capture interactions with image features.
In contrast, our approach performs consistently, and requires no optimization or hyper-parameter tuning.

Limitations. As stated explicitly in Equation [11| our interaction attributions are an approximation.
Throughout this work, we attribute to intermediate representations of inputs, which is both efficient and in-
formative. Attribution to input representations is possible, yet computationally very expensive (Moller et al.|
2024). In transformers, intermediate representations have undergone multiple contextualization steps and
are technically not strictly tied to input features at a given position. Finally, recently proven fundamental
limitations of attribution methods urge caution in their interpretation, especially regarding counterfactual
conclusions about the importance of individual features (Bilodeau et al.l 2024). Despite these considera-
tions, our empirical evaluations demonstrate that our attributions can effectively point out correspondences
between images and captions. Although they should not be regarded as guaranteed robust and faithful
explanations, we argue that they offer valuable insights into dual encoder models and have the potential to
enhance their development further.

6 Conclusion

In this paper, we derived general feature-pair attributions for dual-encoder architectures, enabling the attri-
bution of similarity predictions onto interactions between input features. Our method is easily applicable to
any differentiable dual-encoder architecture and requires no modifications of the initial model. We believe
it can provide valuable insights in applications such as (multi-modal) information retrieval and retrieval-
augmented generation, helping to identify biases and errors in these models to improve them further.

Applying our method to CLIP models provides clear evidence for them capturing fine-grained interactions be-
tween corresponding visual and linguistic concepts despite their coarser contrastive objective. Mis-matching
objects are often not only ignored but contribute negatively to image-caption similarities. At the same time,
we also find pronounced out-of-domain effects, and can identify knowledge gaps about specific object classes
in individual models. In-domain fine-tuning can reduce these gaps by large margins, which points out limi-
tations in the initial models’ generalization capabilities and complements the recent results by [Mayilvahanan
et al| (2024). Finally, an error analysis revealed that CLIP models can struggle with covered or partially
visible objects, unusual scenes, and correlated contexts like kitchens, offices, or sports courts.

By enabling the analysis of interactions between caption and image features, our approach contributes to
an emerging interest in understanding higher-order dependencies in CLIP models (Gandelsman et al., [2025]
Joukovsky et al., 2023)), reaching beyond well-understood first-order effects (Zhao et al.| [2024)).
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(a) A couple sitting on a (b) A couple sitting on a (c¢) A dog is jumping for a (d) A dog is jumping for a
bench looking at the sea. bench looking at the sea. frisbee. frisbee.

Figure 9: Additional examples for inter-modal attributions of token-range selection with image projections
(left) and bounding-box selection with caption projection (right). The visualization is identical to Figure

Figure 10: Image-image attributions between the yellow bounding-box in the left image and the one to its
right as described in Section (3] Visualisation is identical to Figure [2| (right)

A Additional Examples

Figure [J] shows two more examples for inter-modal attributions, one for text-span selection and image
projection and one for bounding-box selection and caption projection.

Figure [10] includes two more examples for image-image attributions as described in Section [3| under intra-
modal attributions.

Figure [I1] shows a qualitative comparison between our attributions and the baselines described in Section

ZT

Figure [12| shows five examples for each of the five failure categories that we identified in Section under
Qualitative failure analysis.

B Extended results

Table Bl shows full results for our Point-Game evaluation on different OPENATI models. Next to the ViT-B-16
architecture, we also evaluate the RN50 and ViT-B-32 variants. Table [4] includes the full evaluation for all
OPENCLIP models. In addtion to the median PGE (mPGE), in these tables we also report cumulative PGE
densitites for the 80" percentile (PGE>0.8). Full cumulative PGE-histograms for additional models are
included in Figurs [I3 and [T4]

Table [5] presents full results of our Point-Game baseline experiments extending Section Corresponding
cumulative densities of the PGE-metric are shown in Figure Figures[16] and [I7]show the plots of the con-
ditional insertion and deletion experiments for the OPENCLIP LATON model and the original OPENAT model,
respectively. The corresponding AUC values are contained in Table [f}
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ITSMgut ILIME ICAM Ours

ITSMhidden

and a frisbee in front of a car by a lake

ICAM Ours

ILIME

ITSMoue

ITSMhidden

A woman on the phone with an umbrella sitting on a bench in a street
Figure 11: Qualitative comparison between our attributions, the InteractionCAM (ICAM), InteractionLIME
(ILIME) and both ITSM variants. Heatmaps over images in a given column are for the marked parts of the
captions in yellow below. 99
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correlated
scene

A baseball player A living room with An office with desk, Bathroom area, tub, Kitchen with stove,

swinging a bat. a vase with flowers. chair and laptop. toilet and sink. fan and refrigerator.

locally exceeding
bounding boxes

A man riding a A person on skies An airline status A person holds a Two people sitting on

skateboard up a ramp. flies through the air. board with a clock. pizza on a peel. a small boat floating.

coverage or
partial visibility

iy JEENNY

A child in bed looking A dog next to a cat A man drinking A person feeding A man sitting in a chair

at a picutre book. lying on a bed. from a red bottle.  sheep behind a fence. eating a banana.

object
misidentification

A baby with a spoon A living room with a A parking meter A plate of food next to A woman with a knife

looking at a cupcake. couch and a rug. decorated with a house. a cup of pepsi. about to cut some cake.

difficult or
unusual scene

A closeup of a fork A tan teddy bear Someone holding an Cars and a bus A dog that is

holding some broccoli. wearing a bow tie. umbrella on a sidewalk. stopped for a train. sniffing a baseball bat .

Figure 12: Five examples for each of the five identified failure categories as described in Section
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Coco HNC Flickr30k
Model Tuning mPGE PGE>0.8 PGA mPGE PGE>08 PGA mPGE PGE>0.8 PGA
RN50 No 66.3 28.8 76.9 50.1 22.6 61.8 60.1 25.5 71.2
ViT-B/32 No 63.5 33.3 69.1 52.8 28.5 58.5 50.4 23.4 58.1
ViT-B/16 No 72.3 35.7 79.0 57.0 31.7 65.0 64.4 28.4 72.1
ViT-B-16 Yes 78.0 48.4 82.9 - - - 73.4 40.7 79.0

Table 3: Summary of Point-Game evaluation for different CLIP models by OPENAI as described in Sec-
tion [I.I] Model refers to the investigated architecture, Tuning is whether the model was fine-tuned on the
train split of the respective dataset. Best overall results are in bold, best results of unmodified models are
underlined.

COCO Flickr30k
Training Tuning mPGE PGE>0.8 PGA mPGE PGE>08 PGA
LAION No 49.4 22.0 63.3 38.2 159 52.0
Yes 71.1 47.3 83.2 54.6 30.6 61.8
COMMONPOOL No 43.0 18.2 58.8 36.7 15.5 53.0
Yes 57.7 28.7 67.1 44.6 20.8 56.2
DATACOMP No 38.5 14.6 56.0 32.8 11.8 48.9
Yes 72.4 50.0 75.1 50.7 27.3 56.0
DFN No 46.5 19.6 54.3 35.4 12.3 43.3
Yes 71.4 53.3 74.6 53.1 33.5 58.3
Meta-CLIP No 44.2 16.8 52.3 37.0 14.5 46.4
Yes 57.5 49.8 77.1 49.2 24.1 57.2

Table 4: Summary of the Point-Game evaluation for all OPENCLIP models on Coco and Flickr30k. The
Training column refers to the dataset the model was initially trained on, Tuning is whether the model was
additionally fine-tuned on the train-split of the respective evaluation dataset. All models implement the
ViT-B-16 architecture except Meta-CLIP that uses quickgelu activations. Best overall results are in bold,
best results for unmodified models are underlined.
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. 0.8 Clip ViT-B/32 s . 0.8+ Clip ViT-B/32 .
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é 0.61 1 Cliptuned  *~ 2 é 0.6 1 1 Clip tuned
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Attribution within bounding-box (y) Attribution within bounding-box (y)

Figure 13: Cumulative PGE-distribution plots of the OPENAT models for the Coco (left) and Flickr30k
(right) dataset as described in Section

Figure extends the class-wise PGE-evaluation from Section to the OPENCLIP DFN and DATA-
ComP models.
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Coco Flickr30k

Training Method mPGE PGA mPGE PGA
ITSM, 181 214 195 233

ITSMpqqen 298 381 205 374

OpenAl 1y g 279 349 258  33.1
ICAM 386  54.6 335 514

Ours 72.3  79.0 644 72.1

TTSM. o, 28 303 245 287

ITSMpqaen 305 346 288  36.6

Laton (tuned) — pp pyp 98.8  37.8 258 345
ICAM 325 534 335 514

Ours 71.2 832 56.3 63.6

TTSM,. 242 345 251 314

ITSMyqaen ~ 27.4 230 277 365

DrN (tuned) 7y ip 279 392 257 335
ICAM 333 465 242 422

Ours 71.4 74.6 53.1 58.3

TTSM., o, 255 387 265  33.9

ITSMpqqen ~ 35.0 423 226 284

DataComp (tuned) 7y 284 393 257 341
ICAM 369 495 232  37.3

Ours 72.4 751  50.7 60.0

Table 5: PGE-evaluation results of our method compared against the ITSM and InteractionCAM (ICAM)
baselines for different models as described in Section under Object localization. Best results for every
model are in bold.
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Figure 14: Cumulative PGE-distribution plots for the OPENAI models on HNC (left) and the OPEN-
CL1P models on Flickr30k (right) as described in Section
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Figure 15: Cumulative PGE-distributions for our baseline experiment in Section Our method is in solid,
InteractionCAM is dashed and ITSM,,; is dotted. ITSM};4den is excluded for an uncluttered visualization.

C Stochastic Dominance

Stochastic dominance defines an order relation between probability distributions based on their cumulatives.
del Barrio et al.| (2018) have proposed a significance test building on the principle and |Dror et al.| (2019)
have identified it as being particularly suitable to compare deep neural models. The test’s e-parameter is the
maximal percentile range where the inferior distribution is allowed to dominate the superior one and Dror
et al. suggest to set it to € < 0.4. The smaller ¢, the stricter the criterion. « is the significance level.

D Relation to interactionCAM

Here, we first discuss the relation of integrated gradients Sundararajan et al. (2017)) and GradCam and then
show how our method can be reduced to the Interaction-CAM baseline through simplification. We start by
deriving IG for a model f(a) = s with a vector-valued input a and a scalar prediction s, which might e.g. be
a classification score. We define the reference input r, begin from the difference between the two predictions
and reformulate it as an integral over the integration variable x:

f@) - 1) = [ a, (12)

Again we do not write out sums over double indices. To solve the resulting line integral, we substitute with
the straight line x(a)) = r + a(a — r) and pull its derivative dx(a)/da = (a — r) out of the integral:
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Figure 16: Conditional insertion and deletion performed on either the caption or the image using a ViT-B-16
model pretrained on LAION.

/azo (magia) da=(a—r); /a=1 Vif(x(a)) da (13)

In practice, we approximate the integral by a sum over N steps. If the reference is uninformative, so that
f(r) = 0, the equality between Eq. and Eq. can be reduced to the final approximation of IG:

1 N
fla) = (a— 1) 1= 37 Vif (xlon), (14)

which decomposes the model prediction f(a) into contributions of individual feature ¢ in a. We can now
reduce these feature attributions further by setting N = 1 and r = 0, to obtain

a;V; f(a), (15)

which is often referred to as gradientxinput and is the basic form of GradCam. The method typically
attributes to deep image representations in CNNs, so that a has the dimensions C'x H x W, the number of
channels, height and width of the representation. To reduce attributions to a two-dimensional map, it sums
over the channel dimension and applies a relu-activation to the outcome. The original version also average
pools the gradients over the spacial dimensions, however, this is technically not necessary.

As discussed earlier, neither integrated gradients nor GradCam can explain dual encoder predictions. Fol-
lowing the logic from above we can, however, reduce our feature-interaction attributions from Eq. by
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Figure 17: Conditional insertion and deletion performed on either the caption or the image using the original
ViT-B-16 model by OPENAI without any fine-tuning.

setting N = 1 in the computation of the integrated Jacobians in Eq. [0 and using r, = r, = 0. For our
attribution matrix from Equation [I0] we then receive the simplified version

ogy Ohy,

;- (16)

This simplification could be termed Jacobiansx inputs and is equivalent to the Interaction-CAM by [Sammani
(2023)). Note, however, that setting N = 1 is the worst possible approximation to the integrated Jaco-
bians. Therefore, it is not surprising that empirically this version performs worse than our full attributions.

E Interaction LIME

We reimplement the Interaction LIME method proposed by |[Joukovsky et al|(2023)) that extends the principle
of LIME Ribeiro et al.| (2016) to dual encoder models with two inputs.

The core idea of LIME is to locally approximate the actual model f around a given input with an interpretable
surrogate model ¢. The local neighborhood of the input is approximated by a sample of perturbations. The
surrogate model is typically linear and operates on latent representations of the input. Further, there needs
to be a mapping from latent representations to input representations, so that we can generate corresponding
inputs that the actual model can process.

In the image domain latent representations z® are typically binary variables indicating the presence or
absence of super pixels in the input. To enable a direct comparison to our method and the other baselines,
we use the vision transformer’s patches as super pixels. Analogously, in the text input we define latent
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Figure 18: Class-wise PGE-evaluation for the OPENCLIP LAION (top) and DATACOMP (bottom) models

before and after in-domain fine-tuning as discussed in Section [£.1}

representations z” as binary variables indicating the presence of input tokens. Disabled image patches are

replaced with the mean over the image, disabled tokes are replaced with the padding token.

The local neighborhood of a given input pair (a, b) is approximated by sampling N such latent representations
(z2, zi?) from two Bernoulli distributions. For the corresponding input perturbations (a;, b;), we then compute

the CLIP scores s; = f(a;,b;) and fit the surrogate model to reproduce these predictions.

To account for interactions between the two inputs in dual encoder models, |Joukovsky et al.| (2023)) propose

to use a bilinear form as surrogate model:

z° "Wzl + ¢,

o(z%,2)

with a weight matrix W and a scalar bias ¢, which is then optimized according to the following MSE

objective:
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Here, 7 is a function that weights individual neighborhood samples (a;, b;) according to their similarity to
the original input (a,b). We use the cosine similarities between perturbed and original captions and image
inputs, respectively, and following |Joukovsky et al.| (2023), define the total similarity weight as the average
of the caption and image similarity:

m(a,a;,b,b;) = = (g (a)g(a;) + h' (b) h(b;)) (19)

N |

To fit ¢, we use stochastic gradient descent with a learning rate of 102 and weight-decay of 1072 over N =
1000 samples with a Bernoulli drop-put probabilities of p = 0.3 for both caption and image representations.
These parameters closely align with |Joukovsky et al| (2023]). Additionally, we find that scaling the latent
representations z% and z® with the square root of the numbers of tokens v/S and image patches vH x W,
respectively, helps to stabilize convergence.

Finally, the fitted weight matrix W models interactions between image patches and caption tokens. There-
fore, we can evaluate and visualize it in the same way as our attribution matrices A.

In Section [I.1] we found that InteractionLIME performs good — and even slightly better than our method —
on conditional caption attribution. At the same time its conditional image attributions are not competitive.
Consequently, its grounding ability as evaluated by the PG-metrics is also weak (cf. Table . We speculate
that the reason for this imbalance of attribution quality may be due to the different magnitudes in the number
of caption tokens and image patches. While captions typically have ~ 10 tokens, image representations in
ViT-B-32 architectures consist of ~200 patches. Therefore, the ratio of the number of samples N and tokens
is much better than for image patches and the surrogate model ¢ might be able estimate their importances
better.

Overall, we find that the optimization of InteractionLIME is quite sensitive to hyper-parameter choices and
requires extensive tuning to find a setting that leads to stable convergence. In contrast, our method does not
require additional optimization and involves no hyper-parameters except the number of integration steps NV,
whose increase must, however, improve attributions due to Equation [0

F Implementation Details

For the implement of our method, we make use of the auto-differentiation framework in the PyTorch package.
For a give input x(ow, ), g(x(ay,)) is the forward pass through the encoder g, and the Jacobian dgy (x (v, ))/0x;
is the corresponding backward pass. For an efficient computation of all N interpolation steps in Eq. [0] we
can batch forward and backward passes since individual interpolations are independent of another.

In practice, we attribute to intermediate representations, thus, the interpolations in Eq. [§are between latent
representations of the references and inputs. We use PyTorch hooks to compute these interpolations during
the forward pass.

The application of our method to a different model or architecture only requires the implementation of a
single forward hook, which is then registered into the model. Registering hooks is a standard feature in
auto-differentiation frameworks and does not require any modification of the given model’s original code.
The remaining steps to generate our attributions are differentiation through standard backpropagation and,
finally, simple matrix multiplication to compute Eq. [I0]
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