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Abstract

Extracting structured representations from raw visual data is an important and long-standing
challenge in machine learning. Recently, techniques for unsupervised learning of object-centric
representations have raised growing interest. In this context, enhancing the robustness of
the latent features can improve the efficiency and effectiveness of the training of downstream
tasks. A promising step in this direction is to disentangle the factors that cause variation in
the data. Previously, Invariant Slot Attention disentangled position, scale, and orientation
from the remaining features. Extending this approach, we focus on separating the shape and
texture components. In particular, we propose a novel architecture that biases object-centric
models toward disentangling shape and texture components into two non-overlapping subsets
of the latent space dimensions. These subsets are known a priori, hence before the training
process. Experiments on a range of object-centric benchmarks reveal that our approach
achieves the desired disentanglement while also numerically improving baseline performance
in most cases. In addition, we show that our method can generate novel textures for a
specific object or transfer textures between objects with distinct shapes.

1 Introduction

A key challenge in deep learning is to learn data representations that can be leveraged in a multitude of
downstream tasks. The promise of exploiting large unlabeled datasets has driven research in unsupervised
and self-supervised settings, despite the inherent complexity of this task. In the context of computer vision,
recent works focus on representing, without supervision, visual scenes composed of multiple objects as sets of
latent vectors centered around objects (Burgess et al., 2019; Greff et al., 2019; Engelcke et al., 2019; 2021;
Locatello et al., 2020). This object-centric strategy allows for more structured representations compared to
single flat vector encodings of complete images. With single flat vectors, multiple objects can be entangled in
components of the same representation or separated into distinct dimensions. However, even when separated,
objects still cannot share features of common properties such as their position. Instead, with object-centric
vectors, visual entities are encoded as individual vectors within the same space, improving generalization
and interpretability as entities are clearly divided but described by the same features. On top of that, these
representations naturally scale to an increasing number of objects. Our work is based on this approach, often
referred to as object-centric representation learning.

Disentanglement is considered a central aspect of learning robust representations of complex and structured
visual scenes (Bengio et al., 2013). The term refers to the encoding of different factors of variation in the data
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Figure 1: Architecture of DISA. The input image (top-left) is first fed through a Sobel filter to partly remove
texture information (bottom-left). This filtered image is then encoded and passed through an Invariant Slot
Attention (Biza et al., 2023) module to extract object-centric shape (Shapei), position (Pi), and scale (Si)
vectors (bottom-middle). This information is used to decode a mask for each object (bottom-right). The
initial input image is encoded (top-left) and then combined with the object attention masks from the ISA
module to produce a texture vector (Texturei) per object (top-middle). These texture representations are
combined with their associated shape, position, and scale to decode the textures of the objects (top-right).
Note that we need to add the shape, location, and scale information as the texture decoding should fit the
already predicted masks. Finally, the decoded masks and textures are combined into an image reconstruction
(right).

into separate dimensions of the latent space. Disentanglement can provide different advantages, including
(1) enhanced interpretability of the learned features, (2) compositional generalization beyond the training
data distribution, and (3) helping the learning of relevant yet unknown downstream tasks (e.g., in the
context of reinforcement learning). Prior probabilistic work on object-centric representation learning (Burgess
et al., 2019; Greff et al., 2019) exploited VAEs (Kingma & Welling, 2013) and spatial broadcast decoders
(Watters et al., 2019), which helped the disentanglement of the features. In contrast, the non-probabilistic
approach of Slot Attention (SA) (Locatello et al., 2020) extracts object vectors based on a competitive
cross-attention mechanism. However, the latter method lacks clear property-level disentanglement, as shown
in Singh et al. (2022). Biza et al. (2023) proposed an extension of SA, namely Invariant Slot Attention
(ISA), aimed at learning object representations invariant to position, orientation, and scale, allowing for the
explicit disentanglement of those three factors. However, to the best of our knowledge, no research has been
carried out on the explicit disentanglement of the texture and shape dimensions in unsupervised object-centric
learning, especially with non-probabilistic models. Note that, by the term explicit, we refer to the process of
choosing which latent components will be responsible for encoding certain factors, knowing them a priori. In
contrast, probabilistic models such as VAE or β-VAE (Higgins et al., 2016) cannot enforce which properties
to disentangle and control where they should be encoded. Possible benefits of explicit disentanglement
include easier interpretation and more reliable modeling of structured latent spaces. Moreover, it creates the
possibility of designing objectives that exploit this prior knowledge from the beginning, removing the need to
analyze and interpret the latent components during or after the training process.

Our work focuses on biasing object-centric models toward explicitly disentangling the groups of features
responsible for encoding shape and texture information into two non-overlapping subsets of the latent space
dimensions. By building upon ISA, we combine the separation of position and scale with that of texture
shape. As these are core properties of objects, this result can be crucial for further improving the internal
structure of the learned representations, especially in a non-probabilistic setting. To disentangle texture
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and shape, we design a novel architecture that employs two encoder-decoder pairs. The first pair encodes
shape information and decodes object masks; the second pair represents and predicts object textures. In
addition, a filter (e.g. Sobel filter, Sobel & Feldman (1968)) is used to partly remove texture information
from the input image before feeding it to the shape encoder, helping to prevent texture information from
flowing into shape-related latent components. Furthermore, a regularization term is introduced to reduce
the variance of the latent features across slots, helping to deter shape information from being included in
texture-related components and vice versa. We name our approach DIsentangled Slot Attention (DISA).
DISA is characterized by a latent space divided into four distinct groups known since the beginning of the
training process: the first two encoding texture and shape, the third position, and the last one scale (Figure
1).

Our experimental evaluations indicate that, in most cases, DISA introduces the desired disentanglement
property, enabling novel generative and compositional capabilities. At the same time, DISA is competitive
with or outperforms the baselines at scene decomposition on three well-known synthetic datasets, while
achieving significantly improved reconstruction quality. As such, DISA enhances both the interpretability
and reconstruction quality (information content) of learned object-centric image representations.

2 Background

2.1 Slot Attention

The Slot Attention (SA) module is an architectural component proposed by Locatello et al. (2020) based
on the concept of cross-attention (Luong et al., 2015; Vaswani et al., 2017). Its aim is to bind a set of
latent vectors called slots to different objects, seen as parts of the input perceptual representations, through
multiple iterations of a competitive attention mechanism. The set of Ns slots S ∈ RNs×ds is initialized
either as learnable vectors or by independently sampling each from a Gaussian distribution with shared
and learnable parameters. The Nx input representations are obtained by augmenting the feature vectors
X ∈ RNx×dx at the output of a CNN backbone with positional embeddings g(G), where G is a flattened grid
encoding absolute positions and g a linear mapping from the grid coordinates space to dimension dx. These
augmented inputs are then passed through an MLP f , normalized using layer normalization (LayerNorm)
(Ba et al., 2016) and finally projected as keys and values K, V ∈ RNx×d of a common dimension d through
the linear transformations k, v : Rdx → Rd. At each of the T iterations, the slots from the previous round are
(independently) normalized, mapped as queries Q ∈ RNs×d by q : Rds → Rd, and then refined.

At a given refinement step t of the Slot Attention mechanism, the previous slots St−1 are mapped as queries
and fed to the competitive cross-attention module, which yields one vector Ui for each Qi, referred to as
update. The updates are then passed as inputs to a shared Gated Recurrent Unit (GRU) (Cho et al., 2014),
while the associated slot vectors from St−1 are set as hidden states. The outputs, which are updated hidden
states, are transformed by a shared MLP with a residual connection (He et al., 2016), resulting in the new
slot vectors St. The competition between slots for explaining part of the input is induced by an additional
normalization in the cross-attention mechanism, performed by using the softmax function over the queries
before linearly normalizing over the keys. Formally, the attention coefficients are computed as

ŵij = eMij∑Ns

l=1 eMlj

where M = QK⊤
√

d
∈ RNs×Nx , (1)

producing a probability distribution over the slots for each input vector. After that, the update vectors Ui

are calculated as

Ui =
Nx∑
j=1

wijVj with wij = ŵij∑Nx

l=1 ŵil

such that
Nx∑
j=1

wij = 1 . (2)

It is possible to exploit Slot Attention, coupled with a backbone, as a structured encoder in an autoencoder
architecture. The model is trained end-to-end to represent an input image as a set of latent vectors that
are decoded back to the original image. A shared spatial broadcast decoder (Watters et al., 2019) is used
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to decode the slots individually: each is repeated in a H × W grid, augmented with positional embeddings,
and passed through a series of convolutional layers. The output is an H × W × 4 tensor, where the first
three channels correspond to RGB components, while the last one is the alpha mask of the decoded object.
The reconstructed image is computed as the sum of the RGB predictions weighted by the alpha masks. At
training time, the model parameters are optimized to minimize the mean squared error (MSE) between the
reconstructed and input pixels.

2.2 Slot-Centric Reference Frames

With Invariant Slot Attention (ISA), Biza et al. (2023) presented a mechanism for introducing per-object
invariances to introduce transformations in the latent representations. To achieve this, slot-centric relative
grids are produced by translating, scaling, and rotating the absolute positional encodings, with the aim of
processing the feature vectors in canonical reference frames. The rotation invariance is not covered in this
section as it is not employed in our method.

At the first iteration of Slot Attention, translation and scaling factors Spos
i and Sscale

i associated with the slot
Si can be randomly sampled or learned. The relative grid is then computed and its projection is summed to
the feature vectors X to obtain per-object keys and values Ki, Vi ∈ RNx×d:

Gi = G − Spos
i

Sscale
i

and Ki = f(k(X) + g(Gi)) , Vi = f(v(X) + g(Gi)) . (3)

Ki is then processed by competitive cross-attention (Equation 1) with the query derived from Si to yield Mi,
finally used to compute wi and Ui with Vi (Equation 2). During the next iteration, wi is used to extract the
new translation and scaling factors as

Spos
i =

∑Nx

j=1 wijGj∑Nx

j=1 wij

and Sscale
i =

√√√√∑Nx

j=1 (wij + ϵ)(Gj − Spos
i )2∑Nx

j=1 (wij + ϵ)
, (4)

which are again employed to calculate the relative grid of the i-th object. Note that the grids have two
dimensions (horizontal and vertical) with values in the range [−1, 1].

During the decoding phase, the relative frames are used again to provide back position and scale information
and ensure invariant decoding of the objects. In this case, the last translation and scaling factors are exploited
to compute the grids as in Equation 3 and added to the broadcasted slots.

3 Related Work

Object-centric representation learning The method we propose is aimed at models learning object-
centric representations of visual scenes. These approaches, learning in an unsupervised or self-supervised
manner, are capturing increasingly more attention. A first line of work in this direction is defined by AIR
(Eslami et al., 2016). AIR performs probabilistic inference employing a recurrent neural network (RNN) that
attends and processes one object in a scene at a time. Subsequent work extended this idea in order to solve
some of its limitations, such as the SQAIR approach (Kosiorek et al., 2018), SuPAIR (Stelzner et al., 2019),
and others (Crawford & Pineau, 2019; Jiang et al., 2019; Lin et al., 2020). Further advances in object-centric
representation learning include Tagger (Greff et al., 2016), Multi-Entity Variational Autoencoder (MVAE)
(Nash et al., 2017), and Neural Expectation Maximization (N-EM) (Greff et al., 2017) with its extension
R-NEM (Van Steenkiste et al., 2018). More recently, Burgess et al. (2019); Greff et al. (2019); Engelcke et al.
(2019; 2021) achieved meaningful decomposition of non-trivial scenes with a variable number of objects, e.g.,
in the CLEVR dataset (Johnson et al., 2017). Finally, Slot Attention (Locatello et al., 2020), along with
various extensions (Kipf et al., 2021; Singh et al., 2021; Chang et al., 2022; Jia et al., 2022; Biza et al., 2023;
Kori et al., 2023), introduces a non-probabilistic iterative mechanism that is competitive with its predecessors
while being faster to train and more memory efficient.
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Disentanglement in object-centric learning Probabilistic models such as in Burgess et al. (2019); Greff
et al. (2019) can obtain a degree of disentanglement due to their foundation on the VAE framework. Differently
yet still in a probabilistic setting, Anciukevicius et al. (2020) works toward the explicit disentanglement of
position and depth. Mansouri et al. (2022), instead, exploits weak supervision from sparse perturbations
and causal representation learning to disentangle object properties. In a non-probabilistic setting, Singh
et al. (2022) learns disentangled representations in a non-explicit manner, while Biza et al. (2023) introduces
invariance to changes in position, scale, and rotation with the use of slot-centric reference frames, allowing
for the explicit disentanglement of those three factors. We exploit the concept of slot-centric reference frames
in our work. Furthermore, similarly to Anciukevicius et al. (2020); Biza et al. (2023), we possess a priori
knowledge of which of the latent dimensions are associated with a disentangled factor, in contrast with, e.g.,
Burgess et al. (2019); Greff et al. (2019); Singh et al. (2022), where this knowledge can only emerge after
training. Prabhudesai et al. (2020) explicitly disentangles shape and texture in object-centric learning but
relies on ground-truth bounding boxes and multiple viewpoints per static scene (more in Appendix C). To
the best of our knowledge, no research dealt with the explicit disentanglement of texture and shape factors in
unsupervised object-centric learning, which is the aim of our work.

Texture and shape disentanglement Outside the scope of object-centric learning, approaches including
Shu et al. (2018); Lorenz et al. (2019); Yan et al. (2023) attempt to disentangle shape and texture in the
domain of single-object images. Deforming Autoencoders (Shu et al., 2018) employs a pair of decoders,
of which one synthesizes appearance in a deformation-free coordinate system, while the other estimates a
deformation field that warps the texture into the input image. One aspect that aligns with our work is the
adoption of two separate decoders for texture and shape synthesis. Lorenz et al. (2019) aims to disentangle
appearance and shape in the representations of multiple parts of a single object class, without supervision. To
do so, they introduce into the reconstruction task three invariance and equivariance constraints, by exploiting
texture and shape transformations of an input image (more in Appendix C). Finally, TSD-GAN (Yan et al.,
2023) uses an adversarial framework to learn to both reconstruct the item in an input image and mix it with
the item from another sample.

4 Methods

The primary aim of our work is to induce object-centric models to learn representations characterized by the
explicit, and thus known a priori, separation of the groups of features encoding texture and shape information.
To allow for this, we propose an architectural design along with a simple regularization of the latent space.
We apply our approach to Invariant Slot Attention (ISA) and call the resulting model DISA, for DIsentangled
Slot Attention (Figure 1). The choice of ISA enables us to further integrate the explicit disentanglement of
position and scale in our model by leveraging slot-centric reference frames.

4.1 Architectural Design

Consider a generic architecture for unsupervised object discovery, encoding an image into a set of latent
representations (slots) and decoding them as pairs of mask and texture reconstructions. We want the slots
to have a first subset of their components encoding texture information only (e.g. material and color),
a second one encoding only shape information, and the rest of the dimensions representing what is still
unexplained, such as position and scale. To store shape information within the shape group, we decode
object masks exclusively using those components, as knowledge of an entity’s shape is essential for accurate
masking prediction. Similarly, we want to force texture information inside the texture group, which we
achieve through a separate decoder that infers object textures from those components. However, as textures
need to be decoded according to the associated object shape, shape information would also flow into the
texture group. To avoid this, we let the texture decoder exploit both texture and shape subsets. Nevertheless,
the current design (with two decoders) allows the shape components to encode all the necessary information,
which would thwart all our efforts. Therefore, we ultimately employ two distinct encoders: one extracts and
represents texture information from the input image into the texture group, while the other encodes the
shape information inside the shape group starting from a filtered input. The filter should ideally remove all
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the texture information from the image, but in practice, it can be sufficient to erase part of it to bias the
model as we desire.

As it is, the design does not yet deal with position and scale information, which would thus end up in the
texture and shape groups instead of two different ones. Moreover, the texture components could still include
some shape-related information and vice versa. We address these limitations in the next section with the
implementation of DISA.

4.2 Disentangled Slot Attention

In order to implement the design described in Section 4.1 while addressing its stated limitations, we extend
Invariant Slot Attention according to the above principles (Figure 1) and train it with the reconstruction loss
along with a simple latent space regularization.

Let X ∈ [0, 1]H×W ×3 be an RGB input image, X̂ ∈ RH×W
+ be X processed with a Sobel filter, and

Φtex : [0, 1]H×W ×3 → RNx×dx , Φshape : RH×W
+ → RNx×dx the texture and shape CNN backbones. First, the

texture and shape input representations are obtained respectively as Xtex = Φtex(X ) and Xshape = Φshape(X̂ ).
Then, the ISA mechanism (Section 2.2) is applied to Xshape: at each iteration t, the keys and values relative
to an object i are computed as

Ki
shape = fshape(kshape(Xshape) + gshape(Gi)) and Vi

shape = fshape(vshape(Xshape) + gshape(Gi)) , (5)

where Gi is calculated using Spos
i and Sscale

i from the previous iteration. Ki
shape and Vi

shape are used with Qi as
in Equations 1,2 to yield wi and Ui, necessary to get the new shape-related vector Sshape

i = hshape(Sshape
i , Ui).

hshape represents the GRU followed by a residual MLP. At t = T , the final shape vectors, which are invariant
to position and scale, are returned and employed in an additional iteration t = T + 1 to get the final attention
coefficient wi, position vector Spos

i , and scale vector Sscale
i .

As the objects in the image are already discovered, there is no need to apply an additional ISA mechanism to
extract the texture-related vectors. Instead, the last wi, Spos

i , and Sscale
i can be exploited to combine Xtex (in

a position and scale invariant manner) according to the final ISA iteration as

Stex
i = htex

 Nx∑
j=1

wijVi
texj

 with Vi
tex = ftex(vtex(Xtex) + gtex(Gi)) . (6)

In this case, htex is simply an MLP without residual connection and not preceded by a GRU. Note that
Stex ∈ RNs×dtex , Sshape ∈ RNs×dshape , and Spos, Sscale ∈ RNs×2, hence each object is represented by a slot of
dimension dtex + dshape + 2 + 2.

Finally, the texture and mask of the i-th object are inferred by two spatial broadcast decoders, where the
broadcasted slots are augmented with the relative frame obtained with Spos

i and Sscale
i . Specifically, the mask

decoder input is composed exclusively by the shape vector Sshape
i , while the texture decoder is fed with the

concatenation of Stex
i and Sshape

i .

We train the parameters of DISA with the reconstruction loss along with a simple regularization on the
variance of the latent features across slots:

L = Lrec + λ

 1
dtex

dtex∑
l=1

Var(Stexl) + 1
dshape

dshape∑
l=1

Var(Sshapel)

 (7)

where Stexl = (Stex
1l , . . . , Stex

Nsl), Sshapel = (Sshape
1l , . . . , Sshape

Nsl ). When the loss is computed over a batch of
images, Ns becomes Ns times the number of images in the batch. The second term is introduced with the
purpose of removing the remaining shape-related information from Stex and texture-related information from
Sshape. In fact, the same texture can be encoded slightly differently when belonging to objects with distinct
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Table 1: BG-ARI and FG-ARI (↑) averaged over 3 seeds and represented as percentages, in the format
mean ± stddev. FG-ARI excludes the background and only considers the foreground objects, while BG-ARI
considers both foreground and background. For ISA (on Tetrominoes and CLEVR6) and SA, we perform 10
evaluations of each test image to address the stochasticity arising from the sampling (Appendix D.1).

BG-ARI FG-ARI
Tetrominoes Multi-dSprites CLEVR6 CLEVRTex Tetrominoes Multi-dSprites CLEVR6 CLEVRTex

SA 42.7 ± 3.2 43.4 ± 38.5 92.8 ± 1.3 16.4 ± 6.9 98.4 ± 0.5 55.8 ± 26.0 92.1 ± 0.4 64.2 ± 14.6
ISA 99.1 ± 0.5 97.2 ± 0.9 84.1 ± 2.0 23.5 ± 3.6 99.3 ± 0.3 71.0 ± 5.5 93.9 ± 0.4 71.3 ± 1.8
DISA 96.7 ± 2.0 98.9 ± 0.1 96.3 ± 0.1 32.2 ± 10.0 94.4 ± 3.6 90.5 ± 1.0 97.0 ± 0.2 79.2 ± 0.2

Table 2: MSE (↓) averaged over 3 seeds and represented in the format mean ± stddev. All the numbers in
the table are scaled by 104. For ISA (on Tetrominoes and CLEVR6) and SA, we perform 10 evaluations of
each test image to address the stochasticity arising from the sampling (Appendix D.1). DISA significantly
surpasses the baselines in terms of reconstruction quality in most cases.

Tetrominoes Multi-dSprites CLEVR6 CLEVRTex
SA 6.87 ± 1.99 22.90 ± 19.11 5.90 ± 0.50 60.90 ± 1.92
ISA 6.30 ± 3.33 4.57 ± 1.88 6.03 ± 0.26 37.70 ± 0.78
DISA 2.67 ± 0.97 2.20 ± 0.08 2.10 ± 0.08 41.37 ± 1.24

shapes, and conversely, an identical shape can be encoded slightly dissimilarly when belonging to objects with
unequal textures. By bringing a set of texture (or shape) representations close together we try to minimize
these undesired differences as much as possible. At the same time, the reconstruction loss prevents vectors
belonging to different textures (or shapes) from collapsing to the same values since, in that case, it would not
be possible to accurately differentiate them during the decoding process.

5 Experiments

In this section, we evaluate DISA on four well-known multi-object synthetic datasets (Kabra et al., 2019;
Karazija et al., 2021): Tetrominoes, Multi-dSprites, CLEVR, and CLEVRTex (Appendix B). For CLEVR, we
train on a filtered version of this dataset called CLEVR6. Each training configuration is run three times with
different random seeds to account for the stochastic nature of the experiments. Initially, we compare DISA
against the baselines (SA and ISA) to assess its ability to reconstruct images and decompose them into objects
without supervision. Subsequently, we try to demonstrate that DISA achieves the desired disentanglement
property in its latent space. Finally, we show (through qualitative experiments) compositional and generative
capabilities derived from the disentangled representations. Note that this work seeks to achieve the desired
disentanglement within the latent space of DISA rather than focusing on obtaining state-of-the-art results in
unsupervised object discovery and reconstruction quality. Additional experiments are included in Appendix
F. The code is available at https://github.com/riccardomajellaro/disentangled-slot-attention.

5.1 Object Discovery and Reconstruction

This evaluation investigates whether DISA is competitive with the baselines at unsupervised object discovery
and image reconstruction. For object discovery, we compare the predicted object masks with the ground
truth through the Adjusted Rand Index (ARI) score (Rand, 1971; Hubert & Arabie, 1985) computed both
including (BG-ARI) and excluding (FG-ARI) the background masks. The use of the ARI score is in line with
Locatello et al. (2020); Biza et al. (2023). As for the reconstruction quality, we employ the mean squared
error (MSE). Table 1 summarizes the ARI scores, while Table 2 the MSE. We find that on the datasets that
were used, our models are comparable and, in most cases, even outperform both baselines at decomposing
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Figure 2: Illustration of the two property prediction tasks that we propose to quantitatively study the degree
of texture and shape disentanglement in the representations of DISA. (a) Prediction of an object property
based on the associated components. For instance, the color from the texture-related latent features. (a)
Inverse property prediction task, where properties are predicted based on the “wrong" part of the object
representation, e.g., the color from the shape-related components.
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Figure 3: Quantitative results of DISA on the regular and inverse property prediction tasks. The predicted
properties are shape, color, and material, which are all categorical variables except for the color on Multi-
dSprites. With categorical variables, the prediction accuracy is employed and compared with a baseline
random guess. With the numerical one, the R2 score is shown. We report mean and stddev over 3 seeds.
On Tetrominoes and Multi-dSprites, DISA correctly encodes texture and shape information into two non-
overlapping subsets of its latent space dimensions. On CLEVR6 and CLEVRTex, part of the shape and
texture information leaks into incorrect components.

the images into objects. Looking at the MSE, DISA achieves better reconstruction quality than SA and ISA
on all the experimented datasets by a considerable margin (except on CLEVRTex, where it performs slightly
worse than ISA). Overall, despite not being the primary goal of this research, our models are competitive
with and, in most cases, even exceed the performance of the baselines.

5.2 Disentanglement Analysis

To verify how effective DISA is in constraining the texture and shape information into the desired components,
we utilize property prediction (Figure 2): we attempt to predict the ground-truth property of an object from
the subset of its slot where the related information should be present, and also from a subset where the
information should not be encoded. To do so, we first train multiple MLPs, each predicting one property of
the objects based on the respective part of the slots, such as the shape of a tetromino given its shape vector
(Figure 2a). In this task, we expect excellent results as we infer some property leveraging the part of the
representations that should encode it. Instead, if we switched the parts and trained another set of MLPs to
predict, e.g., the color of an object from its shape-related components, we would ideally expect to obtain
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Input Image

Figure 4: Qualitative results showing the position and scale disentanglement on DISA. Given an input
image (first column), we select two objects and modify their scale/position factors incrementally over 4 steps
(second to fifth columns). Texture and shape are consistent across the steps, while position and scale can be
independently varied correctly, suggesting that the models can confine position and scale information in their
respective components. The visible limitations are displayed by ISA as well, e.g., the missing parts of an
object after moving another object covering it or even the inconsistent masks produced when incrementing
the scale over a certain point. Additionally, on Tetrominoes, scaling an object does not yield completely
wrong results, which is not trivial as the model only sees shapes of fixed size during training.

poor results. An “inverse" property prediction task is carried out to gain insight into this aspect (Figure
2b). In line with previous literature (Greff et al., 2019; Dittadi et al., 2021; Papa et al., 2022), we measure
performance using the accuracy for categorical variables and the coefficient of determination (R2 score) for
numerical variables (i.e. only the color in Multi-dSprites). We report the mean and standard deviation
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of accuracy/R2 computed over the three seeds on the test set. As baselines, we provide the accuracy of a
random guess for each property on every dataset. Moreover, since the objects can be represented in any
order, the ground truth labels must be matched with the proper predicted slots. We do so by computing
cosine similarities between the target and predicted masks and then coupling each ground truth label with
the output of its most similar slot.

The results of these experiments on Tetrominoes, Multi-dSprites, CLEVR6, and CLEVRTex are reported
in Figure 3. As expected, DISA reaches near-perfect property prediction scores on all datasets (except for
CLEVRTex) when exploiting the correct groups of features. When inverting them, we notice on Tetrominoes
and Multi-dSprites that the accuracy of the categorical predictions drops approximately to that of a random
guess, while the R2 of the numerical becomes negative. The negative R2 score indicates that the inverse color
predictions are worse than those of a model constantly inferring the mean target value. Therefore, these
results show that, on the first two datasets, DISA is able to correctly encode texture and shape information
into two non-overlapping subsets of its latent space dimensions, achieving the purpose of this work. In the
case of CLEVR6, we find that although the color can be successfully restricted within the texture components,
part of the shape and material information leaks respectively into the texture and shape latent features. On
CLEVRTex, as both ISA and DISA are unable to precisely segment and reconstruct the objects, it is likely
that the representations do not contain the necessary information to allow near-perfect accuracy even on
the regular property prediction task. Even in this case, part of the shape and texture information leaks into
incorrect components.

We further present in Figure 4 qualitative results showing that the position and scale disentanglement
properties of DISA are preserved. Given an input image (first column), we select two objects and modify
their scale or position factors incrementally over 4 steps (second to fifth columns). As visible, texture and
shape are consistent across the steps, while position and scale can be independently varied with success. This
suggests that the models are able to confine position and scale information in their respective components.
Note that the visible limitations are displayed by ISA as well. For example, the missing parts of an object
after moving another object covering it, or even the inconsistent masks produced when incrementing the
scale over a certain point. Moreover, it is interesting to see that, on Tetrominoes, scaling an object does not
yield completely wrong results. This is not trivial as, for a given shape, only a single variation of its scale is
present in the dataset, meaning that the model only sees shapes of fixed size during training.

5.3 Compositional and Generative Capabilities

Finally, we also explore the compositional and generative capabilities of DISA derived from the disentanglement
of texture and shape through simple qualitative experiments. Precisely, as a first investigation, for a given
image from the test set we take the representations of the objects, randomly permute their texture parts, and
decode the permuted representations. Ideally, the model would output a reconstruction where the shapes,
positions, and sizes of the entities are preserved, while their textures are interchanged and adapted to fit the
same masks. In the second experiment, we analyze whether this ability extends to the generation of new
objects by providing new sampled textures or shapes to the objects in a scene. To do so, we average the
texture (or shape) vectors encoded from a given image and sample from a Gaussian distribution centered
on that mean vector. For additional results, including those on Multi-dSprites and CLEVRTex, please see
Appendix F.2 and F.3.

Figure 5 reports the compositional results on Tetrominoes and CLEVR6. On Tetrominoes (Figure 5a),
transferring the texture components of one object to another translates into passing the color. As visible, the
colors are in fact interchanged between objects without affecting the original shapes and positions, coherently
with the quantitative results from Figure 3. On CLEVR6 (Figure 5b), colors and materials are correctly
transferred between objects while being shaped, scaled, and positioned according to the shape, position, and
scale information. Differently from Tetrominoes, this result only partly supports those from Figure 3. In fact,
although we expected the colors to interchange accurately, we would have predicted less precise transferring
of shapes and materials. However, looking at more samples and, as the high standard deviation in the inverse
material prediction suggests, different seeds may be necessary for coherence with the quantitative results.
Overall, Figure 5 shows strong compositional generalization, enabling reliable transferring of textures between
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Reconstruction Texture 1 Texture 2 Texture 3 Texture 4

Input Image Mask 1 Mask 2 Mask 3 Mask 4

Permuted Recon. Perm. Texture 1 Perm. Texture 2 Perm. Texture 3 Perm. Texture 4

(a) Permutation applied to Stext: 4-2-1-3.

Reconstruction Texture 1 Texture 2 Texture 3 Texture 4 Texture 5 Texture6

Input Image Mask 1 Mask 2 Mask 3 Mask 4 Mask 5 Mask6

Permuted Recon. Perm. Texture 1 Perm. Texture 2 Perm. Texture 3 Perm. Texture 4 Perm. Texture 5 Perm. Texture6

(b) Permutation applied to Stext: 6-4-2-1-5-3.

Figure 5: Compositional capabilities of DISA on (a) Tetrominoes and (b) CLEVR6. The central row contains
the input image and the predicted object masks. At the top, the reconstructed image and object textures
are shown (empty slots excluded), while the bottom row presents the reconstruction and object textures after
interchanging texture vectors between objects. DISA shows strong compositional generalization, enabling
reliable transferring of textures between objects while preserving shape, position, and scale information.
Moreover, mask predictions are highly accurate with clear background separation.

Reconstruction Texture 1 Texture 2 Texture 3 Texture 4

(a)

Reconstruction Texture 1 Texture 2 Texture 3 Texture 4 Texture 5 Texture 6 Texture 7

(b)

Figure 6: Texture generation capabilities of DISA on (a) Tetrominoes and (b) CLEVR6. The top row
contains the reconstructed input image and object texture. At the bottom, the same visualization is
presented after replacing the texture vectors with ones sampled from N (µtex, 0.035), with µtex being the
mean of the texture vectors encoded from the input image. DISA’s learned latent space allows us to swap in
completely new textures for specific objects independently of their shape, location, and scale, demonstrating
the generative capabilities of the model.

objects while preserving shape, position, and scale information. Moreover, we see highly accurate mask
predictions with clear background separation.

In Figure 6 we show the texture generation results of DISA on Tetrominoes and CLEVR6. On Tetrominoes
(Figure 6a), the decoded textures maintain the original shapes but switch appearance. From the first slot, it
is also visible that we can generate coherent out-of-distribution textures, as the dataset only contains objects
with plain colors, while the one we obtain mixes red and yellow. Concerning CLEVR6 (Figure 6b), we find
again that DISA is able to precisely adapt the sampled textures to the fixed shapes, positions, and scales of
the objects in the image. Figure 6 shows therefore that the learned representations of DISA also allow for
generative capabilities: we can swap in completely new textures for specific objects independently of their
shape, location, and scale.

We show in Figure 7 the shape generation results of DISA on Tetrominoes and CLEVR6. Note that this task
is quite difficult: first, the number of unique shapes is strongly limited in these synthetic datasets; second,
without changing the scale of the reference frame, the generated shape is restricted to one that fits the original
frame. On Tetrominoes (Figure 7a), the sampled shapes are roughly defined but close to those present in the
training data, with exceptions such as that of the cyan object on the bottom left. On CLEVR6 (Figure 7b)
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Reconstruction Slot 1 Slot 2 Slot 3 Slot 4

(a) Tetrominoes

Reconstruction Slot 1 Slot 2 Slot 3 Slot 4

(b) CLEVR6

Figure 7: Shape generation capabilities of DISA on (a) Tetrominoes and (b) CLEVR6. In each of the 2
images, the first pair of rows shows final reconstruction (middle left), object textures (first row), and shapes
(second row) obtained after encoding and decoding an input image. The second pair of rows presents final
reconstructions (middle left) and individual object textures (first row) and shapes (second row) after sampling
new shape vectors. On Tetrominoes, the sampled shapes are roughly defined but close to those present in
the training data with exceptions such as that of the cyan object on the bottom left, while on CLEVR6 the
generated shapes are almost identical to those present in the training data. The difficulty of this task is mainly
due to the strongly limited number of unique shapes in these synthetic datasets and to the fact that, without
changing the scale of the reference frame, the generated shape is restricted to one that fits the original frame.

the generated shapes are almost identical to those present in the training data. A higher standard deviation
during the sampling phase can lead to a larger variety in the generated shapes, while at the same time can
strongly degrade their quality.

6 Conclusion

In this work, we introduce a novel approach named Disentangled Slot Attention (DISA). DISA explicitly
disentangles the groups of features responsible for encoding texture, shape, position, and scale in object-centric
representations. Our method results in a latent space characterized by four non-overlapping subsets of its
dimensions, known prior to the start of the training process. To train DISA, we employ the commonly used
reconstruction loss along with an additional simple regularization of the latent space, aiming to support
the architecture in preventing texture and shape information from flowing within unrelated components.
Our quantitative experiments demonstrate that, in most cases, DISA achieves the desired disentanglement
of texture and shape components while being competitive with or outperforming the baselines in image
decomposition and reconstruction quality. Additionally, we show compositional and generative capabilities
derived from the disentanglement through qualitative experiments.

There are several directions for future work. First, as seen on CLEVR6 and CLEVRTex, more complex
textures can cause some leakage of texture information into shape-related components. A possible direction to
address this problem is to exploit a stronger filter (than the Sobel filter) to further remove texture information
from the objects. Vice versa, one may also look into additional strategies to prevent shape information from
flowing into texture dimensions. Finally, DISA does not tackle the further disentanglement of the features
inside the explicitly separated groups, which could also be a promising direction for future work.
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A Sobel Filter

The Sobel filter (Sobel & Feldman, 1968) uses two 3 × 3 filters to approximate the horizontal and vertical
derivatives of an image:

Kx =

+1 0 −1
+2 0 −2
+1 0 −1

 and Ky =

+1 +2 +1
0 0 0

−1 −2 −1

 . (8)

A 2-dimensional convolution operation with Kx and Ky is applied on the input image X , producing two
maps of the approximated horizontal and vertical derivatives at each pixel, respectively Gx = Kx ∗ X and
Gy = Ky ∗ X . Figure 8b shows an example of the resulting Gx and Gy of the grayscale image 8a. To obtain
the final filtered input containing the detected edges, the maps are aggregated as

G =
√

G2
x + G2

y . (9)

The filtered image associated with the previous example is shown in figure 8c.

(a) (b) (c)

Figure 8: Example of the Sobel filter applied to a simple grayscale image. (a) Input image X . (b) Maps
of the approximated horizontal (Gx, left) and vertical (Gy, right) derivatives of X at each pixel. (c) Filtered
input image G computed combining Gx and Gy following Equation 9.

When dealing with RGB images, there are two possible approaches. The first is to simply convert the image
to grayscale before applying the Sobel filter. The second, which we employ in our method, consists in applying
the filter independently to each channel, then averaging the three resulting filtered images.

Figure 9: Example of the Sobel filter applied to an image from each of the considered datasets. The top
row shows the input images, while the bottom row displays the outputs of the Sobel filter.
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B Datasets

Tetrominoes Tetrominoes consists of 35 × 35 RGB images presenting 3 “Tetris"-like blocks and a black
background. The blocks are characterized by one of 6 possible colors (red, green, blue, yellow, magenta, cyan)
and a shape and orientation within 19 possible. Figure 10a shows a few examples extracted from the dataset.
The tetrominoes can appear anywhere in the image, but cannot overlap with each other. Furthermore,
multiple shapes/orientations/colors of the same kind can be included in a single sample. We employ a total
of 60K samples for the training set and 320 for the test set, in line with Greff et al. (2019); Locatello et al.
(2020).

Multi-dSprites Multi-dSprites is a dataset based on dSprites (Matthey et al., 2017), where three types of
shapes, namely oval, heart, and square, are represented over a plain background. Both the sprites and the
background are colored with randomly sampled RGB values. The number of entities in the image can vary
from 1 to 4 excluding the background, and partial occlusion can be present. Each image has a resolution of
64 × 64. Examples from the Multi-dSprites dataset are visualized in Figure 10b. Again, we employ a total of
60K samples for the training set and 320 for the test set, as in Greff et al. (2019); Locatello et al. (2020).

CLEVR CLEVR, introduced by Johnson et al. (2017), is a collection of 240 × 320 images of 3D scenes
containing a number of objects ranging from 3 to 10 (excluding the background). There are three types of
shapes, i.e. cube, sphere, and cylinder, two possible sizes (small and large), eight colors (gray, red, blue, green,
brown, purple, cyan, and yellow), and two materials (shiny “metal" and matte “rubber"). Some samples from
CLEVR are presented in Figure 10c. We also employ a filtered version of this dataset, called CLEVR6, that
has a maximum of 6 entities in the scenes, background excluded. The number of training samples, in this
case, is 70K, while the test samples are 15K. In all our experiments, a center crop of 192 × 192 is applied,
followed by a resize to a resolution of 128 × 128.

CLEVRTex CLEVRTex (Karazija et al., 2021) consists of 50K 240 × 320 images (cropped and resized
to 128 × 128 as in CLEVR), 40K of which are training samples while the remaining 10K are equally split
into validation and testing sets. As in CLEVR, each image contains between 3 and 10 objects plus the
background. For each object (background included), the material is sampled from a collection of 60 materials
(more complex than those in CLEVR). Objects can appear under 4 different shapes (cube, cylinder, sphere,
and non-symmetric monkey head) and 3 distinct scales (small, medium, and large). In addition, the dataset
presents several variations, such as CAMO and OOD. CAMO is a collection of 20K test images where all
the objects, including the background, share the same material. OOD consists of 10K test samples with 25
materials and 4 shapes (cone, torus, icosahedron, and a teapot) not contained in the training split. In Figure
10d, we show some examples extracted from the dataset.

C Additional Discussion on Related Work

This section further describes two approaches (mentioned in Section 3) dealing with explicit disentanglement
of shape and texture, highlighting the differences with our work.

Disentangling 3D Prototypical Networks For Few-Shot Concept Learning Prabhudesai et al.
(2020) proposes an interesting approach (D3DP) to explicitly disentangle shape and texture information in
an object-centric way. Despite being developed to address the same challenge as DISA, it presents multiple
differences from our work. Similar to our architecture, D3DP uses two different encoders to individually
embed shape and texture information. However, it employs a single decoder -based on adaptive instance
normalization (Huang & Belongie, 2017)- to simultaneously reconstruct texture and shape. In our work, using
two separate decoders is considered very important: by decoding the masks based solely on the shape-related
part of the slots, we ensure that shape information is present in those features. Another substantial difference
between the two approaches is how they separate objects into distinct vectors or slots. DISA, along with
other Slot Attention-based approaches, carries out this task entirely in an unsupervised manner. D3DP, on
the other hand, relies on ground-truth 3D bounding boxes, essential to decompose the scene into objects.
Additionally, the training strategy of D3DP assumes the availability of multiple viewpoints for a given static
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(a) (b)

(c)

(d)

Figure 10: Samples extracted from both train and test partitions of (a) Tetrominoes, (b) Multi-dSprites,
(c) CLEVR, and (d) CLEVRTex.

scene. This is because the encoder should learn to predict a 2D point of view of a scene from a distinct 2D
viewpoint, passing through a complete 3D feature map of the scene. Such a strong assumption makes D3DP
hard to apply to real-world dynamic scenarios, in which it is unlikely that an agent can observe the exact
same scene from more than one viewpoint. On the contrary, DISA (and Slot Attention-based models in
general) does not depend on this assumption. Finally, the authors of D3DP do not quantitatively evaluate
the disentanglement of texture and shape, for example, through regular and inverse property prediction tasks
(as in our work).

Unsupervised Part-Based Disentangling of Object Shape and Appearance Lorenz et al. (2019)
introduces an unsupervised method to disentangle the shape and texture components in object representations.
The first difference with DISA is that they work on single object images belonging to a unique class (e.g.,
people, dogs, or birds). In fact, they extract a fixed number of object parts (e.g., left arm or head), each
encoded by a pair of texture and shape vectors. In contrast, DISA extracts disentangled vectors representing
individual objects in a multi-object scene, where the number of objects is variable. Although both considered
architectures rely on two separate encoders to represent shape and texture, there are key differences to be
noted. Their method exploits spatial transformations to help prevent shape information from being included
in the texture components. Instead, DISA extracts texture information from the original input image and
relies on the presence of the necessary shape information in the shape-related features (enabled by the mask
decoder, as mentioned in the previous paragraph). The assumption is that, as we already provide the texture
decoder with the shape vector, including shape information in the texture vector would be redundant and
thus unnecessary (the variance regularization also helps, but Figure 14 suggests that the architecture plays a
more important role). In future work, it could be interesting to study whether augmenting our approach
with these spatial transformations would lead to even better results. Another difference is in the appearance
transformation. In our work, we remove part of the texture information (mainly color) with a Sobel filter
to bias the shape encoder toward encoding only shape information. Their strategy is instead to change the
brightness, contrast, and hue of the image fed to the shape encoder. Both ways are limited in that they do
not remove or change the structure of a texture, but only its color. A further distinction is that the shape
encoder of DISA represents the shape information of an object as a single low-dimensional vector, while that
employed by Lorenz et al. (2019) encodes a specific subpart of the object as an activation map over the input
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image (similar to those in the Slot Attention mechanism). Moreover, their approach adopts a single decoder
to reconstruct the entire input image, while DISA uses two decoders to individually predict the mask and
texture of every object. Finally, as D3DP, this work does not present any quantitative analysis on shape and
texture disentanglement but only a qualitative study on compositionality.

D Training Setup

D.1 Object Discovery

SA, ISA, and DISA are trained as autoencoders on Tetrominoes, Multi-dSprites, CLEVR6, and CLEVRTex
for an equal number of steps. A batch size of 64 and a learning rate of 4 × 10−4 (using Adam as optimizer
(Kingma & Ba, 2014)) are employed on all datasets for all the architectures. An initial (linear) warm-up
for 10K steps and an exponential decay schedule (from start to end) are applied to the learning rate. On
Tetrominoes, we perform roughly 100K steps (107 epochs × 938 batches), on Multi-dSprites around 250K
(267 epochs × 938 batches), on CLEVR6 nearly 150K (274 epochs × 547 batches), and on CLEVRTex exactly
150K (240 epochs × 625 batches). The mean squared error is used as the reconstruction loss function.

The number of iterations in the Slot Attention mechanism is fixed to 3, while the number of slots is set to 4
on Tetrominoes, 6 on Multi-dSprites, 7 on CLEVR6, and 11 on CLEVRTex. Moreover, for SA the slots are
initially sampled from a learned distribution, while for ISA and DISA are initialized as learnable vectors.
When we set the initial slots as learnable vectors, hence on ISA and DISA models, we decide to employ the
bi-level optimization from Jia et al. (2022). We set the dimensionality of the slot vectors to 64 (excluded
position and scale factors) in all cases and, in DISA, we define the texture components as the first half and
the mask components as the second half (32 each) of a representation. With DISA, we always set the initial
position and scale vectors as learnable embeddings, while with ISA only on Multi-dSprites and CLEVRTex.
On Tetrominoes and CLEVR6 we sample those as done in the original paper for the two specific datasets.
Furthermore, again in line with the original paper, ISA does not use scale vectors on Tetrominoes.

With ISA and DISA, we clip the norm of gradients to 0.05 (as in ISA’s original implementation). Finally, on
Tetrominoes and Multi-dSprites, we apply the variance regularization only on Stex with λ = 0.32 since the
beginning of the training, while on CLEVR6 and CLEVRTex we apply it after the warm-up on both Stex and
Sshape (as in Equation 7) with λ = 0.05.

On Tetrominoes and CLEVR, DISA tends to learn masks that, instead of precisely segmenting an object,
select areas of arbitrary shape around the entities. Despite maintaining good decomposition capabilities as
the objects get correctly divided into separate slots, this behavior can hinder the shape information from
being encoded in the shape components. Consequently, the texture components would have to include shape
information, leading to an incorrect disentanglement. We can notice that the issue seems to arise when
a dataset is characterized by a fixed background, but not with a dynamic one as in Multi-dSprites and
CLEVRTex. The simple introduction of random plain noise added to the input images (Figure 11) can
avoid this problem: in fact, the intuition behind the solution is to induce slight changes in the background
texture, so that it is no longer fixed, while however not heavily altering the foreground objects. We hence
adopt this augmentation strategy when training our DISA models on Tetrominoes and CLEVR6. Additional
experiments are required to gain more insights on this, for instance, to understand whether fixed non-plain
backgrounds are as affected as fixed plain ones.
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+ =

Figure 11: Example of the plain noise augmentation applied on an image from Tetrominoes. The augmentation
induces slight changes in the color of a fixed background, turning it dynamic and helping the model avoid
suboptimal solutions.

D.2 Property Prediction

Each MLP used in our property prediction experiments has a single hidden layer of 256 nodes activated with
Leaky ReLU. The input layer has 32 nodes because only texture or shape components are used to predict the
property of an object. On every dataset, we perform about 10k steps with a batch size of 64 and a learning
rate set to 1 × 10−3 (the optimizer is again Adam). With categorical variables we employ the cross-entropy
loss, while with numerical the MSE. Moreover, on all datasets, the last 1000 samples are excluded from the
training set and utilized as validation set.

E Disentanglement Analysis

E.1 Training and Validation Curves
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Figure 12: Training and validation curves on Tetrominoes. Each plot represents the cross-entropy loss
(y-axis) as a function of the training steps (x-axis).
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Figure 13: Training and validation curves on Multi-dSprites. The first two plots (a and b) represent the
cross-entropy loss (y-axis) as a function of the training steps (x-axis). The last two plots (c and d) represent
the mean squared error (y-axis) as a function of the training steps (x-axis).
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Figure 14: Training and validation curves on CLEVR6. Each plot represents the cross-entropy loss (y-axis)
as a function of the training steps (x-axis).

F Additional Experimental Results

F.1 Ablation: Impact of Variance Regularization and Sobel Filter on Texture and Shape
Disentanglement
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Figure 15: Quantitative results of DISA on the regular and inverse property prediction tasks. We report the
measurements of DISA with Sobel filter and variance regularization (left, shown in Figure 3), without the
use of the variance regularization (center), and without Sobel filter (right) on Tetrominoes. The predicted
properties are shape and color, both categorical variables. The prediction accuracy is employed and compared
with a baseline random guess. We report mean and stddev over 3 seeds.
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F.2 Compositional Results
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Figure 16: Compositionality on Tetrominoes. Permutation applied to Stext: 3-2-4-1.
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Figure 17: Compositionality on Tetrominoes. Permutation applied to Stext: 3-4-1-2.
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Figure 18: Compositionality on Tetrominoes. Permutation applied to Stext: 3-4-1-2.
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Figure 19: Compositionality on Tetrominoes. Permutation applied to Stext: 3-2-4-1.
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Figure 20: Compositionality on Multi-dSprites. Permutation applied to Stext: 1-2-3-5-6-4.
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Figure 21: Compositionality on Multi-dSprites. Permutation applied to Stext: 6-1-5-1-3-4.
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Figure 22: Compositionality on Multi-dSprites. Permutation applied to Stext: 6-2-3-5-1-4.
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Figure 23: Compositionality on Multi-dSprites. Permutation applied to Stext: 5-1-4-3-2-2.
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Figure 24: Compositionality on CLEVR6. Permutation applied to Stext: 2-5-7-4-6-1-3.
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Figure 25: Compositionality on CLEVR6. Permutation applied to Stext: 2-4-6-1-3-7-5.
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Figure 26: Compositionality on CLEVR6. Permutation applied to Stext: 2-1-7-3-5-6-4.
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Figure 27: Compositionality on CLEVR6. Permutation applied to Stext: 1-3-6-7-5-4-2.
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Figure 28: Compositionality on CLEVRTex. Permutation applied to Stext: 1-2-3-8-5-6-7-4-9-10-11.
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Figure 29: Compositionality on CLEVRTex. Permutation applied to Stext: 3-2-1-4-5-6-7-11-9-10-8.
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Figure 30: Compositionality on CLEVRTex. Permutation applied to Stext: 9-2-7-11-8-6-3-5-1-10-4.
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Figure 31: Compositionality on CLEVRTex. Permutation applied to Stext: 1-8-5-4-9-6-7-2-3-2-11.
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F.3 Generative Results

We include here results for texture and shape generation.

As anticipated, we sample the new textures from a Gaussian distribution centered on the mean of the texture
vectors of the objects in a scene, with a standard deviation of 0.035 (manually tuned). Similarly, we sample
new shape vectors from a Gaussian distribution centered on the mean of the shape vectors of the foreground
objects in a scene, with a standard deviation manually tuned. On Tetrominoes and Multi-dSprites, the
standard deviation is set to 0.1, while on CLEVR and CLEVRTex 0.01.

Reconstruction Texture 1 Texture 2 Texture 3 Texture 4 Texture 5 Texture 6

Figure 32: Texture generation on Multi-dSprites. The first row shows final reconstruction and object textures
obtained after encoding and decoding an input image. The second to fifth rows present final reconstructions
and individual object textures after sampling new texture vectors.
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Reconstruction Texture 1 Texture 2 Texture 3 Texture 4

Figure 33: Texture generation on Tetrominoes. The first row shows final reconstruction and object textures
obtained after encoding and decoding an input image. The second to fifth rows present final reconstructions
and individual object textures after sampling new texture vectors.
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Figure 34: Texture generation on CLEVR6. The first row shows final reconstruction and object textures
obtained after encoding and decoding an input image. The second to fifth rows present final reconstructions
and individual object textures after sampling new texture vectors.
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Figure 35: Texture generation on CLEVRTex. The first row shows final reconstruction and object textures
obtained after encoding and decoding an input image. The second to fifth rows present final reconstructions
and individual object textures after sampling new texture vectors.
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Figure 36: Shape generation results on Multi-dSprites and CLEVRTex. In each of the 2 images, the first pair
of rows shows final reconstruction (middle left), object textures (first row), and shapes (second row) obtained
after encoding and decoding an input image. The second pair of rows presents final reconstructions (middle
left) and individual object textures (first row) and shapes (second row) after sampling new shape vectors.

33


	Introduction
	Background
	Slot Attention
	Slot-Centric Reference Frames

	Related Work
	Methods
	Architectural Design
	Disentangled Slot Attention

	Experiments
	Object Discovery and Reconstruction
	Disentanglement Analysis
	Compositional and Generative Capabilities

	Conclusion
	Sobel Filter
	Datasets
	Additional Discussion on Related Work
	Training Setup
	Object Discovery
	Property Prediction

	Disentanglement Analysis
	Training and Validation Curves

	Additional Experimental Results
	Ablation: Impact of Variance Regularization and Sobel Filter on Texture and Shape Disentanglement
	Compositional Results
	Generative Results


