
Under review as a conference paper at ICLR 2022

IMPROVING ADVERSARIAL DEFENSE WITH SELF-
SUPERVISED TEST-TIME FINE-TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Although adversarial training and its variants currently constitute the most effec-
tive way to achieve robustness against adversarial attacks, their poor generaliza-
tion limits their performance on the test samples. In this work, we propose to im-
prove the generalization and robust accuracy of adversarially-trained networks via
self-supervised test-time fine-tuning. To this end, we introduce a meta adversarial
training method to find a good starting point for test-time fine-tuning. It incorpo-
rates the test-time fine-tuning procedure into the training phase and strengthens the
correlation between the self-supervised and classification tasks. The extensive ex-
periments on CIFAR10, STL10 and Tiny ImageNet using different self-supervised
tasks show that our method consistently improves the robust accuracy under dif-
ferent attack strategies for both the white-box and black-box attacks.

1 INTRODUCTION

Adversarial training and its variants (Madry et al., 2018; Wang et al., 2019; Zhang et al., 2019) are
currently recognized as the most effective defense mechanism against adversarial attacks. However,
adversarial training generalizes poorly; the robust accuracy gap between the training and test set
in adversarial training is much larger than the training-test gap in standard training of deep net-
works (Neyshabur et al., 2017; Zhang et al., 2017). Unfortunately, classical techniques to overcome
overfitting in standard training, including regularization and data augmentation, only have little ef-
fect in adversarial training (Rice et al., 2020).

The poor generalization of adversarial training is a consequence of adversarial test examples lying
far away from the training set (Huan et al., 2019). To adapt to these examples, we propose to fine-
tune the network for each test mini-batch. Since the labels of the test images are not available,
we exploit self-supervision, which is widely used in the standard training of networks (Chen et al.,
2020b; Gidaris et al., 2018; He et al., 2020). Fine-tuning self-supervised tasks is a substitute of
fine-tuning the classification loss at the inference time. Thus, minimizing this self-supervised loss
function yields better generalization on the test set.

To make our test-time fine-tuning strategy effective, we need to search for a good starting point
during training. As will be shown in our experiments, adversarial training does not provide the
optimal starting point. We therefore formulate the search for the network parameters that can be ef-
fectively fine-tuned as a bilevel optimization problem. Specifically, we introduce a meta adversarial
training strategy dedicated to our self-supervised fine-tuning inspired by the model-agnostic meta-
learning (MAML) framework (Finn et al., 2017). To this end, we treat the classification of each
batch of adversarial images as one task and minimize the corresponding classification error of the
self-supervised fine-tuned network. This meta adversarial training strategy strengthens the correla-
tion between the self-supervised and classification tasks so that self-supervised test-time fine-tuning
further improves the robust accuracy.

In order to reliably evaluate our method, we follow the suggestions of (Tramer et al., 2020) and
design an adaptive attack strategy that is fully aware of the test-time fine-tuning. We empirically
demonstrate the effectiveness of our method on the commonly used CIFAR10 (Krizhevsky et al.,
2009), STL10 (Coates et al., 2011) and Tiny ImageNet (Le & Yang, 2015) datasets under both
standard (Andriushchenko et al., 2020; Croce & Hein, 2020a; Madry et al., 2018) and adaptive
attacks in the scenarios of both white-box and black-box attacks. The experiments evidence that our
method consistently improves the robust accuracy under all attacks.

1

Under review as a conference paper at ICLR 2022

Our contributions can be summarized as follows:

1. We introduce the framework of self-supervised test-time fine-tuning for adversarially-trained
networks and show that it improves the robust accuracy of the test data.

2. We propose a meta adversarial training strategy based on the MAML framework to find a good
starting point and strengthen the correlation between the self-supervised and classification tasks.

3. Following the suggestions of (Tramer et al., 2020), we design an adaptive attack strategy that is
fully aware of our test-time fine-tuning. The experiments show that our approach is valid on diverse
attack strategies, including standard and adaptive ones in both the white-box and black-box attacks.

Our code is available through this link.

2 RELATED WORK

Adversarial Training. In recent years, many approaches have been proposed to defend networks
against adversarial attacks (Guo et al., 2018; Liao et al., 2018; Song et al., 2018). Among them,
adversarial training (Madry et al., 2018) stands out as one of the most robust and popular methods,
even under various strong attacks (Athalye et al., 2018; Croce & Hein, 2020a). Adversarial training
optimizes the loss of adversarial examples to find parameters that are robust to adversarial attacks.
Several variants of adversarial training have been proposed (Wang et al., 2019; Zhang et al., 2019),
and their performance is similar to the original version of adversarial training (Rice et al., 2020).

One important problem that limits the robust accuracy of adversarial training is overfitting. Com-
pared with training on clean images, the gap of robust accuracy between the training and test set
is much larger in adversarial training (Rice et al., 2020). Moreover, traditional techniques to pre-
vent overfitting, such as data augmentation, have little effect. Recently, some methods have at-
tempted to flatten the weight loss landscape to improve the generalization of adversarial training.
In particular, Adversarial Weight Perturbation (AWP) (Wu et al., 2020) achieves this by designing
a double-perturbation mechanism that adversarially perturbs both inputs and weights. In addition,
learning-based smoothing can flatten the landscape and improve the performance (Chen et al., 2021).

Self-supervised Learning. In the context of non-adversarial training, many self-supervised strate-
gies have been proposed, such as rotation prediction (Gidaris et al., 2018), region/component fill-
ing (Criminisi et al., 2004), patch-base spatial composition prediction (Trinh et al., 2019) and con-
trastive learning (Chen et al., 2020b; He et al., 2020). While self-supervision has also been employed
in adversarial training (Chen et al., 2020a; Kim et al., 2020; Yang & Vondrick, 2020; Hendrycks
et al., 2019), their methods only use self-supervised learning at training time to regularize the pa-
rameters and improve the robust accuracy. By contrast, we propose to perform self-supervised
fine-tuning at test time, which we demonstrate to significantly improve the robust accuracy on test
images. As will be shown in the experiments, the self-supervised test-time fine-tuning has larger
and complementary improvements over the training time self-supervision.

Test-time Fine-tuning. Test-time fine-tuning has been used in various fields, such as image super-
resolution (Shocher et al., 2018) and domain adaption (Sun et al., 2020; Wang et al., 2021). While
our work is thus closely related to Test-Time Training (TTT) in (Sun et al., 2020), we target a
significantly different scenario. TTT assumes that all test samples have been subject to the same dis-
tribution shift compared to the training data. As a consequence, it incrementally updates the model
parameters when receiving new test images. By contrast, in our scenario, there is no systematic
distribution shift, and it is therefore more effective to fine-tune the parameters of the original model
for every new test mini-batch. This motivates our meta adversarial training strategy, which searches
for the initial model parameters that can be effectively fine-tuned in a self-supervised manner.

3 METHODOLOGY

We follow the traditional multi-task learning formulation (Caruana, 1997) and consider a neural net-
work with a backbone z = E(x; θE) and K + 1 heads. One head f(z; θf) outputs the classification
result while the other K heads g1(z; θg1), ..., gK(z; θgK) correspond to K auxiliary self-supervised

2

https://drive.google.com/drive/folders/1mdxLmReQziCVLietLP58euiyAxl8ZqhD?usp=sharing

Under review as a conference paper at ICLR 2022

tasks. θ = (θE , θf , θg1, · · · , θgk) encompasses all trainable parameters, and we further define

F = f ◦ E; Gk = gk ◦ E, k = 1, 2, ...,K. (1)

Furthermore, letD = {(x1, y1), (x2, y2), · · · , (xn, yn)} denote the training set containing n images
with corresponding labels, and D̃ = {(x̃1, ỹ1), (x̃2, ỹ2), · · · , (x̃m, ỹm)} be the test set containing
m images. For further illustration, the labels of the test set are shown. However, they are unknown
to the networks at test time. We denote the adversarial examples of x and x̃ as xadv and x̃adv ,
respectively. They satisfy the constraints ‖xadv − x‖ ≤ ε and ‖x̃adv − x̃‖ ≤ ε, and ε is the size of
the adversarial budget. For any set S, we represent the average loss over the elements in S as

L(S) =
1

|S|
∑
si∈S
L(si) (2)

where |S| is the number of elements in S. We use F (·; θ) and L(·; θ) to denote a network F and
a loss function L parametrized by θ, but we often omit the symbol θ to simplify the notation. The
general classification loss, such as the cross-entropy, is denoted by Lcls. We use the superscript
“AT” to denote the adversarial training loss. For example, we define

LATcls (S) =
1

|S|
∑

xi,yi∈S
max

‖xadv
i −xi‖≤ε

Lcls(F (xadvi), yi) . (3)

Because of the poor generalization of adversarial training, the adversarially-trained model may not
give the correct label for a large portion of the adversarial test examples. That is, for a test sam-
ple x̃adv with ground-truth label ỹ, we may have arg maxj F (x̃adv; θ)j 6= ỹ , where F (x̃adv; θ)j
denotes the output probability of the j-th class. Since we do not know the label ỹ at test time, we
cannot directly optimize the classification loss Lcls(F (x̃adv), ỹ). We therefore use self-supervision
as a substitute to fine-tune the backboneE. We provide more details on our self-supervised test-time
fine-tuning scheme in Section 3.1 and introduce our meta adversarial training method in Section 3.2.
In Section 3.3, we discuss the specific self-supervised tasks used in the experiments, and further an-
alyze our algorithm in Section 3.4.

3.1 TEST-TIME FINE-TUNING

Our goal is to perform self-supervised learning on the test examples to overcome the overfit-
ting problem of adversarial training. To this end, let us suppose that an adversarially-trained
network with parameters θ0 receives a mini-batch of b adversarial test examples B̃adv =
{(x̃adv1 , ỹ1), (x̃adv2 , ỹ2), · · · , (x̃advb , ỹb)} , As the labels {ỹi}bi=1 are not available, we propose to
fine-tune the backbone parameters θE by optimizing the loss function

LSS(B̃adv) =
1

b

K∑
k=1

λk

b∑
i=1

LSS,k(Gk(x̃advi); θE , θgk) , (4)

which encompasses K self-supervised tasks. Here, LSS,k represents the loss function of the k-th
task and {λk}Kk=1 are the weights balancing the contribution of each task.

The number of images b may vary from 1 to m. b = 1 corresponds to the online setting, where
only one adversarial image is available at a time, and the backbone parameters θE are adapted to
every new image. The online setting is the most practical one, as it does not make any assumptions
on the number of adversarial test images the network receives. By contrast, b = m corresponds
to the offline setting where all adversarial test examples are available at once. It is similar to the
transductive learning (Gammerman et al., 1998; Vapnik, 2013). Note that our online setting differs
from the online test-time training described in TTT (Sun et al., 2020); we do not incrementally
update the network parameters as new samples come, but instead initialize fine-tuning from the
same starting point θ0 for each new test image.

Eqn (4) encourages θE to update in favor of the self-supervised tasks. However, as the classification
head f was only optimized for the old backbone E(·; θ0

E), it will typically be ill-adapted to the
new parameters θ∗E , resulting in a degraded robust accuracy. Furthermore, for a small b, the model
tends to overfit to the test data, reducing LSS to 0 but extracting features that are only useful for the
self-supervised tasks.

3

Under review as a conference paper at ICLR 2022

To overcome these problems, we add an additional loss function acting on the training data that both
regularizes the backbone E and optimizes the classification head f so that f remains adapted to the
fine-tuned backbone E(·; θ∗E). Specifically, let B ⊂ D denote a subset of the training set. We then
add the regularizer

LR(B) = LATcls (B) =
1

|B|
∑

xi,yi∈B
max

‖xadv
i −xi‖≤ε

Lcls(F (xadvi), yi) (5)

to the fine-tuning process. In short, Eqn (5) evaluates the adversarial training loss on the training
set to fine-tune the parameters θf of the classification head. It also forces the backbone E to extract
features that can be used to make correct prediction, i.e., to prevent θE from being misled by LSS
when b is small.

Combining Eqn (4) and Eqn (5), our final test-time fine-tuning loss is

Ltest(B̃adv, B) = LSS(B̃adv) + λLR(B) (6)

where λ sets the influence of LR. Algorithm 1 describes our test-time self-supervised learning
algorithm in detail. As SGD is more efficient for more large amount of data, we use SGD to optimize
θ when b is large (e.g. offline setting). This version of algorithm is deferred to the Appendix B.

Algorithm 1 Self-supervised Test-time Fine-tuning

Input: Initial parameters θ0; Adversarial test images B̃adv = {x̃advi }bi=1; Training data D; Learn-
ing rate η; Steps T ; Weights λk and λ

Output: Prediction of x̃advi : ŷi
1: for t = 1 to T do
2: Sample a batch of training images B ⊂ D
3: Find adversarial xadvi of training image xi ∈ B by PGD attack.
4: Calculate Ltest in Eqn (6)
5: θt = θt−1 − η∇θt−1Ltest(B̃adv, B; θt−1)
6: end for
7: return Prediction ŷi = arg maxj F (x̃advi ; θT)j

3.2 META ADVERSARIAL TRAINING

To make the best out of optimizing Ltest at test time, we should find suitable starting point θ0, i.e., a
starting point such that test-time self-supervised learning yields better robust accuracy. We translate
this into a meta learning scheme, which entails a bilevel optimization problem.

Specifically, we divide the training data into s small exclusive subsets D = ∪sj=1Bj and let Badvj to
be adversaries of Bj . We then formulate meta adversarial learning as the bilevel minimization of

Lmeta(D; θ) =
1

s

∑
Bj⊂D

LATcls (Bj ; θ
∗
j (θ)), θ∗j = arg min

θ
LSS(Badvj ; θ) , (7)

where LSS is the self-supervised loss function defined in Eqn (4) and LATcls is the loss function
of adversarial training defined in Eqn (3). As bilevel optimization is time-consuming, following
MAML (Finn et al., 2017), we use a single gradient step of the current model parameters θ to
approximate θ∗j . That is, we compute

θ∗j ≈ θ − α∇θLSS(Badvj ; θ) . (8)

In essence, this meta adversarial training scheme searches for a starting point such that fine-tuning
with LSS will lead to a good robust accuracy. If this holds for all training subsets, then we can
expect the robust accuracy after fine-tuning at test time also to increase. Note that, because the meta
learning objective of Eqn (7) already accounts for classification accuracy, the regularization by LR
is not needed during meta adversarial learning.

Accelerating Training. To compute the gradient ∇θLmeta(D; θ), we need to calculate the time-
consuming second order derivatives −α∇2

θLSS(Badvj ; θ)∇θ∗jL
AT
cls (Bj ; θ

∗
j) . Considering that ad-

versarial training is already much slower than standard training (Shafahi et al., 2019), we cannot

4

Under review as a conference paper at ICLR 2022

afford another significant training overhead. Fortunately, as shown in (Finn et al., 2017), second
order derivatives have little influence on the performance of MAML. We therefore ignore them and
take the gradient to be

∇θLmeta(D; θ) ≈ 1

s

∑
Bj⊂D

∇θ∗jL
AT
cls (Bj ; θ

∗
j) . (9)

However, by ignoring the second order gradient, only the parameters on the forward path of the
classifier F , i.e., θE and θf , will be updated. In other words, optimizing Eqn (7) in this fashion will
not update {θgk}Kk=1. To nonetheless encourage each self-supervised head Gk to output the correct
prediction, we incorporate an additional loss function encoding the self-supervised tasks,

LATSS (D) =
∑
k

λkLATSS,k(D) =
∑
k

λk
|D|

∑
xi∈D

max
‖xadv

i −xi‖≤ε
LSS,k(Gk(xadvi)) . (10)

Note that we use the adversarial version of LSS to provide robustness to the self-supervised tasks,
which, as shown in (Chen et al., 2020a; Hendrycks et al., 2019; Yang & Vondrick, 2020), is beneficial
for the classifier. The final meta adversarial learning objective therefore is

Ltrain(D) = Lmeta(D) + λ′LATSS (D) (11)

where λ′ balances the two losses. Algorithm 2 shows complete meta adversarial training algorithm.

Algorithm 2 Meta Adversarial Training

Input: Training set D; Learning rate α, β; Iterations T ; Weights λk and λ′
Output: Starting parameters θ0 for the test-time fine-tuning
1: for t = 1 to T do
2: Sample q exclusive batches of training images B1, B2, · · · , Bq ⊂ D
3: Using PGD to find the adversaries Badvj : xadvj,i = arg max‖xadv

j,i −xj,i‖≤ε Lcls(F (xadvj,i), yj,i)

4: for batches B1, B2, · · · , Bq do
5: θ∗j = θ − α∇θLSS(Badvj ; θ)

6: lmeta,j = LATcls (Bj ; θ
∗
j)

7: end for
8: θ = θ − β

q

∑
Bj

[
∇θ∗j lmeta,j + λ′∇θLATSS (Bj ; θ)

]
9: end for

10: return Trained parameters θ0 = θ

3.3 SELF-SUPERVISED TASKS

In principle, any self-supervised tasks can be used for test-time fine-tuning, as long as they are
positively correlated with the robust accuracy. However, for the test-time fine-tuning to remain ef-
ficient, we should not use too many self-supervised tasks. Furthermore, as we aim to support the
fully online setting, where only one image is available at a time, we cannot incorporate a contrastive
loss (Chen et al., 2020b; He et al., 2020; Kim et al., 2020) to LSS . In our experiments, we there-
fore use two self-supervised tasks that have been shown to be useful to improve the classification
accuracy: Rotation Prediction and Vertical Flip Prediction.

Rotation Prediction is a widely used self-supervision task proposed in (Gidaris et al., 2018) and
has been employed in adversarial training as an auxiliary task to improve the robust accuracy (Chen
et al., 2020a; Hendrycks et al., 2019). Following (Gidaris et al., 2018), we create 4 copies of the input
image by rotating it with Ω = {0◦, 90◦, 180◦, 270◦}. The task then consists of a 4-way classification
problem, where the head grotate aims to predict the correct rotation angle. The loss for an image x is
the average cross-entropy over the 4 copies, given by

Lrotate(x) = −1

4

∑
ω∈Ω

log(Grotate(xω)ω) , (12)

where xω is the rotated image with angle ω ∈ Ω, Grotate = grotate ◦ E denotes the classifier for
rotation prediction, and Grotate(·)ω is the predicted probability for the ω angle. The head grotate is a
fully-connected layer followed by a softmax layer.

5

Under review as a conference paper at ICLR 2022

Table 1: The statistics ρ(x̃adv) and two
self-supervised tasks. The dataset is CI-
FAR10 and the network is WideResNet-
34-10. Adversarial budget ε = 0.031

Tasks E(ρ(x̃adv)) P (ρ(x̃adv) > 0)
Rotation 0.15 68.51%

VFlip 0.22 72.16%

0.5 0.0 0.5 1.0
(xadv)

0.0

0.2

0.4

0.6

0.8

1.0
Rotation

1.0 0.5 0.0 0.5 1.0
(xadv)

0.0

0.2

0.4

0.6

0.8

1.0
Vertical Flip

Figure 1: Empirical cdf of ρ(x̃advi) on CIFAR10 and
WideResNet-34-10. Adversarial budget ε = 0.031

Vertical Flip (VFlip) Prediction is a self-supervised task similar to rotation prediction and has
also been used for self-supervised learning (Saito et al., 2020). In essence, we make two copies of
the input image and flip one copy vertically. The head gvflip then contains a 2-way fully-connected
layer followed by a softmax layer and predicts whether the image is vertically flipped or not. The
corresponding loss for an image x is

Lvflip(x) = −1

2

∑
v∈V

log(Gvflip(xv)v) , (13)

where V = {flipped, not flipped} is the operation set and Gvflip = gvflip ◦ E. xv denotes and
transformed input and Gvflip(·)v is the probability of operation v. Note that we do not flip the
image horizontally as it is a common data augmentation technique and classifiers typically seek to
be invariant to horizontal flip.

3.4 METHOD ANALYSIS

We now analyze why our test-time self-supervised fine-tuning improves the robust accuracy. To this
end, we observe the correlation between the gradient of self-supervised loss LSS and the classifi-
cation loss Lcls. For an input x̃advi with label ỹi, the gradient correlation with respect to the shared
parameters θE can be expressed as

ρ(x̃advi) =
∇θELcls(x̃advi , ỹi)

T∇θELSS(x̃advi)

‖∇θELcls(x̃advi , ỹi)‖2‖∇θELSS(x̃advi)‖2
. (14)

If ρ(x̃advi) is significantly larger than 0, then gradient descent w.r.t. LSS should act as a good
substitute for optimizing Lcls. Let us consider a small step η in the direction of ∇θELSS(x̃advi).
Then, the classification loss Lcls can be approximated by Taylor expansion as

Lcls(x̃advi , ỹi; θE − η∇θELSS(x̃advi))− Lcls(x̃advi , ỹi; θE)

≈− ηρ(x̃advi)‖∇θELcls(x̃advi , ỹi)‖2‖∇θELSS(x̃advi)‖2 .
(15)

As θE contains millions of parameters, the gradient norm is typically large, even a small η will
decrease the classification loss when ρ(x̃advi) is significantly larger than 0.

Below, we further confirm this empirically. We choose cross-entropy as the classification loss.
For all adversarial test inputs x̃adv ∼ D̃adv , where D̃adv is the adversaries of the test data, we
regard ρ(x̃adv) as a random variable and calculate its empirical statistics on the test dataset. Table 1
shows the empirical statistics of an adversarially-trained model on CIFAR10, and Figure 1 shows
the cumulative distribution of ρ(x̃adv). The mean of ρ(x̃adv) is indeed significantly larger than 0 and
P (ρ(x̃adv) > 0) is larger than the robust accuracy of the adversarially-trained network (50%-60%),
which implies that self-supervised test-time fine-tuning helps to correctly classify the adversarial
test images.

4 ADAPTIVE ATTACKS

In the white-box attacks, the attacker knows every detail of the defense method. Therefore, we need
to assume that the attacker is aware of our test-time fine-tuning method and will adjust its strategy for
generating adversarial examples accordingly. Here, we discuss one such strong adaptation strategy
targeted to our method.

6

Under review as a conference paper at ICLR 2022

Suppose that the attacker is fully aware of the hyperparameters for test-time fine-tuning. Then,
finding adversaries B̃adv of the clean subset B̃ can be achieved by maximizing the adaptive loss

x̃advi = arg max
‖x̃adv

i −xi‖≤ε
Lattack(F (x̃advi), y; θT (B̃adv)) , (16)

where Lattack refers to the general attack loss, such as the cross-entropy or the difference of logit ra-
tio (DLR) (Croce & Hein, 2020a). Let θT be the fine-tuned test-time parameters using Algorithm 1.
At the k-th step of the attack, it depends on the input B̃(k) = {(x̃(k)

j , ỹj)}bj=1 via the update

θt+1 = θt − η∇θtLtest(B̃(k), B) , (17)
where Ltest and B are the loss function and subset of training images mentioned in Eqn (6). As
θT is a function of the input B̃(k), we can calculate the end-to-end gradient of x̃(k)

i ∈ B̃(k) as
∇
x̃
(k)
i
Lattack(F (x̃

(k)
i); θT (B̃(k))). However, θT goes through T gradient descent steps, and thus

calculating the gradient∇
x̃
(k)
i
θT (B̃(k)) requires T -th order derivatives of the backbone E, which is

virtually impossible if T or the dimension of θE is large. We therefore approximate the gradient as

Grad(x̃
(k)
i) ≈ ∇

x̃
(k)
i
Lattack(F (x̃

(k)
i); θT) , (18)

which treats θT as a fixed variable so that high-order derivatives from θT (B̃(k)(x̃
(k)
i)) can be

avoided. Although this approximation makes Grad(x̃
(k)
i) inaccurate, common white-box attacks

use projected gradients, which are robust to such inaccuracies. For example, PGD only uses the sign
of the gradient under an `∞ adversarial budget. Note that solving the maximization in Eqn (16) does
not necessarily require calculating the gradient Grad(x̃

(k)
i). For instance, we will also use Square

Attack (Andriushchenko et al., 2020), a strong score-based black-box attack, to maximize Eqn (16)
and generate adversaries for B̃.

As another approximation to save time, one can also fixing θT for several iterations. This leverages
the intuition that attack strategies often make small changes to the input x̃, and thus, for the interme-
diate images in the k-th and (k+1)-th steps, θT (B̃(k)) and θT (B̃(k+1)) should be close. Therefore, a
general version of our adaptive attacks only updates θT every u iterations, with u a hyperparameter.
We provide the algorithms for PGD, AutoPGD, FAB and Square Attack in the Appendix C.

5 EXPERIMENTS

Experimental Settings. Following previous works (Cui et al., 2020; Huang et al., 2020), we con-
sider `∞-norm attacks with an adversarial budget ε = 0.031(≈ 8/255). We evaluate our method
on three datasets: CIFAR10 (Krizhevsky et al., 2009), STL10 (Coates et al., 2011) and Tiny Im-
ageNet (Le & Yang, 2015). We also use two different network architectures: WideResNet-34-
10 (Zagoruyko & Komodakis, 2016) for CIFAR10, and ResNet18 (He et al., 2016) for STL10 and
Tiny ImageNet. Following the common settings in adversarial training, we train the network for
100 epochs using SGD with a momentum factor of 0.9 and a weight decay factor of 5× 10−4. The
learning rate β starts at 0.1 and is divided by a factor of 10 at the 50-th and the 75-th epochs. The
step size α in Eqn (8) the same as β; the factor λ′ in Eqn (11) is 1.0. We set the weight of each
self-supervised task λk = 1

K where K is the number of tasks. We use 10-iteration PGD with step
size 0.007(≈ 0.031/4) to find the adversarial Badvj during training. To prevent the computational
burden of meta adversarial training, we use divide the classification of 32 images as one task and
sample 8 mini-batches B1, ..., B8 in each iteration.(i.e. |Bj | = 32 and q = 8 in Algorithm 2). More
detailed experimental settings are provided in the Appendix B.

Attack Methods. We consider four common white-box and black-box attack methods: PGD-
20 (Madry et al., 2018), AutoPGD (Croce & Hein, 2020a), FAB (Croce & Hein, 2020b) and Square
Attack (Andriushchenko et al., 2020). We apply both the standard and adaptive versions of these
methods. Furthermore, for AutoPGD, we use both the cross-entropy and DLR (Croce & Hein,
2020a) loss. More details are provided in the Appendix C.

Baselines. We compare our method with the following methods: 1) Regular adversarial training
(Regular AT), which uses LATcls in Eqn (3). 2) Regular adversarial training with an additional self-
supervised loss, i.e., using LATcls + λ′LATSS for adversarial training, where LATSS is given in Eqn (10).

7

Under review as a conference paper at ICLR 2022

Table 2: Robust test accuracy on CIFAR10 of the test-time fine-tuning on both the online setting
and the offline setting. We use the WideResNet-34-10 with an `∞ budget ε = 0.031. AT means
adversarial training and FT stands for fine-tuning. We underline the accuracy of the strongest attack
and highlight the highest accuracy among them.

Tasks Methods Square Attack PGD-20 AutoPGD FAB

Standard Adaptive Standard Adaptive Standard Adaptive Standard Adaptive
None Regular AT 62.51% - 55.74% - 52.14% - 51.34% -

Rotation

Regular AT w/o FT 63.54% - 56.64% - 52.57% - 51.87% -
Meta AT w/o FT 63.96% - 57.35% - 53.09% - 53.09% -
Online FT 65.52% 65.85% 59.52% 59.50% 57.93% 56.96% 75.58% 77.69%
Offline FT 67.05% 65.75% 61.17% 59.71% 58.77% 57.63% 78.12% 68.60%

VFlip

Regular AT w/o FT 62.09% - 55.50% - 52.79% - 51.24% -
Meta AT w/o FT 66.15% - 59.73% - 53.41% - 53.02% -
Online FT 66.91% 66.16% 61.47% 59.40% 58.74% 56.79% 75.68% 80.57%
Offline FT 67.23% 65.60% 61.82% 59.69% 59.26% 58.06% 75.60% 72.24%

Rotation
+

VFlip

Regular AT w/o FT 65.64% - 59.19% - 53.16% - 53.05% -
Meta AT w/o FT 65.75% - 59.51% - 53.99% - 53.85% -
Online FT 67.34% 66.80% 61.79% 60.46% 59.23% 57.70% 76.39% 79.80%
Offline FT 68.50% 66.05% 62.87% 60.54% 60.25% 58.26% 76.89% 71.58%

Table 3: STL10 results of test-time fine-tuning. We use a ResNet18 with an `∞ budget ε = 0.031.
We underline the accuracy of the strongest attack and highlight the highest accuracy among them.

Tasks Methods Square Attack PGD-20 AutoPGD FAB

Standard Adaptive Standard Adaptive Standard Adaptive Standard Adaptive
None Regular AT 44.83% - 37.89% - 35.78% - 35.64% -

Rotation
+

VFlip

Regular AT w/o FT 44.00% - 36.92% - 33.72% - 33.73% -
Meta AT w/o FT 44.75% - 38.66% - 35.60% - 35.38% -
Online FT 45.07% 46.19% 40.31% 40.24% 39.53% 40.85% 51.25% 51.08%
Offline FT 47.86% 48.03% 45.21% 43.33% 43.78% 43.20% 58.49% 54.13%

This corresponds to the formulation of (Hendrycks et al., 2019). 3) Meta adversarial learning (Al-
gorithm 2) without test-time fine-tuning.

We include additional figures, experiments with different adversarial budget and experiments about
label leaking in Appendix A.

5.1 ONLINE TEST-TIME FINE-TUNING

Let us first evaluate our method in the online setting, where only one adversarial image is available
when fine-tuning the network. We fine-tune the network for 10 steps with a momentum factor of 0.9
and a learning rate η = 5× 10−4. We set λk = 1

K and λ = 15.0.

CIFAR10. Table 2 shows the robust accuracy for different attacks and using two different tasks
for fine-tuning. The adaptive attack is not applicable to models without fine-tuning. As we inject
different self-supervised tasks into the adversarial training stage, and as different self-supervised
tasks may impact the robust accuracy differently (Chen et al., 2020a), the robust accuracy without
fine-tuning still varies. The vertical flipping task yields better robust accuracy before fine-tuning
but its improvements after fine-tuning is small. By contrast, rotation prediction achieves low robust
accuracy before fine-tuning, but its improvement after fine-tuning is the largest. Using both tasks
together combines their effect and yields the highest overall accuracy after test-time fine-tuning.

Note that our self-supervised test-time fine-tuning, together with meta adversarial learning, consis-
tently improves the robust accuracy under different attack methods. Under the strongest adaptive
AutoPGD, test-time fine-tuning using both tasks achieves a robust accuracy of 57.70%, significantly
outperforming regular adversarial training.

STL10 and Tiny ImageNet. As using both the rotation and vertical flip prediction led to the highest
overall accuracy on CIFAR10, we focus on this strategy for STL10 and Tiny ImageNet. Table 3 and
4 shows the robust accuracy on STL10 and Tiny ImageNet using a ResNet18. Our approach also
significantly outperforms regular adversarial training on these datasets.

8

Under review as a conference paper at ICLR 2022

Table 4: Tiny ImageNet results of test-time fine-tuning. We use a ResNet18 with an `∞ budget
ε = 0.031. We underline the accuracy of the strongest attack and highlight the highest accuracy
among them.

Tasks Methods Square Attack PGD-20 AutoPGD FAB

Standard Adaptive Standard Adaptive Standard Adaptive Standard Adaptive
None Regular AT 28.5% - 20.6% - 17.5% - 17.2% -

Rotation
+

VFlip

Regular AT w/o FT 29.5% - 22.2% - 17.1% - 16.7% -
Meta AT w/o FT 29.3% - 23.1% - 16.9% - 16.8% -
Online FT 30.2% 30.2% 24.0% 23.2% 18.9% 18.1% 33.7% 31.6%
Offline FT 32.4% 31.0% 25.6% 24.1% 23.7% 20.6% 36.5% 27.7%

Table 5: Ablation study on the online test-time
fine-tuning. The dataset is CIFAR10 and the task
is the “Rotation + VFlip”. All attacks are stan-
dard attacks. Removing the LSS or LR results in
lower robust accuracy than the full method. SA
stands for Square Attack.
Methods SA PGD-20 AutoPGD FAB
Before FT 65.75% 59.51% 53.99% 53.85%
Online FT 67.34% 61.79% 59.23% 76.39%
Removing LR 66.83% 60.45% 57.32% 75.63%
Removing LSS 65.44% 60.24% 55.64% 75.08%

Table 6: Ablation study on the online test-time
fine-tuning. The dataset is CIFAR10 and the task
is the “Rotation + VFlip”. All attacks are stan-
dard attacks. SA stands for Square Attack.

Methods SA PGD-20 AutoPGD FAB
Regular AT 65.64% 59.19% 53.16% 53.05%
Online FT 66.26% 60.18% 56.86% 75.26%
Improvement 0.62% 0.99% 3.70% 22.21%
Meta AT 65.75% 59.51% 53.99% 53.85%
Online FT 67.34% 61.79% 59.23% 76.39%
Improvement 1.59% 2.28% 5.24% 22.54%

5.2 OFFLINE TEST-TIME FINE-TUNING

Let us now study the offline setting, where all test adversarial examples are available at test time.
We use SGD to fine-tune the model for 10 epochs. We set λ = 10.0 and keep the other settings the
same as for online fine-tuning. As shown in Table 2, 3, 4, the offline fine-tuning further improves
the robust accuracy over the online version.

5.3 ABLATION STUDY

Removing LSS or LR. In our previous experiments, test-time fine-tuning was achieved using a
combination of two loss functions: LSS and LR. To study the effect of each of these terms sep-
arately, we remove either one of them from Ltest. In Table 5, we report the robust accuracy after
online fine-tuning using only LR and only LSS . While, as expected, removing LSS tends to reduce
more accuracy than removing LR. It shows the benefits of our self-supervised test-time fine-tuning
strategy. Nevertheless, the best results are obtained by exploiting both loss terms.

Removing Meta Adversarial Training. Our meta training strategy in Algorithm 2 aims to
strengthen the correlation between the self-supervised tasks and classification. To show its effective-
ness, we perform an ablation study where we fine-tune the model with regular adversarial training
(i.e., setting α = 0 in the line 5 of Algorithm 2). We then perform the same test-time fine-tuning on
the model without meta adversarial training, using the same hyperparameters as in the meta adver-
sarial training case. As shown in Table 6, the robust accuracy and the improvements of fine-tuning
are consistently worse without meta adversarial training.

6 CONCLUSION

We propose self-supervised test-time fine-tuning on adversarially-trained models to improve their
generalization ability. Furthermore, we introduce a meta adversarial training strategy to find a good
starting point for our self-supervised fine-tuning process. Our extensive experiments on CIFAR10,
STL10 and Tiny ImageNet demonstrate that our method consistently improves the robust accuracy
under different attack strategies, including strong adaptive attacks where the attacker is aware of
our test-time fine-tuning technique. In these experiments, we utilize three different sources of self-
supervision: rotation prediction, vertical flip prediction and the ensemble of them. While all settings
lead to improved robust accuracy, some self-supervised tasks seem to have more impact than others.
Finding better self-supervised tasks and their combinations will be the focus of our future work.

9

Under review as a conference paper at ICLR 2022

REPRODUCIBILITY STATEMENT

We provide pesudocode of our algorithms and the detailed hyperparameters in the main text and
Appendix. The datasets we use (CIFAR10, STL10 and Tiny ImageNet) are all publicly available. In
addition, we provide the code to reproduce the experiment results here.

ETHICS STATEMENT

Adversarial examples bring security threats to the current machine learning models. Adversarial
examples may be maliciously used to attack the safety-critical systems like autonomous driving and
face verification. While adversarial training is effective in defending against adversarial attacks,
it suffers from poor generalization. We propose to use the self-supervised test-time fine-tuning to
increase the robust accuracy of these models. It helps build safer machine learning systems.

REFERENCES

Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square attack: a query-
efficient black-box adversarial attack via random search. In European Conference on Computer Vision, pp.
484–501. Springer, 2020.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of security:
Circumventing defenses to adversarial examples. In International Conference on Machine Learning, pp.
274–283. PMLR, 2018.

Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

Jinghui Chen and Quanquan Gu. Rays: A ray searching method for hard-label adversarial attack. In Pro-
ceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
1739–1747, 2020.

Tianlong Chen, Sijia Liu, Shiyu Chang, Yu Cheng, Lisa Amini, and Zhangyang Wang. Adversarial robustness:
From self-supervised pre-training to fine-tuning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 699–708, 2020a.

Tianlong Chen, Zhenyu Zhang, Sijia Liu, Shiyu Chang, and Zhangyang Wang. Robust overfitting may be
mitigated by properly learned smoothening. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=qZzy5urZw9.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. In International conference on machine learning, pp. 1597–1607. PMLR,
2020b.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised feature
learning. In Proceedings of the fourteenth international conference on artificial intelligence and statistics,
pp. 215–223. JMLR Workshop and Conference Proceedings, 2011.

Antonio Criminisi, Patrick Pérez, and Kentaro Toyama. Region filling and object removal by exemplar-based
image inpainting. IEEE Transactions on image processing, 13(9):1200–1212, 2004.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble of diverse
parameter-free attacks. In International Conference on Machine Learning, pp. 2206–2216. PMLR, 2020a.

Francesco Croce and Matthias Hein. Minimally distorted adversarial examples with a fast adaptive boundary
attack. In International Conference on Machine Learning, pp. 2196–2205. PMLR, 2020b.

Jiequan Cui, Shu Liu, Liwei Wang, and Jiaya Jia. Learnable boundary guided adversarial training. arXiv
preprint arXiv:2011.11164, 2020.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In International Conference on Machine Learning, pp. 1126–1135. PMLR, 2017.

A. Gammerman, V. Vovk, and V. Vapnik. Learning by transduction. In Proceedings of the Fourteenth Confer-
ence on Uncertainty in Artificial Intelligence, UAI’98, pp. 148–155, San Francisco, CA, USA, 1998. Morgan
Kaufmann Publishers Inc. ISBN 155860555X.

10

https://drive.google.com/drive/folders/1mdxLmReQziCVLietLP58euiyAxl8ZqhD?usp=sharing
https://openreview.net/forum?id=qZzy5urZw9

Under review as a conference paper at ICLR 2022

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by predict-
ing image rotations. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=S1v4N2l0-.

Sven Gowal, Chongli Qin, Jonathan Uesato, Timothy Mann, and Pushmeet Kohli. Uncovering the limits of
adversarial training against norm-bounded adversarial examples. arXiv preprint arXiv:2010.03593, 2020.

Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens van der Maaten. Countering adversarial images
using input transformations. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=SyJ7ClWCb.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised
visual representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 9729–9738, 2020.

Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and Dawn Song. Using self-supervised learning can
improve model robustness and uncertainty. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
a2b15837edac15df90721968986f7f8e-Paper.pdf.

Zhang Huan, Chen Hongge, Song Zhao, S. Boning Duane, S. Dhillon Inderjit, and Hsieh Cho-Jui. The limita-
tions of adversarial training and the blind-spot attack. In International Conference on Learning Representa-
tions, 2019. URL https://openreview.net/forum?id=HylTBhA5tQ.

Lang Huang, Chao Zhang, and Hongyang Zhang. Self-adaptive training: beyond empirical risk minimization.
In Advances in Neural Information Processing Systems, volume 33, 2020.

Minseon Kim, Jihoon Tack, and Sung Ju Hwang. Adversarial self-supervised contrastive learning. In Advances
in Neural Information Processing Systems, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Fangzhou Liao, Ming Liang, Yinpeng Dong, Tianyu Pang, Xiaolin Hu, and Jun Zhu. Defense against adver-
sarial attacks using high-level representation guided denoiser. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1778–1787, 2018.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep
learning models resistant to adversarial attacks. In International Conference on Learning Representations,
2018.

Behnam Neyshabur, Srinadh Bhojanapalli, David Mcallester, and Nati Srebro. Exploring generaliza-
tion in deep learning. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Cur-
ran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
10ce03a1ed01077e3e289f3e53c72813-Paper.pdf.

Leslie Rice, Eric Wong, and Zico Kolter. Overfitting in adversarially robust deep learning. In International
Conference on Machine Learning, pp. 8093–8104. PMLR, 2020.

Kuniaki Saito, Donghyun Kim, Stan Sclaroff, and Kate Saenko. Universal domain adaptation
through self supervision. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 16282–16292. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
bb7946e7d85c81a9e69fee1cea4a087c-Paper.pdf.

Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson, Christoph Studer, Larry S
Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/
paper/2019/file/7503cfacd12053d309b6bed5c89de212-Paper.pdf.

Changhao Shi, Chester Holtz, and Gal Mishne. Online adversarial purification based on self-supervision. arXiv
preprint arXiv:2101.09387, 2021.

11

https://openreview.net/forum?id=S1v4N2l0-
https://openreview.net/forum?id=S1v4N2l0-
https://openreview.net/forum?id=SyJ7ClWCb
https://openreview.net/forum?id=SyJ7ClWCb
https://proceedings.neurips.cc/paper/2019/file/a2b15837edac15df90721968986f7f8e-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/a2b15837edac15df90721968986f7f8e-Paper.pdf
https://openreview.net/forum?id=HylTBhA5tQ
https://proceedings.neurips.cc/paper/2017/file/10ce03a1ed01077e3e289f3e53c72813-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/10ce03a1ed01077e3e289f3e53c72813-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/bb7946e7d85c81a9e69fee1cea4a087c-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/bb7946e7d85c81a9e69fee1cea4a087c-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/7503cfacd12053d309b6bed5c89de212-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/7503cfacd12053d309b6bed5c89de212-Paper.pdf

Under review as a conference paper at ICLR 2022

Assaf Shocher, Nadav Cohen, and Michal Irani. “zero-shot” super-resolution using deep internal learning. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3118–3126, 2018.

Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kushman. Pixeldefend: Leveraging
generative models to understand and defend against adversarial examples. In International Conference on
Learning Representations, 2018. URL https://openreview.net/forum?id=rJUYGxbCW.

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time training with self-
supervision for generalization under distribution shifts. In International Conference on Machine Learning,
pp. 9229–9248. PMLR, 2020.

Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. On adaptive attacks to adversarial
example defenses. In Advances in Neural Information Processing Systems, volume 33, 2020.

Trieu H Trinh, Minh-Thang Luong, and Quoc V Le. Selfie: Self-supervised pretraining for image embedding.
arXiv preprint arXiv:1906.02940, 2019.

Vladimir Vapnik. The nature of statistical learning theory. Springer science & business media, 2013.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully test-time
adaptation by entropy minimization. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=uXl3bZLkr3c.

Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun Ma, and Quanquan Gu. Improving adversarial
robustness requires revisiting misclassified examples. In International Conference on Learning Representa-
tions, 2019.

Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adversarial weight perturbation helps robust generalization.
Advances in Neural Information Processing Systems, 33, 2020.

Junfeng Yang and Carl Vondrick. Multitask learning strengthens adversarial robustness. In European Confer-
ence on Computer Vision. Springer, 2020.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Edwin R. Hancock Richard C. Wilson
and William A. P. Smith (eds.), Proceedings of the British Machine Vision Conference (BMVC), pp. 87.1–
87.12. BMVA Press, September 2016. ISBN 1-901725-59-6. doi: 10.5244/C.30.87. URL https://dx.
doi.org/10.5244/C.30.87.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep learning
requires rethinking generalization. In International Conference on Learning Representations, 2017.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan. Theoretically
principled trade-off between robustness and accuracy. In International Conference on Machine Learning,
pp. 7472–7482. PMLR, 2019.

12

https://openreview.net/forum?id=rJUYGxbCW
https://openreview.net/forum?id=uXl3bZLkr3c
https://dx.doi.org/10.5244/C.30.87
https://dx.doi.org/10.5244/C.30.87

Under review as a conference paper at ICLR 2022

A ADDITIONAL EXPERIMENTS

Robust Accuracy v.s Fine-tuning Steps. Figure 2 shows the robust accuracy at each step of the
test-time fine-tuning for different self-supervised tasks and attack methods. When using the standard
version of attacks, the robust accuracy gradually increases as fine-tuning proceeds. When using our
adaptive attacks, the adversarial examples are generated to attack the network with θT (T = 10)
instead of θ0. Thus, when the parameters gradually change from θ0 to θT , the accuracy drops.

2 4 6 8 10
Steps

0.64

0.65

0.66

0.67

0.68

Ac
cu

ra
cy

Standard Square Attack

2 4 6 8 10
Steps

0.58

0.59

0.60

0.61

0.62

Ac
cu

ra
cy

Standard PGD-20

2 4 6 8 10
Steps

0.53
0.54
0.55
0.56
0.57
0.58
0.59

Ac
cu

ra
cy

Standard AutoPGD

2 4 6 8 10
Steps

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

Standard FAB

Rotation
Vertical Flip
Ensemble

2 4 6 8 10
Steps

0.660

0.665

0.670

0.675

0.680

0.685

Ac
cu

ra
cy

Adaptive Square Attack

2 4 6 8 10
Steps

0.60

0.61

0.62

0.63

Ac
cu

ra
cy

Adaptive PGD-20

2 4 6 8 10
Steps

0.57

0.58

0.59

0.60

0.61

Ac
cu

ra
cy

Adaptive AutoPGD

2 4 6 8 10
Steps

0.78

0.79

0.80

0.81

0.82

0.83

Ac
cu

ra
cy

Adaptive FAB

Rotation
Vertical Flip
Ensemble

Figure 2: Robust accuracy at different steps of the online test-time fine-tuning on CIFAR10.

Accuracy Improvement on Clean Images. Our model is able to improve not only the robust
accuracy but also the natural accuracy of clean images on adversarially-trained models. To evidence
this, we maintain all the components of our model and simply replace the adversarial input images
with clean images (i.e. replacing B̃adv with clean inputs B̃ in Algorithm 1) and perform the same
self-supervised test-time fine-tuning.

As shown in Table 7, our approach increases the clean image accuracy. This phenomenon further
strengthens our conjecture that the improvement of robust accuracy is due to the improvement of
generalization instead of perturbing the model parameters, because the randomly perturbing the
parameters usually lower the natural accuracy of the model. This also suggests that our method
is applicable to the broader problem of improving the accuracy of deep learning models with poor
generalization ability.

Table 7: Accuracy on clean images. Networks are trained with corresponding meta adversarial
training.

Methods Rotation VFlip Rotation + VFlip
Without FT 84.77% 86.55% 86.36%
Online FT 86.10% 87.00% 87.10%

Accuracy Improvement on Inputs with Different Adversarial Budget. Our method is also able
to improve the robust accuracy of inputs with different adversarial budgets. As shown in Table 8,
we set `∞ budget of the adversarial inputs to be 0.015 to perform the online test-time fine-tuning.
The robust accuracy is ed improved.

Table 8: Robust test accuracy on CIFAR10 of the online test-time fine-tuning. We use the same
WideResNet-34-10 as in Table 2, which is trained with `∞ budget 0.031. The inputs are in the `∞
ball of ε = 0.015. The self-supervised task is the ensemble of rotation and vertical flip.

Methods Square Attack PGD-20 AutoPGD FAB

Standard Adaptive Standard Adaptive Standard Adaptive Standard Adaptive
Meta AT w/o FT 78.01% - 75.34% - 72.72% - 72.58% -
Online FT 80.50% 79.87% 77.14% 76.75% 77.25% 74.93% 82.04% 83.76%

13

Under review as a conference paper at ICLR 2022

Label Leaking. One potential concern about our method is whether the effect of label leaking leads
to the improvement of the robust accuracy. The attacker uses the ground truth label to generate the
adversarial examples. Someone may worry it leaks the information of the ground truth label to the
adversarial images and the test-time fine-tuning can utilize the information to guess the correct label.

Previous experiments on clean images already show that test-time fine-tuning is effective even if
there is no information of the ground truth label. We further resolve the concern of the label leaking
by the following experiments. The attacker randomly lowers the score of the false label to perform
the adversarial attack. And we conduct the self-supervised test-time fine-tuning on these “adversar-
ial” images. If our method uses the information of leaked label to improve the robust accuracy, it will
predict the false label and reduce the accuracy. However, as shown in Table 9, the robust accuracy is
also improved after the test-time fine-tuning. It demonstrates that the improvement of robust accu-
racy is not a result of label leaking. It is worth noting that such attack is not targeted at the ground
truth label. Therefore, the accuracy of the input images, along with the accuracy improvement of
the test-time fine-tuning, are similar to the clean images in Table 7.

Table 9: Experiments to rule out the possibility of label leaking. We use the WideResNet-34-10
trained with `∞ budget ε = 0.031 and show the robust test accuracy on CIFAR10 of the online
test-time fine-tuning. The self-supervised task is the ensemble of rotation and vertical flip.

Methods Square Attack PGD-20 AutoPGD FAB

Standard Adaptive Standard Adaptive Standard Adaptive Standard Adaptive
Meta AT w/o FT 85.43% - 85.60% - 85.00% - 86.22% -
Online FT 86.56% 87.63% 86.29% 86.68% 86.10% 85.90% 87.61% 86.97%

Comparison with SOAP (Shi et al., 2021). Our method is different from SOAP as we are fine-
tuning the model to adapt to new examples instead of purifying the input. We apply SOAP-RP to
the adversarially-trained model and find that its improvement is marginal. Under AutoPGD, the
accuracy is improved from 53.09% to 53.57%. This improvement is much smaller than our method,
whose improvement is from 53.09% to 57.93%. SOAP only has little effect when combining with
the commonly-used adversarial training.

Transfer Attack. In Table 10, we perform a transfer attack from the static adversarial defense.
We use the robust networks with the same architecture as the substitute model, and the test-time
fine-tuning also improves the robust accuracy.

Table 10: Accuracy on transfer attack on CIFAR10.

Methods Rotation VFlip Rotation + VFlip
Without FT 84.77% 86.55% 86.36%
Online FT 86.10% 87.00% 87.10%

Expectation Attack. In Table 11, we show the results of the expectation attack. We modify
the adaptive attack and average the gradient from 10 fine-tuned models, whose training batches
are different. We evaluate the model using the ensemble of rotation and vertical flip as the self-
supervised task on CIFAR10. We evaluate the model with Adaptive-AutoPGD-EOT and Adaptive-
SquareAttack-EOT. One is the strongest attack in our method and the other is a black-box attack that
is less likely to be affected by gradient masking. The experiment shows that the expectation attack
has little influence on the improvement of our test-time fine-tuning.

Table 11: Accuracy on expectation attack on CIFAR10 with the ensemble of rotation and vertical
flip task.

Attacks w/o Fine-tuning w/ Fine-tuning
Adaptive-AutoPGD 53.99% 57.70%
Adaptive-AutoPGD-EOT 53.99% 57.65%
Adaptive-SquareAttack 65.75% 66.80%
Adaptive-SquareAttack-EOT 65.75% 66.73%

14

Under review as a conference paper at ICLR 2022

Boundary Attack. We use one of the SOTA decision-based attacks: RayS (Chen & Gu, 2020). We
test it on CIFAR10 with the ensemble of rotation and vertical flip. Table 12 shows that our method
also improves the robust accuracy for the decision-based attack.

Table 12: Accuracy on RayS on CIFAR10 with the ensemble of rotation and vertical flip task.

Attacks w/o Fine-tuning w/ Fine-tuning
RayS 65.61% 77.38%
Adaptive-RayS - 75.03%

Combination with (Gowal et al., 2020). We combine our test-time fine-tuning with the adversarial
training using additional data (Gowal et al., 2020). We apply our Meta AT to it with the ensem-
ble of rotation and vertical flip. Using a WideResNet-28-10, it achieves robust accuracy 62.07%
under AutoPGD. With our test-time fine-tuning, the robust accuracy is improved to 64.34%. The
improvement of robust accuracy is 2.27%.

Inference Time. Table 13 shows the inference time for different methods. While the inference time
for our method is larger than SOAP and normal method when the batch size is 1, the inference time
gets closer when using larger batch size. And the batch size of 20 or more is a common scenario of
the inference.

Table 13: Average inference time for each instance using different methods.

Batch Size 1 5 10 20 40
Normal 17.1ms 14.5ms 13.2ms 12.8ms 11.7ms
SOAP (Shi et al., 2021) 163ms 91.2ms 75.3ms 73.1ms 72.5ms
Ours 545ms 168ms 118ms 83.9ms 82.9ms

B DETAILS OF OUR EXPERIMENTAL SETTING

Meta Adversarial Training. We consider an `∞ norm with an adversarial budget ε = 0.031. We
also use two different network architectures: WideResNet-34-10 for CIFAR10 and ResNet18 for
STL10 and Tiny ImageNet. Following the common settings for adversarial training, we train the
network for 100 epochs using SGD with a momentum factor of 0.9 and a weight decay factor of
5× 10−4. The learning rate β starts at 0.1 and is divided by a factor of 10 after the 50-th and again
after the 75-th epochs. The step size α in Eqn (8) is the same as β. The factor λ′ in Eqn (11) is set
to 1.0. We use 10-iteration PGD (PGD-10) with a step size of 0.007 to find the adversarial image
Badvj at training time. The weight of each self-supervised task is set to λk = 1

K . We set |Bj | = 32
and sample 8 batches B1, ..., B8 in each iteration. Furthermore, we save the model after the 51-st
epoch for further evaluation, as the model obtained right after the first learning rate decay usually
yields the best performance (Rice et al., 2020).

We use PGD with the standard cross-entropy loss to generate adversarial examples at training time
in the line 3, line 6 and line 8 of Algorithm 2. The hyperparameters of the attacks are as follows:

• Line 3: PGD-10 with step size 0.007.

• Line 6: As θ∗j is similar to θ, the adversarial examples at this step are similar to those at
Line 4. To save training time, we therefore choose the starting point of the attack as the
adversarial examples in Line 4 and use PGD-2 with a step size of 0.005.

• Line 8: PGD-3 with step size 0.02.

Online Test-time Fine-tuning. We fine-tune the network for T = 10 steps with a momentum of 0.9
and a learning rate of η = 5 × 10−4. We set λk = 1

K and λ = 15.0. In line 2 of Algorithm 1, we
sample a batch B ⊂ D containing 20 training images. In line 3, we use PGD-10 with a step size of
0.007.

Offline Test-time Fine-tuning. The algorithm for offline fine-tuning is shown in Algorithm 3. As
we stochastic gradient descent is more efficient for large amount of data, we use stochastic gradient

15

Under review as a conference paper at ICLR 2022

descent in the offline fine-tuning. This is the main different between Algorithm 1 (online fine-tuning)
and Algorithm 3 (offline fine-tuning). We also fine-tune the network for 10 epochs. The batch size
of each B̃advj is 128. The other hyperparameters are the same as in the online version.

Algorithm 3 Self-supervised Test-time Fine-tuning with SGD

Input:
Initial parameters θ0; Adversarial test images B̃adv = {x̃advi }bi=1; Training data D; Learning
rate η; Steps T ; Weights λk and λ

Output: Prediction of x̃advi : ŷi
1: for t = 1 to T do
2: Divide B̃adv into r subsets B̃adv1 , ..., B̃advr

3: for B̃advj in B̃adv1 , ..., B̃advr do
4: Sample a batch of training images B ⊂ D
5: Find adversarial xadvi of training image xi ∈ B by PGD attack.
6: θt = θt−1 − η∇θt−1Ltest(B̃advj , B; θt−1)
7: end for
8: end for
9: return Prediction ŷi = arg maxj F (x̃advi ; θT)j

Attacks. The detailed settings of each attack are provided below:

• PGD-20. We use 20 iterations of PGD with step size γ = 0.003. The attack loss is the
cross-entropy.

• AutoPGD. We use both the cross-entropy and the difference of logits ratio (DLR) as the
attack loss. The hyperparameters are the same as in (Croce & Hein, 2020a).

• FAB. We use the code from (Croce & Hein, 2020a) and keep the hyperparameters the same.
• Square Attack. We set T = 2000 and the initial fraction of the elements p = 0.3. The other

hyperparameters are the same as in (Andriushchenko et al., 2020).

For the adaptive versions, we set the interval u = dT/5e.

C ALGORITHM FOR ADAPTIVE ATTACKS

In Algorithm 4, 6, 5 and 7, we show the algorithms for `∞ norm-based adaptive PGD, AutoPGD,
Square Attack and FAB, respectively. The main difference between the original and adaptive version
is the target loss function for maximization. The reader may refer to (Andriushchenko et al., 2020;
Croce & Hein, 2020a;b) for more detailed description of the steps in these algorithms (e.g., the
condition for decreasing the learning rate in AutoPGD).

16

Under review as a conference paper at ICLR 2022

Algorithm 4 `∞ Norm Adaptive PGD Attack

Input: Test images B̃ = {(x̃i, ỹi)}; Attack loss Lattack; Step size γ; Iterations T ; Intervals u;
Adversarial budget ε; Trained parameters of the network θ0.

Output: Adversarial images B̃adv = {x̃advi }
1: Add random noise to x̃i in B̃ and get B̃′
2: for t = 1 to T do
3: if t mod u = 0 then
4: Get final parameters θT by taking B̃′ as input image for Algorithm 1: θ = θT

5: end if
6: for x̃′i in B̃′ do
7: Grad(x̃′i) = ∇x̃′iLattack(F (x̃′i), ỹi; θ)

8: x̃′i = Clip[x̃i−ε,x̃i+ε](x̃
′
i + γSign(Grad(x̃′i)))

9: end for
10: end for
11: return Adversarial image x̃advi = x̃′i

Algorithm 5 `∞ Norm Adaptive AutoPGD

Input: Test images B̃ = {(x̃i, ỹi)}; Attack loss Lattack; Step size γ; Iterations T ; Intervals u;
Adversarial budget ε; Parameter of the adversarially-trained network θ0; Decay iterations W =
{w0, ..., wn}; Momentum ξ

Output: Adversarial image B̃adv = {x̃advi }
1: Get final parameter θT by taking B̃ as input image for Algorithm 1.
2: θ = θT

3: for x̃i in B̃ do
4: x̃0

i = x̃i
5: Grad(x̃i) = ∇x̃i

Lattack(F (x̃i), ỹi; θ)
6: x̃1

i = Clip[x̃i−ε,x̃i+ε](x̃
0
i + γSign(Grad(x̃i)))

7: l0i = Lattack(F (x̃0
i), ỹi; θ)

8: l1i = Lattack(F (x̃1
i), ỹi; θ)

9: l∗i = max{l0i , l1i }
10: x̃∗i = x̃0

i if l∗i = l0i else x̃∗i = x̃1
i

11: end for
12: for t = 1 to T − 1 do
13: if t mod u = 0 then
14: Get final parameter θT by taking B̃∗ = {x̃∗i } as input image for Algorithm 1.
15: θ = θT

16: end if
17: for i = 1, ..., |B̃| do
18: Grad(x̃ti) = ∇x̃t

i
Lattack(F (x̃ti), ỹi; θ)

19: zt+1
i = Clip[x̃i−ε,x̃i+ε](x̃

t
i + γSign(Grad(x̃ti)))

20: x̃t+1
i = Clip[x̃i−ε,x̃i+ε](x̃

t
i + ξ(zt+1

i − zti) + (1− ξ)(x̃ti − x̃
t−1
i))

21: lt+1
i = Lattack(F (x̃t+1

i), ỹi; θ)

22: x̃∗i = x̃t+1
i and l∗i = lt+1

i if lt+1
i > l∗i

23: if k ∈W and satisfy the condition of dropping learning rate then
24: γ = γ/2 and x̃t+1

i = x̃∗i
25: end if
26: end for
27: end for
28: return Adversarial image x̃advi = x̃∗i

17

Under review as a conference paper at ICLR 2022

Algorithm 6 `∞ Norm Adaptive Square Attack

Input: Test images B̃ = {(x̃i, ỹi)}; Attack loss Lattack; Step size γ; Iterations T ; Intervals u;
Image size w; Color channels c; Adversarial budget ε; Parameter of the adversarially-trained
network θ0.

Output: Adversarial image B̃adv = {x̃advi }
1: Add noise to x̃i in B̃ and get B̃′
2: for t = 1 to T do
3: if t mod u = 0 then
4: Get final parameter θT by taking B̃′ as input image for Algorithm 1.
5: θ = θT

6: end if
7: for x̃′i in B̃′ do
8: ht ←− side length of the square to modify (according to some schedule)
9: δ ←− array of zeros of size w × w × c

10: Sample uniformly r, s ∈ {0, ..., w − ht} ⊂ N
11: for j = 1, ..., c do
12: ρ←− Uniform(−2ε, 2ε)
13: δr+1:r+ht,s+1:s+ht = ρ · 1ht×ht

14: end for
15: x̃new

i = Clip[x̃i−ε,x̃i+ε](x̃
′
i + δ)

16: lnew
i = Lattack(F (x̃new

i), ỹi; θ)
17: if lnew < l∗ then
18: x̃′i = x̃new

i
19: l∗i = lnew

i
20: end if
21: end for
22: end for
23: return Adversarial image x̃advi = x̃′i

18

Under review as a conference paper at ICLR 2022

Algorithm 7 `∞ Norm Adaptive FAB

Input: Test images B̃ = {(x̃i, ỹi)}; Step size γ; Iterations T ; Intervals u; Adversarial budget ε;
Trained parameters of the network θ0; αmax, η, β.

Output: Adversarial images B̃adv = {x̃advi }
1: Add random noise to x̃i in B̃ and get B̃′
2: v = +∞
3: for t = 1 to T do
4: if t mod u = 0 then
5: Get final parameters θT by taking B̃′ as input image for Algorithm 1: θ = θT

6: end if
7: for x̃′i in B̃′ do
8: Grad(x̃′i)l = ∇x̃′iF (x̃′i; θ)l

9: s = arg minl 6=yi
|F (x̃′i;θ)l−F (x̃′i;θ)yi |

‖Grad(x̃′i)l−Grad(x̃′i)yi‖1
10: δt = proj∞(x̃′i, πs, C)
11: δtorig = proj∞(x̃i, πs, C)

12: α = min

{
‖δt‖∞

‖δt‖∞+‖δtorig ‖∞
, αmax

}
∈ [0, 1]

13: x̃′i = projC
(

(1− α)(x̃′i + ηδt) + α(x̃i + ηδtorig)
)

14: if x̃′i is not classified as yi then
15: if ‖x̃′i − x̃i‖∞ < v then
16: x̃advi = x̃′i
17: v = ‖x̃′i − x̃i‖∞
18: end if
19: x̃′i = (1− β)x̃i + βx̃′i
20: end if
21: end for
22: end for
23: return Adversarial image x̃advi

19

	Introduction
	Related Work
	Methodology
	Test-time Fine-tuning
	Meta Adversarial Training
	Self-supervised Tasks
	Method Analysis

	Adaptive Attacks
	Experiments
	Online Test-time Fine-tuning
	Offline Test-time Fine-tuning
	Ablation Study

	Conclusion
	Additional Experiments
	Details of our Experimental Setting
	Algorithm for Adaptive Attacks

