
EFOk-CQA: Towards Knowledge Graph
Complex Query Answering beyond Set Operation

Anonymous Author(s)
Affiliation
Address
email

Abstract

To answer complex queries on knowledge graphs, logical reasoning over incomplete1

knowledge needs learning-based methods because they are capable of generalizing2

over unobserved knowledge. Therefore, an appropriate dataset is fundamental to3

both obtaining and evaluating such methods under this paradigm. In this paper,4

we propose a comprehensive framework for data generation, model training, and5

method evaluation that covers the combinatorial space of Existential First-order6

Queries with multiple variables (EFOk). The combinatorial query space in our7

framework significantly extends those defined by set operations in the existing8

literature. Additionally, we construct a dataset, EFOk-CQA, with 741 query9

types for empirical evaluation, and our benchmark results provide new insights10

into how query hardness affects the results. Furthermore, we demonstrate that11

the existing dataset construction process is systematically biased and hinders the12

appropriate development of query-answering methods, highlighting the importance13

of our work. Our code and data are provided in https://anonymous.4open.14

science/r/EFOK-CQA/README.md15

1 Introduction16

The Knowledge Graph (KG) is a powerful database that encodes relational knowledge into a graph17

representation [34, 31], supporting downstream tasks [41, 8] with essential factual knowledge.18

However, KGs suffer from incompleteness during its construction [34, 7, 19]. The task of Complex19

Query Answering (CQA) proposed recently has attracted much research interest [13, 28]. This task20

ambitiously aims to answer database-level complex queries described by logical complex connectives21

(conjunction^, disjunction_, and negation␣) and quantifiers1 (existential D) [37, 27, 18]. Currently,22

learning-based methods dominate the CQA tasks because they can empirically generalize to unseen23

knowledge as well as prevent the resource-demanding symbolic search.24

The thriving of learning-based methods also puts an urgent request on high-quality benchmarks,25

including datasets with comprehensive coverage of queries and sound answers, and fair evaluation26

protocol for learning-based approaches. In the previous study, datasets are developed by progressively27

expanding the syntactical expressiveness, where conjunction [13], union [26], negation [28], and28

other operators [20] are taken into account sequentially. In particular, BetaE dataset [28] contains29

all logical connectives and becomes the standard training set for model development. A larger30

1The universal quantifier is usually not considered in query answering tasks, as a common practice from both
CQA on KG [37, 27] and database query answering [25].

Submitted to the 38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets
and Benchmarks. Do not distribute.

https://anonymous.4open.science/r/EFOK-CQA/README.md
https://anonymous.4open.science/r/EFOK-CQA/README.md
https://anonymous.4open.science/r/EFOK-CQA/README.md

evaluation benchmark EFO-1-QA [36] was proposed to systematically evaluate the combinatorial31

generalizability of CQA models on such queries. More related works are included in Appendix A.32

However, the queries in previous datasets [28, 36] are recently justified as “Tree-Form” queries [39] as33

they rely on the tree combinations of set operations. Compared to the well-established TPC-H decision34

support benchmark [25] for database query processing, queries in existing CQA benchmarks [28, 36]35

have two common shortcomings: (1) lack of combinatorial answers: only one variable is queried,36

and (2) lack of structural hardness: all existing queries subject to the structure-based tractability [29,37

39]. It is rather questionable whether existing CQA data under such limited scope can support the38

future development of methodologies for general decision support with incomplete knowledge.39

The goal of this paper is to establish a new framework that addresses the aforementioned shortcomings40

to support further research in complex query answering on knowledge graphs. Our framework is41

formally motivated by the well-established investigation of constraint satisfaction problems [29], in42

which all queries can be formulated. In general, the contribution of our work is four folds.43

Complete coverage We capture the complete Existential First Order (EFO) queries from their44

rigorous definitions, underscoring both combinatorial hardness and structural hardness45

and extending the existing coverage [36] which covers only a subset of EFO1 query. The46

captured query family is denoted as EFOk where k stands for multiple variables.47

Curated datasets We derive EFOk-CQA dataset, a enormous extension of the previous EFO-1-QA48

benchmark [36] and contains 741 types of query. We design several systematic rules to49

guarantee that our dataset includes high-quality nontrivial queries, particularly those that50

contain multiple query variables and are not structure-based tractable.51

Convenient implementation We implement the entire pipeline for query generation, answer sam-52

pling, model training and inference, and evaluation for the undiscussed scenarios of combi-53

natorial answers. Our pipeline is backward compatible, which supports both set operation-54

based methods and more recent ones.55

Results and findings We evaluate six representative CQA methods on our benchmark. Our results56

refresh the previous empirical findings and further reveal the structural bias of previous data.57

2 Problem definition58

2.1 Existential first order (EFO) queries on knowledge graphs59

Given a set E of entities and a set R of relations, a knowledge graph KG encodes knowledge as a set60

of factual triple KG “ tph, r, tqu Ă E ˆRˆ E . We always assume the KG that we have observed61

KGo is only part of the real KG, meaning that KGo Ă KG.62

The existing research only focuses on the logical formulas without universal quantifiers [27, 35]. We63

then offer the definition of it based on strict first order logic.64

Definition 1 (Term). A term is either a variable x or an entity a P E .65

Definition 2 (Atomic formula). ϕ is an atomic formula if ϕ “ rph, tq, where r P R is a relation, h66

and t are two terms.67

Definition 3 (Existential first order formula). The set of the existential formulas is the smallest set Φ68

that satisfies the following2:69

(i) For atomic formula rph, tq, itself and its negation rph, tq,␣rph, tq P Φ70

(ii) If ϕ, ψ P Φ, then pϕ^ ψq, pϕ_ ψq P Φ71

(iii) If ϕ P Φ and xi is any variable, then Dxiϕ P Φ.72

Definition 4 (Free variable). If a variable y is not associated with an existential quantifier, it is73

called a free variable, otherwise, it is called a bounded variable. We write ϕpy1, ¨ ¨ ¨ , ykq to indicate74

y1, ¨ ¨ ¨ , yk are the free variables of ϕ.75

2We always assume all variables are named differently as common practice in logic.

2

∃𝑥𝑥1. Award(Fields,𝑦𝑦1)∧ ¬Award(Fields,𝑦𝑦2)∧
Colleague(𝑦𝑦1, 𝑦𝑦2) ∧Born(𝑦𝑦1, 𝑥𝑥1) ∧Born(𝑦𝑦1, 𝑥𝑥2)

∃𝑥𝑥1. Located(Europe,𝑥𝑥1) ∧
¬Held(Olympics,𝑥𝑥1)∧Presdient(𝑥𝑥1, 𝑦𝑦1)

Not Award

Award

Colleague
Born

Born

Fields

Fields

𝒙𝒙𝟏𝟏

𝒚𝒚𝟏𝟏

𝒚𝒚𝟐𝟐

Europe

Olympics

Located

Held

Existential VariableConstant Variable (Entity) Free VariableIntermediate Set Answer Set

Figure 1: Operator Tree versus Query Graph. Left: An operator tree representing a given query “List
the presidents of European countries that have never held the Olympics” [28]; Right: A query graph
representing a given query “Find a pair of persons who are both colleagues and co-authors and were
born in the same country, with one having awarded the fields medal while the another not”, which is
both a multigraph and a cyclic graph, containing two free variables.
Definition 5 (Sentence and query). A formula ϕ is a sentence if it contains no free variables, otherwise,76

it is called a query. In this paper, we always consider formula with free variables, thus, we use77

formula and query interchangeably.78

Definition 6 (Substitution). For a1, ¨ ¨ ¨ , ak, where ai P E , we write ϕpa1{y1, ¨ ¨ ¨ , ak{ykq or simply79

ϕpa1, ¨ ¨ ¨ , akq for the result of simultaneously replacing all the occurrence of yi in ϕ by ai, i “80

1, ¨ ¨ ¨ , k.81

Definition 7 (Answer of an EFO query). For a given existential query ϕpy1, ¨ ¨ ¨ , ykq and a knowledge82

graph KG, its answer is a set that defined by83

Arϕpy1, ¨ ¨ ¨ , ykqs “ tpa1, ¨ ¨ ¨ , akqq|ai P E , i “ 1, ¨ ¨ ¨ , k, ϕpa1, ¨ ¨ ¨ , akq is True in KGu.
Definition 8 (Disjunctive Normal Form (DNF)). For any existential formula ϕpy1, ¨ ¨ ¨ , ykq, it can84

be converted to the Disjunctive normal form as shown below:85

ϕpy1, ¨ ¨ ¨ , ykq “ γ1py1, ¨ ¨ ¨ , ykq _ ¨ ¨ ¨ _ γmpy1, ¨ ¨ ¨ , ykq, (1)
γipy1, ¨ ¨ ¨ , ykq “ Dx1, ¨ ¨ ¨ , xn.ρi1 ^ ¨ ¨ ¨ ^ ρit, (2)

where ρij is either an atomic formula or its negation, xi is called an existential variable.86

DNF form has a strong property that Arϕpy1, ¨ ¨ ¨ , ykqs “ Ym
i“1Arγipy1, ¨ ¨ ¨ , ykqs, which allows87

us to only consider conjunctive formulas γi and then aggregate those answers to retrieve the final88

answers. This practical technique has been used in many previous research [22, 27]. Therefore, we89

only discuss conjunctive formulas in the rest of this paper.90

2.2 Constraint satisfaction problem for EFO queries91

Formally, a Constraint Satisfaction Problem (CSP) P can be represented by a triple P “ pX,D,Cq92

where X “ pv1, ¨ ¨ ¨ , vnq is an n-tuple of variables, D “ pD1, ¨ ¨ ¨ , Dnq is the corresponding n-tuple93

of domains, C “ pC1, ¨ ¨ ¨ , Ctq is t-tuple constraint, each constraint Ci is a pair of pSi, RSiq where94

Si is a set of variables Si “ tviju and RSi is the constraint over those variables [29].95

Historically, there are strong parallels between CSP and conjunctive queries in knowledge bases [10,96

17]. The terms correspond to the variable set X . The domain Di of a constant entity contains only97

itself, while it is the whole entity set E for other variables. Each constraint Ci is binary that is induced98

by an atomic formula or its negation, for example, for an atomic formula rph, tq, we have Si “ th, tu,99

RSi
“ tph, tq|h, t P E , ph, r, tq P KGu. Finally, by the definition of existential quantifier, we only100

consider the answer of free variables, rather than tracking all terms within the existential formulas.101

Definition 9 (CSP answer of conjunctive formula). For a conjunctive formula γ in Equation 2 with k102

free variables and n existential variables, the answer set, A, of it formulated as CSP instance is:103

Arγpy1, ¨ ¨ ¨ , ykqs “ Arγ‹py1, ¨ ¨ ¨ , yn`kqs, where γ‹ “ ρi1 ^ ¨ ¨ ¨ ^ ρit.

This shows that the inference of existential formulas is easier than solving CSP instances since the104

existential variables do not need to be kept track of.105

3

Not Held
IsCapital

LocatedEurope

Olympics

𝒙𝟏

𝒚𝟏 𝒙𝟏𝒄𝟏

𝒚𝟏 𝒚𝟐𝒄𝟏

𝒚𝟏

Figure 2: Left: Example of trivial abstract query graph, in the upper left graph, the x1 is redundant
violating Assumption 13, in the bottom left graph, answers for the whole query can be decomposed
to answer two free variables y1 and y2 alone, violating Assumption 14. Right: Example of new
query graph that is not included in previous benchmark [36] even though it can be represented by
operator-tree. The representation of query graph follows Figure 1.

2.3 The representation of query106

To give an explicit representation of existential formula, operator tree [13] was proposed to represent107

a formula, where each node represents the answer set for a sub-query, and the logic operators108

in it naturally represent set operations. This method allows for the recursive computation from109

constant entity to the final answer set in a bottom-up manner [28]. We also provide full details110

of the operator tree and tree-form query in Appendix C. However, this representation method is111

inherently directed, acyclic, and simple, therefore more recent research breaks these constraints by112

being bidirectional [21, 37] or being cyclic or multi graph [39]. To meet these new requirements, they113

propose to represent the formula by the query graph [39], which inherits the convention of constraint114

network in representing CSP instance. We utilize this design and further extend it to represent EFOk115

formula that contains multiple free variables. We provide the illustration and comparison of the116

operator tree and the query graph in Figure 1, where we show the strong expressiveness of the query117

graph. We also provide the formal definition of query graph as follows:118

Definition 10 (Query graph). Let γ be a conjunctive formula in equation 2, its query graph is defined119

by Gpγq “ tph, r, t, tT/Fuqu, where an atomic formula rph, tq in γ corresponds to ph, r, t, Tq and120

␣rph, tq corresponds to ph, r, t,Fq.121

Therefore, any conjunctive formulas can be represented by a query graph, in the rest of the paper, we122

use query graphs and conjunctive formulas interchangeably.123

3 The combinatorial space of EFOk queries124

Although previous research has given a systematic investigation in the combinatorial space of operator125

trees [36], the combinatorial space of the query graph is much more challenging due to the extremely126

large search space and the lack of explicit recursive formulation. To tackle this issue on a strong127

theoretical background, we put forward additional assumptions to exclude trivial query graphs. Such128

assumptions or restrictions also exist in the previous dataset and benchmark [28, 36]. Specifically,129

we propose to split the task of generating data into two levels, the abstract level, and the grounded130

level. At the abstract level, we create abstract query graph, at the grounded level, we provide the131

abstract query graph with the relation and constant and instantiate it as a query graph. In this section,132

we elaborate on how we investigate the scope of the nontrivial EFOk query of interest step by step.133

3.1 Nontrivial abstract query graph of EFOk134

The abstract query graph is the ungrounded query graph without information of certain knowledge135

graphs, and we give an example in Figure 3.136

Definition 11 (Abstract query graph). The abstract query graph G “ pV,E, f, gq is a directed137

graph with three node types,tConstant Entity, Existential Variable, Free Variableu, and two edge138

types,tpositive, negativeu. The V is the set of nodes, E is the set of directed edges, f is the function139

maps node to node type, g is the function maps edge to edge type.140

Definition 12 (Grounding). For an abstract query graph G, a grounding is a function I that maps it141

into a query graph G “ IpGq.142

4

We propose two assumptions of the abstract query graph as follows:143

Assumption 13 (No redundancy). For an abstract query graph G, there is not a subgraph Gs Ĺ G144

such that for every grounding I , ArIpGqs “ ArIpGsqs.145

Assumption 14 (No decomposition). For an abstract query graph G, there are no such two146

subgraphs G1, G2, satisfying that G1,G2 Ĺ G, such that for every instantiation I , ArIpGqs “147

ArIpG1qs
Ś

ArIpG2qs, where the
Ś

represents the cartesian product.148

The assumption 14 inherits the idea of the structural decomposition technique in CSP [11], which149

allows for solving a CSP instance by solving several sub-problems and combining the answer together150

based on topology property. Additionally, meeting these two assumptions in the grounded query151

graph is extremely computationally costly thus we avoid it in practice.152

We provide some easy examples to be excluded for violating the assumptions above in Figure 2.153

3.2 Nontrivial query graph of EFOk154

Similarly, we propose two assumptions on the query graph.155

Assumption 15 (Meaningful negation). For any negative edge e in query graph G, we require156

removing it results in different CSP answers: ArG´ es ‰ ArGs.3157

Assumption 15 treats negation separately because of the fact that for any KG, any relation r P R,158

there is |tph, tq|h, t P E , ph, r, tq P KGu| ! |E |2, which means that the constraint induced by the159

negation of an atomic formula is much less “strict” than the one induced by a positive atomic formula.160

Assumption 16 (Appropriate answer size). There is a constant M ! |E | to bound the candidate set161

for each free variable yi in G, such that for any i, |tai P E |pa1, ¨ ¨ ¨ , ai, ¨ ¨ ¨ , akq P ArGsu| ďM .162

We note the Assumption 16 extends the “bounded negation” assumption in the previous dataset [28,163

36]. We give an example “Find a city that is located in Europe and is the capital of a country that has164

not held the Olympics” in Figure 2, where the candidate set of x1 is in fact bounded by its relation165

with the y1 variable but not from the bottom “Olympics” constant, hence, this query is excluded in166

their dataset due to the directionality of operator tree.167

Overall, the scope of the formula investigated in this paper surpasses the previous EFO-1-QA168

benchmark because of: (1). We include the EFOk formula with multiple free variables for the first169

time; (2). We include the whole family of EFO1 query, many of them can not be represented by170

operator tree; (3) Our assumption is more systematic than previous ones as shown by the example in171

Figure 2. More details are offered in Appendix D.3.172

4 Framework173

We develop a versatile framework that supports five key functionalities fundamental to the whole174

CQA task: (1) Enumeration of nontrivial abstract query graphs as discussed in Section 3; (2) Sample175

grounding for the abstract query graph; (3) Compute answer for any query graph efficiently; (4)176

Support implementation of existing CQA models; (5) Conduct evaluation including newly introduced177

EFOk queries with multiple free variables. We explain each functionality in the following. An178

illustration of the first three functionalities is given in Figure 3, where we show how each functionality179

cooperates to help CQA tasks. We note that preprocessing allows us to extend our framework to more180

avant-garde settings, like inductive settings or graphs with numerics, more discussions in Appendix G.181

4.1 Enumerate abstract query graph182

As discussed in Section 3, we are able to abide by those assumptions as well as enumerate all183

possible query graphs within a given search space where certain parameters, including the number184

3Ideally, we should expect them to have different answers as the existential formulas, however, this is
computation costly and difficult to sample in practice, which is further discussed in Appendix D.

5

Train answers:
{(Figalli,Camillio)}

Real-world KG

Won

Not Won

Colleague

Fields

Fields

Answer lookup
(Section 4.3)

Test answers:
{(Villani, Clément)}

Evaluation Metrics
(Section 4.5)

• Marginal
• Multiply
• Joint

Preprocessor
• Transductive
• Inductive
• Numerical
• …Train KG

Test KG

Abstract Query
Graph Sampler

(Section 4.1)

Query Grounding
(Section 4.2) Inference

(Section 4.4)

Score

tensor

(2 vars)

Loss 𝑙(𝑦, ො𝑦)

𝒚𝟏

𝒚𝟐

Neural CQA Model

Backprop

Figure 3: Illustration of the all functionalities of our framework. Real-world KG is preprocessed and
fed into our pipeline, which contains the whole process of data generation and supports end-to-end
machine learning as well as evaluation. The origin of the KG picture is in Appendix I.
of constants, free variables, existential variables, and the number of edges are all given, shown in185

Figure 3. Additionally, we apply the graph isomorphism algorithm to avoid duplicated query graphs186

being generated. More details for our generation method are provided in Appendix D.1.187

4.2 Ground abstract query graph188

To ground an abstract query graph G and comply with the assumption 15, we split the abstract query189

graph into two parts, the positive part and the negative part, G “ Gp Y Gn. Then the grounding190

process is also split into two steps: 1. Sample grounding for the positive subgraph Gp and compute191

its answer, 2. Ground the Gn to decrease the answer got in the first step. Details in Appendix D.2.192

Finally, to fulfill the assumption 16, we follow the previous practice of manually filtering out queries193

that have more than 100ˆ k answers [28, 36], as we have introduced the EFOk queries.194

4.3 Answer for existential formula195

As illustrated in Section 2.2, the answer to an existential formula can be solved by a CSP solver,196

however, we also show in Definition 9 that solve it as CSP leads to huge computation costs. Thus,197

we develop our own algorithm following the standard solving technique of CSP, which ensures198

consistency conditions in the first step, and do the backtracking to get the final answers in the199

second step. Finally, we select part of our sampled queries and double-check it with the CSP200

solver https://github.com/python-constraint/python-constraint.201

4.4 Learning-based methods202

As the query graph is an extension to the operator tree regarding the express ability to existential203

formulas, we are able to reproduce CQA models that are initially implemented by the operator tree204

in our new framework. Specifically, since the operator tree is directed and acyclic, we compute its205

topology ordering that allows for step-by-step computation in the query graph. This algorithm is206

illustrated in detail in the Appendix F. Therefore, our pipeline is backward compatible.207

Conversely, for the newly proposed models that are based on query graphs, the original operator208

tree framework is not able to implement them, while our framework is powerful enough. We have209

therefore clearly shown that the query graph representation is more powerful than the previous210

operator tree and is able to support arbitrary existential formulas as explained in Section 2.3.211

4.5 Evaluation protocol212

As we have mentioned in Section 2.1, there is an observed knowledge graph KGo and a full knowledge213

graph KG. Thus, there is a set of observed answers Ao and a set of full answers A correspondingly.214

Since the goal of CQA is to tackle the challenge of incompleteness, it has been a common practice to215

6

https://github.com/python-constraint/python-constraint

Table 1: HIT@10 scores(%) for inferring queries with one free variable on FB15k-237. We denote e,
c as the number of existential variables, constant entities correspondingly. SDAG represents Simple
Directed Acyclic Graph, Multi for multigraph, and Cyclic for cyclic graph. AVG.(c) and AVG.(e) is
the average score of queries with the number of constant entities / existential variables fixed.

Model
c

e 0 1 2 AVG.(c) AVG.

SDAG SDAG Multi SDAG Multi Cyclic

BetaE

1 31.4 33.0 22.3 21.1 17.7 30.7 22.1

36.42 57.2 36.2 35.5 29.3 29.4 45.3 32.5
3 80.0 53.1 53.6 38.2 37.8 58.2 42.1

AVG.(e) 59.3 43.8 40.6 33.8 32.7 49.3

LogicE

1 34.4 34.9 23.0 21.4 17.4 30.3 22.4

36.72 60.0 38.4 36.8 29.8 29.3 45.3 33.0
3 83.0 55.5 55.5 38.5 37.8 57.8 42.4

AVG.(e) 62.2 46.0 42.0 34.2 32.6 49.1

ConE

1 34.9 35.4 23.6 21.8 18.4 34.2 23.5

39.02 61.0 39.1 38.4 32.0 31.5 50.2 35.2
3 84.8 56.7 57.1 41.1 40.0 63.4 44.9

AVG.(e) 63.4 47.0 43.5 36.5 34.7 54.1

CQD

1 39.0 34.2 17.6 17.4 12.7 28.7 18.7

35.92 50.7 33.8 33.6 28.4 28.4 45.7 31.4
3 58.4 49.6 52.4 39.3 39.1 60.4 42.6

AVG.(e) 50.7 41.4 38.4 33.8 32.4 50.2

LMPNN

1 38.6 37.8 21.8 22.9 17.8 31.7 23.2

35.82 62.2 40.2 35.0 30.8 28.1 44.4 32.5
3 86.6 56.9 51.9 38.3 35.3 55.8 40.8

AVG.(e) 65.4 47.8 39.6 34.5 30.8 48.0

FIT

1 38.7 42.7 32.5 26.1 22.5 41.5 28.8

47.02 65.5 47.7 48.2 39.7 40.1 56.5 43.4
3 84.2 63.9 63.5 50.5 50.4 63.5 53.6

AVG.(e) 65.8 54.7 51.5 44.9 43.7 57.5

evaluate CQA models by the “hard” answers Ah “ A ´Ao [26, 27]. However, to the best of our216

knowledge, there has not been a systematic evaluation protocol for EFOk queries, thus we leverage217

this idea and propose three types of different metrics to fill the research gap in the area of evaluation218

of queries with multiple free variables, and thus have combinatorial answers.219

Marginal. For any free variable yi, its full answer is Ayi “ tai P E |pa1, ¨ ¨ ¨ , ai, ¨ ¨ ¨ , akq P Au, the220

observed answer of it Ayi
o is defined similarly. This is termed “solution projection” in CSP theory [12]221

to evaluate whether the locally retrieved answer can be extended to an answer for the whole problem.222

Then, we rank the hard answer Ayi

h “ Ayi ´Ayi
o

4, against those non-answers E ´Ayi ´Ayi
o and223

use the ranking to compute standard metrics like MRR, HIT@K for every free variable. Finally, the224

metric on the whole query graph is taken as the average of the metric on all free variables. We note225

that this metric is an extension of the previous design [20]. However, this metric has the inherent226

drawback that it fails to evaluate the combinatorial answer by the k-length tuple and thus fails to find227

the correspondence among free variables.228

Multiply. Because of the limitation of the marginal metric discussed above, we propose to evaluate229

the combinatorial answer by each k-length tuple pa1, ¨ ¨ ¨ , akq in the hard answer set Ah. Specifically,230

we rank each ai in the corresponding node yi the same as the marginal metric. Then, we propose the231

HIT@nk metric, it is 1 if all ai is ranked in the top n in the corresponding node yi, and 0 otherwise.232

Joint. Finally, we note these metrics above are not the standard way of evaluation, which is based on233

a joint ranking for all the Ek combinations of the entire search space. We propose to estimate the234

joint ranking in a closed form given certain assumptions, see Appendix E for the proof and details.235

5 The EFOk-CQA dataset and benchmark results236

5.1 The EFOk-CQA dataset237

With the help of our framework developed in Section 4, we develop a new dataset called EFOk-CQA,238

whose combinatorial space is parameterized by the number of constants, existential and free variables,239

and the number of edges. EFOk-CQA dataset includes 741 different abstract query graphs in total.240

4We note Ayi
h can be empty, making these marginal metrics not reliable, details in Appendix E.

7

0 50 100 150 200 250
Ranking of query types

0

20

40

60

80

HI
T@

10
(%

)

BetaE
LogicE
ConE
CQD
LMPNN
FIT
AVG.

Figure 4: Relative performance of the six representative CQA models in queries with one free
variable, where the ranking of query types is determined by the average HIT@10 score. A Gaussian
filter with sigma=1 is added to smooth the curve.
Then, we conduct experiments on our new EFOk-CQA dataset with six representative CQA models241

including BetaE [28], LogicE [24], and ConE [40], which are built on the operator tree, CQD [2],242

LMPNN [35], and FIT [39] which are built on query graph. The experiments are conducted in two243

parts, (1). the queries with one free variable, specifically, including those that can not be represented244

by an operator tree; (2). the queries that contain multiple free variables.245

The parameters and the generation process, as well as its statistics, are detailed in Appendix D.4,246

where we also provide a dataset constructed in inductive settings. However, we mainly focus on247

transductive settings in the main paper since there are very few inductive models to benchmark.248

We have made some adaptations to the implementation of CQA models, allowing them to infer EFOk249

queries, full detail in Appendix F. The experiment is conducted on a standard KG FB15k-237 [32],250

additional experiments on other standard KGs FB15k and NELL are presented in Appendix H.251

5.2 Benchmark results for k “ 1252

Because of the great number of abstract query graphs, we follow previous work [36] to group query253

graphs by three factors: (1). the number of constant entities; (2). the number of existential variables,254

and (3). the topology of the query graph5. The result is shown in Table 1 and Figure 4.255

Structure analysis. Firstly, we find a clear monotonic trend that adding constant entities makes a256

query easier while adding existing variables makes a query harder, which the previous research [36]257

fails to uncover. Besides, we are the first to consider the topology of query graphs: when the number258

of constants and existential variables is fixed, we have found the originally investigated queries that259

correspond to Simple Directed Acyclic Graphs (SDAG) are generally easier than the multigraphs260

ones but harder than the cyclic graph ones. This is an intriguing result that greatly deviates from261

traditional CSP theory which finds that the cyclic graph is NP-complete, while the acyclic graph is262

tractable [6]. We conjecture that the cyclic graph contains one more constraint than SDAG that serves263

as a source of information for CQA models, while the multigraph tightens an existing constraint and264

thus makes the query harder.265

Model analysis. For models that are built on operator tree, including BetaE, LogicE, and ConE, their266

relative performance is steady among all breakdowns and is consistent with their reported score in the267

original dataset [28].However, for models that are built on query graphs, including CQD, LMPNN,268

and FIT, we found that LMPNN performs generally better than CQD in SDAG, but falls behind CQD269

in multigraphs and cyclic graphs. We assume the reason is that LMPNN requires training while CQD270

does not, however, the original dataset are biased which only considers SDAG, leading to the result271

5To facilitate our discussion, we make a further constraint in our EFOk-CQA dataset that the total edge is at
most as many as the number of nodes, thus, a graph can not be both a multigraph and a cyclic graph.

8

Table 2: HIT@10 scores(%) of three different types for answering queries with two free variables on
FB15k-237. The constant number is fixed to be two. e is the number of existential variables. The
SDAG, Multi, and Cyclic are the same as Table 1.

Model
HIT@10

Type
e “ 0 e “ 1 e “ 2 AVG.

SDAG Multi SDAG Multi Cyclic SDAG Multi Cyclic

BetaE
Marginal 54.5 50.2 49.5 46.0 58.8 37.2 35.5 58.3 43.8
Multiply 27.3 22.4 22.3 16.9 26.2 16.9 13.9 25.7 18.3

Joint 6.3 5.4 5.2 4.2 10.8 2.2 2.3 9.5 4.5

LogicE
Marginal 58.2 50.9 52.2 47.4 60.4 37.7 35.8 59.2 44.6
Multiply 32.1 23.1 24.9 18.1 28.3 18.1 14.8 26.6 19.5

Joint 6.8 6.0 6.1 4.5 12.3 2.5 2.7 10.3 5.1

ConE
Marginal 60.3 53.8 54.2 50.3 66.2 40.1 38.5 63.7 47.7
Multiply 33.7 25.2 26.1 19.8 32.1 19.5 16.3 30.3 21.5

Joint 6.7 6.4 6.2 4.8 12.6 2.6 2.7 10.9 5.3

CQD
Marginal 50.4 46.5 49.1 45.6 59.7 33.5 33.1 61.5 42.8
Multiply 28.9 23.4 25.4 19.5 31.3 17.8 16.0 30.5 21.0

Joint 8.0 8.0 7.4 6.0 13.9 3.6 3.9 12.0 6.4

LMPNN
Marginal 58.4 51.1 54.9 49.2 64.7 39.6 36.1 58.7 45.4
Multiply 35.0 26.7 29.2 21.7 33.4 21.4 17.0 28.4 22.2

Joint 7.6 7.5 7.1 5.3 12.9 2.8 2.9 9.5 5.2

FIT
Marginal 64.3 61.0 63.1 60.7 58.5 49.0 49.1 60.2 54.3
Multiply 39.7 32.2 35.9 27.8 27.4 29.5 26.8 32.4 29.2

Joint 7.4 9.0 7.8 6.5 10.1 3.7 4.6 10.6 6.4

that LMPNN doesn’t generalize well to the unseen tasks with different topology property. We expect272

future CQA models may use our framework to address this issue and gain better generalization.273

Moreover, by the detailed observation in Figure 4, we plot two boxes. In the red box, we find that even274

the worst model and the best model have pretty similar performance in these easiest queries despite275

that they may differ greatly in other queries. In the black box, we note that CQD [2], though designed276

in a rather general form, is pretty unstable when comes to empirical evaluation, as it has a clear277

downward curve and deviates from other model’s performance enormously in most difficult query278

types. Therefore, though its performance is better than LMPNN on average as reported in Table 1, its279

unsteady performance suggests its inherent weakness, especially when the users are risk-sensitive280

and desire a trustworthy machine-learning model that does not crash in extreme cases [33].281

We note FIT is designed to infer all EFO1 queries and is indeed able to outperform other models in282

almost all breakdowns, however, its performance comes with the price of computational cost, and face283

challenges in cyclic graph where it degenerates to enumeration: we further explain in Appendix F.284

5.3 Benchmark results for k “ 2285

As we have explained in Section 4.5, we propose three kinds of metrics, marginal ones, multiply286

ones, and joint ones, from easy to hard, to evaluate the performance of a model in the scenario of287

multiple variables. The evaluation result is shown in Table 2. As the effect of the number of constant288

variables is quite clear, we remove it and add the metrics based on HIT@10 as the new factor.289

For the impact regarding the number of existential variables and the topology property of the query290

graph, we find the result is similar to Table 1, which may be explained by the fact that those models291

are all initially designed to infer queries with one free variable. For the three metrics we have292

proposed, we have identified a clear difficulty difference among them though they generally show293

similar trends. The scores of joint HIT@10 are pretty low, indicating the great hardness of answering294

queries with multiple variables. Moreover, we have found that FIT falls behind other models in some295

breakdowns which are mostly cyclic graphs, corroborating our discussion in Section 5.2. We offer296

more experiment results and further discussion in Appendix H.297

6 Conclusion298

In this paper, we make a thorough investigation of the family of EFOk formulas based on a strong299

theoretical background. We then present a new powerful framework that supports several function-300

alities essential to CQA task, and build the EFOk-CQA dataset that greatly extends the previous301

datasets. Our evaluation result brings new empirical findings and reflects the biased selection in the302

previous dataset impairs the performance of CQA models, emphasizing the contribution of our work.303

9

References304

[1] Dimitrios Alivanistos, Max Berrendorf, Michael Cochez, and Mikhail Galkin. Query Embedding305

on Hyper-relational Knowledge Graphs, September 2022. arXiv:2106.08166 [cs].306

[2] Erik Arakelyan, Daniel Daza, Pasquale Minervini, and Michael Cochez. Complex Query An-307

swering with Neural Link Predictors. In International Conference on Learning Representations,308

2020.309

[3] Jiaxin Bai, Zihao Wang, Hongming Zhang, and Yangqiu Song. Query2Particles: Knowledge310

Graph Reasoning with Particle Embeddings. In Findings of the Association for Computational311

Linguistics: NAACL 2022, pages 2703–2714, 2022.312

[4] Yushi Bai, Xin Lv, Juanzi Li, and Lei Hou. Answering Complex Logical Queries on Knowledge313

Graphs via Query Computation Tree Optimization. In Proceedings of the 40th International314

Conference on Machine Learning, pages 1472–1491. PMLR, July 2023. ISSN: 2640-3498.315

[5] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.316

Translating Embeddings for Modeling Multi-relational Data. In Advances in Neural Information317

Processing Systems, volume 26. Curran Associates, Inc., 2013.318

[6] Clément Carbonnel and Martin C Cooper. Tractability in constraint satisfaction problems: a319

survey. Constraints, 21(2):115–144, 2016. Publisher: Springer.320

[7] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam Hruschka, and Tom321

Mitchell. Toward an architecture for never-ending language learning. In Proceedings of the322

AAAI conference on artificial intelligence, volume 24, pages 1306–1313, 2010. Issue: 1.323

[8] Lisa Ehrlinger and Wolfram Wöß. Towards a definition of knowledge graphs. SEMANTiCS324

(Posters, Demos, SuCCESS), 48(1-4):2, 2016.325

[9] Michael Galkin, Zhaocheng Zhu, Hongyu Ren, and Jian Tang. Inductive logical query answering326

in knowledge graphs. Advances in Neural Information Processing Systems, 35:15230–15243,327

2022.328

[10] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decompositions and tractable329

queries. In Proceedings of the eighteenth ACM SIGMOD-SIGACT-SIGART symposium on330

Principles of database systems, pages 21–32, 1999.331

[11] Georg Gottlob, Nicola Leone, and Francesco Scarcello. A comparison of structural CSP332

decomposition methods. Artificial Intelligence, 124(2):243–282, December 2000.333

[12] Gianluigi Greco and Francesco Scarcello. On The Power of Tree Projections: Struc-334

tural Tractability of Enumerating CSP Solutions. Constraints, 18(1):38–74, January 2013.335

arXiv:1005.1567 [cs].336

[13] Will Hamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, and Jure Leskovec. Embedding337

logical queries on knowledge graphs. Advances in neural information processing systems, 31,338

2018.339

[14] Zhiwei Hu, Víctor Gutiérrez-Basulto, Zhiliang Xiang, Xiaoli Li, and Jeff Pan. Type-aware340

Embeddings for Multi-Hop Reasoning over Knowledge Graphs. May 2022.341

[15] Qian Huang, Hongyu Ren, and Jure Leskovec. Few-shot relational reasoning via connection342

subgraph pretraining. Advances in Neural Information Processing Systems, 35:6397–6409,343

2022.344

[16] Zhen Jia, Soumajit Pramanik, Rishiraj Saha Roy, and Gerhard Weikum. Complex Temporal345

Question Answering on Knowledge Graphs. In Proceedings of the 30th ACM International346

Conference on Information & Knowledge Management, CIKM ’21, pages 792–802, New York,347

NY, USA, 2021. Association for Computing Machinery.348

10

[17] Phokion G Kolaitis and Moshe Y Vardi. Conjunctive-query containment and constraint satis-349

faction. In Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on350

Principles of database systems, pages 205–213, 1998.351

[18] Jure Leskovec. Databases as Graphs: Predictive Queries for Declarative Machine Learning. In352

Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database353

Systems, PODS ’23, page 1, New York, NY, USA, 2023. Association for Computing Machinery.354

event-place: Seattle, WA, USA.355

[19] Leonid Libkin and Cristina Sirangelo. Open and Closed World Assumptions in Data Exchange.356

Description Logics, 477, 2009.357

[20] Lihui Liu, Boxin Du, Heng Ji, ChengXiang Zhai, and Hanghang Tong. Neural-Answering358

Logical Queries on Knowledge Graphs. In Proceedings of the 27th ACM SIGKDD Conference359

on Knowledge Discovery & Data Mining, pages 1087–1097, 2021.360

[21] Xiao Liu, Shiyu Zhao, Kai Su, Yukuo Cen, Jiezhong Qiu, Mengdi Zhang, Wei Wu, Yuxiao361

Dong, and Jie Tang. Mask and Reason: Pre-Training Knowledge Graph Transformers for362

Complex Logical Queries. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge363

Discovery and Data Mining, pages 1120–1130, August 2022. arXiv:2208.07638 [cs].364

[22] Xiao Long, Liansheng Zhuang, Li Aodi, Shafei Wang, and Houqiang Li. Neural-based Mixture365

Probabilistic Query Embedding for Answering FOL queries on Knowledge Graphs. 2022.366

[23] Haoran Luo, Yuhao Yang, Gengxian Zhou, Yikai Guo, Tianyu Yao, Zichen Tang, Xueyuan Lin,367

Kaiyang Wan, and others. NQE: N-ary Query Embedding for Complex Query Answering over368

Hyper-relational Knowledge Graphs. arXiv preprint arXiv:2211.13469, 2022.369

[24] Francois Luus, Prithviraj Sen, Pavan Kapanipathi, Ryan Riegel, Ndivhuwo Makondo, Thabang370

Lebese, and Alexander Gray. Logic embeddings for complex query answering. arXiv preprint371

arXiv:2103.00418, 2021.372

[25] Meikel Poess and Chris Floyd. New TPC benchmarks for decision support and web commerce.373

ACM Sigmod Record, 29(4):64–71, 2000. Publisher: ACM New York, NY, USA.374

[26] H Ren, W Hu, and J Leskovec. Query2box: Reasoning Over Knowledge Graphs In Vector Space375

Using Box Embeddings. In International Conference on Learning Representations (ICLR),376

2020.377

[27] Hongyu Ren, Mikhail Galkin, Michael Cochez, Zhaocheng Zhu, and Jure Leskovec. Neural378

Graph Reasoning: Complex Logical Query Answering Meets Graph Databases, March 2023.379

arXiv:2303.14617 [cs].380

[28] Hongyu Ren and Jure Leskovec. Beta embeddings for multi-hop logical reasoning in knowledge381

graphs. Advances in Neural Information Processing Systems, 33:19716–19726, 2020.382

[29] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Programming.383

Elsevier Science Inc., USA, 2006.384

[30] Apoorv Saxena, Soumen Chakrabarti, and Partha Talukdar. Question Answering Over Temporal385

Knowledge Graphs, June 2021. arXiv:2106.01515 [cs].386

[31] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of semantic knowl-387

edge. In Proceedings of the 16th international conference on World Wide Web, pages 697–706,388

2007.389

[32] Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and390

text inference. In Proceedings of the 3rd workshop on continuous vector space models and their391

compositionality, pages 57–66, 2015.392

11

[33] Kush R. Varshney. Trustworthy machine learning and artificial intelligence. XRDS: Crossroads,393

The ACM Magazine for Students, 25(3):26–29, 2019.394

[34] Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledgebase. Com-395

munications of the ACM, 57(10):78–85, 2014. Publisher: ACM New York, NY, USA.396

[35] Zihao Wang, Yangqiu Song, Ginny Wong, and Simon See. Logical Message Passing Networks397

with One-hop Inference on Atomic Formulas. In The Eleventh International Conference on398

Learning Representations, 2023.399

[36] Zihao Wang, Hang Yin, and Yangqiu Song. Benchmarking the Combinatorial Generalizability400

of Complex Query Answering on Knowledge Graphs. Proceedings of the Neural Information401

Processing Systems Track on Datasets and Benchmarks, 1, December 2021.402

[37] Zihao Wang, Hang Yin, and Yangqiu Song. Logical Queries on Knowledge Graphs: Emerging403

Interface of Incomplete Relational Data. Data Engineering, page 3, 2022.404

[38] Zezhong Xu, Wen Zhang, Peng Ye, Hui Chen, and Huajun Chen. Neural-Symbolic Entangled405

Framework for Complex Query Answering, September 2022. arXiv:2209.08779 [cs].406

[39] Hang Yin, Zihao Wang, and Yangqiu Song. Rethinking existential first order queries and407

their inference on knowledge graphs. In The Twelfth International Conference on Learning408

Representations, 2024.409

[40] Zhanqiu Zhang, Jie Wang, Jiajun Chen, Shuiwang Ji, and Feng Wu. Cone: Cone embeddings410

for multi-hop reasoning over knowledge graphs. Advances in Neural Information Processing411

Systems, 34:19172–19183, 2021.412

[41] Tao Zhou, Jie Ren, Matúš Medo, and Yi-Cheng Zhang. Bipartite network projection and413

personal recommendation. Physical review E, 76(4):046115, 2007. Publisher: APS.414

Checklist415

1. For all authors...416

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s417

contributions and scope? [Yes]418

(b) Did you describe the limitations of your work? [Yes] We can not handle queries with419

the universal quantifier, meaning that we can not cover all queries that have been420

proposed by previous dataset and benchmarks.421

(c) Did you discuss any potential negative societal impacts of your work? [Yes] We have422

discussed the possible negative social impact, see Appendix I.423

(d) Have you read the ethics review guidelines and ensured that your paper conforms to424

them? [Yes]425

2. If you are including theoretical results...426

(a) Did you state the full set of assumptions of all theoretical results? [Yes] Clear assump-427

tions are made in Section 3 to define the scope of the query we investigate.428

(b) Did you include complete proofs of all theoretical results? [Yes] All the proofs are429

provided in Appendix D.1.430

3. If you ran experiments (e.g. for benchmarks)...431

(a) Did you include the code, data, and instructions needed to reproduce the main experi-432

mental results (either in the supplemental material or as a URL)? [Yes] We have given433

the link in the abstract.434

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they435

were chosen)? [Yes] This is in Appendix F.436

12

(c) Did you report error bars (e.g., with respect to the random seed after running experi-437

ments multiple times)? [No] However, we have evaluated CQA models in the previous438

dataset and the result is similar to the scores in original paper.439

(d) Did you include the total amount of compute and the type of resources used (e.g., type440

of GPUs, internal cluster, or cloud provider)? [Yes]441

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...442

(a) If your work uses existing assets, did you cite the creators? [Yes]443

(b) Did you mention the license of the assets? [No] They are all open datasets.444

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]445

(d) Did you discuss whether and how consent was obtained from people whose data you’re446

using/curating? [N/A] We only use public data and don’t obtain from individuals.447

(e) Did you discuss whether the data you are using/curating contains personally identifiable448

information or offensive content? [N/A]449

5. If you used crowdsourcing or conducted research with human subjects...450

(a) Did you include the full text of instructions given to participants and screenshots, if451

applicable? [N/A] We have not used crowdsourcing.452

(b) Did you describe any potential participant risks, with links to Institutional Review453

Board (IRB) approvals, if applicable? [N/A]454

(c) Did you include the estimated hourly wage paid to participants and the total amount455

spent on participant compensation? [N/A]456

A Related works457

Answering complex queries on knowledge graphs differs from database query answering by being a458

data-driven task [37], where the incompleteness of the knowledge graph is addressed by methods that459

learn from data. Meanwhile, learning-based methods enable faster neural approximate solutions of460

symbolic query answering problems [27].461

The prevailing way is query embedding, where the computational results are embedded and computed462

in the low-dimensional embedding space. Specifically, the query embedding over the set operator trees463

is the earliest proposed [13]. The supported set operators include projection[13], intersection [26],464

union and negation [28], and later on be improved by various designs [40, 3]. Such methods assume465

queries can be converted into the recursive execution of set operations, which imposes additional466

assumptions on the solvable class of queries [36]. These assumptions introduce additional limitations467

of such query embeddings468

Recent advancements in query embedding methods adapt query graph representation and graph469

neural networks, supporting atomics [21] and negated atomics [35]. Query embedding on graphs470

bypasses the assumptions for queries [36]. Meanwhile, other search-based inference methods [2, 39]471

are rooted in fuzzy calculus and not subject to the query assumptions [36].472

Though many efforts have been made, the datasets of complex query answering are usually subject to473

the assumptions by set operator query embeddings [36]. Many other datasets are proposed to enable474

queries with additional features, see [27] for a comprehensive survey of datasets. However, only one475

small dataset proposed by [39] introduced queries and answers beyond such assumptions [36]. It is476

questionable that this small dataset is fair enough to justify the advantages claimed in advancement477

methods [35, 39] that aim at complex query answering. The dataset [39] is still far away from the478

systematical evaluation as proposed in [36] and EFOk-CQA proposed in this paper fills this gap.479

B Details of constraint satisfaction problem480

In this section, we introduce the constraint satisfaction problem (CSP) again. One instance of CSP P481

can be represented by a triple P “ pX,D,Cq where X “ px1, ¨ ¨ ¨ , xnq is an n-tuple of variables,482

13

D “ pD1, ¨ ¨ ¨ , Dnq is the corresponding n-tuple of domains, meaning for each i, xi P Di. Then,483

C “ pC1, ¨ ¨ ¨ , Ctq is t-tuple constraint, each constraint Ci is a pair of pSi, RSiq where Si is called484

the scope of the constraint, meaning it is a set of variables Si “ txiju and RSi
is the constraint over485

those variables [29], meaning that RSi
is a subset of the cartesian product of variables in Si.486

Then the formulation of existential conjunctive formulas as CSP has already been discussed in487

Section 2.2. Additionally, for the negation of atomic formula ␣rph, tq, we note the constraint C is488

also binary with Si “ th, tu, RSi
“ tph, tq|h, t P E , ph, r, tq R KGu, this means that RSi

is a very489

large set, thus the constraint is less “strict” than the positive ones.490

C Preliminary of tree form query491

We explain the operator tree method, as well as the tree-form queries in this section, which is firstly492

introduced in [39]. The tree-form queries are defined to be the syntax closure of the operator tree493

method and are the prevailing query types in the existing datasets [28, 36], see the definition below:494

Definition 17 (Tree-Form Query). The set of the Tree-Form queries is the smallest set Φ such that:495

(i) If ϕpyq “ rpa, yq, where a P E , then ϕpyq P Φ;496

(ii) If ϕpyq P Φ,␣ϕpyq P Φ;497

(iii) If ϕpyq, ψpyq P Φ, then pϕ^ ψqpyq P Φ and pϕ_ ψqpyq P Φ;498

(iv) If ϕpyq P Φ and y1 is any variable, then ψpy1q “ Dy.rpy, y1q ^ ϕpyq P Φ.499

We note that the family of tree-form queries deviates from the targeted EFO1 query family [39]. The500

rationale of the definition is that the previous model relied on the representation of “operator tree”501

which addresses logical queries to simulate logical reasoning as the execution of set operators [28, 40,502

38], where each node represents a set of entities corresponding to the answer set of a sub-query [39].503

Then, logical connectives are transformed into operator nodes for set projections(Definition 17 i,iv),504

complement(Definition 17 ii), intersection, and union(Definition 17 iii) [36]. Particularly, the set505

projections are derived from the Skolemization of predicates [24]. Therefore, the operator tree506

method that has been adopted in lines of research [28, 40, 38] is just a model that neuralizes these set507

operations: projection, complement, intersection, and union. These different models basically only508

differ from each other by their parameterization while having the same expressiveness as characterized509

by the tree form query.510

Specifically, the left side of the Figure 1 shows an example of the operator tree, where “Held” and511

“Located” are treated as two projections, “N” represents set complement, and “I” represents set512

intersection. Therefore, the embedding of the root representing the answer set can be computed based513

on these set operations in a bottom-up manner [28].514

Finally, it has been noticed that tree-form query is subject to structural traceability and only has515

polynomial time combined complexity for inference while the general EFOk, or even EFO1 queries,516

is NP-complete, with detailed proof in [39]. Therefore, this result highlights the importance of517

investigating the EFOk queries as it greatly extends the previous tree-form queries.518

D Construction of the whole EFOk-CQA datset519

In this section, we provide details for the construction of the EFOk-CQA dataset.520

D.1 Enumeration of the abstract query graphs521

We first give a proposition of the property of abstract query graph:522

Proposition 18. For an abstract query graph G, if it conforms Assumption 13 and Assumption 14,523

then removing all constant entities in G will lead to only one connected component and no edge is524

connected between two constant entities.525

14

𝑦2

𝑦1
𝑥1

𝑐1

𝑐2

(1) (2) (3) (4)

𝑟3

𝑟2

𝑟1

𝑟5 𝑟6

𝑦2

𝑦1
𝑥1

𝑐1

𝑐2

𝑟3

𝑟2

𝑟1

𝑟5 𝑟6

𝑦2

𝑦1

𝑥1
𝑟3

𝑟5 𝑟6

𝑦2

𝑦1

𝑥1
𝑟3

𝑟5

𝑟4
𝑟4 𝑟4 𝑟4

Figure 5: The four steps of enumerating the abstract query graphs. We note that the example and
representation follow Figure 3.

Proof. We prove this by contradiction. If there is an edge (whether positive or negative) between526

constant entities, then this edge is redundant, violating Assumption 13. Then, if there is more than one527

connected component after removing all constant entities in G. Suppose one connected component528

has no free variable, then this part is a sentence and thus has a certain truth value, whether 0 or 1,529

which is redundant, violating Assumption 13. Then, we assume every connected component has at530

least one free variable, we assume there is m connected component and we have:531

NodepGq “ pYm
i“1NodepGiqq YNodepGcq

where m ą 1, the Gc is the set of constant entities and each Gi is the connected component, we use532

NodepGq to denote the node set for a graph G. Then this equation describes the partition of the node533

set of the original G.534

Then, we construct Ga “ GrNodepG1qYGcs and Gb “ GrpYm
i“1NodepGiqqYNodepGcqs, where G535

represents the induced graph. Then we naturally have that ArIpGqs “ ArIpGaqs
Ś

ArIpGbqs, where536

the
Ś

represents the Cartesian product, violating Assumption 14.537

538

Additionally, as mentioned in Appendix B, the negative constraint is less “strict”, we formally put an539

additional assumption of the real knowledge graph as the following:540

Assumption 19. For any knowledge graph KG, with its entity set E and relations set R, we assume541

it is somewhat sparse with regard to each relation, meaning: for any r P R, |ta P E |Db.pa, r, bq P542

KG or pb, r, aq P KGu| ! |E |.543

Then we develop another proposition for the abstract query graph:544

Proposition 20. With the knowledge graph conforming Assumption 19, for any node u in the abstract545

query graph G, if u is an existential variable or free variable, then it can not only connect with546

negative edges.547

Proof. Suppose u only connects to m negative edge e1, ¨ ¨ ¨ , em. For any grounding I , we assume
Ipeiq “ ri P R. For each ri, we construct its endpoint set

Endpointpriq “ ta P E |Db.pa, r, bq P KG or pb, r, aq P KGu

by the assumption 19, we have |Endpointpriq| ! E |, then we have:

| Ym
i“1 Endpointpriq| ď Σm

i“1|Endpointpriq| ! |E |

since m is small due to the size of the abstract query graph. Then we have two situations about the548

type of node u:549

1.If node u is an existential variable.550

Then we construct a subgraph Gs be the induced subgraph of NodepGq ´ u, then for any possible551

grounding I , we prove that ArIpGsqs=ArIpGqs, the right is clearly a subset of the left due to it552

15

contains more constraints, then we show every answer of the left is also an answer on the right, we553

merely need to give an appropriate candidate in the entity set for node v, and in fact, we choose any554

entity in the set E ´Ym
i“1Endpointpriq since it suffices to satisfies all constraints of node u, and we555

have proved that |E ´Ym
i“1Endpointpriq| ą 0.556

This violates the Assumption 13.557

2.If node u is a free variable.558

Similarly, any entity in the set E ´Ym
i“1Endpointpriq will be an answer for the node u, thus violating559

the Assumption 16.560

561

We note the proposition 20 extends the previous requirement about negative queries, which is firstly562

proposed in [28] and inherited and named as “bounded negation” in [36], the “bounded negation”563

requires the negation operator should be followed by the intersection operator in the operator tree.564

Obviously, the abstract query graph that conforms to “bounded negation” will also conform to the565

requirement in Proposition 20. A vivid example is offered in Figure 2.566

Finally, we make the assumption of the distance to the free variable of the query graph:567

Assumption 21. There is a constant d, such that for every node u in the abstract query graph G, it568

can find a free variable in its d-hop neighbor.569

We have this assumption to exclude the extremely long-path queries.570

Equipped with the propositions and assumptions above, we explore the combinatorial space of the571

abstract query graph given certain hyperparameters, including: the max number of free variables,572

max number of existential variables, max number of constant entities, max number of all nodes, max573

number of all edges, max number of edges surpassing the number of nodes, max number of negative574

edge, max distance to the free variable. In practice, these numbers are set to be: 2, 2, 3, 6, 6, 0, 1, 3.575

We note that the max number of edges surpassing the number of nodes is set to 0, which means that576

the query graph can at most have one more edge than a simple tree, thus, we exclude those query577

graphs that are both cyclic graphs and multigraphs, making our categorization and discussion in the578

experiments in Section 5.2 and Section 5.3 much more straightforward and clear.579

Then, we create the abstract query graph by the following steps, which is a graph with three types of580

nodes and two kinds of edges:581

1. First, create a simple connected graph G1 with two types of nodes, the existential variable582

and the free variable, and one type of edge, the positive edge.583

2. We add additional edges to the simple graph G1 and make it a multigraph G2.584

3. Then, the constant variable is added to the graph G2, In this step, we make sure not too long585

existential leaves. The result is graph G3.586

4. Finally, random edges in G3 are replaced by the negation edge, and we get the final abstract587

query graph G4.588

In this way, all possible query graphs within a certain combinatorial space are enumerated, and finally,589

we filter duplicated graphs with the help of the graph isomorphism algorithm. We give an example to590

illustrate the four-step construction of an abstract query graph in Figure 5.591

D.2 Ground abstract query graph with meaningful negation592

To fulfill the Assumption 15 as discussed in Section 4.2, for an abstract query graphG “ pV,E, f, gq,593

we have two steps: (1). Sample grounding for the positive subgraph Gp and compute its answer (2).594

Ground the Gn to decrease the answer got in the first step. Then we define positive subgraph Gp to595

be defined as such, its edge set E1 “ te P E|gpeq “ positiveu, its node set V 1 “ tu|u P V, De P596

16

Tree Form

EFOk-CQA

EFO-1-QA

FIT

EFO1

BetaE

Figure 6: Illustration of the comparison between the EFOk-CQA dataset (navy blue box) and the
previous dataset (three yellow boxes), where the BetaE and EFO-1-QA aim to investigate the tree
form query, explained in Appendix C, while the FIT dataset aims to investigate EFO1 query that
is not tree form. FIT is not a subset of EFOk-CQA because its “3pm” query is not included in
EFOk-CQA.

E1 and e connects to uu. Then Gp=pV 1, E1, f, gq. We note that because of Proposition 20, if a node597

u P V ´ V 1, then we know node u must be a constant entity.598

Then we sample the grounding for the positive subgraph Gp, we also compute the CSP answer Ap for599

this subgraph.600

Then we ground what is left in the positive subgraph, we split each negative edge in E ´ E1 into two601

categories:602

1. This edge e connects two nodes u, v, and u, v P V 1.603

In this case, we sample the relation r to be the grounding of e such that it negates some of the answers604

in Ap.605

2. This edge e connects two nodes u, v, where u P V 1, while v R V 1.606

In this case, we sample the relation r for e and entity a for v such that they negate some answer in607

Ap, we note we only need to consider the possible candidates for node u and it is quite efficient.608

We note that there is no possibility that neither of the endpoints is in V 1 because as we have discussed609

above, this means that both nodes are constant entities, but in Proposition 18 we have asserted that no610

edge is connected between two entities.611

D.3 The comparison to previous benchmark612

To give an intuitive comparison of our EFOk-CQA dataset against those previous datasets and613

benchmark, including the BetaE dataset [28], the EFO-1-QA benchmark [36] that extends BetaE614

dataset, and the FIT dataset [39] that explores 10 more new query types, we offer a new figure in615

Figure 6.616

It can be clearly observed that EFO-1-QA covers the BetaE dataset and has provided a quite systematic617

investigation in tree form query, while FIT deviates from them and studies ten new query types that618

are in EFO1 but not tree form.619

As discussed in Section 3, the scope of the formula investigated in our EFOk-CQA dataset surpasses620

the previous EFO-1-QA benchmark and FIT dataset because of three reasons: (1). We include621

the EFOk formula with multiple free variables that has never been investigated(the bottom part of622

17

Table 3: The number of abstract query graphs with one free variable. We denote e as the number of
existential variables and c as the number of constant entities. SDAG represents the Simple Directed
Acyclic Graph, Multi for multigraph, and Cyclic for the cyclic graph. Sum.(c) and Sum.(e) is the
total number of queries with the number of constant entities / existential variables fixed.

c
e 0 1 2 Sum.(c) Sum.

SDAG SDAG Multi SDAG Multi Cyclic

1 1 2 4 4 16 4 31
2512 2 6 6 20 40 8 82

3 2 8 8 36 72 12 138

Sum.(e) 5 16 18 60 128 24

navy blue box in Figure 6); (2). We systematically investigate those EFO1 queries that are not tree623

form while the previous FIT dataset only discusses ten hand-crafted query types (the navy blue part624

between two white lines in Figure 6); (3) Our assumption is more systematic than previous ones as625

shown by the example in Figure 2(the top navy blue part above two white lines in Figure 6). Though626

we only contain 741 query types while the EFO-1-QA benchmark contains 301 query types, we list627

reasons for the number of query types is not significantly larger than the previous benchmark: (1).628

EFO-1-QA benchmark relies on the operator tree that contains union, which represents the logic629

conjunction(_), however, we only discuss the conjunctive queries because we always utilize the630

DNF of a query. We notice that there are only 129 query types in EFO-1-QA without the union,631

significantly smaller than the EFOk-CQA dataset. (2). In the construction of EFOk-CQA dataset,632

we restrict the query graph to have at most one negative edge to avoid the total number of query types633

growing quadratically, while in EFO-1-QA benchmark, their restrictions are different than ours and it634

contains queries that have two negative atomic formulas as indicated by the right part of yellow box635

is not contained in the navy blue box.636

D.4 EFOk-CQA statistics637

The statistics of our EFOk-CQA dataset are shown in Table 3 and Table 4, they show the statistics638

of our abstract query graph by their topology property, the statistics are split into the situation that639

the number of free variable k “ 1 and the number of free variable k “ 2, correspondingly. We640

note abstract query graphs with seven nodes have been excluded as the setting of hyperparameters641

discussed in Appendix D.1, we make these restrictions to control the quadratic growth in the number642

of abstract query graphs.643

Finally, in FB15k-237, we sample 1000 queries for an abstract query graph without negation, 500644

queries for an abstract query graph with negation; in FB15k, we sample 800 queries for an abstract645

query graph without negation, 400 queries for an abstract query graph with negation; in NELL,646

we sample 400 queries for an abstract query graph without negation, 100 queries for an abstract647

query graph with negation. As we have discussed in Appendix D.2, sample negative query is648

computationally costly, thus we sample less of them.649

Moreover, we provide our EFOk-CQA dataset an inductive version, with the same query types as the650

transductive version, while the number of queries per query type is set to 400 for positive ones and651

100 for negative ones. The inductive ratio is set to 175%, following the setting in [9].652

E Evaluation details653

We explain the evaluation protocol in detail for Section 4.5.654

Firstly, we explain the computation of common metrics, including Mean Reciprocal Rank(MRR) and655

HIT@K, given the full answer A in the whole KG and the observed answer Ao in the observed KG,656

we focus on the hard answer Ah as it requires more than memorizing the observed KG and serves as657

the indicator of the capability of reasoning.658

18

Table 4: The number of abstract query graphs with two free variables. The notation of e, c SDAG,
Multi, and Cyclic are the same as Table 3. And "-" means that this type of abstract query graph is not
included.

c
e e “ 0 e “ 1 e “ 2 AVG.

SDAG Multi SDAG Multi Cyclic SDAG Multi Cyclic

c “ 1 1 2 7 18 4 6 32 26 96
c “ 2 4 4 20 36 8 38 108 64 282
c “ 3 4 4 32 60 12 - - - 112

Algorithm 1 Embedding computation on the query graph.
Require: The query graph G.

Compute the ordering of the nodes as explained in Algorithm 2.
Create a dictionary E to store the embedding for each node in the query graph
for iÐ 1 to n do

if node ui is a constant entity then
The embedding of ui, Eris is gotten from the entity embedding

else
Then we know node ui is either free variable or existential variable
Compute the set of nodes tuiju

t
j“1 that are previous to i and adjacency to node ui.

Create a list to store projection embedding L.
for j Ð 1 to t do

Find the relation r between node ui and uij , get the embedding of node uij as Erijs.
if Erijs is not None then

if The edge between ui and uiJ is positive then
Compute the embedding of projection(Erijs, r), add it to the list L.

else
Compute the embedding of the negation of the projection(Erijs, r), add it to the list
L.

end if
end if

end for
if The list L has no element then
Eris is set to none.

else if The list L has one element then
Eris “ Lr0s

else
Compute the embedding as the intersection of the embedding in the list L, and set Eris as
the outcome.

end if
end if

end for
return The embedding dictionary E for each node in the query graph.

Specifically, we rank each hard answer a P Ah against all non-answers E ´A´Ao, the reason is659

that we need to neglect other answers so that answers do not interfere with each other, finally, we get660

the ranking for a as r. Then its MRR is 1{r, and its HIT@k is 1rďk, thus, the score of a query is the661

mean of the scores of every its hard answer. We usually compute the score for a query type (which662

corresponds to an abstract query graph) as the mean score of every query within this type.663

As the marginal score and the multiply score have already been explained in Section 4.5, we only664

mention one point that it is possible that every free variable does not have marginal hard answer.665

Assume that for a query with two free variables, its answer set A “ tpa1, a2q, pa1, a3q, pa4, a2qu and666

its observed answer set Ao “ tpa1, a3q, pa4, a2qu. In this case, a1 is not the marginal hard answer for667

the first free variable and a2 is not the marginal hard answer for the second free variable, in general,668

no free variable has its own marginal hard answer.669

19

Algorithm 2 Node ordering on the abstract query graph.
Require: The abstract query graph G “ pV,E, f, gq, V consists m nodes, u1, ¨ ¨ ¨ , um.

Creates an empty list L to store the ordering of the node.
Creates another two set S1 and S2 to store the nodes that are to be explored next.
for iÐ 1 to m do

if The type of node fpuiq is constant entity then
list L append the node ui
for Node uj that connects to ui do

if fpujq is existential variable then
uj is added to set S1

else
uj is added to set S2

end if
end for

end if
while Not all node is included in L do

if Set S1 is not empty then
We sort the set S1 by the sum of their distance to every free variable in G, choose the most
remote one, and if there is a tie, randomly choose one node, ui to be the next to explore.
We remove ui from set S1.

else
In this case, we know set S2 is not empty because of the connectivity of G.
We randomly choose a node ui P S2 to be the next node to explore.
We remove ui from set S2.

end if
for Node uj that connects to ui do

if fpujq is existential variable then
uj is added to set S1

else
uj is added to set S2

end if
end for
List L append the node ui

end while
end for
return The list L as the ordering of nodes in the whole abstract query graph G

Then we only discuss the joint metric, specifically, we only explain how to estimate the joint ranking670

by the individual ranking of each free variable. For each possible k-tuple pa1, ¨ ¨ ¨ , akq, if ai is ranked671

as ri among the whole entity set E , we compute the score of this tuple as Σk
i“1ri, then we sort672

the whole Ek k-tuple by their score, for the situation of a tie, we just use the lexicographical order.673

After the whole joint ranking is got, we use the standard evaluation protocol that ranks each hard674

answer against all non-answers. It can be confirmed that this estimation method admits a closed-form675

solution for the sorting in Ek space, thus the computation cost is affordable.676

We just give the closed-form solution when there are two free variables:677

for the tuple pr1, r2q, the possible combinations that sum less than r1 ` r2 is
`

r1`r2´1
2

˘

, then, there678

is r1 ´ 1 tuple that ranks before pr1, r2q because of lexicographical order, thus, the final ranking for679

the tuple pr1, r2q is just
`

r1`r2´1
2

˘

` r1 that can be computed efficiently.680

F Implementation details of CQA models681

In this section, we provide implementation details of CQA models that have been evaluated in our682

paper. For query embedding methods that rely on the operator tree, including BetaE [28], LogicE [24],683

and ConE [40], we compute the ordering of nodes in the query graph in Algorithm 2, then we compute684

20

the embedding for each node in the query graph Algorithm 1, the final embedding of every free685

node are gotten to be the predicted answer. Especially, the node ordering we got in Algorithm 2686

coincides with the natural topology ordering induced by the directed acyclic operator tree, so we can687

compute the embedding in the same order as the original implementation. Then, in Algorithm 1, we688

implement each set operation in the operator tree, including intersection, negation, and set projection.689

By the merit of the Disjunctive Normal Form (DNF), the union is tackled in the final step. Thus, our690

implementation can coincide with the original implementation in the original dataset [28].691

For CQD [2] and LMPNN [35], their original implementation does not require the operator tree, so692

we just use their original implementation. Specifically, in a query graph with multiple free variables,693

for CQD we predict the answer for each free variable individually as taking others free variables as694

existential variables, for LMPNN, we just got all embedding of nodes that represent free variables.695

For FIT [39], though it is proposed to solve EFO1 queries, it is computationally costly: it has a696

complexity of OpE2q in the acyclic graphs and is even not polynomial in the cyclic graphs, the697

reason is that FIT degrades to enumeration to deal with cyclic graph. In our implementation, we698

further restrict FIT to at most enumerate 10 possible candidates for each node in the query graph, this699

practice has allowed FIT to be implemented in the dataset FB15k-237 [32]. However, it cost 20 hours700

to evaluate FIT on our EFOk-CQA dataset while other models only need no more than two hours.701

Moreover, for larger knowledge graph, including NELL [7] and FB15k [5], we have also encountered702

an out-of-memory error in a Tesla V100 GPU with 32G memory when implementing FIT, thus, we703

omit its result in these two knowledge graphs.704

G Extension to more complex query answering705

In this section, we discuss possible further development in the task of complex query answering and706

how our work, especially our framework proposed in Section 4 can help with future development.707

We list some new features that may be of interest and show the maximum versatility our framework708

can reach. Our analysis and characterization of future queries inherit the outlook in [37] and also is709

based on the current development.710

Inductive Reasoning Inductive reasoning is a new trend in the field of complex query answering.711

Some entities [9] or even relations [15] are not seen in the training period, namely they can not be712

found by the observed knowledge graph Go therefore, the inductive generalization is essential for713

the model to infer answers. We note that our framework is powerful enough to sample inductive714

queries with the observed knowledge graph Go given. Therefore, the functionality of sampling715

inductive query is easily contained and implemented in our framework, see https://github.com/716

HKUST-KnowComp/EFOK-CQA. We note there we have already provided our EFOk-CQA dataset in717

this setting as discussed in Appendix D.4.718

N-ary relation N-ary relation is a relation that has n ą 2 corresponding entities, therefore, the factual719

information in the knowledge graph is not a triple but a pn` 1q-tuple. Moreover, the query graph is720

also a hypergraph, making the corresponding CSP problem even harder. This is a newly introduced721

topic [23, 1] in complex query answering, which our framework has limitations in representing.722

Knowledge graph with attribute Currently, there has been some research that has taken the723

additional attribute of the knowledge graph into account. Typical attributes include entity types [14],724

numerical literals [4],triple timestamps [16, 30], and triple probabilities [7]. We note that attributes725

expand the entity set E from all entities to entities with attribute values, it is also possible that the726

relation set R is also extended to contain corresponding relations, like “greater”, “less” when dealing727

with numerical literals. Then, our framework can represent queries on such extended knowledge728

graphs like in [4], where no function like “plus”, or “minus” is considered and the predicates are also729

binary.730

Overall, our framework can be applied to some avant-garde problem settings given certain properties,731

thus those functionalities proposed in Section 4 can be useful. We hope our discussion helps with the732

future development of complex query answering.733

21

https://github.com/HKUST-KnowComp/EFOK-CQA
https://github.com/HKUST-KnowComp/EFOK-CQA
https://github.com/HKUST-KnowComp/EFOK-CQA

0 100 200 300 400 500
Ranking of query types

0

20

40

60

M
ul

tip
ly

 H
IT

@
10

(%
)

BetaE
LogicE
ConE
CQD
LMPNN
FIT
AVG.

Figure 7: Relative performance of the six representative CQA models in referring queries with two
free variables, the ranking of query types is determined by the average Multiply HIT@10 score. A
Gaussian filter with sigma=1 is added to smooth the curve.

H Additional experiment result and analysis734

In this section, we offer another experiment result not available to be shown in the main paper. For the735

purpose of supplementation, we select some representative experiment result as the experiment result736

is extremely complex to be categorized and be shown. we present the further benchmark result of the737

following: the analysis of benchmark result in detail, more than just the averaged score in Table 1 and738

Table 2, which is provided in Appendix H.1; result of different knowledge graphs, including NELL739

and FB15k, which is provided in Appendix H.2 and H.3, the situation of more constant entities since740

we only discuss when there are two constant entities in Table 2, the result is provided in Appendix H.4,741

and finally, all queries(including the queries without marginal hard answers), in Appendix H.5.742

We note that we have explained in Section 4.5 and Appendix E that for a query with multiple free743

variables, some or all of the free variables may not have their marginal hard answer and thus the744

marginal metric can not be computed. Therefore, in the result shown in Table 2 in Section 5.3, we745

only conduct evaluation on those queries that both of their free variables have marginal hard answers,746

and we offer the benchmark result of all queries in Appendix H.5 where only two kinds of metrics747

are available.748

H.1 Further result and analysis of the experiment in main paper749

To supplement the experiment result already shown in Section 5.2 and Section 5.3, we have included750

more benchmark results in this section. Though the averaged score is a broadly-used statistic to751

benchmark the model performance on our EFOk queries, this is not enough and we have offered752

much more detail in this section.753

Whole combinatorial space helps to develop trustworthy machine learning models. Firstly, we754

show more detailed benchmark results of the relative performance between our selected six CQA755

models, the result is shown in Table 4. Specifically, we plot two boxes, the black one, including the756

most difficult query types, and the red box, including the easiest query types. In the easiest part, we757

find that even the worst model and the best model have pretty similar performance despite that they758

22

0 50 100 150 200 250
Ranking of EFO1 query types

0

10

20

30

40

50

60

70

80

90

HI
T@

10
(%

)

Mean
Standard deviation

0 5 10 15 20 25 30
Dataset distribution(%)

BetaE query types
FIT query types
EFO1 query types

Figure 8: Query type distribution in three different datasets, BetaE one, FIT one, and the EFO1 part
in our EFOk-CQA dataset. The left part shows the histogram that represents the probability density
function of each dataset. The ranking of query types is also determined by the mean HIT@10 score
as in Figure 4, with the standard deviation of the performance of the six CQA models shown as the
light blue error bar.

may differ greatly in other query types. The performance in the most difficult query types is more759

important when the users are risk-sensitive and desire a trustworthy machine-learning model that760

does not crash in extreme cases [33] and we highlight it in the black box. In the black box, we note761

that CQD [2], though designed in a rather general form, is pretty unstable when comes to empirical762

evaluation, as it has a clear downward curve and deviates from other model’s performance enormously763

in the most difficult query types. Therefore, though its performance is better than LMPNN and764

comparable to BetaE on average as reported in Table 1, its unsteady performance suggests its inherent765

weakness. On the other hand, ConE [40] is much more steady and outperforms BetaE and LogicE766

consistently. We also show the result when there are two free variables in Figure 7, where the model767

performance is much less steady but the trend is similar to the EFO1 case in general.768

Empirical hardness of query types and incomplete discussion of the previous dataset. Moreover,769

we also discuss the empirical hardness of query types themselves and compare different datasets770

accordingly in Figure 8. We find the standard deviation of the six representative CQA models771

increases in the most difficult part and decreases in the easiest part, corroborating our discussion in772

the first paragraph. We also highlight those query types that have already been investigated in BetaE773

dataset [28] and FIT dataset [39]. We intuitively find that the BetaE dataset does not include very774

challenging query types while the FIT dataset mainly focuses on them. This can be explained by the775

fact that nine out of ten most challenging query types correspond to multigraph, which the BetaE776

dataset totally ignores while the FIT dataset highlights it as a key feature. To give a quantitative777

analysis of whether their hand-crafted query types are sampled from the whole combinatorial space,778

we have adopted the Kolmogorov–Smirnov test to test the distribution discrepancy between their779

distribution and the query type distribution in EFOk-CQA since EFOk-CQA enumerates all possible780

query types in the given combinatorial space and is thus unbiased. We find that the BetaE dataset781

is indeed generally easier and its p-value is 0.78, meaning that it has a 78 percent possibility to be782

unbiased, while the FIT dataset is significantly harder and its p-value is 0.27. Therefore, there is783

23

Table 5: MRR scores(%) for inferring queries with one free variable on FB15k-237. We denote e as
the number of existential variables and c as the number of constant entities. SDAG represents the
Simple Directed Acyclic Graph, Multi for multigraph, and Cyclic for the cyclic graph. AVG.(c) and
AVG.(e) is the average score of queries with the number of constant entities / existential variables
fixed.

Model
c

e 0 1 2 AVG.(c) AVG.

SDAG SDAG Multi SDAG Multi Cyclic

BetaE

1 16.2 17.9 10.9 10.6 8.5 16.5 11.1
20.72 35.6 20.2 19.1 15.7 15.7 27.1 17.8

3 53.3 32.4 33.1 21.7 21.6 37.4 24.8

AVG.(e) 37.4 25.7 23.5 18.8 18.1 30.5

LogicE

1 17.4 19.0 11.5 11.0 8.5 16.8 11.5
21.32 36.7 21.2 19.8 16.5 16.1 27.3 18.4

3 55.5 34.6 34.5 22.3 22.0 37.5 25.4

AVG.(e) 38.9 27.3 24.5 19.4 18.5 30.6

ConE

1 18.6 19.9 11.8 11.4 9.3 18.7 12.3

23.12 39.1 22.4 20.8 18.1 17.6 30.7 20.1
3 58.8 36.4 37.0 24.6 23.8 41.7 27.6

AVG.(e) 41.4 28.7 26.0 21.3 20.1 34.2

CQD

1 22.2 19.5 9.0 9.2 6.4 15.6 10.0

21.92 35.3 20.1 19.1 16.4 16.2 27.6 18.4
3 40.3 32.9 34.3 24.4 24.0 40.2 26.8

AVG.(e) 33.9 26.2 23.7 20.5 19.4 31.9

LMPNN

1 20.5 21.4 11.2 11.6 8.7 17.0 11.9

20.52 42.0 22.6 18.5 16.5 14.9 26.5 17.9
3 62.3 35.9 31.6 22.1 19.8 35.5 24.0

AVG.(e) 44.2 28.8 22.7 19.4 16.9 29.4

FIT

1 22.2 25.0 17.4 13.9 11.7 23.3 15.6

30.32 45.3 29.6 28.5 23.8 24.3 35.5 26.5
3 64.5 44.8 45.4 33.3 33.5 44.4 36.2

AVG.(e) 46.7 36.2 33.6 28.6 27.9 37.9

no significant statistical evidence to prove they are sampled from the whole combinatorial space784

unbiasedly.785

H.2 Further benchmark result of k=1786

Firstly, we present the benchmark result when there is only one free variable, since the result in787

FB15k-237 is provided in Table 1, we provide the result for other standard knowledge graphs, FB15k788

and NELL, their result is shown in Table 6 and Table 7, correspondingly. We note that FIT is out789

of memory with the two large graphs FB15k and NELL as explained in Appendix F and we do790

not include its result. As FB15k and NELL are both reported to be easier than FB15k-237, the791

models have better performance. The trend and analysis are generally similar to our discussion in792

Section 5.2 with some minor, unimportant changes that LogicE [24] has outperformed ConE [40] in793

the knowledge graph NELL, indicating one model may not perform identically well in all knowledge794

graphs.795

H.3 Further benchmark result for k=2 in more knowledge graphs796

Then, similar to Section 5.3, we provide the result for other standard knowledge graphs, FB15k and797

NELL, when the number of constant entities is fixed to two, their result is shown in Table 8 and798

Table 9, correspondingly.799

24

Table 6: MRR scores(%) for inferring queries with one free variable on FB15k. The notation of e, c,
SDAG, Multi, Cyclic, AVG.(c) and AVG.(e) are the same as Table 1.

Model
c

e 0 1 2 AVG.(c) AVG.

SDAG SDAG Multi SDAG Multi Cyclic

BetaE

1 38.6 30.4 29.2 21.7 21.7 24.1 24.3
34.02 49.7 34.0 37.2 28.3 29.2 35.5 31.0

3 63.5 46.4 48.6 33.9 36.1 45.8 38.1

AVG.(e) 63.5 46.4 48.6 33.9 36.1 45.8 38.1

LogicE

1 46.0 33.8 32.1 23.3 22.8 25.6 26.2
35.62 51.2 35.9 39.0 30.6 30.5 36.9 32.7

3 64.5 48.6 49.8 35.4 37.5 47.7 39.6

AVG.(e) 54.9 41.7 42.3 32.8 33.4 40.4

ConE

1 52.5 35.8 34.9 25.9 25.9 29.5 29.3

39.52 57.0 40.0 43.4 33.2 34.2 40.8 36.3
3 70.6 53.1 55.3 39.3 41.8 52.5 43.9

AVG.(e) 61.0 45.6 46.8 36.1 37.4 44.8

CQD

1 74.6 36.1 32.7 17.6 16.7 25.4 23.7
37.22 52.2 35.2 40.9 29.2 31.5 39.2 33.2

3 53.3 32.4 33.1 21.7 21.6 37.4 24.8

AVG.(e) 59.4 41.5 44.6 33.3 35.3 43.3

LMPNN

1 63.7 39.9 35.3 28.7 26.4 28.7 30.7

37.72 65.0 41.9 38.8 34.4 31.7 38.4 35.1
3 79.8 54.0 49.5 38.9 37.1 48.0 40.8

AVG.(e) 70.2 47.4 42.8 36.6 34.1 41.6

We note that though in some breakdowns, the marginal score is over 90 percent, almost close to 100800

percent, the joint score is pretty slow, which further corroborates our findings that joint metric is801

significantly harder and more challenging in Section 5.3.802

H.4 Further benchmark result for k=2 with more constant numbers.803

As the experiment in Section 5.3 only contains the situation where the number of constant entity is804

fixed as one, we offer the further experiment result in Table 10.805

The result shows that models perform worse with fewer constant variables when compares to the806

result in Table 2, this observation is the same as the previous result with one free variable that has807

been discussed in Section 5.2.808

H.5 Further benchmark result for k=2 including all queries809

Finally, as we have explained in Section 4.5 and Appendix E, there are some valid EFOk queries810

without marginal hard answers when k ą 1. Thus, there is no way to calculate the marginal scores,811

all our previous experiments are therefore only conducted on those queries that all their free variables812

have marginal hard answers. In this section, we only present the result of the Multiply and Joint score,813

as they can be computed for any valid EFOk queries, and therefore this experiment is conducted on814

the whole EFOk-CQA dataset.815

We follow the practice in Section 5.3 that fixed the number of constant entities as two, as the impact816

of constant entities is pretty clear, which has been further corroborated in Appendix H.4. The817

experiments are conducted on all three knowledge graphs, FB15k-237, FB15k, and NELL, the result818

is shown in Table 11, Table 12, and Table 13, correspondingly.819

25

Table 7: MRR scores(%) for inferring queries with one free variable on NELL. The notation of e, c,
SDAG, Multi, Cyclic, AVG.(c) and AVG.(e) are the same as Table 1.

Model
c

e 0 1 2 AVG.(c) AVG.

SDAG SDAG Multi SDAG Multi Cyclic

BetaE

1 13.9 26.4 35.0 8.6 14.9 19.1 17.5
33.62 58.8 31.5 43.8 22.4 30.6 34.7 30.7

3 78.8 48.6 58.3 29.6 39.0 47.0 39.5

AVG.(e) 53.1 38.5 48.3 25.2 33.3 38.2

LogicE

1 18.3 29.2 39.6 12.1 19.0 20.4 21.1
36.92 63.5 34.4 47.3 26.4 34.0 37.6 34.2

3 79.6 51.2 59.3 33.1 42.2 50.1 42.6

AVG.(e) 56.3 41.3 50.9 28.8 36.7 41.0

ConE

1 16.7 26.9 36.6 11.1 16.9 22.3 19.6

36.62 60.5 33.6 46.6 25.3 33.1 40.1 33.6
3 79.9 50.6 59.2 33.2 42.2 52.6 42.8

AVG.(e) 54.9 40.3 50.0 28.4 36.2 43.4

CQD

1 22.3 30.6 37.3 13.3 17.9 20.7 20.9
38.22 59.8 34.0 45.2 28.8 35.4 38.9 35.3

3 62.7 48.8 59.9 36.4 44.1 52.6 44.3

AVG.(e) 50.1 40.2 49.9 31.6 38.1 42.7

LMPNN

1 20.7 29.8 33.3 13.4 16.5 21.8 19.8

35.12 63.5 35.4 43.3 27.0 30.2 37.6 32.3
3 80.8 50.7 56.0 33.6 39.2 47.6 40.7

AVG.(e) 57.4 41.5 46.7 29.4 33.6 40.0

Interestingly, comparing the result in Table 2 and Table 11, the multiple scores actually increase820

through the joint scores are similar. This may be explained by the fact that if one free variable has no821

marginal hard answer, then it can be easily predicted, leading to a better performance for the whole822

query.823

I Society impact824

This paper addresses the topic of complex query answering on knowledge graphs, a subject that825

has garnered attention within the machine learning community for approximately four years. This826

paper mainly focuses on extending the scope of the complex query given the same knowledge graph827

and also presents systematic benchmarks and convenient implementation for the whole pipeline of828

complex query answering, which holds the potential to significantly advance the development of829

complex query answering models.830

The outcomes of this work have practical applications, particularly in areas such as fraud detection,831

where queries involving multiple free variables and cyclic patterns are necessary. Furthermore,832

since this study utilizes publicly available knowledge graphs without incorporating new information833

sources, concerns regarding data leakage are unlikely to arise. However, it’s still important to note834

that this work may lead to unexpected negative societal impact which we are unable to foresee in835

the current stages. We recognize the necessity of ongoing evaluation and responsible oversight to836

identify and address any unintended consequences that may arise as a result of this research.837

Additionally, the figure of the real-world KG in Figure 3is taken from https://medium.com/838

@fakrami/re-evaluation-of-knowledge-graph-completion-methods-7dfe2e981a77.839

26

https://medium.com/@fakrami/re-evaluation-of-knowledge-graph-completion-methods-7dfe2e981a77
https://medium.com/@fakrami/re-evaluation-of-knowledge-graph-completion-methods-7dfe2e981a77
https://medium.com/@fakrami/re-evaluation-of-knowledge-graph-completion-methods-7dfe2e981a77

Table 8: HIT@10 scores(%) of three different types for answering queries with two free variables on
FB15k. The constant number is fixed to be two. The notation of e, SDAG, Multi, and Cyclic is the
same as Table 2.

Model HIT@10
Type

e “ 0 e “ 1 e “ 2 AVG.
SDAG Multi SDAG Multi Cyclic SDAG Multi Cyclic

BetaE
Marginal 76.9 77.2 68.9 69.3 75.1 55.0 57.4 73.6 63.6
Multiply 41.7 41.6 31.7 31.0 38.7 25.2 25.9 36.1 29.7

Joint 11.6 13.7 8.7 8.6 17.8 4.9 5.4 14.3 8.4

LogicE
Marginal 82.9 80.9 73.6 72.9 76.6 58.9 60.7 75.7 66.9
Multiply 47.5 45.0 36.3 34.1 40.4 28.5 29.0 38.0 32.7

Joint 12.7 13.9 10.0 9.9 19.2 6.1 6.5 15.9 9.6

ConE
Marginal 84.1 84.8 76.5 76.3 81.4 61.8 63.8 79.7 70.2
Multiply 48.7 48.1 37.7 35.9 44.2 29.9 30.4 41.4 34.6

Joint 14.2 15.6 10.3 10.4 20.6 6.2 6.6 16.9 10.1

CQD
Marginal 73.8 76.8 69.0 71.9 76.3 51.1 54.4 77.0 62.9
Multiply 45.0 46.6 37.4 36.9 43.9 28.1 29.2 41.9 34.0

Joint 17.1 19.0 13.1 13.0 20.6 7.7 8.6 18.1 11.9

LMPNN
Marginal 89.2 80.1 80.3 78.2 84.2 65.6 63.7 80.2 71.3
Multiply 56.6 50.5 45.7 42.4 49.0 37.6 34.8 44.6 39.7

Joint 18.9 17.2 12.9 12.4 22.4 8.0 7.5 16.9 11.2

Table 9: HIT@10 scores(%) of three different types for answering queries with two free variables on
NELL. The constant number is fixed to be two. The notation of e, SDAG, Multi, and Cyclic is the
same as Table 2.

Model HIT@10
Type

e “ 0 e “ 1 e “ 2 AVG.
SDAG Multi SDAG Multi Cyclic SDAG Multi Cyclic

BetaE
Marginal 81.3 95.9 72.8 85.5 79.9 57.2 66.7 77.0 71.2
Multiply 48.2 56.7 41.3 46.1 47.6 33.1 36.5 42.9 39.6

Joint 19.2 31.8 21.2 26.5 21.7 13.8 17.5 18.5 18.8

LogicE
Marginal 87.1 99.8 81.0 91.8 83.2 65.7 74.0 81.0 77.7
Multiply 52.5 60.3 47.6 51.7 50.2 39.4 42.6 46.0 44.8

Joint 21.1 32.8 25.4 30.5 23.3 18.0 21.5 20.5 22.3

ConE
Marginal 82.6 96.4 76.0 87.8 88.1 60.0 69.3 83.0 74.7
Multiply 48.7 56.9 41.9 46.3 52.2 34.5 38.1 47.7 41.7

Joint 17.0 30.9 19.3 25.0 24.9 12.9 17.2 20.3 18.8

CQD
Marginal 79.5 96.3 83.2 92.2 83.5 65.8 75.7 84.8 79.4
Multiply 49.2 57.8 51.1 53.1 51.4 40.6 45.1 50.6 47.4

Joint 23.0 38.0 29.7 34.2 26.4 21.4 25.4 24.0 26.0

LMPNN
Marginal 88.5 96.6 81.5 90.9 85.3 65.0 70.7 83.1 76.7
Multiply 55.7 62.4 50.3 53.3 54.0 40.8 42.6 50.3 46.5

Joint 23.4 36.4 25.5 29.4 24.0 16.6 19.7 21.5 21.5

27

Table 10: HIT@10 scores(%) of three different types for answering queries with two free variables
on FB15k-237. The constant number is fixed to be one. The notation of e, SDAG, Multi, and Cyclic
is the same as Table 2.

Model HIT@10
Type

e “ 0 e “ 1 e “ 2 AVG.
SDAG Multi SDAG Multi Cyclic SDAG Multi Cyclic

BetaE
Marginal 37.5 29.7 33.4 28.1 35.6 30.0 25.9 41.2 31.2
Multiply 18.9 13.7 15.3 10.3 15.2 17.7 13.3 17.2 14.3

Joint 0.9 1.1 1.4 0.9 3.3 1.1 0.9 3.9 1.7

LogicE
Marginal 40.6 30.7 36.0 29.1 34.6 29.8 25.3 41.5 31.4
Multiply 21.1 14.3 17.2 10.9 16.3 17.8 13.3 17.5 14.7

Joint 1.4 1.4 1.6 0.9 3.7 1.4 1.0 4.3 1.9

ConE
Marginal 40.8 32.4 37.3 30.4 40.7 31.1 26.9 45.0 33.5
Multiply 22.1 15.2 18.4 11.7 19.3 18.5 14.8 20.9 16.5

Joint 1.4 1.0 1.7 1.0 4.3 1.4 1.0 4.4 2.0

CQD
Marginal 73.8 76.8 69.0 71.9 76.3 51.1 54.4 77.0 62.9
Multiply 23.3 9.1 18.5 9.2 16.2 14.6 9.2 19.1 12.9

Joint 1.5 0.6 2.0 1.1 3.4 1.5 0.9 4.4 1.9

LMPNN
Marginal 39.0 27.6 40.0 29.5 39.3 30.6 24.8 42.7 32.0
Multiply 25.1 13.9 24.3 13.3 21.6 20.0 14.0 21.1 17.1

Joint 1.6 1.3 2.5 1.3 3.9 1.5 1.0 4.0 2.0

Table 11: HIT@10 scores(%) of two different types for answering queries with two free variables on
FB15k-237(including queries without the marginal hard answer). The constant number is fixed to be
two. The notation of e, SDAG, Multi, and Cyclic is the same as Table 2.

Model HIT@10
Type

e “ 0 e “ 1 e “ 2 AVG.
SDAG Multi SDAG Multi Cyclic SDAG Multi Cyclic

BetaE
Multiply 29.1 29.1 18.3 37.5 10.4 28.0 93.6 74.6 24.1

Joint 2.1 2.2 1.7 3.0 2.4 1.8 5.8 14.2 4.6

LogicE
Multiply 31.6 32.9 19.8 39.6 10.9 28.7 96.3 73.8 25.4

Joint 2.6 2.5 2.1 3.1 2.5 2.2 6.4 15.6 5.0

ConE
Multiply 32.6 31.9 20.5 41.0 12.6 29.0 99.7 86.8 27.0

Joint 3.0 2.1 1.9 3.3 2.7 2.2 6.6 16.8 5.4

CQD
Multiply 34.5 23.4 22.3 36.8 10.6 26.4 75.3 77.3 25.6

Joint 2.9 1.4 2.1 3.3 2.3 2.0 5.0 15.0 5.6

LMPNN
Multiply 36.8 29.3 27.5 45.8 13.9 31.2 97.0 86.5 27.9

Joint 2.7 2.2 2.7 3.9 2.5 2.1 5.8 14.6 5.0

FIT
Multiply 41.5 44.4 28.9 56.8 10.2 39.4 139.7 100.3 35.0

Joint 2.4 2.3 2.1 3.4 1.6 2.2 7.4 15.4 5.9

28

Table 12: HIT@10 scores(%) of two different types for answering queries with two free variables on
FB15k(including queries without the marginal hard answer). The constant number is fixed to be two.
The notation of e, SDAG, Multi, and Cyclic is the same as Table 2.

Model HIT@10
Type

e “ 0 e “ 1 e “ 2 AVG.
SDAG Multi SDAG Multi Cyclic SDAG Multi Cyclic

BetaE
Multiply 42.1 57.2 26.5 66.5 15.5 34.6 134.9 100.0 35.0

Joint 6.6 9.4 4.5 10.2 4.6 4.3 16.7 26.0 9.2

LogicE
Multiply 48.2 65.6 31.0 71.6 16.8 37.8 143.9 105.8 38.1

Joint 7.5 11.2 5.6 12.5 5.3 5.6 20.4 28.5 10.5

ConE
Multiply 50.2 72.2 32.8 74.6 18.3 38.3 149.3 114.3 40.4

Joint 6.8 10.0 5.2 12.5 5.5 5.2 19.4 30.4 11.0

CQD
Multiply 48.1 55.9 31.9 69.0 15.8 29.5 93.5 103.2 37.6

Joint 9.4 11.4 6.6 14.8 4.8 5.5 17.5 27.2 12.0

LMPNN
Multiply 58.4 79.5 43.1 94.6 21.3 40.9 146.2 135.9 45.0

Joint 8.6 12.9 6.8 15.6 6.2 5.4 19.3 31.7 11.6

Table 13: HIT@10 scores(%) of two different types for answering queries with two free variables on
NELL(including queries without the marginal hard answer). The constant number is fixed to be two.
The notation of e, SDAG, Multi, and Cyclic is the same as Table 2.

Model HIT@10
Type

e “ 0 e “ 1 e “ 2 AVG.
SDAG Multi SDAG Multi Cyclic SDAG Multi Cyclic

BetaE
Multiply 21.2 47.3 22.0 51.9 14.7 24.1 80.5 79.7 33.4

Joint 4.2 19.6 6.8 19.1 5.1 6.8 26.7 24.0 14.1

LogicE
Multiply 26.6 52.8 28.8 63.4 16.0 32.8 103.1 88.5 38.9

Joint 3.8 21.5 9.7 26.0 5.9 11.5 36.9 27.3 16.5

ConE
Multiply 25.3 51.4 23.9 53.9 16.9 27.3 90.7 90.6 36.7

Joint 3.4 20.2 6.4 17.0 6.1 7.2 27.0 27.1 14.2

CQD
Multiply 30.3 48.9 30.6 64.3 15.9 33.1 88.9 91.2 40.9

Joint 4.4 21.9 9.8 27.5 5.6 12.0 37.6 28.1 18.0

LMPNN
Multiply 33.4 58.3 33.7 65.3 19.4 30.7 85.1 105.0 41.8

Joint 4.4 23.7 10.0 21.9 5.8 8.2 23.2 28.8 15.7

29

	Introduction
	Problem definition
	Existential first order (EFO) queries on knowledge graphs
	Constraint satisfaction problem for EFO queries
	The representation of query

	The combinatorial space of EFOk queries
	Nontrivial abstract query graph of EFOk
	Nontrivial query graph of EFOk

	Framework
	Enumerate abstract query graph
	Ground abstract query graph
	Answer for existential formula
	Learning-based methods
	Evaluation protocol

	The EFOk-CQA dataset and benchmark results
	The EFOk-CQA dataset
	Benchmark results for k=1
	Benchmark results for k=2

	Conclusion
	Related works
	Details of constraint satisfaction problem
	Preliminary of tree form query
	Construction of the whole EFOk-CQA datset
	Enumeration of the abstract query graphs
	Ground abstract query graph with meaningful negation
	The comparison to previous benchmark
	EFOk-CQA statistics

	Evaluation details
	Implementation details of CQA models
	Extension to more complex query answering
	Additional experiment result and analysis
	Further result and analysis of the experiment in main paper
	Further benchmark result of k=1
	Further benchmark result for k=2 in more knowledge graphs
	Further benchmark result for k=2 with more constant numbers.
	Further benchmark result for k=2 including all queries

	Society impact

