
Balancing Gradient and Hessian Queries in
Non-Convex Optimization

Deeksha Adil∗ Brian Bullins† Aaron Sidford‡ Chenyi Zhang‡

Abstract

We develop optimization methods which offer new trade-offs between the number
of gradient and Hessian computations needed to compute the critical point of a non-
convex function. We provide a method that for a twice-differentiable f : Rd → R
with L2-Lipschitz Hessian, an input initial point with ∆-bounded sub-optimality,
and a sufficiently small ϵ > 0, outputs an ϵ-critical point, i.e., a point x such that
∥∇f(x)∥ ≤ ϵ, using Õ(∆L

1/4
2 n

−1/2
H ϵ−9/4) queries to a gradient oracle and nH

queries to a Hessian oracle. As a consequence, we obtain an improved gradient
query complexity of Õ(d1/3L

1/2
2 ∆ϵ−3/2) in the case of bounded dimension and of

Õ(∆3/2L
3/4
2 ϵ−9/4) in the case where we are allowed only a single Hessian query.

We obtain these results through a more general algorithm which can handle ap-
proximate Hessian computations and recovers known prior state-of-the-art bounds
of computing an ϵ-critical point, under the additional assumption that f has an
L1-Lipschitz gradient, with O(∆L

1/4
2 ϵ−7/4) gradient queries.

1 Introduction

We consider the problem of computing an ϵ-critical point of a differentiable function f : Rd → R,
that is x with ∥∇f(x)∥ ≤ ϵ, given an initial point x(0) ∈ Rd with bounded function error or sub-
optimality, ∆ := f(x(0))− infx∈Rd f(x).4 This critical point computation problem—also referred
to as making the gradient norm small [2, 33] or finding stationary points [1]—is a foundational and
well-studied optimization problem. It is ubiquitous in machine learning research and has been studied
extensively for decades; see e.g., [10, 11] for references.

Obtaining an ϵ-critical point is a natural stopping condition for many optimization methods. For
general smooth non-convex functions, guarantees of this type—as opposed to reaching a globally
optimal point—may be provably established without incurring exponential dimension dependence in
the rates [10, 11]. Furthermore, there are even instances of non-convex objectives, such as regression
tasks with non-convex regularization [31] and matrix completion [21], for which reaching what is
known as a second-order critical point [1, 9, 26, 27]—which generalize ϵ-critical points—suffices to
establish global optimality.

In certain foundational settings, optimal query complexities for critical point computation are known.
For example, consider the following simple variant of gradient descent, e.g.,

x(t+1) ← x(t) − 1

L1
∇f(x(t)) = argminx∈RdT 1

x(t)(x) +
L1

2

∥∥x(t) − x∥∥2 (1)

∗Institute for Theoretical Studies, ETH Zürich deeksha.adil@eth-its.ethz.ch
†Department of Computer Science, Purdue University bbullins@purdue.edu
‡Stanford University {sidford,chenyiz}@stanford.edu
Preprint available at arXiv:2510.20786.

4Throughout the paper we let ∥·∥ denote the Euclidean or ℓ2 norm, and when applied to a square matrix, we
let it denote the ℓ2-operator norm, i.e., ∥A∥ = supx∈Rd ∥Ax∥/∥x∥ for all A ∈ Rd×d.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://arxiv.org/abs/2510.20786

where T p
x(t)(x) is the pth-order Taylor approximation of f evaluated at x(t) and f is L1-smooth,

i.e., has an L1-Lipschitz gradient where ∥∇f(x)−∇f(y)∥ ≤ L1∥x− y∥ for all x, y ∈ Rd. Eq. (1)
computes an ϵ-critical point with at most O(L1∆ϵ

−2) iterations [32], and it is known that for
sufficiently large d, any method (even a randomized one that succeeds with high probability) must
compute at least Ω(L1∆ϵ

−2) gradients in the worst case [10]. More broadly, for f that has Lp-
Lipschitz pth-order derivatives define a pth-order oracle as one that when queried at a point x returns
all partial derivatives of f at x up to order p. It is known that the method

x(t+1) ← argminx∈RdT
p
x(t)(x) + cpLp

∥∥x(t) − x∥∥p+1
,

for suitable choice of constant cp > 0, solves the problem in O(cpL
1/p
p ∆ϵ−(p+1)/p) queries and

iterations [7], and these rates are optimal in terms of dimension-independent query complexity [10].

Unfortunately, the faster rates for critical point computation obtained via higher-order oracles, e.g.,
pth-order oracles, generally come at a cost. Simply specifying the output of a pth-order oracle at
a point involves outputting dp numbers in the worst case, which even for a small constant p can
be prohibitively expensive when the problem dimension is large. Correspondingly, there has been
extensive research [1, 9, 10, 11, 34] on what rates are obtainable given various assumptions on f
and access only to a gradient oracle, i.e., an oracle that when queried at x ∈ Rd outputs ∇f(x),
the gradient of f at x, and a Hessian oracle, i.e., an oracle that when queried at x ∈ Rd outputs
∇2f(x), the Hessian of f at x. One particularly relevant line of work has shown that with only a
gradient oracle for f that has L1-Lipschitz gradient and L2-Lipschitz Hessian, it is possible to obtain
a rate of O(L

1/2
1 L

1/4
2 ∆ϵ−7/4) if 0 < ϵ ≤ min{L2

1L
−1
2 ,∆2/3L

1/3
2 } [1, 9, 29], and [11] provided an

Ω(L
3/7
1 L

2/7
2 ∆ϵ−12/7) lower bound for this setting. In other words, when the Hessian of the function

is also Lipschitz continuous, it is possible to improve upon the O(L1∆ϵ
−2) query complexity of

gradient descent. Meanwhile, if we further allow for querying Hessian information, this rate can be
improved to O(L

1/2
2 ∆ϵ−3/2) [34], which is optimal under this stronger oracle model [10, 12].

In this paper, we perform a more fine-grained study of the problem of critical point computation. We
ask, what trade-offs are possible between the number of gradient and Hessian computations that
are needed to compute ϵ-critical points for functions with L1-Lipschitz gradients and L2-Lipschitz
Hessians? Our main result is an algorithm which offers a new such trade-off, even when the Hessian
is computed only approximately. Furthermore, we show that this result generalizes the bounds of
[29] and yields further improvements in dimension-dependent settings.

1.1 Our Results

Our main result is a new trade-off in the number of approximate Hessian oracle queries and gradient
queries for f needed for ϵ-critical point computation. Here we define the approximate Hessian oracle
we consider and provide our main theorem.
Definition 1 (Approximate Hessian Oracle). We call a procedure a δ-approximate Hessian oracle for
twice differentiable f : Rd → R if when queried at x ∈ Rd it outputs symmetric Hx ∈ Rd×d such
that

∥∥Hx −∇2f(x)
∥∥ ≤ δ.

Theorem 1 (Main Result). Let f : Rd 7→ R have L1-Lipschitz gradient and L2-Lipschitz Hessian.
There is an algorithm which given any x(0) ∈ Rd with ∆-bounded sub-optimality with respect to f ,
positive integer nH , and 0 < ϵ ≤ min{L2

1L
−1
2 ,∆2/3L

1/3
2 }, outputs an ϵ-critical point of f with at

most nH queries to a δ-approximate Hessian oracle and at most

O

(
∆L

1/4
2 c

1/2
δ

ϵ7/4
· poly log

(
cℓ
cδ

))
queries to a gradient oracle for f , where

cδ := min

{
L1, δ +

∆L2

nHϵ

}
and cℓ := min

{
L1,

L2
2∆

3

ϵ4
+

∆δ2

ϵ2
+ δ

}
.

As outlined in our overview in Section 2, Theorem 1 follows from a careful combination of Theorem 3
and Corollary 2, which characterize Algorithm 2 and Algorithm 3, respectively.

In the remainder of this section we compare this result to previous studied problems and discuss its
implications.

2

Generalizing Prior Gradient Methods. First, we note that Theorem 1 recovers known prior
results on gradient-only methods. Observe that

∥∥∇2f(x)
∥∥ ≤ L1 if and only if f has an L1-Lipschitz

gradient, and consequently, an L1-approximate Hessian oracle for f can be implemented with no
queries, by simply outputting the all-zero matrix. In this case, the approximation error is δ = L1,
which leads to cδ = cℓ = L1. Thus, as a corollary of Theorem 1, we obtain a method which
computes an ϵ-critical point using O(L

1/2
1 L

1/4
2 ∆ϵ−7/4) queries, which matches the prior best known

algorithms in this setting [1, 8, 9, 29].

Gradient-Hessian Trade-offs for Functions with Unbounded Smoothness. Interestingly, our
results apply even without a bound on L1. In this case, it follows from Theorem 1 that, with exact
Hessian queries, i.e., when δ = 0, it is possible to obtain methods that compute an ϵ-critical point with
nH Hessian queries and Õ(∆3/2L

3/4
2 n

−1/2
H ϵ−9/4) gradient queries.5 Excitingly, this result shows it

is possible to compute an ϵ-critical point with only a single Hessian query and Õ(∆3/2L
3/4
2 ϵ−9/4)

gradient queries. The previous best algorithms in this setting are essentially due to Doikov et al. [18].
Though their paper studies a different setting, their results seem to imply an ϵ-critical point with
nH Hessian queries and O(∆2L2n

−2
H ϵ−3) gradient queries, and so for a single Hessian query, we

improve these results, up to polylogarithmic factors, by a factor of O(∆1/2L
1/4
2 ϵ−3/4).

Dimension-Dependent Critical Point Computation. As another application of Theorem 1, we
obtain improved bounds on the number of gradients needed to compute a critical point of functions
where d, the dimension, is bounded. Specifically, we note that by a finite differencing argument (e.g.,
Lemma 3 in [23] for h = 2δd−1/2L−1

2), a δ-approximate Hessian oracle for f can be implemented
with just 2d queries to a gradient oracle by approximateing each column of the Hessian using by
finite differences and wo gradient queries. Applying this fact with Theorem 1 and optimizing over
the choice of nH yields the following corollary.

Corollary 1. Let f : Rd 7→ R have L1-Lipschitz gradient and L2-Lipschitz Hessian. There is a
method which given any x(0) ∈ Rd with ∆-bounded sub-optimality with respect to f and 0 <

ϵ ≤ min{L2
1L

−1
2 ,∆2/3L

1/3
2 }, outputs an ϵ-critical point of f with at most Õ(d1/3L

1/2
2 ∆ϵ−3/2 + d)

queries to a gradient oracle for f .

Interestingly, while optimal query complexities are known for the low-dimensional d = 1 [15] and
d = 2 [24] cases—the latter following from the more general O(max{2d, ϵ−2d/(d+2)}) query com-
plexity results of Vavasis [37]—for d ≥ 7, our results improve, up to polylogarithmic factors, upon
the previous state-of-the-art dimension-dependent bound of O(

√
dL2∆ϵ

−3/2) for this problem [18]
for any ϵ ≤ min{L2

1L
−1
2 ,∆2/3L

1/3
2 }. In addition, we improve upon the O(L

1/2
1 L

1/4
2 ∆ϵ−7/4)

bounds of Li and Lin [29] for ϵ ≤ min{O(L
3/2
1 L−1

2 d−4/3), L2
1L

−1
2 ,∆2/3L

1/3
2 }. This expands

the range of ϵ for which the rate of [29] can be improved over [18], which offers improve-
ment when ϵ ≤ O(L2

1L
−1
2 d−2); see Table 1 for details. Work by Jiang et al. [25] also provides

dimension-dependent results of O(d1/4L
1/4
1 L

3/8
2 ∆ϵ−13/8) gradient queries under the additional

assumption that ϵ ≤ ∆L2/L1. However, as shown in Appendix B, for any d ≥ 1 and ϵ ≤
min{L2

1L
−1
2 ,∆2/3L

1/3
2 ,∆L2L

−1
1 }, this is always at least the minimum ofO(

√
dL2∆ϵ

−3/2+d) [18]
and O(L

1/2
1 L

1/4
2 ∆ϵ−7/4) [29].

It remains unclear whether our bound, particularly the d1/3 dependence, is asymptotically opti-
mal. Although there are relevant lower bounds in the dimension-independent setting [10, 11], the
dimension-dependent complexity of critical point computation is still not well understood: Existing
dimension-dependent lower bounds apply only to low-dimensional settings and do not have Hessian
Lipschitzness assumptions, see e.g., [15, 24]. The development of tight lower bounds in our regime
as an independent and interesting open problem.

While not the focus of the paper, we briefly comment on the computational complexity of our
algorithm. Each iteration involves an approximate eigendecomposition step, which may seem more
involved than the computation in the classical Newton method, where a dense linear system is solved
in each iteration. Nevertheless, in the worst case, it can be implemented in O(dω) time, where ω

5We use Õ(·) to hide polylogarithmic factors in nH , max{L2, L
−1
2 }, max{∆,∆−1}, max{ϵ, ϵ−1}, and δ.

3

Algorithm # Gradient Queries Assumption
Vavasis [37] O(2d + ϵ−2d/(d+2)) L1

Li & Lin [29] O(L
1/2
1 L

1/4
2 ∆ϵ−7/4) L1, L2

Nesterov & Polyak [34] O(d
√
L2∆ϵ

−3/2) L2

Doikov et al. [18] O(
√
dL2∆ϵ

−3/2 + d) L2

Jiang et al. [25] O(d1/4L
1/4
1 L

3/8
2 ∆ϵ−13/8)6 L1, L2

Corollary 1 (Ours) Õ(d1/3L
1/2
2 ∆ϵ−3/2 + d) L2

Table 1: Comparison with previous results in terms of the number of gradient queries needed to reach an
ϵ-critical point, i.e., ∥∇f(x)∥ ≤ ϵ, under L1-Lipschitz gradient, L2-Lipschitz Hessian assumptions, for
0 < ϵ ≤ min{L2

1L
−1
2 ,∆2/3L

1/3
2 }. This is a standard range of ϵ to consider as noted in [8]. If ϵ > L2

1L
−1
2 ,

gradient descent achieves better query complexity. If ϵ > ∆2/3L
1/3
2 , our algorithm halts after at most a single

iteration and makes at most Õ(d1/3) queries. Up to polylogarithmic factors, our results improve upon [29] when
ϵ ≤ min{O(L

3/2
1 L−1

2 d−4/3), L2
1L

−1
2 ,∆2/3L

1/3
2 } , and upon [18] for any ϵ ≤ min{L2

1L
−1
2 ,∆2/3L

1/3
2 }.

denotes the matrix multiplication exponent [17]. This is the same as the per-iteration cost of the
Newton method.

Additional Related Work. The efficiency of critical point computation has been explored in a
wide variety of non-convex optimization contexts and settings, some of which we now highlight.
Although this work is concerned with exact gradient information, there has also been significant
effort in understanding optimal complexities when instead given access to stochastic oracles [4,
2, 3, 5, 6, 20, 22, 40]. In addition, other works have considered methods based on alternative
structural assumptions, such as a type of graded non-convexity [19], a particular spectral decay of the
Hessian [30], or, in the case of non-smooth non-convex objectives, relaxed notions of approximate
critical points [16, 28, 36, 39]. There is also a broader literature related to general Taylor descent
algorithms [7, 10], including works that focus on efficient and adaptive methods [13, 14, 34].

2 Our Algorithms

Our approach is inspired by the advances in obtaining Õ(L
1/2
1 L

1/4
2 ∆ϵ−7/4) rates over the last few

years [1, 9, 29]. In particular, our algorithm builds on the work of [29], which proves that one can
apply accelerated gradient descent with restarts to obtain improved rates. Our algorithm uses a
similar method, but works with a norm induced by computations of the approximate Hessian H .
In particular, we work in the norm induced by ϕ(H) where ϕ is a carefully chosen function which
returns a symmetric matrix. We show that by applying their method in this carefully designed norm
and recomputing the Hessian intermittently, we obtain our result.

First, in Section 2.1 we present a variant of accelerated gradient descent (Algorithm 1). This is
similar to the algorithms of [29] without restarts, but in the norm induced by Ĥ := ϕ(H) (Eq. 2). We
prove that with a single Hessian computation and a bounded number of gradient computations, the
algorithm either finds a critical point or significantly reduces the function value (Theorem 2).

Second, to make use of this result, we either perform negative curvature descent whenever the
approximate Hessian H has a sufficiently negative eigenvalue, or apply a restart strategy similar
to [29]. (Algorithm 2). Our algorithm additionally keeps track of the movement of the iterates and
when the movement is too large, recomputes the approximate Hessian H and the corresponding Ĥ .
In Section 2.2 we analyze Algorithm 2 which essentially obtains our main result up to logarithmic
factors (Theorem 3).

Unfortunately, the logarithmic factors for Algorithm 2 depend on L1. Interestingly, we show that there
is a fairly generic procedure that allows us to remove this dependence with at most one additional
Hessian computation. In Section 2.3, we prove a general reduction that given an algorithm that
finds critical points for a function with L1-Lipschitz gradient and L2-Lipschitz Hessian, there is an

6This result holds under the additional assumption that ϵ = O(∆L2/L1). See Appendix B for a detailed
comparison between this work and [18, 29].

4

algorithm that uses one additional Hessian computation and finds a critical point for any function
with only an L2-Lipschitz Hessian (Theorem 4). Finally, with all of these tools in hand, we prove our
main result, Theorem 1. Several proofs are deferred to the appendix.

2.1 Critical or Progress using Approximate Hessians

In this section, we describe the core subroutine of our critical point computation algorithm,
Critical-or-Progress, which is a version of accelerated gradient descent (Algorithm 1). This
procedure either finds an ϵ-critical point or decreases the function value by at least Ω̃(ϵ3/2/L1/2

2). Sup-
pose that we are given Hx(0) , a δ-approximate Hessian at x(0), such that ∥Hx(0) −∇2f(x(0))∥ ≤ δ,
and additionally −2δI ⪯ Hx(0) ⪯ L1I . Let the spectral decomposition of Hx(0) be

Hx(0) =

d∑
j=1

λjhjh
⊤
j ,

where {h1, . . . , hd} is an orthonormal basis. Define

Ĥ := ϕ(λj)hjh
⊤
j , (2)

where

ϕ(λ) := (32δ + |λ|) · ⌈log2(L1/δ)⌉
⌈log2(max{|λ|, 2δ}/δ)⌉

. (3)

We consider an algorithm that performs AGD in the norm induced by Ĥ , as shown in Algorithm 1.
The parameters used in Algorithm 1 are chosen as follows.

pmax = max{⌈log(L1/δ)⌉, 16}, ϵ̃ =
ϵ

p8max

, η =
1

4
,

B =
1

3

√
ϵ̃

L2
, θ =

1

K
, K =

√
δ

(ϵ̃L2)1/4

(4)

Algorithm 1: Critical-or-Progress
1 Input: initial iterate x(0), a δ-approximate Hessian Hx(0) , target accuracy ϵ, gradient

Lipschitzness L1, Hessian Lipschitzness L2;
2 Initialize x(−1) ← x(0);
3 Set Ĥ according to (2), and set η,B, θ,K according to (4);
4 for k = 0, . . . ,K do
5 y(k) ← x(k) + (1− θ1)(x(k) − x(k−1));
6 x(k+1) ← y(k) − η Ĥ−1∇f(y(k));
7 if k

∑k−1
κ=0

∥∥Ĥ1/2
(
x(κ+1) − x(κ)

)∥∥2 ≥ 12δpmaxB
2 then Output xout ← x(k) ;

8 K0 ← argmin⌊ 3K
4 ⌋≤k≤K−1

∥∥Ĥ1/2
(
x(k+1) − x(k)

)∥∥;

9 Output xout ← 1
K0+1−⌊K/2⌋

∑K0

k=⌊K/2⌋ y
(k)

The main result of this section is the following Theorem 2, which shows that Algorithm 1, using
a single query to a δ-approximate Hessian oracle and a bounded number of gradient queries for f ,
either finds an ϵ-critical point or decreases the function value by at least Ω̃(ϵ3/2/L1/2

2).

Theorem 2. Let δ ≤ L1, ϵ ≤ δ2/L2, and −δI ⪯ Hx(0) ⪯ 2L1I . Using the parameters in (4),
Algorithm 1 makes 1 query to a δ-approximate Hessian oracle and at most K queries to a gradient
oracle for f and outputs xout ∈ Rd with ∥xout − x(0)∥ ≤ 7B such that either xout is ϵ-critical for f
or

f(xout)− f(x(0)) ≤ −L−1/2
2 ϵ̃3/2 = −L−1/2

2 p−12
maxϵ

3/2 .

5

For any x, y ∈ Rd, define the variables x̂ := Ĥ1/2x, ŷ := Ĥ1/2y, and the function in the norm
induced by Ĥ ,

f̂(x̂) := f(Ĥ−1/2x̂), (5)

which satisfies

∇f̂(x̂) = Ĥ−1/2 · ∇f(Ĥ−1/2x̂). (6)

In this norm induced by Ĥ , the updates in Line 5 and Line 6 of Algorithm 1 become

ŷ(k) ← x̂(k) + (1− θ)(x̂(k) − x̂(k−1)),

x̂(k+1) ← ŷ(k) − η∇f̂(ŷ(k)),
(7)

which are similar to the standard accelerated gradient descent updates.

The proof of Theorem 2 proceeds by analyzing whether the “if condition” in Line 7 is triggered. In
the case where the iterates move relatively far in K iterations and the “if condition” is triggered,
using a similar proof strategy as [29], we demonstrate that the function value must have decreased
by at least Ω̃(L−1/2

2 ϵ3/2). On the other hand, in the case where the iterates stay relatively close
to x(0) and the “if condition” is not triggered, we show that averaging over several iterates yields
a point with a small gradient. This part of the analysis is more intricate and relies sensitively on
the choice of the matrix Ĥ . We first establish that ∇f̂(x̂out), the gradient of the output measured
in the norm induced by Ĥ , is small. However, this does not immediately imply that ∇f(xout) is
small. To bridge this gap, we leverage the specific structure of Ĥ defined in (2), where spectral
gaps are intentionally introduced through the use of a piecewise function defined in its construction.
Using results from matrix perturbation theory, we show that this construction guarantees that the
eigenvectors of ∇2f̂(x̂(0)) with large eigenvalues is nearly identical to that of Ĥ and ∇2f(x(0)).
Consequently, we can bound the component of ∇f(xout) in the strongly convex subspace using
the corresponding component of∇f̂(x̂out), and analyze the component in the non-strongly convex
subspace similarly.

2.2 Restarted Approximate Hessian AGD

In this section, we present our main algorithm, Algorithm 2. In each iteration, Algorithm 2 maintains
a Hessian estimate of∇2f(x(t)) with bounded error. If the estimate has a negative eigenvalue smaller
than −3δ̃, we identify a direction of negative curvature and update along it. Otherwise, we invoke
Critical-or-Progress (Algorithm 1) and set its output as the next iterate. We show that if x(t+1)

is not an ϵ-critical point, the function value decreases efficiently. As a result, the algorithm finds an
ϵ-critical point in a bounded number of iterations.

The Hessian estimate in Algorithm 2 is maintained via lazy updates. It initializes with x(0) as the
reference point x̄ and sets the Hessian estimate to Hx(0) . Whenever the current iterate x(t) moves
more than a threshold R away from x̄, we update the reference point x̄ ← x(t) and the Hessian
estimate to Hx(t) . Since f has an L2-Lipschitz Hessian, the error of the Hessian estimate is bounded
by max{2L1, δ + L2R} in each iteration.

The parameters in Algorithm 2 are chosen as follows.

R← 3∆

nHϵ
log8

(
L1

δ + 3L2∆/(nHϵ)
+ 16

)
,

δ̃ ← min{δ + L2R, 2L1},
p̃← max{⌈log(L1/δ̃)⌉, 16}.

(8)

The following theorem shows that Algorithm 2 outputs an ϵ-critical point using a bounded number of
queries to a δ-approximate Hessian oracle and a gradient oracle.

Theorem 3. Let f : Rd 7→ R have L1-Lipschitz gradients and L2-Lipschitz Hessian. For any
x(0) ∈ Rd with ∆-bounded sub-optimality with respect to f , positive integer nH , and 0 < ϵ ≤

6

Algorithm 2: Restarted-Approx-Hessian-AGD
1 Input: initial iterate x(0), accuracy of the approximate Hessian oracle δ, target accuracy ϵ,

gradient Lipschitzness L1, Hessian Lipschitzness L2;
2 Initialize x̄← x(0), H ← Hx̄;
3 for t = 0, 1, 2, . . . do
4 if ∥∇f(x(t))∥ ≤ ϵ then Output x(t) ;
5 if ∥x(t) − x̄∥ ≥ R then x̄← x(t) and H ← Hx̄ ;
6 if H ≺ −3δ̃I then
7 Choose a unit vector v ∈ Rd such that v⊤Hv ≤ −2δ̃ and ⟨v,∇f(x(t))⟩ ≤ 0;
8 x(t+1) ← x(t) +Rv

9 else x(t+1) ←Critical-or-Progress
(
x(t), H, 4δ̃, ϵ, L1, L2

)
;

min{L2
1L

−1
2 ,∆2/3L

1/3
2 }, Algorithm 2 outputs an ϵ-critical point with at most nH queries to a

δ-approximate Hessian oracle and at most

2∆L
1/4
2 c

1/2
δ

ϵ7/4
· log18

(
L1

cδ
+ 16

)
queries to a gradient oracle for f , where

cδ := min

{
L1, δ +

∆L2

nHϵ

}
.

The following describes the change in function value in every iteration of Algorithm 2 and is useful
for proving Theorem 3.
Lemma 1. Suppose ϵ ≤ L2

1/L2. In each iteration t of Algorithm 2 before it terminates, we have

f(x(t+1))− f(x(t)) ≤ −p̃−12
√
ϵ3/L2

if x(t+1) is not ϵ-critical for f , where we denote p̃ = max{⌈log(L1/δ̃)⌉, 16}.

Proof of Theorem 3. By Lemma 1, before Algorithm 2 terminates, in each iteration the function
value decreases by at least p̃−12

√
ϵ3/L2. Hence, Algorithm 2 terminates in at most p̃12∆

√
L2/ϵ3

iterations. From Theorem 2, the number of gradient queries in each iteration is at most

K =
p̃2
√
δ̃

(L2ϵ)1/4
.

Therefore, the total number of gradient queries is at most

p̃12∆

√
L2

ϵ3
· p̃2

√
δ̃

(L2ϵ)1/4
=

2p̃18∆L
1/4
2

ϵ7/4

√
min

{
L1, δ +

∆L2

nHϵ

}
=

2∆L
1/4
2

ϵ7/4

√
min

{
L1, δ +

∆L2

nHϵ

}
· log18

(
L1

δ̃
+ 16

)
≤ 2∆L

1/4
2

ϵ7/4

√
min

{
L1, δ +

∆L2

nHϵ

}
· log18

(
L1

cδ
+ 16

)
given that cδ < δ̃. Furthermore, from Theorem 2 and (4), in every iteration t we have∥∥x(t+1) − x(t)

∥∥ ≤ 7

3p̃4

√
ϵ

L2
.

Therefore, the number of Hessian computations is at most⌈
p̃12∆

√
L2

ϵ3
· 7

3p̃4

√
ϵ

L2
· 1
R

⌉
,

which is at most nH when using the values of the parameters in (8).

7

2.3 Removing the L1-Lipschitz Gradient Assumption

In this section, we give an algorithm that computes an ϵ-critical point for functions with L2-Lipschitz
Hessians but no guarantees on the Lipschitzness of the gradient. In order to do so, we first provide a
general reduction in Algorithm 3. Given an algorithm Alg for computing an approximate critical
point for a function with L1-Lipschitz gradient and L2-Lipschitz Hessian, Algorithm 3 can compute
an approximate critical point for any function with only L2-Lipschitz Hessian while maintaining the
number of queries to gradient oracle and using at most one more query to the Hessian oracle, if the
output of Alg is not very far away from the initial iterate and has bounded suboptimality.

For any symmetric M ∈ Rd×d with spectral decomposition M =
∑

j∈[d] λjvjv
⊤
j , we denote

M† :=
∑

j∈[d] I{λj ̸= 0} · λ−1
j vjv

⊤
j to be its Moore–Penrose pseudoinverse, where I{·} is the

indicator function.

Algorithm 3: Reduction-To-Unbounded-Hessian
1 Input: initial iterate x(0), target accuracy ϵ, Hessian Lipschitzness L2;
2 Choose an eigenvalue threshold ℓ;
3 Initialize H ← Hx(0) ;
4 xout ← Alg(f≤ℓ, ℓ, L2, δ,∆, ϵ);
5 Output y ← xout − (Π>ℓHΠ>ℓ)

†∇f(xout)

Given a δ-approximate Hessian Hx(0) with spectral decomposition Hx(0) =
∑d

j=1 λjhjh
⊤
j , where

{h1, . . . , hd} is an orthonormal basis, we partition the indices into two sets based on the eigenvalue
threshold ℓ picked in Line 2.

S≤ℓ := {i : |λi| ≤ ℓ} , S>ℓ := {i : |λi| > ℓ} , (9)

and define corresponding projection matrices

Π≤ℓ :=
∑

i∈S>ℓ

hih
⊤
i , Π>ℓ :=

∑
i∈S≤ℓ

hih
⊤
i . (10)

Moreover, we define the restricted function

f≤ℓ := f
(
x(0) +Π≤ℓ(x− x(0))

)
. (11)

Algorithm 3 begins by invoking the subroutine Alg to find an ϵ/2-stationary point xout of the
restricted function f≤ℓ. It then performs a Newton step in the subspace spanned by hj : j ∈ S>ℓ:

y ← xout − (Π>ℓHx(0)Π>ℓ)
†∇f(xout)

using Hx(0) as the approximation of ∇2f(xout). Since ∥xout − x(0)∥ ≤ Rout, we show that Hx(0)

remains a sufficiently accurate estimate. Moreover, ℓ is chosen large enough so that the size of
this Newton step is small. Otherwise it would incur a function value decrease larger than ∆out,
contradicting to the suboptimality condition of xout. As a result, ∇f(y) is close to ∇T 2

xout(y) since
f is L2-Hessian Lipschitz, and the latter is at most ϵ/2. Formally, we prove the following:

Theorem 4. Let Alg(f≤L1
, L1, L2, δ,∆, ϵ) be a procedure that, for any function f≤L1

: Rd → R
with L1-Lipschitz gradient, L2-Lipschitz Hessian, and ∆-bounded suboptimality, uses

• nH queries to a δ-approximate Hessian oracle for f≤L1 , and,

• ng(L1, L2, δ,∆, ϵ) queries to a gradient oracle for f≤L1 ,

and returns an ϵ/2-critical point xout satisfying ∥xout − x(0)∥ ≤ Rout and f(xout)− infz f(z) ≤
∆out. Then, for any f with L2-Lipschitz Hessian and ∆-bounded suboptimality, any 0 < ϵ ≤
min{L2

1L
−1
2 ,∆2/3L

1/3
2 }, and any ℓ that satisfies

ℓ ≥ max

{
800∆

ϵ2
(L2Rout + δ)2,

48L2∆out

ϵ
, 24∆

1/3
outL

2/3
2 , 2δ

}
. (12)

Algorithm 3 returns an ϵ-critical point using

8

• nH + 1 queries to a δ-approximate Hessian oracle for f , and,

• ng(ℓ, L2, δ,∆, ϵ) queries to a gradient oracle for f .

The proof of Theorem 4 is in Appendix G. Corollary 2 is obtained by running Algorithm 3 where we
use Algorithm 2 as the subroutine Alg. The proof of Corollary 2 is in Appendix F.

Corollary 2. Let f : Rd 7→ R L2-Lipschitz Hessian. Given any x(0) ∈ Rd with ∆-bounded sub-
optimality with respect to f , any positive integer nH ≥ 1, and 0 < ϵ ≤ ∆2/3L

1/3
2 , Algorithm 3

using Algorithm 2 as the subroutine Alg outputs an ϵ-critical point of f with at most nH queries to a
δ-approximate Hessian oracle and

O

(
∆L

1/4
2

ϵ7/4

√
δ +

∆L2

nHϵ
· poly log

(
1

cδ

(
L2
2∆

3

ϵ4
+

∆δ2

ϵ2
+ δ

)))
queries to a gradient oracle for f .

2.4 Proof of Theorem 1

Proof. We consider the following algorithm. When

L1 ≤
L2
2∆

3

ϵ4
+

∆δ

ϵ2
+ δ,

we run Algorithm 2, which outputs an ϵ-critical point with at most nH queries to a δ-approximate
Hessian oracle and at most

2∆L
1/4
2 c

1/2
δ

ϵ7/4
· log18

(
L1

cδ
+ 16

)
= O

(
∆L

1/4
2 c

1/2
δ

ϵ7/4
· poly log

(
cℓ
cδ

))
.

Otherwise, we run Algorithm 3 using Algorithm 2 as the subroutine Alg, which outputs an ϵ-critical
point of f with at most nH queries to a δ-approximate Hessian oracle and

O

(
∆L

1/4
2

ϵ7/4

√
δ +

∆L2

nHϵ
· poly log

(
cℓ
cδ

))
= O

(
∆L

1/4
2 c

1/2
δ

ϵ7/4
· poly log

(
cℓ
cδ

))
queries to a gradient oracle for f , where the last equality follows from the fact that

L1 >
L2
2∆

3

ϵ4
+

∆δ

ϵ2
+ δ ≥ δ + ∆L2

nHϵ

and thus cδ = δ + ∆L2

nHϵ . We conclude by noticing that the number of Hessian queries in both cases is
nH , while the number of gradient queries in both cases is

O

(
∆L

1/4
2 c

1/2
δ

ϵ7/4
· poly log

(
cℓ
cδ

))
.

3 Conclusion

In this paper we provided new algorithms for computing critical points of twice differentiable
functions using gradient and δ-approximate Hessian queries. We provided a general result which
offered new trade-offs between the number of queries made to these oracles to compute an ϵ-critical
point of functions with L1-Lipschitz gradients and L2-Lipschitz Hessians given an intial point of
bounded suboptimality. As a consequence of this result, for sufficiently small ϵ, we recovered known
bounds on the number gradient queries needed to compute critical points and improved upon the
prior state-of-the-art bounds in the case where the function is either of bounded dimension or when a
single Hessian query is available.

Though our work provides new algorithms and tools for critical point computation, there are several
limitations to the result. First, this work is primarily theoretical, no practical implementation or

9

experiments are provided, and in certain cases our bounds incur multiple logarithmic factors. Second,
many functions in practice may be non-differentiable or of a large enough size that computing the
Hessian is prohibitively expensive, limiting the direct applicability of the results. Third, though there
are interesting relevant lower bounds [10, 11], it is unknown whether our query complexities are
asymptotically optimal. Each of these limitations suggests natural open problems and directions for
future work, e.g., finding practical applications of our techniques and seeking improved upper and
lower bounds for the problems we consider. However, we hope this paper provides valuable tools for
this potential future work.

Acknowledgments

Thank you to anonymous reviewers for their feedback. Deeksha Adil is supported by Dr. Max Rössler,
the Walter Haefner Foundation and the ETH Zürich Foundation. Aaron Sidford was supported in part
by NSF Grant CCF-1955039. Chenyi Zhang was supported in part by the Shoucheng Zhang graduate
fellowship.

References
[1] Naman Agarwal, Zeyuan Allen-Zhu, Brian Bullins, Elad Hazan, and Tengyu Ma. Finding

approximate local minima faster than gradient descent. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, pages 1195–1199, 2017.

[2] Zeyuan Allen-Zhu. How to make the gradients small stochastically: Even faster convex and
nonconvex SGD. Advances in Neural Information Processing Systems, 31, 2018.

[3] Zeyuan Allen-Zhu. Natasha 2: Faster non-convex optimization than SGD. In Advances in
Neural Information Processing Systems, pages 2675–2686, 2018.

[4] Zeyuan Allen-Zhu and Yuanzhi Li. Neon2: Finding local minima via first-order oracles. In
Advances in Neural Information Processing Systems, pages 3716–3726, 2018.

[5] Yossi Arjevani, Yair Carmon, John C. Duchi, Dylan J. Foster, Ayush Sekhari, and Karthik Srid-
haran. Second-order information in non-convex stochastic optimization: Power and limitations.
In Conference on Learning Theory, pages 242–299. PMLR, 2020.

[6] Yossi Arjevani, Yair Carmon, John C. Duchi, Dylan J. Foster, Nathan Srebro, and Blake
Woodworth. Lower bounds for non-convex stochastic optimization. Mathematical Programming,
199(1):165–214, 2023.

[7] Ernesto G. Birgin, J. L. Gardenghi, José Mario Martínez, Sandra Augusta Santos, and Ph. L.
Toint. Worst-case evaluation complexity for unconstrained nonlinear optimization using high-
order regularized models. Mathematical Programming, 163(1):359–368, 2017.

[8] Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. “Convex until proven guilty”:
Dimension-free acceleration of gradient descent on non-convex functions. In International
conference on machine learning, pages 654–663. PMLR, 2017.

[9] Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. Accelerated methods for
nonconvex optimization. SIAM Journal on Optimization, 28(2):1751–1772, 2018.

[10] Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding
stationary points I. Mathematical Programming, 184(1):71–120, 2020.

[11] Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding
stationary points II: first-order methods. Mathematical Programming, 185(1):315–355, 2021.

[12] Coralia Cartis, Nicholas I. M. Gould, and Ph. L. Toint. On the complexity of steepest de-
scent, Newton’s and regularized Newton’s methods for nonconvex unconstrained optimization
problems. SIAM Journal on Optimization, 20(6):2833–2852, 2010.

[13] Coralia Cartis, Nicholas I. M. Gould, and Philippe L. Toint. Adaptive cubic regularisation
methods for unconstrained optimization. part I: motivation, convergence and numerical results.
Mathematical Programming, 127(2):245–295, 2011.

10

[14] Coralia Cartis, Nicholas I. M. Gould, and Philippe L. Toint. Adaptive cubic regularisation
methods for unconstrained optimization. part II: worst-case function-and derivative-evaluation
complexity. Mathematical programming, 130(2):295–319, 2011.

[15] Sinho Chewi, Sébastien Bubeck, and Adil Salim. On the complexity of finding stationary points
of smooth functions in one dimension. In International Conference on Algorithmic Learning
Theory, pages 358–374. PMLR, 2023.

[16] Damek Davis, Dmitriy Drusvyatskiy, Yin Tat Lee, Swati Padmanabhan, and Guanghao Ye. A
gradient sampling method with complexity guarantees for lipschitz functions in high and low
dimensions. Advances in Neural Information Processing Systems, 35:6692–6703, 2022.

[17] James Demmel, Ioana Dumitriu, and Olga Holtz. Fast linear algebra is stable. Numerische
Mathematik, 108(1):59–91, 2007.

[18] Nikita Doikov, El Mahdi Chayti, and Martin Jaggi. Second-order optimization with lazy
Hessians. In International Conference on Machine Learning, pages 8138–8161. PMLR, 2023.

[19] Nikita Doikov, Sebastian U. Stich, and Martin Jaggi. Spectral preconditioning for gradient
methods on graded non-convex functions. In Proceedings of the 41st International Conference
on Machine Learning, pages 11227–11252, 2024.

[20] Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. SPIDER: Near-optimal non-
convex optimization via stochastic path-integrated differential estimator. Advances in Neural
Information Processing Systems, 31, 2018.

[21] Rong Ge, Jason D. Lee, and Tengyu Ma. Matrix completion has no spurious local minimum. In
Advances in Neural Information Processing Systems, pages 2981–2989, 2016.

[22] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex
stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

[23] Geovani Nunes Grapiglia, Max L. N. Gonçalves, and G. N. Silva. A cubic regularization of
Newton’s method with finite difference Hessian approximations. Numerical Algorithms, pages
1–24, 2022.

[24] Alexandros Hollender and Emmanouil Zampetakis. The computational complexity of finding
stationary points in non-convex optimization. In The Thirty Sixth Annual Conference on
Learning Theory, pages 5571–5572. PMLR, 2023.

[25] Ruichen Jiang, Aryan Mokhtari, and Francisco Patitucci. Improved complexity for smooth
nonconvex optimization: A two-level online learning approach with quasi-Newton methods.
arXiv preprint arXiv:2412.02175, 2025.

[26] Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, and Michael I. Jordan. How to escape
saddle points efficiently. In Proceedings of the 34th International Conference on Machine
Learning, volume 70, pages 1724–1732, 2017.

[27] Chi Jin, Praneeth Netrapalli, and Michael I. Jordan. Accelerated gradient descent escapes saddle
points faster than gradient descent. In Conference on Learning Theory, pages 1042–1085, 2018.

[28] Michael Jordan, Guy Kornowski, Tianyi Lin, Ohad Shamir, and Manolis Zampetakis. Determin-
istic nonsmooth nonconvex optimization. In The Thirty Sixth Annual Conference on Learning
Theory, pages 4570–4597. PMLR, 2023.

[29] Huan Li and Zhouchen Lin. Restarted nonconvex accelerated gradient descent: No more
polylogarithmic factor in the in the O(ϵ−7/4) complexity. Journal of Machine Learning
Research, 24(157):1–37, 2023.

[30] Yuanshi Liu, Hanzhen Zhao, Yang Xu, Pengyun Yue, and Cong Fang. Accelerated gradient
algorithms with adaptive subspace search for instance-faster optimization. arXiv preprint
arXiv:2312.03218, 2023.

11

[31] Po-Ling Loh and Martin J. Wainwright. Regularized M-estimators with nonconvexity: Statistical
and algorithmic theory for local optima. The Journal of Machine Learning Research, 16(1):559–
616, 2015.

[32] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2003.

[33] Yurii Nesterov. How to make the gradients small. Optima. Mathematical Optimization Society
Newsletter, (88):10–11, 2012.

[34] Yurii Nesterov and Boris T. Polyak. Cubic regularization of Newton method and its global
performance. Mathematical Programming, 108(1):177–205, 2006.

[35] Gilbert W. Stewart and Ji-guang Sun. Matrix perturbation theory. 1990.

[36] Lai Tian, Kaiwen Zhou, and Anthony Man-Cho So. On the finite-time complexity and practical
computation of approximate stationarity concepts of Lipschitz functions. In International
Conference on Machine Learning, pages 21360–21379. PMLR, 2022.

[37] Stephen A. Vavasis. Black-box complexity of local minimization. SIAM Journal on Optimiza-
tion, 3(1):60–80, 1993.

[38] Yi Yu, Tengyao Wang, and Richard J. Samworth. A useful variant of the Davis–Kahan theorem
for statisticians. Biometrika, 102(2):315–323, 2015.

[39] Jingzhao Zhang, Hongzhou Lin, Stefanie Jegelka, Suvrit Sra, and Ali Jadbabaie. Complexity of
finding stationary points of nonconvex nonsmooth functions. In International Conference on
Machine Learning, pages 11173–11182. PMLR, 2020.

[40] Dongruo Zhou, Pan Xu, and Quanquan Gu. Stochastic nested variance reduction for nonconvex
optimization. Journal of Machine Learning Research, 21(103):1–63, 2020.

12

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Refer to the Introduction section.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Refer to the Conclusions section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

13

Justification: Refer to the Theorem statements and the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: There are no experiments in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

14

Answer: [NA]
Justification: There are no experiments in the paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: There are no experiments in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: There are no experiments in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: There are no experiments in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper builds on theoretical foundations and has no direct societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

16

https://neurips.cc/public/EthicsGuidelines

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

17

paperswithcode.com/datasets

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

18

Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

A Overview and Notation of the Appendix

The appendix is organized as follows. Appendix B provides a comparison between [25] and prior
works. Appendix C presents key properties of the matrix Ĥ defined in (2). Appendix D collects
useful results from matrix perturbation theory, which are used to analyze the spectral properties
of the matrices appearing in Algorithm 1. Then, we give the analysis of Algorithm 1 and prove
Theorem 2 in Appendix E. The analyses of Algorithm 2 and Algorithm 3 are given in Appendix F
and Appendix G, respectively.

Notation. For any symmetric matrixM ∈ Rd×d with spectral decompositionM =
∑

j∈[d] λjvjv
⊤
j ,

and any subset S ∈ R, we denote

ΠS(M) :=
∑
j∈[d]

I{λj ∈ S}vjv⊤j

to be the projector onto the eigenspace of M with eigenvalues in S. For any matrix M ∈ Rd1×d2 ,
we use λmin(M) to denote its smallest eigenvalue. For any two invertible symmetric matrices
M,N ∈ Rd×d that commute, i.e., MN = NM , denote M

N
:= MN−1 = N−1M . Moreover, we

define
pmax := max{⌈log2(L1/δ)⌉, 16}, pmin := 16.

as in (4), where L1 is the gradient Lipschitzness of f . For any positive integer p ∈ N+ we define

lp :=
1

pmax
· p+ 1

1 + 2−(p−5)
, rp :=

1

pmax
· p+ 1

1 + 2−(p−4)
. (13)

and

ξp :=

√
p

2p/2pmax
, lp := lp − ξp, ∀p ∈ N+. (14)

B Comparison Between [25] and Prior Works

In this section, we provide a comparison between [25] and prior works [18] and [29]. In particular,
[25] achieves a query complexity of O(d1/4L

1/4
1 L

3/8
2 ∆ϵ−13/8), with an implicit requirement that

ϵ ≤ O(∆L2/L1). This condition arises from the fact that, in the first displayed equation of [25,
Section C.3], the third term in the bracket needs to dominate the first two. Substituting the choices
of D and M specified in [25, Theorem 4.1] yields the corresponding inequality. In the following
lemma, we show that within the parameter regime ϵ ≤ min{L2

1/L2,∆
2/3L

1/3
2 ,∆L2/L1}, the query

complexity of [25] is asymptotically at least the minimum of [18] and [29].
Lemma 2. For d, L1, L2,∆, ϵ > 0 satisfying

ϵ ≤ min
{
L2
1/L2,∆

2/3L
1/3
2 ,∆L2/L1

}
,

we have

min{
√
dL2∆ϵ

−3/2 + d, L
1/2
1 L

1/4
2 ∆ϵ−7/4} = O(d1/4L

1/4
1 L

3/8
2 ∆ϵ−13/8).

Proof. Define

A :=
√
dL2∆ϵ

−3/2, B := L
1/2
1 L

1/4
2 ∆ϵ−7/4, G := d1/4L

1/4
1 L

3/8
2 ∆ϵ−13/8

and let ϕ = B/A and u = d/A. Since G =
√
AB,

min{A+ d,B}
G

= min

{
1 + u√
ϕ
,
√
ϕ

}
.

where

ϕ =
L
1/2
1√
dL

1/4
2

ϵ−1/4, u =

√
d√

L2∆
ϵ3/2 =

L
1/2
1

L
3/4
2 ∆

ϵ5/4

ϕ
.

20

Using the condition that ϵ ≤ min
{
L2
1/L2,∆

2/3L
1/3
2 ,∆L2/L1

}
, we obtain

u ≤ 1

ϕ
min{C1, C2, C3}, C1 =

L3
1

L2
2∆

, C2 = L
1/2
1 ∆−1/6L

−1/3
2 , C3 = ∆1/4L

1/2
2 L

−3/4
1 .

When L1 = ∆1/3L
2/3
2 , we have C1 = C2 = C3 = 1. Moreover, since C1 and C2 increase with L1

while C3 decreases,
min{C1, C2, C3} ≤ 1

for all L1, L2,∆, and thus u ≤ 1/ϕ. Hence,

min{A+ d,B}
G

≤ min
ϕ∈R

{
1 + 1/ϕ√

ϕ
,
√
ϕ

}
≤

√
1 +
√
5

2
,

which gives

min{
√
dL2∆ϵ

−3/2 + d, L
1/2
1 L

1/4
2 ∆ϵ−7/4} = O(d1/4L

1/4
1 L

3/8
2 ∆ϵ−13/8).

C Properties of Ĥ

In this section, we present several properties of the matrix Ĥ used in Algorithm 1. Let us recall
the setting of Section 2.1: We are given Hx(0) , a δ-approximate Hessian at x(0) that satisfies
∥Hx(0) −∇2f(x(0))∥ ≤ δ and −3δI ⪯ Hx(0) ⪯ L1I . Let the spectral decomposition be

Hx(0) =

d∑
j=1

λjhjh
⊤
j ,

where {h1, . . . , hd} is an orthonormal basis. Then, Ĥ is defined as

Ĥ := ϕ(λj)hjh
⊤
j ,

as in (2), where

ϕ(λ) := (32δ + |λ|) · ⌈log2(L1/δ)⌉
⌈log2(max{|λ|, 2δ}/δ)⌉

.

as in (3).

Lemma 3. For any positive integer p ∈ N+ and any λ such that 2pδ < |λ| ≤ 2p+1δ, we have

lp < |λ| · ϕ(λ)−1 ≤ rp .

Proof. Given that ϕ is symmetric with respect to 0, without loss of generality, we assume λ > 0.
Then, we have

λ

ϕ(λ)
=

1

1 + 32δλ−1
· ⌈log2(λ/δ)⌉

pmax
≤ 1

pmax
· p+ 1

1 + 2−(p−4)
= rp,

and

λ

ϕ(λ)
=

1

1 + 32δλ−1
· ⌈log2(λ/δ)⌉

pmax
>

1

pmax
· p+ 1

1 + 2−(p−5)
= lp.

Lemma 4. λϕ(λ)−1 is monotonically increasing for λ ∈ [−L1, L1].

21

Proof. Note that λ · ϕ(λ)−1 is a odd function. Therefore, it suffices to prove that

λ · ϕ(λ)−1 =
λ

(32δ + λ)
· ⌈log2(max{λ, 2δ}/δ)⌉

⌈log2(L1/δ)⌉
.

is increasing for λ ∈ [0, L1], where it suffices to check monotonicity of
λ · ⌈log2(max{λ, 2δ}/δ)⌉

32δ + λ
.

First observe that the function is strictly increasing for any λ ∈ [0, 2δ). For any positive integer p ≥ 0
and any λ ∈ [2pδ, 2p+1δ), we have

λ · ⌈log2(max{λ, 2δ}/δ)⌉
32δ + λ

=
λ · p

32δ + λ
.

where
d

dλ

(
λ · p

32δ + λ

)
= p · (32δ + λ)− λ

(32δ + λ)2
=

p · 32δ
(32δ + λ)2

> 0.

Thus, the function is strictly increasing on each interval [2pδ, 2p+1δ). Moreover, at each boundary
point λ = 2pδ, the function increases from 2pδ·(p−1)

32δ+2pδ to 2pδ·p
32δ+2pδ . We can thus conclude that λϕ−1(λ)

is monotonically increasing.

Lemma 5. The function ϕ defined in (3) satisfies

min
λ∈(−∞,+∞)

ϕ(λ) ≥ 12δpmax.

Proof. Since ϕ is symmetric with respect to 0, we only need to consider values of λ in [0,+∞). We
analyze the function in pieces. For λ ∈ [0, 2δ), we have

ϕ(λ) = (32δ + λ) · pmax

⌈log2(2δ/δ)⌉
= (32δ + λ) · pmax,

which is minimized at λ = 0, yielding
ϕ(0) = 32δ · pmax.

For λ ∈ [2kδ, 2k+1δ) with k ≥ 1, we have

ϕ(λ) = (32δ + λ) · pmax

⌈log2(λ/δ)⌉
= (32δ + λ) · pmax

k
,

which is minimized at λ = 2kδ, giving

ϕ(2kδ) =
32 + 2k

k
· δpmax.

Hence, we have

min
λ∈(−∞,+∞)

ϕ(λ) = min

{
32, min

k≥1

32 + 2k

k

}
· δpmax = 12δpmax.

Corollary 3. For any symmetric H ∈ Rd×d, the matrix Ĥ defined in (2) satisfies Ĥ ⪰ 12δpmax · I
and Ĥ−1 ⪯ (12δpmax)

−1I .

D Tools from Matrix Perturbation Theory and Extensions

In this section, we present several useful results from matrix perturbation theory that characterize
how the eigenspaces of symmetric matrices change under perturbations. Recall the setting from
Section 2.1, where we are given a δ-approximate Hessian Hx(0) at the point x(0), satisfying ∥Hx(0) −
∇2f(x(0))∥ ≤ δ and −3δI ⪯ Hx(0) ⪯ L1I . Throughout this section, we denote G := ∇2f(x(0)).
Our goal is to show that the spectra of Ĥ and Ĥ−1/2GĤ−1/2 can be partitioned into Θ(pmax)
contiguous subsets such that, for any pmin ≤ p ≤ pmax, the principal angles between the eigenspaces
spanned by the p-th spectral subsets of Ĥ and Ĥ−1/2GĤ−1/2 are small. We also derive several
additional properties of these eigenspaces, which are used in the analysis in Appendix E.

22

D.1 Definition of Projectors

This part includes the definition of a series of projectors that we use to analyze the spectrum of Ĥ
and Ĥ−1/2GĤ−1/2. Define

Π̂+
p := Π(lp,L1](Hx(0)) = Π(lp,∞)(Hx(0)), Π̂−

p := Π[−2δ,lp+1](Hx(0)), (15)
and

Π̂p := Π(lp,lp+1](Hx(0)). (16)
Similarly, we define

Π
+

p := Π(l̄p,∞)(Ĥ
−1/2GĤ−1/2), Π

−
p := Π(−∞,l̄p+1](Ĥ

−1/2GĤ−1/2), (17)
and

Πp := Π(lp,lp+1]
(Ĥ−1/2GĤ−1/2). (18)

Furthermore, we define

Πbase := Π
−
p−1. (19)

D.2 The Davis-Kahan Theorem

In this subsection, we present the celebrated Davis–Kahan theorem, and provide an equivalent
formulation that we use in our paper.
Definition 2 (Principal angles of subspaces). Let V, Ṽ ⊂ Rn be k-dimensional subspaces. The
principal angles θ1

(
V, Ṽ

)
, . . . θk(V, Ṽ) between V and Ṽ are defined recursively by

(vj , ṽj) := arg max
vj∈V,ṽj∈Ṽ

⟨vj , ṽj⟩, θj
(
V, Ṽ

)
:= arccos⟨vj , ṽj⟩,

subject to the constraint
∥vj∥ = ∥ṽj∥ = 1, ⟨vj , vi⟩ = 0, ⟨ṽj , ṽi⟩ = 0, ∀1 ≤ i < j.

Lemma 6 (Davis-Kahan Theorem, see e.g., Theorem 1 of [38]). LetM,M̃ ∈ Rd×d be two symmetric
matrices satisfying

∥∥M − M̃∥∥ ≤ ξ for some ξ > 0. For any a < b, we use S = {v1, . . . , vk} and
S̃ = {ṽ1, . . . , ṽk̃} to denote the set of normalized eigenvectors of M and M̃ associated with
eigenvalues contained in the interval [a, b] and [a− ξ, b+ ξ], respectively, and denote

V := span(S), Ṽ := span(S̃).
Then, if the remaining eigenvalues of M lie outside the interval [a− γ, b+ γ], we have k = k̃ and∥∥ sin (Θ(V, Ṽ))∥∥ ≤ ξ

γ
,

where
sinΘ

(
V, Ṽ

)
:= diag

(
sin θ1(V, Ṽ

)
, . . . , sin θk(V, Ṽ

))⊤
(20)

Lemma 7 (Theorem I.5.5 of [35]). Let V, Ṽ ⊂ Rn be k-dimensional subspaces and let Π, Π̃ be their
projectors. Then, we have ∥∥Π− Π̃

∥∥ =
∥∥ sinΘ(V, Ṽ)∥∥ = sin θ1

(
V, Ṽ

)
,

where sinΘ
(
V, Ṽ

)
is defined in (20).

Lemma 8 (Equivalent form of the Davis-Kahan Theorem). Let M,M̃ ∈ Rd×d be two symmetric
matrices satisfying

∥∥M − M̃∥∥ ≤ ξ for some ξ > 0. For any a < b and γ > ξ, if there are no
eigenvalues of M in intervals [a− γ, a) and (b, b+ γ], we have k = k̃ and∥∥Π[a,b](M)−Π[a−γ,b+γ](M̃)

∥∥ =
∥∥∥ k∑

j=1

vjv
⊤
j −

k∑
j=1

ṽj ṽ
⊤
j

∥∥∥ ≤ ξ

γ
.

Proof. The proof follows by combining Lemma 6 and Lemma 7.

Intuitively, Lemma 6 and Lemma 8 states that a small perturbation to a symmetric matrix leads to
only a small change in its eigenspaces, provided the corresponding eigenvalues are well separated
from the other eigenvalues.

23

D.3 Properties of Π̂+
p and Π

+

p

Proposition 1. For any positive integer p ≥ 5, we have∥∥Π̂+
p −Π

+

p

∥∥ ≤ 22−p/2√p.

Before proving Proposition 1, we first present the following two lemmas.
Lemma 9. For any positive integer p ≥ 5, denote

G̃ := Π̂+
p Hx(0)Π̂+

p + (I − Π̂+
p)G(I − Π̂+

p)

with Π̂+
p defined in (15). Then, we have∥∥Ĥ−1/2(G− G̃)Ĥ−1/2

∥∥ ≤ ξp,
where Ĥ is defined in (2).

Proof. Given that Hx(0) and Ĥ have the same set of eigenvectors, we have

Π̂+
p Ĥ(I − Π̂+

p) = (I − Π̂+
p)ĤΠ̂+

p = 0.

Then, G̃ can also be written as

G̃ = Hx(0) − (I − Π̂+
p)Hx(0)(I − Π̂+

p) + (I − Π̂+
p)G(I − Π̂+

p) = Hx(0) + (I − Π̂+
p)(G−Hx(0))(I − Π̂+

p),

which implies

G− G̃ = (G−Hx(0))− (I − Π̂+
p)(G−Hx(0))(I − Π̂+

p)

= Π̂+
p (G−Hx(0)) + (G−Hx(0))Π̂+

p − Π̂+
p (G−Hx(0))Π̂+

p .

Therefore,∥∥Ĥ−1/2(G− G̃)Ĥ−1/2
∥∥ ≤ ∥∥Ĥ−1/2Π̂+

p (G−Hx(0))Ĥ−1/2
∥∥+ ∥∥Ĥ−1/2(G−Hx(0))Π̂+

p Ĥ
−1/2

∥∥
+
∥∥Ĥ−1/2Π̂+

p (G−Hx(0))Π̂+
p Ĥ

−1/2
∥∥.

From the definitions of Ĥ and ϕ in equations (2) and (3), it follows that ϕ(λ) ≥ 12δ for all
λ ∈ [−L,L], yielding ∥∥Ĥ−1/2

∥∥ ≤√ 1

12δpmax
<

1

3

√
1

δpmax

and ∥∥Π̂+
p Ĥ

−1/2
∥∥ =

∥∥Ĥ−1/2Π̂+
p

∥∥ ≤√ p

2pδpmax
.

Combining these bounds gives∥∥Ĥ−1/2Π̂+
p (G−Hx(0))Ĥ−1/2

∥∥ =
∥∥Ĥ−1/2(G−Hx(0))Π̂+

p Ĥ
−1/2

∥∥ ≤ √
p

3× 2p/2pmax
,

and ∥∥Ĥ−1/2Π̂+
p (G−Hx(0))Π̂+

p Ĥ
−1/2

∥∥ ≤ √
p

2ppmax
.

Thus, we can conclude that∥∥Ĥ−1/2(G− G̃)Ĥ−1/2
∥∥ ≤ p

2p/2pmax
= ξp.

Lemma 10. For any positive integer p ≥ 5, we have

Π̂+
p Ĥ

−1/2Hx(0)Ĥ−1/2Π̂+
p ⪰ lp · Π̂+

p

and ∥∥∥(I − Π̂+
p) Ĥ

−1/2GĤ−1/2 (I − Π̂+
p)
∥∥∥ ≤ 1

12pmax
+ rp−1,

where Π̂+
p and Ĥ are defined in (15) and (2), respectively.

24

Proof. Given that Hx(0) and Ĥ share the same eigenvectors, the minimal eigenvalue of
Ĥ−1/2Hx(0)Ĥ−1/2 restricted to the subspace projected by Π̂+

p is bounded below by

min
λ>2pδ

λϕ−1(λ) > lp,

as established in Lemma 3. Consequently, we have

Π̂+
p Ĥ

−1/2Hx(0)Ĥ−1/2Π̂+
p ⪰ lp · Π̂+

p .

By the triangle inequality, it follows that∥∥(I − Π̂+
p)Ĥ

−1/2GĤ−1/2(I − Π̂+
p)
∥∥ ≤ ∥∥(I − Π̂+

p)Ĥ
−1/2Hx(0)Ĥ−1/2(I − Π̂+

p)
∥∥

+
∥∥(I − Π̂+

p)Ĥ
−1/2(G−Hx(0))Ĥ−1/2(I − Π̂+

p)
∥∥.

By the definition of Ĥ in (2) and Lemma 3, we have the bound∥∥(I − Π̂+
p)Ĥ

−1/2Hx(0)Ĥ−1/2(I − Π̂+
p)
∥∥ ≤ 1

pmax
· p

1 + 2−(p−5)
= rp−1.

Moreover, since ∥∥Ĥ−1/2
∥∥ ≤√ 1

12δpmax
,

we obtain∥∥(I − Π̂+
p)Ĥ

−1/2(G−Hx(0))Ĥ−1/2(I − Π̂+
p)
∥∥ ≤ ∥∥Ĥ−1/2(G−Hx(0))Ĥ−1/2

∥∥
≤
∥∥Ĥ−1/2

∥∥2 · ∥∥G−Hx(0)

∥∥ ≤ 1

12pmax
.

By combining these bounds we can conclude that∥∥(I − Π̂+
p)Ĥ

−1/2GĤ−1/2(I − Π̂+
p)
∥∥ ≤ 1

12pmax
+ rp−1.

Proof of Proposition 1. Define

G̃ := Π̂+
p Hx(0)Π̂+

p + (I − Π̂+
p)G(I − Π̂+

p).

Since Ĥ and Π̂+
p share the same set of eigenvectors, in the basis {ĥ1, . . . , ĥd}, where the eigenvectors

are arranged in descending order according to their eigenvalues, the matrix Ĥ−1/2G̃Ĥ−1/2 takes the
following block-diagonal form:

Ĥ−1/2G̃Ĥ−1/2 =

[
Π̂+

p Ĥ
−1/2Hx(0)Ĥ−1/2Π̂+

p 0

0 (I − Π̂+
p)Ĥ

−1/2GĤ−1/2(I − Π̂+
p)

]
.

By Lemma 10, the top left block has eigenvalues bounded below by lp, while the bottom right block
has eigenvalues bounded above by rp−1 +

1
12⌈log2(L/δ)⌉ , with eigenvalue gap

lp − rp−1 −
1

12pmax
≥ 1

3pmax
> ξp−1.

Additionally, by Lemma 9, we have the bound∥∥∥Ĥ−1/2GĤ−1/2 − Ĥ−1/2G̃Ĥ−1/2
∥∥∥ ≤ ξp.

We can then conclude by applying Lemma 8, which gives∥∥Π̂+
p −Π

+

p

∥∥ ≤ 22−p/2√p.

25

D.4 Properties of Π̂−
p , Π̂p and Π

−
p ,Πp

Lemma 11. For any positive integer p ≥ 5, we have∥∥Π̂−
p −Π

−
p

∥∥ ≤ 22−p/2√p.

Proof. Given that
Π̂−

p + Π̂+
p+1 = Π

−
p +Π

+

p+1 = I,

we have ∥∥Π̂−
p −Π

−
p

∥∥ =
∥∥Π̂+

p −Π
+

p+1

∥∥ ≤ 22−p/2.

Lemma 12. For any positive integer p > 1, we have∥∥Π̂p −Πp

∥∥ ≤ 23−p/2√p.

Proof. Given that

Π̃−
p−1 + Π̂p + Π̂+

p+1 = I, Π
−
p +Πp +Π

+

p+1 = I,

we have∥∥Π̂p −Πp

∥∥ ≤ ∥∥Π̃−
p−1 −Π

−
p−1

∥∥+ ∥∥Π̂+
p+1 −Π

+

p+1

∥∥ ≤ 22−p/2√p+ 22−p/2√p ≤ 23−p/2√p.

Lemma 13. For any positive integer p ≥ 5 and any v̂ ∈ Rd, we have∥∥Ĥ1/2Π̂+
p+1Πpv̂

∥∥ ≤ √δ · pmax ·
∥∥Πpv̂

∥∥
and ∥∥Ĥ1/2Π̂+

p+1Π
−
p v̂
∥∥ ≤ √δ · pmax ·

∥∥Π−
p v̂
∥∥.

Proof. For the first inequality, observe that∥∥Ĥ1/2Π̂+
p+1Πpv̂

∥∥ ≤ pmax∑
q=p+1

∥∥Ĥ1/2Π̂qΠpv̂
∥∥,

where for each q > p we have∥∥Ĥ1/2Π̂qΠpv̂
∥∥ ≤ 22−q/2√q

∥∥Ĥ1/2Π̂q

∥∥ · ∥Πpv̂
∥∥ ≤ 22−q/2

√
qϕ(2q+1δ) ·

∥∥Πpv̂
∥∥

by Lemma 11. Summing over q gives
pmax∑

q=p+1

22−p/2 · ϕ(2q+1δ) =

pmax∑
q=p+1

22−q/2 ·
√

(32 + 2q) · δpmax

≤
√
δ · pmax.

Therefore, ∥∥Ĥ1/2Π̂+
p+1Πpv̂

∥∥ ≤ √δ · pmax ·
∥∥Πpv̂

∥∥.
The proof of the second inequality is similar. Note that∥∥Ĥ1/2Π̂+

p+1Π
−
p v̂
∥∥ ≤ pmax∑

q=p+1

∥∥Ĥ1/2Π̂qΠ
−
p v̂
∥∥,

where for each q > p we have∥∥Ĥ1/2Π̂qΠ
−
p v̂
∥∥ ≤ 22−q/2√q

∥∥Ĥ1/2Π̂q

∥∥ · ∥Π−
p v̂
∥∥ ≤ 22−p/2

√
qϕ(2q+1δ) ·

∥∥Π−
p v̂
∥∥

by Lemma 11. Summing over q gives
pmax∑

q=p+1

22−p/2 · ϕ(2q+1δ) =

pmax∑
q=p+1

22−q/2 ·
√

(32 + 2q) · δpmax ≤
√
δ · pmax.

Therefore, ∥∥Ĥ1/2Π̂+
p+1Π

−
p v̂
∥∥ ≤ √δ · pmax ·

∥∥Π−
p v̂
∥∥.

26

Proposition 2. For any positive integer p ≥ 5 and any v̂ ∈ Rd, we have∥∥Ĥ1/2Πpv̂
∥∥ ≤ 2p/2

√
δ · pmax ·

∥∥Πpv̂∥

and ∥∥Ĥ1/2Πpv̂
∥∥ ≥ ∥∥Πpv̂∥

Moreover, we have ∥∥Ĥ−1/2Πpv̂
∥∥ ≥ 1

2
√
ϕ(2p+1δ)

∥∥Πpv̂
∥∥.

Proof. For the first inequality, note that

Πpv̂ = Π̂−
p Πpv̂ +

pmax∑
q=p+1

Π̂qΠpv̂,

which gives

∥∥Ĥ1/2Πpv̂
∥∥ ≤ ∥∥Ĥ1/2Π̂−

p Πpv̂
∥∥+ pmax∑

q=p+1

∥∥Ĥ1/2Π̂qΠpv̂
∥∥,

where

∥Ĥ1/2Π̂−
p Πpv̂

∥∥ ≤ ∥∥Ĥ1/2Π̂−
p

∥∥ · ∥Πpv̂
∥∥ ≤√ϕ(2p+1δ) · ∥Πpv̂

∥∥
and

pmax∑
q=p+1

∥∥Ĥ1/2Π̂qΠpv̂
∥∥ ≤ √δ · pmax ·

∥∥Πpv̂
∥∥

by Lemma 13. Hence,

∥Ĥ1/2Πpv̂∥ ≤ 2p/2
√
δ · pmax · ∥Πpv̂∥.

The second inequality follows from

∥∥Ĥ1/2Πpv̂
∥∥ ≥ ∥∥Ĥ1/2Π̂pΠpv̂

∥∥ ≥ ∥∥Ĥ1/2Π̂p

∥∥ · ∥∥Π̂pΠpv̂
∥∥ ≥ √ϕ(2pδ)

2

∥∥Πpv̂
∥∥

As for the third inequality,

Πpv̂ = Π̂pΠpv̂ + Π̂−
p−1Πpv̂ + Π̂+

p+1Πpv̂,

which leads to ∥∥Ĥ−1/2Πpv̂
∥∥ ≥ ∥∥Ĥ−1/2Π̂pΠpv̂

∥∥ ≥ 1√
ϕ(2p+1δ)

·
∥∥Π̂pΠpv̂

∥∥,
where ∥∥Π̂pΠpv̂

∥∥ ≥ ∥∥ΠpΠpv̂
∥∥− ∥∥(Π̂p −Πp)Πpv̂

∥∥ ≥ 1

2
∥Πpv̂

∥∥,
by which we can conclude that∥∥Ĥ−1/2Πpv̂

∥∥ ≥ 1

2
√
ϕ(2p+1δ)

∥∥Πpv̂
∥∥.

27

D.5 The Connection between Ĥ1/2v̂ and Ĥ1/2Πpv̂

In this subsection, we prove the following result.
Proposition 3. For any positive integer p ≥ pmin and any v̂ ∈ Rd, we have∥∥Ĥ1/2v̂

∥∥ ≥ 2−5

1 + 2−p/4√pmax
·
∥∥Ĥ1/2Πpv̂

∥∥. (21)

Denote vp := Ĥ1/2Πpv̂, v−p := Ĥ1/2Π
−
p−1v̂, and v+p := Ĥ1/2Π

+

p+1v̂. Then, we have Ĥ1/2v̂ =

vp + v−p + v+p . If vp = 0, (21) holds directly. Hence, we only need to prove the case where vp ̸= 0.

The following inequalitie are useful for proving Proposition 3.
Lemma 14. For any integer p ≥ 5 and any v̂ ∈ Rd, the following inequalities hold.

1.
∥∥Ĥ1/2Π̂pΠpv̂

∥∥ ≥√ϕ(2pδ)∥∥Πpv̂
∥∥/2;

2.
∥∥Ĥ1/2Π̂−

p−1Πpv̂
∥∥ ≤ 22−p/2

√
pϕ(2pδ)

∥∥Πpv̂
∥∥;

3. ∥Ĥ1/2Π̂pΠ
−
p−1v̂

∥∥ ≤ 22−p/2
√
pϕ(2p+1δ)

∥∥Π−
p−1v̂

∥∥;

4. ∥Ĥ1/2Π̂−
p−1Π

−
p−1v̂

∥∥ ≥ √δ · pmax ·
∥∥Π−

p−1v̂
∥∥;

5. ∥Ĥ1/2Π̂+
p+1Π

−
p−1v̂

∥∥ ≤ √δ · pmax ·
∥∥Π−

p−1v̂
∥∥;

6. ∥Ĥ1/2Π̂pΠ
+

p+1v̂
∥∥ ≤ 22−p/2

√
pϕ(2p+1δ)

∥∥Π+

p+1v̂
∥∥;

7. ∥Ĥ1/2Π̂−
p−1Π

+

p+1v̂
∥∥ ≤ 21−p/2

√
pϕ(2pδ)

∥∥Π+

p+1v̂
∥∥;

8. ∥Ĥ1/2Π̂+
p+1Π

+

p+1v̂
∥∥ ≥√ϕ(2p+1δ)

∥∥Π+

p+1v̂
∥∥/2.

Proof. Proof of the first entry:∥∥Ĥ1/2Π̂pΠpv̂
∥∥ ≥√ϕ(2pδ)∥∥Π̂pΠpv̂

∥∥
≥
√
ϕ(2pδ)

(∥∥ΠpΠpv̂
∥∥− ∥∥(Π̂p −Πp)Πpv̂

∥∥) ≥ √ϕ(2pδ)
2

∥∥Πpv̂
∥∥

by Lemma 12.

Proof of the second entry:∥∥Ĥ1/2Π̂−
p−1Πpv̂

∥∥ ≤ ∥∥Ĥ1/2Π̂−
p−1

∥∥ · ∥∥Π̂−
p−1Πpv̂

∥∥
≤
√
ϕ(2pδ)

∥∥Π̂−
p−1Πpv̂

∥∥ ≤ 22−p/2
√
p · ϕ(2pδ)

∥∥Πpv̂
∥∥

by Lemma 11.

Proof of the third entry:∥∥Ĥ1/2Π̂pΠ
−
p−1v̂

∥∥ ≤ ∥∥Ĥ1/2Π̂p

∥∥ · ∥∥Π̂pΠ
−
p−1v̂

∥∥
≤
√
ϕ(2p+1δ) ·

∥∥Π̂pΠ
−
p−1v̂

∥∥
≤ 22−p/2

√
pϕ(2p+1δ)

∥∥Π−
p−1v̂

∥∥,
by Lemma 12.

Proof of the fourth entry:

∥Ĥ1/2Π̂−
p−1Π

−
p−1v̂

∥∥ ≥ 1∥∥Ĥ−1/2∥

∥∥Π̂−
p−1Π

−
p−1v̂

∥∥
≥
√

12δ⌈log2(L/δ)⌉
(∥∥Π−

p−1v̂
∥∥− ∥∥(Π̂−

p−1 −Π
−
p−1)Π

−
p−1v̂

∥∥)
≥
√
δ⌈log2(L/δ)⌉

∥∥Π−
p−1v̂

∥∥
28

by Lemma 11.

Proof of the fifth entry:

∥Ĥ1/2Π̂+
p+1Π

−
p−1v̂

∥∥ ≤ √δ · pmax ·
∥∥Π−

p−1v̂
∥∥

by Lemma 13.

Proof of the sixth entry:

∥Ĥ1/2Π̂pΠ
+

p+1v̂
∥∥ ≤ ∥∥Ĥ1/2Π̂p

∥∥ · ∥∥(Π̂p −Πp)Π
+

p+1v̂
∥∥

≤ 22−p/2
√
pϕ(2p+1δ)∥Π+

p+1v̂
∥∥

by Lemma 12.

Proof of the seventh entry:

∥Ĥ1/2Π̂−
p−1Π

+

p+1v̂
∥∥ ≤ ∥∥Ĥ1/2Π̂−

p−1

∥∥ · ∥∥(Π̂−
p−1 −Π

−
p−1)Π

+

p+1v̂
∥∥

≤ 21−p/2
√
pϕ(2pδ)∥Π+

p+1v̂
∥∥

by Lemma 11.

Proof of the eighth entry:

∥Ĥ1/2Π̂+
p+1Π

+

p+1v̂
∥∥ ≥√ϕ(2p+1δ)

(∥∥Π+

p+1v̂
∥∥− ∥∥(Π̂+

p+1 −Π
+

p+1)Π
+

p+1v̂
∥∥)

≥
√
ϕ(2p+1δ)

2
∥Π+

p+1v̂
∥∥

by Proposition 1.

Lemma 15. For any positive integer p ≥ pmin and any v̂ ∈ Rd, we have∥∥Ĥ1/2Π̂−
p Π

−
p v̂
∥∥ ≥ sin

(π

pmin

)
·
∥∥Ĥ1/2Π̂−

p Πpv̂
∥∥.

Proof. Note that
Ĥ1/2Π̂−

p Π
−
p v̂ = Ĥ1/2Π̂−

p Πpv̂ + Ĥ1/2Π̂−
p Π

−
p−1v̂

If either Ĥ1/2Π̂−
p Πpv̂ or Ĥ1/2Π̂−

p Π
−
p−1v̂ equals 0, the inequality holds directly. Otherwise, by entries

1 through 4 of Lemma 14, we have

arccos

(
⟨Ĥ1/2Π̂−

p Πpv̂, Ĥ
1/2Π̂−

p Π
−
p−1v̂⟩

∥Ĥ1/2Π̂−
p Πpv̂∥ · ∥Ĥ1/2Π̂−

p Π
−
p−1v̂∥

)
≥ π

16
,

which leads to ∥∥Ĥ1/2Π̂−
p Π

−
p v̂
∥∥ ≥ sin(π/16)

∥∥Ĥ1/2Π̂−
p Πpv̂

∥∥.
Lemma 16. For any positive integer p ≥ 5 and any v̂ ∈ Rd, we have∥∥Ĥ1/2Π̂+

p+1Π
−
p v̂
∥∥ ≤ ∥∥Ĥ1/2Π̂−

p Π
−
p v̂
∥∥.

Proof. By Lemma 13 we have∥∥Ĥ1/2Π̂+
p+1Π

−
p v̂
∥∥ ≤ √δ · pmax

∥∥Π−
p v̂
∥∥.

Moreover, by entry 4 of Lemma 14 we have∥∥Ĥ1/2Π̂−
p Π

−
p v̂
∥∥ ≥√δ · pmax ·

∥∥Π−
p v̂
∥∥,

which leads to ∥∥Ĥ1/2Π̂+
p+1Π

−
p v̂
∥∥ ≤ ∥∥Ĥ1/2Π̂−

p Π
−
p v̂
∥∥.

29

Lemma 17. For any positive integer p ≥ 5 and v̂ ∈ Rd, we have∥∥Ĥ1/2Πpv̂
∥∥ ≤ (2 + 2−p/4√pmax

)∥∥Ĥ1/2Π̂pΠpv̂
∥∥.

Proof. ∥∥Ĥ1/2Πpv̂
∥∥ ≤ ∥∥Ĥ1/2Π̂pΠpv̂

∥∥+ ∥∥Ĥ1/2Π̂−
p−1Πpv̂

∥∥+ ∥∥Ĥ1/2Π̂+
p+1Πpv̂

∥∥,
where ∥∥Ĥ1/2Π̂−

p−1Πpv̂
∥∥ ≤ 22−p/2

√
pϕ(2pδ)

∥∥Πpv̂
∥∥ ≤ 22−(p−log p)/2

∥∥Ĥ1/2Π̂pΠpv̂
∥∥

by the first two inequalities in Lemma 14, and∥∥Ĥ1/2Π̂+
p+1Πpv̂

∥∥ ≤ √δ · pmax ·
∥∥Πpv̂

∥∥
≤ 2

√
δ

ϕ(2pδ)
· pmax ·

∥∥Ĥ1/2Π̂pΠpv̂
∥∥

≤ 2−p/4√pmax

∥∥Ĥ1/2Π̂pΠpv̂
∥∥

by Proposition 2 and the first inequality of Lemma 14. We can therefore conclude that∥∥Ĥ1/2Πpv̂
∥∥ ≤ (2 + 2−p/4√pmax

)∥∥Ĥ1/2Π̂pΠpv̂
∥∥.

Equipped with these results, we are ready to prove Proposition 3.

Proof of Proposition 3. Note that Ĥ1/2v̂ = Ĥ1/2Π
−
p v̂ + Ĥ1/2Π

+

p+1v̂. By entries 6 through 8 of
Lemma 14, we have ∥∥Ĥ1/2Π̂−

p Π
+

p+1v̂
∥∥ ≤ 24−p/2

∥∥Ĥ1/2Π
+

p+1v̂
∥∥,

indicating that the angle between Ĥ1/2Π
+

p+1v̂ and the subspace projected by Π̂−
p is at most

arcsin
(
24−p/2

)
. On the other hand, by Lemma 16 we know that the angle between Ĥ1/2Π

−
p v̂

and the subspace projected by Π̂−
p is at least π/4, which leads to∥∥Ĥ1/2v̂

∥∥ =
∥∥Ĥ1/2Π

−
p v̂ + Ĥ1/2Π

+

p+1v̂
∥∥ ≥ 1

2

∥∥Ĥ1/2Π̂−
p Π

−
p v̂
∥∥

≥ 1

2
sin
(π

pmin

)
·
∥∥Ĥ1/2Π̂−

p Πpv̂
∥∥ ≥ 2−4 ·

∥∥Ĥ1/2Π̂−
p Πpv̂

∥∥
by Lemma 15. Then by Lemma 17, we can conclude that∥∥Ĥ1/2v̂

∥∥ ≥ 2−5

1 + 2−p/4√pmax
·
∥∥Ĥ1/2Πpv̂

∥∥.

D.6 Properties of Πbase

Lemma 18. For any v̂ ∈ Rd, we have∥∥Ĥ1/2Πbasev̂
∥∥ ≤ 40p3/2max

∥∥Ĥ1/2v̂
∥∥.

Proof. Given that

Ĥ1/2v̂ = Ĥ1/2Πbasev̂ +

pmax∑
p=pmin

Ĥ1/2Πpv̂,

30

we have ∥∥Ĥ1/2Πbasev̂
∥∥ ≤ ∥∥Ĥ1/2v̂

∥∥+ pmax∑
p=pmin

∥∥Ĥ1/2Πpv̂
∥∥,

where ∥∥Ĥ1/2v̂
∥∥ ≥ 2−5

1 + 2−p/4√pmax
·
∥∥Ĥ1/2Πpv̂

∥∥, ∀pmin ≤ p ≤ pmax

by Proposition 3. We can thus conclude that∥∥Ĥ1/2Πbasev̂
∥∥ ≤ (1 + pmax(32 + 2

√
pmax)

)∥∥Ĥ1/2v̂
∥∥ ≤ 40p3/2max

∥∥Ĥ1/2v̂
∥∥.

Corollary 4. For any v̂ ∈ Rd, we have∥∥Ĥ1/2Πbasev̂
∥∥ ≤ pmax

√
δ ·
∥∥Πbasev̂

∥∥.
Proof. The proof follows from Lemma 13 by noticing that

Πbase = Π
−
pmin−1

, Πbase +Π
+

pmin
= I

given the definition of Sbase in (30).

E Analysis of Algorithm 1

E.1 Quadratic Approximation of f Near x(0)

Given that f is L2-Hessian Lipschitz, in the neighborhood of x(0), it is close to T 2
x(0)(x), is the 2nd

order Taylor approximation of f evaluated at x(0). Throughout this section, we denote

g(x) := T 2
x(t)(x) = f(x(0)) + ⟨∇f(x(0)), x− x(0)⟩+ 1

2
(x− x(0))⊤∇2f(x(0))(x− x(0)). (22)

Similarly to the definition of f̂ , we define ĝ := (Ĥ−1/2x̂), which satisfies

∇ĝ(x̂) = Ĥ−1/2 · ∇g(Ĥ−1/2x̂),

and

H := ∇2ĝ(x̂) = Ĥ−1/2 · ∇2g(Ĥ−1/2x̂) · Ĥ−1/2 = Ĥ−1/2 · ∇2f(x(0)) · Ĥ−1/2,

For any iteration k, we define

ι(k) := ∇f(y(k))−∇g(y(k)), ι̂(k) := ∇f̂(ŷ(k))−∇ĝ(ŷ(k)).

Then, we have ι(k) = Ĥ1/2ι̂(k).

E.2 Movement Bounds of the Iterates

In the case where Line 7 is triggered during Algorithm 1, we denote

K := argmin
k

{
k

k−1∑
t=0

∥x(t+1) − x(t)∥2 > B2
}
.

Otherwise, we denote K = K + 1.
Lemma 19. For any iteration k < K, we have

1. k
∑k−1

t=1

∥∥x(t+1) − x(t)
∥∥2 < B2;

2.
∥∥x(k) − x(0)∥∥ ≤ B;

31

3.
∥∥y(k) − x(0)∥∥ ≤ 2B;

4.
∥∥ι(k)∥∥ =

∥∥Ĥ1/2ι̂(k)
∥∥ ≤ 2L2B

2

Proof. The first entry follows from Corollary 3:

k

k−1∑
k=1

∥∥x(k+1) − x(k)
∥∥2 < k

k−1∑
t=1

(∥∥Ĥ−1/2
∥∥ · ∥∥Ĥ1/2

(
x(t+1) − x(t)

)∥∥)2
<

k

12δpmax

k−1∑
t=1

∥∥Ĥ1/2
(
x(t+1) − x(t)

)∥∥2 < B2.

Then by Cauchy-Schwartz, we have

∥∥x(k) − x(0)∥∥ ≤
√√√√k

k−1∑
t=1

∥∥Ĥ1/2
(
x(t+1) − x(t)

)∥∥2 ≤ B,
which leads to ∥∥y(k) − x(0)∥∥ ≤ ∥∥x(k) − x(0)∥∥+ (1− θ)

∥∥x(k) − x(k−1)
∥∥ ≤ 2B.

Since f is L2-Hessian Lipschitz, we can further derive that∥∥ι(k)∥∥ =
∥∥Ĥ1/2ι̂(k)

∥∥ ≤ 1

2
L2

∥∥y(k) − x(0)∥∥2 ≤ 2L2B
2.

Lemma 20. Let η ≤ 1/4. In the case where the “if condition” in Line 7 of Algorithm 1 is triggered,
we have ∥x(K) − x(0)∥ ≤ 7B.

Proof. By Lemma 19, for any k < K we have ∥x(k) − x(0)∥ ≤ B and ∥y(k) − x(0)∥ ≤ 2B. Hence,
to bound

∥∥x(K) − x(0)
∥∥, it suffices bound

∥∥x(K) − y(K−1)
∥∥, which satisfies∥∥x(K) − y(K−1)

∥∥ = η
∥∥Ĥ−1∇f(y(K−1))

∥∥,
where
Ĥ−1∇f(y(K−1))

= Ĥ−1∇f(y(K−2)) + Ĥ−1

∫ y(K−1)

y=y(K−2)

∇2f(y)dy

= Ĥ−1∇f(y(K−2)) + Ĥ−1H(y(K−1) − y(K−2)) +

∫ y(K−1)

y=y(K−2)

Ĥ−1
(
H −∇2f(y)

)
dy. (23)

The first and the second term satisfy∥∥∥Ĥ−1∇f(y(K−2))
∥∥∥ =

∥∥∥x(K−1) − y(K−2)
∥∥∥ /η ≤ 3B/η,

and ∥∥Ĥ−1H(y(K−2) − y(K−1))
∥∥ ≤ ∥∥y(K−2) − y(K−1)

∥∥ ≤ 4B,

respectively. As for the third term, given that ∥Ĥ−1∥ ≤ (12δpmax)
−1 by Corollary 3 and∥∥Ĥ −∇2f(y)

∥∥ ≤ δ + 4L2B ≤ 2δ,

it follows that ∥∥∥∥∫ y(K−1)

y=y(K−2)

Ĥ−1
(
H −∇2f(y)

)
dy

∥∥∥∥ ≤ B.
Therefore, ∥∥x(K) − y(K−1)

∥∥ ≤ (3 + 4η + 1)B = 5B,

and we can conclude that∥∥x(K) − x(0)
∥∥ ≤ ∥∥y(K−1) − x(0)

∥∥+ ∥∥x(K) − y(K−1)
∥∥ ≤ 7B.

32

E.3 Function Value Decrease Case

In this subsection, we discuss the decrease in the function value of Algorithm 1 in the case where the
“if condition” in Line 7 is triggered.

Given that H is symmetric, we can find a set of orthonormal basis {ĥ1, . . . , ĥd} such that each ĥi is
an eigenvector of H with eigenvalue λi. We decompose these coordinates into two sets

Ssc :=
{
i : λi ≥ −

θ

η

}
, Snc :=

{
i : λi < −

θ

η

}
, (24)

where sc and nc abbreviate strongly convex and not strongly convex, respectively. We further define
the corresponding projectors

Πsc :=
∑
i∈Ssc

ĥiĥ
⊤
i , Πnc :=

∑
i∈Snc

ĥiĥ
⊤
i . (25)

For any v̂ ∈ Rd, denote

v̂sc := Πscv̂, v̂nc := Πncv̂

and
ĝsc(v̂) :=

〈
∇f̂(x̂(0)), v̂sc − x̂(0)sc

〉
+

1

2

(
v̂sc − x̂(0)sc

)⊤
H
(
v̂sc − x̂(0)sc

)
ĝnc(v̂) :=

〈
∇f̂(x̂(0)), v̂nc − x̂(0)nc

〉
+

1

2

(
v̂nc − x̂(0)nc

)⊤
H
(
v̂nc − x̂(0)nc

) (26)

Then, we have ĝ(v̂) = ĝsc(v̂) + ĝnc(v̂).

E.3.1 Function Value Decrease of ĝsc

The proof structure in this part is similar to the proof of [29, Lemma 2].

Lemma 21. Let η ≤ 1/4. Then for any 0 ≤ k ≤ K − 1 and any α > 0, we have

ĝsc(x̂
(k+1))− ĝsc(x̂(k)) ≤ −

1

2

(
x̂(k)sc − ŷ(k)sc

)⊤
H
(
x̂(k)sc − ŷ(k)sc

)
+
∥ι(k)∥2

2α

+
1

2η

(∥∥x̂(k)sc − ŷ(k)sc

∥∥2 − (1− αη

12δpmax

)∥∥x̂(k+1)
sc − x̂(k)sc

∥∥2).
Proof. Given that ĝsc is quadratic, for any two consecutive iterations, we have

ĝsc(x̂
(k+1)) = ĝsc(x̂

(k)) +
〈
∇ĝsc(x̂(k)), x̂(k+1)

sc − x̂(k)sc

〉
+

1

2

(
x̂(k+1)
sc − x̂(k)sc

)⊤
H
(
x̂(k+1)
sc − x̂(k)sc

)
,

where

∇ĝsc(x̂(k)) = ∇f̂sc(ŷ(k)) +
(
∇ĝsc(ŷ(k))−∇f̂sc(ŷ(k))

)
+
(
∇ĝsc(x̂k)−∇ĝsc(ŷksc)

)
= −1

η
(x̂(k+1)

sc − ŷ(k)sc) +H
(
x̂(k)sc − ŷ(k)sc

)
− ι̂(k)sc .

Hence,

ĝsc(x̂
(k+1))− ĝsc(x̂(k)sc)

= −1

η

〈
x̂(k+1)
sc − ŷ(k)sc , x̂

(k+1)
sc − x̂(k)sc

〉
−
〈
ι̂(k)sc , x̂

(k+1)
sc − x̂(k)sc

〉
+
(
x̂(k)sc − ŷ(k)sc

)⊤
H
(
x̂(k+1)
sc − x̂(k)sc

)
+

1

2

(
x̂(k+1)
sc − x̂(k)sc

)⊤
H
(
x̂(k+1)
sc − x̂(k)sc

)
,

where〈
x̂(k+1)
sc − ŷ(k)sc , x̂

(k+1)
sc − x̂(k)sc

〉
=
∥∥x(k)sc − y(k)sc

∥∥2 − ∥∥x(k+1)
sc − y(k)sc

∥∥2 − ∥∥x(k+1)
sc − x(k)sc

∥∥2
33

and (
x̂(k)sc − ŷ(k)sc

)⊤
H
(
x̂(k+1)
sc − x̂(k)sc

)
+

1

2

(
x̂(k+1)
sc − x̂(k)sc

)⊤
H
(
x̂(k+1)
sc − x̂(k)sc

)
=

1

2

(
x̂(k+1)
sc − ŷ(k)sc

)⊤
H
(
x̂(k+1)
sc − ŷ(k)sc

)
− 1

2

(
x̂(k)sc − ŷ(k)sc

)⊤
H
(
x̂(k)sc − ŷ(k)sc

)
.

Furthermore, for any α > 0 we have

−
〈
ι̂(k)sc , x̂

(k+1)
sc − x̂(k)sc

〉
= −

〈
ι̂(k), x̂(k+1)

sc − x̂(k)sc

〉
≤ 1

2α

∥∥Ĥ1/2ι̂
∥∥2 + α

2

∥∥Ĥ−1/2
(
x̂(k+1)
sc − x̂(k)sc

)∥∥2
≤ ∥ι

(k)∥2

2α
+

α

24δpmax

∥∥x̂(k+1)
sc − x̂(k)sc

∥∥2
by Corollary 3. It then follows that

ĝsc(x̂
(k+1))− ĝsc(x̂(k))

=
1

2

(
x̂(k+1)
sc − y(k)sc

)⊤
H
(
x̂(k+1)
sc − y(k)sc

)
− 1

2

(
x̂(k)sc − y(k)sc

)⊤
H
(
x̂(k)sc − y(k)sc

)
+
∥ι(k)∥2

2α

+
1

2η

(∥∥x̂(k)sc − ŷ(k)sc

∥∥2 − ∥∥x̂(k+1)
sc − ŷ(k)sc

∥∥2 − (1− αη

12δpmax

)∥∥x̂(k+1)
sc − x̂(k)sc

∥∥2)
≤ −1

2

(
x̂(k)sc − ŷ(k)sc

)⊤
H
(
x̂(k)sc − ŷ(k)sc

)
+
∥ι(k)∥2

2α

+
1

2η

(∥∥x̂(k)sc − ŷ(k)sc

∥∥2 − (1− αη

12δpmax

)∥∥x̂(k+1)
sc − x̂(k)sc

∥∥2),
where the last inequality follows from

1

2

(
x̂(k)sc − y(k)sc

)⊤
H
(
x̂(k)sc − y(k)sc

)
− 1

2η

∥∥x̂(k+1)
sc − ŷ(k)sc

∥∥2 ≤ 0.

since H ⪯ I and η ≤ 1/4. We can therefore conclude that

ĝsc(x̂
(k+1))− ĝsc(x̂(k)) ≤ −

1

2

(
x̂(k)sc − ŷ(k)sc

)⊤
H
(
x̂(k)sc − ŷ(k)sc

)
+
∥ι(k)∥2

2α

+
1

2η

(∥∥x̂(k)sc − ŷ(k)sc

∥∥2 − (1− αη

12δpmax

)∥∥x̂(k+1)
sc − x̂(k)sc

∥∥2).
Lemma 22. Let η ≤ 1/4 and 0 < θ ≤ 1. In the case where the “if condition” in Line 7 of
Algorithm 1 is triggered, we have

ĝsc(x̂
(K))− ĝsc(x̂(0)) ≤ −

θ

4η

K−1∑
k=0

∥∥x̂(k+1)
sc − x̂(k)sc

∥∥2 + ηL2
2B

4K
3θδpmax

.

Proof. By Lemma 21, for any α > 0 the following inequality holds:

ĝsc(x̂
(k+1))− ĝsc(x̂(k)) ≤ −

1

2

(
x̂(k)sc − ŷ(k)sc

)⊤
H
(
x̂(k)sc − ŷ(k)sc

)
+
∥ι(k)∥2

2α

+
1

2η

(∥∥x̂(k)sc − ŷ(k)sc

∥∥2 − (1− αη

12δpmax

)∥∥x̂(k+1)
sc − x̂(k)sc

∥∥2),
where

−1

2

(
x̂(k)sc − ŷ(k)sc

)
H
(
x̂(k)sc − ŷ(k)sc

)
≤ θ

2η

∥∥x̂(k)sc − ŷ(k)sc

∥∥2
34

as per the definition of Ssc in (24) and Πsc in (25), which leads to

ĝsc(x̂
(k+1))− ĝsc(x̂(k)) ≤ −

1

2η

(
1− αη

12δpmax

)∥∥x̂(k+1)
sc − x̂(k)sc

∥∥2 + ∥ι(k)∥2
2α

+
(1 + θ)(1− θ)2

2η

∥∥x̂(k)sc − x̂(k−1)
sc

∥∥2,
given that ŷ(k)sc − x̂(k)sc = (1− θ)(x̂(k)sc − x̂(k−1)

sc) as per (7). Define the potential function

ξ(k)sc := ĝsc(x̂
(k)) +

(1 + θ)(1− θ)2

2η

∥∥x̂(k)sc − x̂(k−1)
sc

∥∥2
and set α = 6δpmaxθ/η. Then, we have

ξ(k+1)
sc − ξ(k)sc ≤ −

θ

4η

∥∥x̂(k+1)
sc − x̂(k)sc

∥∥2 + η∥ι(k)∥2

12δpmaxθ
.

Summing over all the iterations in this epoch, we can conclude that

ĝsc(x̂
(K))− ĝsc(x̂(0)) ≤ −

θ

4η

K−1∑
k=0

∥∥x̂(k+1)
sc − x̂(k)sc

∥∥2 + η

12δpmaxθ

K−1∑
k=0

∥ι(k)∥2

≤ − θ

4η

K−1∑
k=0

∥∥x̂(k+1)
sc − x̂(k)sc

∥∥2 + ηL2
2B

4K
3δpmaxθ

.

E.3.2 Function Value Decrease of ĝnc

Lemma 23. Let η ≤ 1/4 and 0 < θ ≤ 1. In the case where the “if condition” in Line 7 of
Algorithm 1 is triggered, we have

ĝnc(x̂
(K))− ĝnc(x̂(0)) ≤ −

θ

2η

K−1∑
k=0

∥∥x̂(k+1)
sc − x̂(k)sc

∥∥2 + ηL2
2B

4K
6θδpmax

.

Proof. The proof of this lemma follows a similar structure as the proof of [29, Lemma 3]. Denote
û := x̂

(0)
nc −H

†∇ĝnc(x̂(0)), which allows us to rewrite ĝnc(v̂) as

ĝnc(v̂) =
1

2
(v̂nc − û)⊤H(v̂nc − û)−

1

2

(
∇ĝnc(x̂(0))

)⊤
H

−1∇ĝnc(x̂(0)), ∀v̂ ∈ Rd.

Then for any 0 ≤ k ≤ K − 1, we have

ĝnc(x̂
(k+1))− ĝnc(x̂(k))

=
1

2
(x̂(k+1)

nc − û)⊤H(x̂(k+1)
nc − û)− 1

2
(x̂(k) − û)⊤H(x̂(k) − û)

=
1

2

(
x̂(k+1)
nc − x̂(k)nc

)⊤
H
(
x̂(k+1)
nc + 2x̂(k)nc − û

)
=

1

2

(
x̂(k+1)
nc − x̂(k)nc

)⊤
H
(
x̂(k+1)
nc − x̂(k)nc

)
+
(
x̂(k+1)
nc − x̂(k)nc

)⊤
H
(
x̂(k)nc − û

)
,

where the first term is upper bounded by

1

2

(
x̂(k+1)
nc − x̂(k)nc

)⊤
H
(
x̂(k+1)
nc − x̂(k)nc

)
≤ − θ

2η

∥∥x̂(k+1)
nc − x̂(k)nc

∥∥2
following the definition of Snc in (24) and Πnc in (25). As for the second term, note that

x̂(k+1)
nc − x̂(k)nc = ŷ(k)nc − x̂(k)nc − η∇ĝnc(ŷ(k))− ηι̂(k)nc

= (1− θ)
(
x̂(k)nc − x̂(k−1)

nc

)
− ηH

(
ŷ(k)nc − û

)
− ηι̂(k)nc

= (1− θ)
(
x̂(k)nc − x̂(k−1)

nc

)
− ηH

(
x̂(k)nc − û+ (1− θ)

(
x̂(k)nc − x̂(k−1)

nc

))
− ηι̂(k)nc .

35

where the second line follows from the observation that

H
(
ŷ(k)nc − û

)
= H

(
ŷ(k)nc − x̂(0)nc

)
+H

(
x̂(0)nc − û

)
= ∇ĝnc(ŷ(k))−∇ĝnc(x̂(0)) +HH

†∇ĝnc(x̂(0)) = ∇ĝnc(ŷ(k)).
Hence, (

x̂(k+1)
nc − x̂(k)nc

)⊤
H
(
x̂(k)nc − û

)
= (1− θ)

(
x̂(k)nc − x̂(k−1)

nc

)⊤
H
(
x̂(k)nc − û

)
− η
∥∥H(x̂(k)nc − û

)∥∥2
− η(1− θ)

(
x̂(k)nc − x̂(k−1)

nc

)⊤
H

2(
x̂(k)nc − û

)
− η
〈
ι̂(k)nc , H

(
x̂(k)nc − û

)〉
,

(27)

where we have

− η(1− θ)
(
x̂(k)nc − x̂(k−1)

nc

)⊤
H

2(
x̂(k)nc − û

)
≤ η(1− θ)

2

(∥∥H(x̂(k)nc − x̂(k−1)
nc

)∥∥2 + ∥∥H(x̂(k)nc − û
)∥∥2)

and

−η
〈
ι̂(k)nc , H

(
x̂(k)nc − û

)〉
≤ η

2(1 + θ)

∥∥ι̂(k)nc

∥∥2 + η(1 + θ)

2

∥∥H(x̂(k)nc − û
)∥∥2.

Combined with (27), we obtain(
x̂(k+1)
nc − x̂(k)nc

)⊤
H
(
x̂(k)nc − û

)
≤ (1− θ)

(
x̂(k)nc − x̂(k−1)

nc

)⊤
H
(
x̂(k)nc − û

)
+
η(1− θ)

2

∥∥H(x̂(k)nc − x̂(k−1)
nc

)∥∥2 + η

2(1 + θ)

∥∥ι̂(k)nc

∥∥2
= (1− θ)

(
x̂(k)nc − x̂(k−1)

nc

)⊤
H
(
x̂(k−1)
nc − û

)
+ (1− θ)

(
x̂(k)nc − x̂(k−1)

nc

)⊤
H
(
x̂(k)nc − x̂(k−1)

nc

)
+
η(1− θ)

2

∥∥H(x̂(k)nc − x̂(k−1)
nc

)∥∥2 + η

2(1 + θ)

∥∥ι̂(k)nc

∥∥2
≤ (1− θ)

(
x̂(k)nc − x̂(k−1)

nc

)⊤
H
(
x̂(k−1)
nc − û

)
+

η

2(1 + θ)

∥∥ι̂(k)nc

∥∥2,
where the last inequality follows from the fact that

(1− θ)
(
x̂(k)nc − x̂(k−1)

nc

)⊤
H
(
x̂(k)nc − x̂(k−1)

nc

)
+
η(1− θ)

2

∥∥H(x̂(k)nc − x̂(k−1)
nc

)∥∥2 ≥ 0

since η ≤ 1/4 and ∥H∥ ≤ 1. Hence,(
x̂(k+1)
nc − x̂(k)nc

)⊤
H
(
x̂(k)nc − û

)
≤ (1− θ)k

(
x̂(k)nc − x̂(k−1)

nc

)⊤
H
(
x̂(k−1)
nc − û

)
+

η

2(1 + θ)

k∑
t=1

(1− θ)k−t
∥∥ι̂(k)nc

∥∥2
≤ η

2

k∑
t=1

(1− θ)k−t
∥∥ι̂(k)nc

∥∥2,
where the last inequality follows from(

x̂(1)nc − x̂(0)nc

)⊤
H
(
x̂(0)nc − û

)
=
(
−∇ĝnc(x̂0)

)
·H ·

(
H

†∇ĝnc(x̂(0))
)
≤ 0.

Furthermore, for each 0 ≤ k ≤ K − 1, by Lemma 19 and Corollary 3 we have∥∥ι̂(k)nc

∥∥2 ≤ ∥∥ι̂(k)∥∥2 =
∥∥Ĥ−1/2Ĥ1/2ι̂(k)

∥∥2 ≤ ∥∥Ĥ−1/2
∥∥2 · ∥∥ι(k)∥∥2 ≤ L2

2B
4

3δpmax
,

which leads to

η

2

k∑
t=1

(1− θ)k−t
∥∥ι̂(k)nc

∥∥2 ≤ ηL2
ncB

4

6θδpmax

36

and

ĝnc(x̂
(k+1))− ĝnc(x̂(k)) ≤ −

θ

2η

∥∥x̂(k+1)
nc − x̂(k)nc

∥∥2 + ηL2
2B

4

6θδpmax
.

We can thus conclude that

ĝnc(x̂
(K))− ĝnc(x̂(0)) ≤ −

θ

2η

K−1∑
k=0

∥∥x̂(k+1)
nc − x̂(k)nc

∥∥2 + ηL2
2B

4K
6θδpmax

.

E.3.3 Function Value Decrease of f

Proposition 4. Let η ≤ 1/4 and 0 < θ ≤ 1. In the case where the “if condition” in Line 7 of
Algorithm 1 is triggered, we have

f(x(K))− f(x(0)) ≤ −3θδB2⌈log2(L1/δ)⌉
Kη

+ 36L2B
3 ≤ −

√
ϵ̃3

L2
,

where ϵ̃ = ϵ/p8max is defined in (4).

Proof. Combining Lemma 22 and Lemma 23, we obtain

ĝ(x̂(K))− ĝ(x̂(0)) ≤ − θ

4η

K−1∑
k=0

∥∥x̂(k+1) − x̂(k)
∥∥2 + 2ηL2

2B
4K

3θδpmax
≤ −3θδpmaxB

2

ηK
+

2ηL2
2B

4K
3θδpmax

,

following the condition in Line 7. Then, we can conclude that

f(x(K))− f(x(0)) = g(x(K))− g(x(0)) + (f(x(K))− g(x(K)))− (f(x(0))− g(x(0)))

≤ −3θδpmaxB
2

ηK
+

2ηL2
2B

4K
3θδpmax

+ 60L2B
3 ≤ −

√
ϵ̃3

L2

given that f is L2-Hessian Lipschitz, and ∥x(K) − x(0)∥ ≤ 7B by Lemma 20.

E.4 Small Gradient Case

In this subsection, we provide an upper bound on the gradient of the output of Algorithm 1 in the case
where the last iterate stays close enough to x(0), or more concretely, the “if condition” in Line 7 is not
triggered. Similar to Section E.3, we use {ĥ1, . . . , ĥd} to denote the set of orthonormal vectors such
that ĥi is the eigenvector of H with eigenvalue λi. We decompose these coordinates into Θ(pmax)
sets:

Sp :=
{
i : l̄p < λi ≤ l̄p+1

}
, ∀p ∈ N+ and pmin ≤ p ≤ pmax, (28)

where the definition of l̄p is given in (14). Then, the projector onto the eigenspace of eigenvectors
with indices in Sp equals∑

i∈Sp

ĥiĥ
⊤
i = Πp, ∀p ∈ N+ and pmin ≤ p ≤ pmax (29)

where Πp is defined in (18). Moreover, define

Sbase :=
{
i : λi < l̄pmin

}
. (30)

Then, the projector onto the eigenspace of eigenvectors with indices in Sp equals∑
i∈Sbase

ĥiĥ
⊤
i = Πbase, (31)

37

where Πbase is defined in (19). For any v̂ ∈ Rd, denote

v̂base := Πbasev̂, and v̂p := Πpv̂, ∀p ∈ N+ and pmin ≤ p ≤ pmax.

Moreover, for any p ∈ N+ and pmin ≤ p ≤ pmax, we define

ĝp(v̂) :=
〈
∇f̂(x̂(0)), v̂p − x̂(0)p

〉
+

1

2

(
v̂p − x̂(0)p

)⊤
H
(
v̂p − x̂(0)p

)
, (32)

and

ĝbase(v̂) :=
〈
∇f̂(x̂(0)), v̂base − x̂(0)base

〉
+

1

2

(
v̂base − x̂(0)base

)⊤
H
(
v̂base − x̂(0)base

)
, (33)

Then, we have ĝ(v̂) = ĝbase(v̂) +
∑pmax

p=pmin
ĝp(v̂) and

∇ĝ(v̂) = ∇ĝbase(v̂) +
pmax∑

p=pmin

∇ĝp(v̂.

E.4.1 Small Gradient of ĝp at xout

In this part, we show that the gradient of ĝp(xout) is small for any p ∈ N+ and pmin ≤ p ≤ pmax.
We define

M := I − ηH, Mp := Πp ·M ·Πp.

Lemma 24. For any v(k) ∈ Rd with the initial condition v(−1) = v(0) and γ(−1) = 0, that satisfies
the following recursion formula

v(k+1) = a ·Mv(k) − b ·Mv(k−1) + ι̂(k),

for some symmetric matrix M ∈ Rd×d and a, b ∈ R, we have

v(k) = ψk(M)v(0) +

k−1∑
j=0

P(M)k−j −Q(M)k−j

P(M)−Q(M)
· γ(j),

where

ψk(M) :=
I −Q(M)

P(M)−Q(M)
· P(M)k+1 +

P(M)− I
P(M)−Q(M)

· Q(M)k+1, ∀k ≥ 0, (34)

and

P(M) :=
aM +

√
a2M2 − 4bM

2
, Q(M) :=

aM −
√
a2M2 − 4bM

2
. (35)

Proof. The solution to the homogeneous part v(k+1) = a ·Mv(k) − b ·Mv(k−1) is

v(k) = ψk(M)v(0),

where

ψk(M) :=
I −Q(M)

P(M)−Q(M)
· P(M)k−1 +

P(M)− I
P(M)−Q(M)

· Q(M)k−1

with

P(M) =
aM +

√
a2M2 − 4bM

2
, Q(M) =

aM −
√
a2M2 − 4bM

2
.

Counting in the inhomogeneous part, for each ι̂(j), it leads to the following additional term in v(k)
for any k ≥ j:

P(M)k−j −Q(M)k−j

P(M)−Q(M)
· γ(j).

We can conclude that

v(k) = ψk(M)v(0) +

k−1∑
j=0

P(M)k−j −Q(M)k−j

P(M)−Q(M)
· γ(j).

38

Lemma 25 (Properties of P(Mp) and Q(Mp)). Let a := 2 − θ, b := 1 − θ. If η ≤ 1/4 and
θ ≤ η/(2pmax), for any p ∈ N+ and pmin ≤ p ≤ pmax, the matrices P(Mp) and Q(Mp) defined in
(35) satisfy

1. ∥P(Mp)∥ = ∥Q(Mp)∥ = b∥Mp∥ ≤ 1− η/pmax;

2.
∥∥∥ 1
P(Mp)−Q(Mp)

∥∥∥ ≤√pmax

η ;

3.
∥∥∥ I−Q(Mp)
P(Mp)−Q(Mp)

∥∥∥ =
∥∥∥ P(Mp)−I
P(Mp)−Q(Mp)

∥∥∥ ≤ 2
√

pmax

η

Proof. Observe that

P(Mp) :=
aMp +

√
a2M2

p − 4bMp

2
, Q(Mp) :=

aMp −
√
a2M2

p − 4bMp

2
.

Given the definition of Πp in (16), Mp satisfies
(1− ηrp)I ⪯Mp ⪯ (1− ηlp)I. (36)

If η ≤ 1/4 and θ ≤ η/(2pmax), we have a2M2
p − 4bMp ⪯ 0, which leads to

P(Mp) :=
aMp + i

√
−a2M2

p + 4bMp

2
, Q(Mp) :=

aMp − i
√
−a2M2

p + 4bMp

2
Therefore, we have

∥P(Mp)∥ = ∥Q(Mp)∥ =
1

2

∥∥(aMp)
2 + (−a2M2

p + 4bMp)
∥∥1/2

≤
√
b∥Mp∥ ≤ 1− η/pmax.

As for the second entry, since

P(Mp)−Q(Mp) = i
√
−a2M2

p + 4bMp,

by (36) and the value of a, b we have∥∥∥∥ 1

P(Mp)−Q(Mp)

∥∥∥∥ ≤√pmax

η

which leads to∥∥∥∥ I −Q(Mp)

P(Mp)−Q(Mp)

∥∥∥∥ =

∥∥∥∥ P(Mp)− I
P(Mp)−Q(Mp)

∥∥∥∥
≤ (1 + ∥P(Mp)∥) ·

∥∥∥∥ 1

P(Mp)−Q(Mp)

∥∥∥∥ ≤ 2

√
pmax

η
.

Lemma 26 (Bound on the difference between∇f̂p and∇ĝp). For any p ∈ N+ and pmin ≤ p ≤ pmax,
in the case where the “if condition” in Line 7 is not triggered, for any iteration k of Algorithm 1, we
have ∥ι̂(k)p ∥ ≤ 26−p/2pmax

∥∥ι(k)∥∥/√δ.

Proof. It follows from Proposition 2 that∥∥ι̂(k)p

∥∥ =
∥∥Πpι̂

∥∥ ≤ 2√
ϕ(2pδ)

∥∥Ĥ1/2Πpι̂
(k)
∥∥,

where ∥∥Ĥ1/2ι̂
∥∥ ≥ 2−5

1 + 2−p/4pmax
·
∥∥Ĥ1/2Πpι̂

(k)
∥∥ ≥ ∥∥Ĥ1/2Πpι̂

(k)
∥∥

64pmax

by Proposition 3, which leads to∥∥ι̂(k)p

∥∥ ≤ 26−p/2pmax√
δ

∥∥Ĥ1/2ι̂
∥∥ =

26−p/2pmax√
δ

∥∥ι(k)∥∥.

39

Lemma 27. If η ≤ 1
4 and θ ≤ η/(2pmax), then for any p ∈ N+ with pmin ≤ p ≤ pmax and any

0 < j ≤ k − 1 we have∥∥∥∥Ĥ1/2H

(
P(M)k−j −Q(M)k−j

P(M)−Q(M)

)
ι̂(j)p

∥∥∥∥ ≤ 128p
5/2
max√
η

(
1− η

pmax

)k−j∥∥ι(j)∥∥.
Proof. It follows from Lemma 25 that∥∥∥∥(P(M)k−j −Q(M)k−j

P(M)−Q(M)

)
ι̂(j)p

∥∥∥∥ ≤ ∥∥∥∥ 1

P(Mp)−Q(Mp)

∥∥∥∥ · ∥∥P(Mp)
k−j
∥∥ · ∥∥ι̂(j)p

∥∥
+

∥∥∥∥ 1

P(Mp)−Q(Mp)

∥∥∥∥ · ∥∥Q(Mp)
k−j
∥∥ · ∥∥ι̂(j)p

∥∥
≤ 2

√
pmax

η

(
1− η

pmax

)k−j∥∥ι̂(j)p

∥∥
where ∥∥ι̂(j)p

∥∥ ≤ 26−p/2pmax√
δ

∥∥ι(j)∥∥.
by Lemma 26. Since

H

(
P(M)k−j −Q(M)k−j

P(M)−Q(M)

)
ι̂(j)p = ΠpH

(
P(M)k−j −Q(M)k−j

P(M)−Q(M)

)
ι̂(j)p ,

we have ∥∥∥∥Ĥ1/2H

(
P(M)k−j −Q(M)k−j

P(M)−Q(M)

)
ι̂(j)p

∥∥∥∥
=

∥∥∥∥Ĥ1/2ΠpH

(
P(M)k−j −Q(M)k−j

P(M)−Q(M)

)
ι̂(j)p

∥∥∥∥
≤ 2p/2pmax

√
δ ·
∥∥∥∥Πp

(
P(M)k−j −Q(M)k−j

P(M)−Q(M)

)
ι̂(j)p

∥∥∥∥
≤ 21+p/2p3/2max

√
δ

η

(
1− η

pmax

)k−j∥∥ι̂(j)p

∥∥
≤ 128p

5/2
max√
η

(
1− η

pmax

)k−j∥∥ι(j)∥∥.
where the first inequality is by Proposition 2, and the second inequality follows from the fact that
∥H∥ ≤ 1.

Lemma 28. If η ≤ 1
4 and θ ≤ η/(2pmax), then for any p ∈ N+ with pmin ≤ p ≤ pmax, any vector

v̂ ∈ Rd, and any integer k ≥ 0, we have∥∥Ĥ1/2Hψj(Mp)v̂p
∥∥ ≤ 22+p/2p3/2max

√
δ

η

(
1− η

pmax

)k+1∥∥v̂p∥∥.
Proof. By the definition of ψ in (34) we have

ψk(Mp)v̂p =
I −Q(Mp)

P(Mp)−Q(Mp)
· P(Mp)

k+1v̂p +
P(Mp)− I

P(Mp)−Q(Mp)
· Q(Mp)

k+1v̂p

and ∥∥ψk(Mp)v̂p
∥∥ ≤ ∥∥∥∥ I −Q(Mp)

P(Mp)−Q(Mp)

∥∥∥∥ · ∥∥P(Mp)
k+1
∥∥ · ∥∥v̂p∥∥

+

∥∥∥∥ P(Mp)− I
P(Mp)−Q(Mp)

∥∥∥∥ · ∥∥Q(Mp)
j+1
∥∥ · ∥∥v̂p∥∥

≤ 4

√
pmax

η

(
1− η

pmax

)k+1∥∥v̂p∥∥
40

by Lemma 25. Since Hψk(Mp)v̂p = ΠpHψk(Mp)v̂p, we have∥∥Ĥ1/2Hψk(Mp)v̂p
∥∥ =

∥∥Ĥ1/2ΠpHψk(Mp)v̂p
∥∥

≤ 2p/2pmax

√
δ ·
∥∥ΠpHψk(Mp)v̂p

∥∥
≤ 2p/2pmax

√
δ
∥∥ψk(Mp)v̂p

∥∥
≤ 22+p/2p3/2max

√
δ

η

(
1− η

pmax

)k+1∥∥v̂p∥∥.
where the first inequality is by Proposition 2, and the second inequality follows from the fact that
∥H∥ ≤ 1.

Lemma 29. If η ≤ 1/4 and θ ≤ η/(2pmax), for any p ∈ N+ and pmin ≤ p ≤ pmax, in the case
where the “if condition” in Line 7 is not triggered, for any iteration k ≥ 0 of Algorithm 1 we have∥∥Ĥ1/2∇ĝp(x̂(k))

∥∥ ≤ 24+p/2δp2maxB

η3/2

(
1− η

pmax

)k+1

+
256L2B

2p
7/2
max

η1/2

Proof. For any iteration k, by (7) we have

x̂(k+1)
p = ŷ(k)p − η∇f̂p(ŷ(k))

= ŷ(k)p − ηH(ŷ(k)p − x̂(0)p)− η∇f̂p(x̂(0))− ηι̂(k)p

= x̂(k)p − η∇f̂p(x̂(0)) + (1− θ)(x̂(k)p − x̂(k−1)
p)

− ηH
(
x̂(k)p − x̂(0)p + (1− θ)(x̂(k)p − x̂(k−1)

p)
)
− ηι̂(k)p .

Denote x̃(k)p := x̂
(k)
p − x̂(0)p +H

†∇f̂p(x̂(0)). Then, the above equation is equivalent to

x̃(k+1)
p = x̃(k)p + (1− θ)(x̃(k)p − x̃(k−1)

p)− ηH
(
x̃(k)p + (1− θ)(x̃(k)p − x̃(k−1)

p)
)
− ηι̂(k)p

=
(
I − ηH

)(
(2− θ)x̃(k)p − (1− θ)x̃(k−1)

p

)
− ηι̂(k)p .

Let a := 2− θ, b := 1− θ. By Lemma 24 we have

x̃(k)p = ψk(Mp) · x̃(0)p − η
k−1∑
j=0

P(M)k−j −Q(M)k−j

P(M)−Q(M)
· ι̂(j)p , (37)

where

ψk(Mp) :=
I −Q(Mp)

P(Mp)−Q(Mp)
· P(Mp)

k+1 +
P(Mp)− I

P(Mp)−Q(Mp)
· Q(Mp)

k+1,

which leads to

Ĥ1/2∇ĝp(x̂(k)) = Ĥ1/2Hx̃(k)p = Ĥ1/2Hψk(Mp)x̃
(0)
p

− η
k−1∑
j=0

Ĥ1/2H · P(M)k−j −Q(M)k−j

P(M)−Q(M)
· ι̂(j)p . (38)

For the first term in (38), by Lemma 28 we have

∥∥Ĥ1/2Hψk(Mp)x̃
(0)
p

∥∥ ≤ 22+p/2p3/2max

√
δ

η

(
1− η

pmax

)k+1∥∥x̃(0)p

∥∥
where

∥x̃(0)p ∥ =
∥∥H†∇f̂p(x̂(0))

∥∥ ≤ √pmax

∥∥∇f̂p(x̂(0))∥∥
and ∥∥∇f̂p(x̂(0))∥∥ ≤ ∥∥∇f̂(x̂(0))∥∥ =

∥∥x̂(1) − x̂(0)∥∥
η

=
4
√
δpmaxB

η

41

which leads to ∥∥Ĥ1/2Hψk(Mp)x̃
(0)
p

∥∥ ≤ 24+p/2δp2maxB

η3/2

(
1− η

pmax

)k+1

.

As for the second term of (38), by Lemma 27 we have∥∥∥∥η k−1∑
j=0

Ĥ1/2H · P(M)k−j −Q(M)k−j

P(M)−Q(M)
· ι̂(j)p

∥∥∥∥ ≤ η k−1∑
j=0

∥∥∥∥Ĥ1/2H · P(M)k−j −Q(M)k−j

P(M)−Q(M)
· ι̂(j)p

∥∥∥∥
≤ 128p5/2maxη

1/2
k−1∑
j=0

(
1− η

pmax

)k−j∥∥ι(j)∥∥,
where for each j we have ∥∥ι(j)∥∥ ≤ 1

2
L2

∥∥y(j) − x(0)∥∥2 ≤ 2L2B
2

given that f is L2-Hessian Lipschitz. Hence,∥∥∥∥η k−1∑
j=0

Ĥ1/2H · P(M)k−j −Q(M)k−j

P(M)−Q(M)
· ι̂(j)p

∥∥∥∥
≤ 256L2B

2p5/2maxη
1/2

k−1∑
j=0

(
1− η

pmax

)k−j

≤ 256L2B
2p7/2max/η

1/2.

We can therefore conclude that∥∥Ĥ1/2∇ĝp(x̂(k))
∥∥ ≤ 24+p/2δp2maxB

η3/2

(
1− η

pmax

)k+1

+
256L2B

2p
7/2
max

η1/2
.

Lemma 30. If η ≤ 1/4 and θ ≤ η/(2pmax), for any p ∈ N+ and pmin ≤ p ≤ pmax, in the case
where the “if condition” in Line 7 is not triggered, we have∥∥Ĥ1/2∇ĝp(x̂out)

∥∥ ≤ 26+p/2δp2maxB

η3/2

(
1− η

pmax

)K/2

+
210L2B

2p
7/2
max

η1/2

Proof. Given that ŷ(k) = x̂(k) + (1− θ)(x̂(k) − x̂(k−1)) and that ĝp is quadratic, for any k ≥ 1 we
have

∇ĝp(ŷ(k)) = ∇ĝp(x̂(k)) + (1− θ)
(
∇ĝp(x̂(k))−∇ĝp(x̂(k−1))

)
,

which leads to∥∥Ĥ1/2∇ĝp(ŷ(k))
∥∥ ≤ (2− θ)

∥∥Ĥ1/2ĝp(x̂
(k))
∥∥+ (1− θ)

∥∥Ĥ1/2ĝp(x̂
(k−1))

∥∥
≤ 2
∥∥Ĥ1/2ĝp(x̂

(k))
∥∥+ ∥∥Ĥ1/2ĝp(x̂

(k−1))
∥∥

≤ 26+p/2δp2maxB

η3/2

(
1− η

pmax

)k
+

210L2B
2p

7/2
max

η1/2

by Lemma 29. Furthermore, since

x̂out =
1

K0 + 1− ⌊K/2⌋

K0∑
k=⌊K/2⌋

ŷ(t),

we have ∥∥Ĥ1/2∇ĝp(x̂out)
∥∥ ≤ 1

K0 + 1− ⌊K/2⌋

K0∑
k=⌊K/2⌋

∥∥Ĥ1/2ĝp(ŷ
(t))
∥∥

≤ 26+p/2δp2maxB

η3/2

(
1− η

pmax

)K/2

+
210L2B

2p
7/2
max

η1/2
.

42

E.4.2 Small Gradient of ĝbase at xout

Lemma 31. If η ≤ 1/4 and θ ≤ η/2, in the case where the “if condition” in Line 7 is not triggered,
we have

∥Ĥ1/2∇ĝbase(x̂out)∥ ≤
32ℓ
√
δpmaxB

ηK2
+

8θℓ
√
δpmaxB

ηK
+ 80p3/2maxL2B

2

for any ℓ that satisfies ∥∥Ĥ1/2v̂base
∥∥ ≤ ℓ · ∥v̂base∥, ∀v̂ ∈ Rd. (39)

Proof. The proof of this lemma has a similar structure as the proof of [29, Lemma 5]. Given that
ĝbase is quadratic,∇ĝbase(x̂out) can be expressed as

∇ĝbase(x̂out) =
1

K0 + 1−K/2

K0∑
k=⌊K/2⌋

∇ĝbase(ŷ(k)),

where we have

−∇ĝbase(ŷ(k)) =
1

η

(
x̂
(k+1)
base − ŷ

(k)
base

)
+ ι̂base

=
1

η

(
(x̂

(k+1)
base − x̂

(k)
base)− (1− θ)(x̂(k)base − x̂

(k−1)
base)

)
+ ι̂base

and

−η(K0 + 1−K/2)∇ĝbase(x̂out) = x̂
(K0+1)
base − x̂(K0)

base + θ
(
x̂
(K0)
base − x̂

(K/2)
base

)
+ η

K0∑
k=⌊K/2⌋

ι̂base,

where the last term satisfies∥∥∥∥Ĥ1/2
K0∑

k=⌊K/2⌋

ι̂base

∥∥∥∥ ≤ K0∑
k=⌊K/2⌋

∥∥Ĥ1/2ι̂base
∥∥ ≤ 40p3/2max

K0∑
k=⌊K/2⌋

∥∥Ĥ1/2ι̂
∥∥

≤ 80(K0 + 1−K/2)p3/2maxL2B
2

by Lemma 18. Hence,∥∥Ĥ1/2∇ĝbase(x̂out)
∥∥

≤ 4

ηK

∥∥Ĥ1/2(x̂
(K0+1)
base − x̂(K0)

base)
∥∥+ 4θ

ηK
∥Ĥ1/2(x̂

(K0)
base − x̂

(K/2)
base)∥+ 80p3/2maxL2B

2

≤ 4ℓ

ηK

∥∥x̂(K0+1)
base − x̂(K0)

base

∥∥+ 4θℓ

ηK
∥x̂(K0)

base − x̂
(K/2)
base ∥+ 80p3/2maxL2B

2

≤ 4ℓ

ηK

∥∥x̂(K0+1) − x̂(K0)
∥∥+ 4θℓ

ηK
∥x̂(K0) − x̂(K/2)∥+ 80p3/2maxL2B

2

where the second inequality is due to the condition given in (39). By the condition K0 ←
argmin⌊ 3K

4 ⌋≤t≤K−1

∥∥x̂(t+1) − x̂(t)
∥∥, we have

∥∥x̂(K0+1) − x̂(K0)
∥∥2 ≤ 1

K − ⌊3K/4⌋

K−1∑
k=⌊3K/4⌋

∥x(k+1)
base − x

(k)
base∥

2 ≤ 48δpmaxB
2

K2

given that the “if condition” in Line 7 is not triggered, which leads to

∥Ĥ1/2∇ĝbase(x̂out)∥ ≤
32ℓ
√
δpmaxB

ηK2
+

8θℓ
√
δpmaxB

ηK
+ 80p3/2maxL2B

2

Corollary 5. If η ≤ 1/4 and θ ≤ η/2, in the case where the “if condition” in Line 7 is not triggered,
we have

∥Ĥ1/2∇ĝbase(x̂out)∥ ≤
32p

3/2
maxδB

ηK2
+

8θp
3/2
maxδB

ηK
+ 80p3/2maxL2B

2

Proof. The desired inequality follows by combining Lemma 31 with Corollary 4.

43

E.4.3 Small Gradient of f at xout

Proposition 5. With the choice of parameters in Theorem 2, in the case where the “if condition” in
Line 7 is not triggered, we have

∥∥∇f(xout)∥∥ ≤ ϵ.
Proof. By Lemma 30 and Corollary 5, we have

∥∥∇g(xout)∥∥ =
∥∥Ĥ1/2ĝ(x̂out)

∥∥ =
∥∥∥Ĥ1/2

(
∇ĝ(x̂out) +

pmax∑
p=pmin

∇ĝp(x̂out)
)∥∥∥

≤
∥∥Ĥ1/2∇ĝbase(x̂out)

∥∥+ pmax∑
p=pmin

∥∥Ĥ1/2∇ĝp(x̂out)
∥∥

≤ 26+p/2δp3maxB

η3/2

(
1− η

pmax

)K/2

+
32p

3/2
maxδB

ηK2
+

8θp
3/2
maxδB

ηK
+

210L2B
2p

9/2
max

η1/2

=
26+p/2δp2maxB

η3/2

(
1− η

pmax

)K/2

+
40p

3/2
maxδB

ηK2
+

210L2B
2p

9/2
max

η1/2
,

and ∥∥∇f(xout)∥∥ ≤ ∥∥∇g(xout)∥∥+ ∥∥∇f(xout)−∇g(xout)∥∥
≤
∥∥∇g(xout)∥∥+ 2L2B

2

≤ 26+p/2δp2maxB

η3/2

(
1− η

pmax

)K/2

+
40p

3/2
maxδB

ηK2
+

211L2B
2p

9/2
max

η1/2
. (40)

Given that

K ≥ 2pmax

η
log

(
3× 26+p/2δp2maxB

η3/2ϵ

)
,

the first term of (40) satisfies

26+p/2δp2maxB

η3/2

(
1− η

pmax

)K/2

+
40p

3/2
maxδB

ηK2
+

211L2B
2p

9/2
max

η1/2
≤ ϵ

3
.

Furthermore, the second and the third term satisfy

40p
3/2
maxδB

ηK2
≤ ϵ

3
,

211L2B
2p

9/2
max

η1/2
≤ ϵ

3
,

respectively. We can thus conclude that
∥∥∇f(xout)∥∥ ≤ ϵ.

E.5 Putting Everything Together

In this section, we give the proof of Theorem 2, and present an additional Lemma that characterizes
the suboptimality of xout, the output of Algorithm 1.

Proof of Theorem 2. By combining Proposition 4 and Proposition 5, we know that at least one of the
two conditions in the theorem statement must hold. As for the distance between xout and x(0), in the
case where the “if condition” in Line 7 is triggered, we have∥∥xout − x(0)∥∥ =

∥∥x(K) − x(0)
∥∥ ≤ 7B

by Lemma 20. Otherwise,

∥∥xout − x(0)∥∥ ≤ 1

K0 + 1− ⌊K/2⌋

K0∑
k=⌊K/2⌋

∥∥y(k) − x(0)∥∥ ≤ 2B

by Lemma 19.

44

Lemma 32. In the case where the “if condition” in Line 7 is triggered, the output xout of Algorithm 1
satisfies

f(xout)− f(x(0)) ≤ 6δϵ

L2
+
L
1/2
2 ϵ3/2

162
.

Proof. In the case where the “if condition” in Line 7 is triggered, we have

xout ← 1

K0 + 1− ⌊K/2⌋

K0∑
k=⌊K/2⌋

y(k),

where in each iteration k we have∥∥Ĥ1/2
(
y(k) − x(0)

)∥∥ ≤ 2
∥∥Ĥ1/2

(
x(k) − x(0)

)∥∥+ ∥∥Ĥ1/2
(
x(k−1) − x(0)

)∥∥ ≤ 6
√
3δpmaxB,

which leads to∥∥Ĥ1/2
(
xout − x(0)

)∥∥ ≤ 1

K0 + 1− ⌊K/2⌋

K0∑
k=⌊K/2⌋

∥∥Ĥ1/2
(
y(k) − x(0)

)∥∥ ≤ 6
√

3δpmaxB.

Hence,

g(xout)− g(x(0)) = 1

2

(
xout − x(0)

)⊤∇2f(x(0))
(
xout − x(0)

)
≤ 1

2

(
xout − x(0)

)⊤
Ĥ
(
xout − x(0)

)
≤ 54δpmaxB

2 ≤ 6δϵ

L2
.

Meanwhile,

f(xout)− g(xout) ≤ L2

6

∥∥xout − x(0)∥∥3 ≤ ϵ3/2

6L
1/2
2

,

by which we can conclude that

f(xout)− f(x(0)) ≤ 6δϵ

L2
+

ϵ3/2

6L
1/2
2

.

F Analysis of Algorithm 2

Lemma 1. Suppose ϵ ≤ L2
1/L2. In each iteration t of Algorithm 2 before it terminates, we have

f(x(t+1))− f(x(t)) ≤ −p̃−12
√
ϵ3/L2

if x(t+1) is not ϵ-critical for f , where we denote p̃ = max{⌈log(L1/δ̃)⌉, 16}.

Proof. If the current H satisfies H ≺ −2δ̃I , by Line 7 and Line 8 we have

f(x(t+1))− f(x(t)) ≤ ⟨∇f(x(t)), Rv⟩+ R2

2
v⊤∇2f(x(t))v +

L2R
3

6

≤ R2

2
v⊤∇2f(x(t))v +

δ̃R2

6
,

where

v⊤∇2f(x(t))v = v⊤Hv + v⊤(∇2f(x(t))−H)v

≤ −2δ̃ +
∥∥∇2f(x(t))−H

∥∥
≤ −2δ̃ +min

{∥∥∇2f(x(t))−∇2f(x̄)
∥∥+ ∥∥∇2f(x̄)−H

∥∥, 2L1

}
= −2δ̃ +min{L2R+ δ, 2L1} = −δ̃,

45

which leads to

f(x(t+1))− f(x(t)) ≤ −1

3
δ̃R2 ≤ −1

3
L2R

3 ≤ − 1

p̃12

√
ϵ3

L2
.

Otherwise,
x(t+1) = Critical-or-Progress

(
x(t), H, 2δ̃, ϵ, L1, L2

)
,

which by Theorem 2 satisfies

f(x(t+1))− f(x(t)) ≤ − 1

p̃12

√
ϵ3

L2

if ∥∇f(x(t+1))∥ > ϵ.

Lemma 33. Let 0 < ϵ ≤ min{L2
1L

−1
2 ,∆2/3L

1/3
2 }. The output xout of Algorithm 2 satisfies

∥∥xout − x(0)∥∥ ≤ 3∆

ϵ
log8

(
L1

cδ
+ 16

)
and

f(xout)− f(x(0)) ≤ 54cδϵ

L2
log8

(
L1

cδ
+ 16

)
+

ϵ3/2

6L
1/2
2

,

where cδ := min {L1, δ +∆L2/(nHϵ)}.

Proof. Suppose Algorithm 2 terminates at the T -th iteration. For any t < T − 1, by Proposition 4
we have

f(x(t+1))− f(x(t)) ≤ 1

p̃12

√
ϵ3

L2
,

indicating that

T ≤ p̃12∆
√
L2/ϵ3.

Since ∥∥x(t+1) − x(t)
∥∥ ≤ 7

3p̃4

√
ϵ

L2

in each iteration t by (4) and Theorem 2, we have∥∥xout − x(0)∥∥ =
∥∥x(T) − x(0)

∥∥ ≤ 3p̃8∆/ϵ ≤ 3∆

ϵ
log8

(
L1

cδ
+ 16

)
As for the function value change in last iteration, by Lemma 32, we have

f(xout) = f(x(T)) ≤ f(x(T −1)) +
54δ̃ϵ

L2
+
L2ϵ

3/2

6L
1/2
2

.

Summing over all the iterations, we can conclude that

f(xout)− f(x(0)) ≤ 18cδϵ

L2
log8

(
L1

cδ
+ 16

)
+

ϵ3/2

6L
1/2
2

.

46

G Analysis of Algorithm 3

Lemma 34. Given f := Rd → R with L2-Lipschitz Hessian, for any x ∈ Rd and any symmetric H
satisfying ∥H −∇2f(x)∥ ≤ δ, denote

y ← x− (ΠlargeHΠlarge)
†∇f(x).

If ℓ ≥ max{24∆1/3
x L

2/3
2 , 2δ} for ∆x = f(x)− infz∈Rd f(z), we have

∥Πlarge∇f(y)∥ ≤ 2δ

√
3∆x

ℓ
+

6L2∆x

ℓ

and

∥Πsmall∇f(y)∥ ≤ ∥Πsmall∇f(x)∥+ 2δ

√
3∆x

ℓ
+

6L2∆x

ℓ
.

Proof. Denote u := y − x = −(ΠlargeHΠlarge)
†∇f(x). We first show that ∥u∥ ≤ ℓ/L2. Assume

the contrary, we have

f
(
x+

ℓ

L2
· u

∥u∥

)
− f(x) ≤ − ℓ

2

(ℓ

L2

)2
+
δ

2

(ℓ

L2

)2
+
L2

6

(ℓ

L2

)3
≤ − ℓ3

12L2
2

≤ −2∆x,

contradiction. Then, we have

−∆x ≤ f(y)− f(x) ≤ −
1

2
u⊤∇2f(x)u+

1

6
L2∥u∥3 ≤

ℓ∥u∥2

12

which leads to ∥u∥ ≤ 2
√
3∆x/ℓ. Then, we have

∥Πlarge∇f(y)∥ ≤ ∥Πlarge∇f(x)−ΠlargeHu∥+ ∥Πlarge(H −∇2f(x))u∥+ 1

2
L2∥u∥2

≤ δ∥u∥+ 1

2
L2∥u∥2 ≤ 2δ

√
3∆x

ℓ
+

6L2∆x

ℓ
.

Similarly, we have

∥Πsmall∇f(y)∥ ≤ ∥Πsmall∇f(x)∥+ ∥ΠsmallHu∥+ ∥Πsmall(H −∇2f(x))u∥+ 1

2
L2∥u∥2

≤ ∥Πsmall∇f(x)∥+ 2δ

√
3∆x

ℓ
+

6L2∆x

ℓ
.

Theorem 4. Let Alg(f≤L1 , L1, L2, δ,∆, ϵ) be a procedure that, for any function f≤L1 : Rd → R
with L1-Lipschitz gradient, L2-Lipschitz Hessian, and ∆-bounded suboptimality, uses

• nH queries to a δ-approximate Hessian oracle for f≤L1
, and,

• ng(L1, L2, δ,∆, ϵ) queries to a gradient oracle for f≤L1
,

and returns an ϵ/2-critical point xout satisfying ∥xout − x(0)∥ ≤ Rout and f(xout)− infz f(z) ≤
∆out. Then, for any f with L2-Lipschitz Hessian and ∆-bounded suboptimality, any 0 < ϵ ≤
min{L2

1L
−1
2 ,∆2/3L

1/3
2 }, and any ℓ that satisfies

ℓ ≥ max

{
800∆

ϵ2
(L2Rout + δ)2,

48L2∆out

ϵ
, 24∆

1/3
outL

2/3
2 , 2δ

}
. (12)

Algorithm 3 returns an ϵ-critical point using

• nH + 1 queries to a δ-approximate Hessian oracle for f , and,

• ng(ℓ, L2, δ,∆, ϵ) queries to a gradient oracle for f .

47

Proof. By Lemma 34 we have

∥∇f(y)∥ ≤ ∥Πlarge∇f(y)∥+ ∥Πsmall∇f(y)∥

≤ ∥Πsmall∇f(xout) + 4∥H −∇2f(xout)∥
√

3∆out

ℓ
+

12L2∆out

ℓ

≤ ϵ

2
+ 4(δ + L2Rout)

√
3∆out

ℓ
+

12L2∆out

ℓ
≤ ϵ

given the choice of ℓ in (12).

Corollary 2. Let f : Rd 7→ R L2-Lipschitz Hessian. Given any x(0) ∈ Rd with ∆-bounded sub-
optimality with respect to f , any positive integer nH ≥ 1, and 0 < ϵ ≤ ∆2/3L

1/3
2 , Algorithm 3

using Algorithm 2 as the subroutine Alg outputs an ϵ-critical point of f with at most nH queries to a
δ-approximate Hessian oracle and

O

(
∆L

1/4
2

ϵ7/4

√
δ +

∆L2

nHϵ
· poly log

(
1

cδ

(
L2
2∆

3

ϵ4
+

∆δ2

ϵ2
+ δ

)))
queries to a gradient oracle for f .

Proof. Set

∆out = 54

(
∆+

δϵ

L2

)
log9

(
ℓ̂

cδ
+ 16

)
+

ϵ3/2

6L
1/2
2

,

ℓ := ℓ̂ log19
(
ℓ̂/cδ

)
,

Rout =
3∆

ϵ
log9

(
ℓ̂

cδ
+ 16

)
,

(41)

where

ℓ̂ := max

{
800∆

ϵ2

(3L2∆

ϵ
+ δ
)2
, 2δ

}
= O

(
L2
2∆

3

ϵ4
+

∆δ2

ϵ2
+ δ

)
. (42)

Observe that the above parameters satisfy

ℓ ≥ max

{
800∆

ϵ2
(L2Rout + δ)2,

48L2∆out

ϵ
, 24∆

1/3
outL

2/3
2 , 2δ

}
,

which gives ∥∥xout − x(0)∥∥ ≤ Rout, f(xout)− inf
x∈Rd

f(x) ≤ ∆out

by Lemma 33, where xout is the output of Restarted-Approx-Hessian-AGD when ap-
plied to f≤ℓ. Then by Theorem 4, Algorithm 3 outputs an ϵ-critical point. Since
Restarted-Approx-Hessian-AGD starts by querying the δ-approximate Hessian oracle at x(0), the
query in Line 3 can be reused, and there are a total of at most nH queries to a δ-approximate Hessian
oracle and

2∆L
1/4
2

ϵ7/4

√
min

{
ℓ, δ +

∆L2

nHϵ

}
· log18

(
ℓ̂

cδ
+ 16

)
= O

(
∆L

1/4
2

ϵ7/4

√
δ +

∆L2

nHϵ
· poly log

(
1

cδ

(
L2
2∆

3

ϵ4
+

∆δ2

ϵ2
+ δ

)))
queries to a gradient oracle.

48

	Introduction
	Our Results

	Our Algorithms
	Critical or Progress using Approximate Hessians
	Restarted Approximate Hessian AGD
	Removing the L1-Lipschitz Gradient Assumption
	Proof of Theorem 1

	Conclusion
	Overview and Notation of the Appendix
	Comparison Between jiang2024improved and Prior Works
	Properties of H"0362H
	Tools from Matrix Perturbation Theory and Extensions
	Definition of Projectors
	The Davis-Kahan Theorem
	Properties of "0362p+ and p+
	Properties of "0362p-, "0362p and p-,p
	The Connection between H"0362H1/2 and H"0362H1/2p
	Properties of base

	Analysis of Algorithm 1
	Quadratic Approximation of f Near x(0)
	Movement Bounds of the Iterates
	Function Value Decrease Case
	Function Value Decrease of `3́9`42`"̇613A``45`47`:"603Asc
	Function Value Decrease of `3́9`42`"̇613A``45`47`:"603Anc
	Function Value Decrease of f

	Small Gradient Case
	Small Gradient of p at xout
	Small Gradient of base at xout
	Small Gradient of f at xout

	Putting Everything Together

	Analysis of Algorithm 2
	Analysis of Algorithm 3

