
DOPPLER: Differentially Private Optimizers with
Low-pass Filter for Privacy Noise Reduction

Xinwei Zhang∗

University of Southern California
Zhiqi Bu†

Amazon
Mingyi Hong

University of Minnesota

Meisam Razaviyayn∗

University of Southern California

Abstract

Privacy is a growing concern in modern deep-learning systems and applications.
Differentially private (DP) training prevents the leakage of sensitive information
in the collected training data from the trained machine learning models. DP op-
timizers, including DP stochastic gradient descent (DPSGD) and its variants, pri-
vatize the training procedure by gradient clipping and DP noise injection. How-
ever, in practice, DP models trained using DPSGD and its variants often suffer
from significant model performance degradation. Such degradation prevents the
application of DP optimization in many key tasks, such as foundation model pre-
training. In this paper, we provide a novel signal processing perspective to the
design and analysis of DP optimizers. We show that a “frequency domain” oper-
ation called low-pass filtering can be used to effectively reduce the impact of DP
noise. More specifically, by defining the “frequency domain” for both the gradient
and differential privacy (DP) noise, we have developed a new component, called
DOPPLER. This component is designed for DP algorithms and works by effec-
tively amplifying the gradient while suppressing DP noise within this frequency
domain. As a result, it maintains privacy guarantees and enhances the quality of
the DP-protected model. Our experiments show that the proposed DP optimizers
with a low-pass filter outperform their counterparts without the filter by 3%−10%
in test accuracy on various models and datasets. Both theoretical and practical ev-
idence suggest that the DOPPLER is effective in closing the gap between DP and
non-DP training.

1 Introduction

A rapidly growing number of modern machine learning applications in computer vision, natural
language processing, and their mixtures rely on the development of large foundation models, whose
performance heavily depends on the huge amounts of data collected from individual users. The
leakage of potentially sensitive information in training data has become an increasingly critical
issue when releasing and using machine learning models. Unfortunately, modern complex models
have a strong ability to memorize the exact training data during the training processing Carlini et al.
(2021); Pan et al. (2020). To alleviate the possible privacy leakage in the model training procedure,
privacy-preserving optimization has attracted both researchers’ and practitioners’ interests.

Differential Privacy (DP) Dwork and Roth (2014) provides a strong theoretical guarantee with an
easy and nearly plug-and-play mechanism, i.e., gradient clipping and noise injection, for existing
optimization algorithms to guarantee the privacy of training procedures Abadi et al. (2016). By
directly applying the DP mechanism to existing optimizers, DP optimizers have achieved decent
performance in fine-tuning foundation models (Yu et al., 2021; Bu et al., 2024) or training small

∗xinweiz,razaviya@usc.edu, †This work is not affiliated with Zhiqi Bu’s position at Amazon.
38th Conference on Neural Information Processing Systems (NeurIPS 2024).

models (De et al., 2022). However, the performance of the pretraining tasks and training large
foundation models using DP optimizers still remain unsatisfactory. This is because, as the DP theory
suggests, the amount of injected DP noise is proportional to the number of model parameters and
the total update steps (Abadi et al., 2016). Thus, the performance of large foundation models trained
with DP optimizers degrades severely. To put it in perspective, pretraining a foundation model for an
image classification task on the CIFAR dataset from randomly initialized weights takes around 100
epochs, with 300K steps (Dosovitskiy et al., 2020); the pretraining of BERT for natural language
processing task takes 1M steps (Devlin et al., 2019), and pretraining LLAMA takes more than
250K steps (Touvron et al., 2023). The number of trainable parameters is also huge for these tasks,
ranging from 300M to 70B. Therefore, the huge amount of injected DP noise severely degrades the
performance of the final model trained with DP optimizers.

To improve the performance of DP optimizers, existing research takes two approaches: 1) designing
models that are less sensitive to DP noise, e.g., using group normalization, weight standardization,
weight smoothing, and smooth activation layers (De et al., 2022; Papernot et al., 2021; Wang et al.,
2020), and 2) designing adaptive DP optimizers that inject relatively smaller noise, e.g., adaptive
clipping, sparse gradient, and dynamic privacy budget (Andrew et al., 2021; Yu et al., 2021; Luo
et al., 2021; Hong et al., 2022). However, existing methods only work for certain models and tasks
at the cost of consuming more privacy budget. Moreover, most of the methods only demonstrate
empirical improvements and do not provide theoretical justification for improving DP optimization.
Therefore, there is a strong need for an approach that improves the performance of DP optimizers,
which has the following properties: 1) has a solid theoretical guarantee, 2) is easy to implement, and
3) is compatible with most existing DP optimization improving methods.

Motivated by the above needs, in this paper, we develop a module that can easily be integrated into
the DP training optimizers. We provide both theoretical and empirical justification for our proposed
module. Specifically, our contributions are as follows:

• Frequency-domain analysis: We introduce the notion of frequency domain analysis on (DP) op-
timizers. This analysis sheds light on how “noise” affects the “signal” part of the update directions
viewed as a sequence of update steps, rather than independent update steps.

• Low-pass filter approach: Based on our frequency-domain analysis, we propose a low-pass filter-
ing approach named DOPPLER, that post-processes the privatized gradient to reduce DP noise and
improve DP optimizers’ performance. Our low-pass filter reduces noise in the frequency domain,
which is orthogonal to existing DP noise reduction approaches in the time domain and, therefore,
can be easily combined with other existing techniques to further reduce noise.

• Theoretical Analysis: We provide a novel theoretical analysis for the proposed low-pass filtering
approach. Specifically, by introducing certain frequency domain assumptions on the gradients,
we provide the convergence and privacy guarantee for DPSGD with the low-pass filter. Unlike
existing methods that involve trading off noise with bias (e.g., adaptive clipping), or based on
approximation (e.g., low-rank decomposition), our proposed algorithm does not introduce extra
bias, model modification, or extra privacy cost.

• Numerical results: Our extensive numerical experiments compare the performance of a variety of
DP optimizers with and without the low-pass filter on different models and datasets. Our results
show that DP optimizers equipped with the low-pass filter outperform the ones without the filter.

2 Preliminaries

In this section, we discuss notations, assumptions, and some related prior work on DP optimization:

2.1 Notations & assumptions

In this paper, we aim to optimize the Empirical Risk Minimization (ERM) problem:

min
x∈Rd

F (x), where F (x) :=
1

N

N∑
i=1

f(x; ξi). (1)

Here, D = {ξi}Ni=1 is the training dataset with N samples. Further denote the lower bound of the
problem as f⋆ = inf f(x). Throughout the paper, we use (·)t to denote the update steps, N (µ, σ2)

2

to denote the Gaussian distribution with mean µ and variance σ2. We also assume the problem (1)
satisfies the following assumptions.

A 1 (Smoothness) F (·) is L-smooth, i.e., ∥∇F (x)−∇F (y)∥ ≤ L ∥x− y∥ , ∀x,y ∈ Rd.

A 2 (Bounded Variance) The per-sample gradient has bounded variance, i.e.,

Eξ∈D ∥∇f(x; ξ)−∇F (x)∥2 ≤ σ2
SGD, ∀x ∈ Rd.

A 3 (Bounded Gradient) The per-sample gradient has a bounded norm, i.e.,

∥∇f(x; ξ)∥ ≤ G, ∀x ∈ Rd, ξ ∈ D.

Let us briefly comment on these assumptions: A1 and A2 are standard in non-convex optimiza-
tion (Allen-Zhu and Hazan, 2016; Zaheer et al., 2018; Abadi et al., 2016); and A3 is commonly
used in analyzing the convergence of DP algorithms (Abadi et al., 2016; Wang et al., 2020; Andrew
et al., 2021) to avoid introducing the clipping bias. Since the impact of clipping is not the major
focus of this paper, we follow the existing analyses and use A3 to simplify our theoretical analysis.

2.2 Differential privacy (DP) and differentially private SGD (DPSGD)

Differential privacy is a gold standard of privacy to protect the privacy of individuals:

Definition 1 ((ϵ, δ)-DP (Dwork and Roth, 2014)) A randomized mechanism M is said to be
(ϵ, δ)-differentially private, if for any two neighboring datasets D,D′ (D,D′ differ only by one sam-
ple) and for any measurable output set S, it holds that Pr[M(D) ∈ S] ≤ eϵPr[M(D′) ∈ S] + δ.

A popular practical differentially private approach to finding an (approximate) solution to the ERM
optimization problem (1) is Differentially Private Stochastic Gradient Descent (DPSGD) (Abadi
et al., 2016) and its variants, including DP-Adam and DP-Lora (Yu et al., 2021). To protect DP,
DPSGD considers applying the commonly used Gaussian mechanism (Dwork and Roth, 2014;
Abadi et al., 2016) at each iteration of the stochastic gradient descent method. The Gaussian mech-
anism provides a DP guarantee by injecting additive noise into the algorithm output.

Definition 2 (Gaussian Mechanism (Dwork and Roth, 2014; Zhao et al., 2019)) Suppose an al-
gorithm A : D → Rd has ℓ2 sensitivity ∆A, i.e., maxD,D′ ∥A(D)−A(D′)∥ ≤ ∆A. Then,
for any ϵ > 0 and δ ≤ 0.05, by adding random Gaussian noise to the output of the algorithm

M(x) = A(x) +w,withw ∼ N (0, σ2
DPId), where σDP =

∆A
√

2 ln(1/2δ)

ϵ + ∆A√
2ϵ

, the algorithm M

is (ϵ, δ)-DP.

Algorithm 1 DPSGD algorithm

Input: x0,D, C, η, σDP
for t = 0, . . . , T − 1 do

Uniformly draw minibatch Bt from D
gt =

1
B

∑
ξi∈Bt

clip (∇f(xt; ξi), C) +wt

where wt ∼ N (0, σ2
DP · Id)

xt+1 = xt − ηtgt,
end for

The DPSGD algorithm, presented in Algo-
rithm 1, first samples a mini-batch Bt of
size B and computes the per-sample gradient
at each step t. Then, it applies the Gaus-
sian mechanism by clipping the per-sample
gradient and injecting DP noise. The clip-
ping operation bounds the sensitivity of the
stochastic gradients to C, e.g., clip (∇f, C) =

min
{
1, C

∥∇f∥

}
∇f or C

∥∇f∥∇f. Finally, the
algorithm updates the model parameter with the privatized mini-batch gradient. It has been shown
that DPSGD guarantees (ϵ, δ)-DP with sufficiently large injected noise (Abadi et al., 2016).

Theorem 1 (Privacy Guarantee (Abadi et al., 2016)) Given N,B, T and C, there exist positive
constants u, v, such that for any ϵ < uB2T

N2 , δ > 0, by choosing σ2
DP ≥ v

C2T ln(1
δ)

N2ϵ2 , Algorithm 1 is
guaranteed to be (ϵ, δ)-DP.

2.3 Related work

Effective DP training: Improving the performance of DP training has been widely studied. Adap-
tive gradient clipping (Andrew et al., 2021) estimates the size of the gradient privately and adaptively

3

changes the clipping threshold to avoid injecting large DP noise; automatic clipping (Bu et al., 2024)
replaces the clipping operation with normalization to avoid injecting large DP noise when the gra-
dient becomes small; Hong et al. (2022) proposes using a time-varying privacy budget at each step
which injects non-static DP noise based on the gradient to reduce the impact of the DP noise. As
the injected DP noise variance scales with the model size, reducing the number of trainable parame-
ters with adapters, low-rank weights, or quantized models has also been used to reduce the DP noise
magnitude (Yu et al., 2021; Luo et al., 2021; Yu et al., 2021). De et al. (2022); Papernot et al. (2021);
Wang et al. (2020) use special model structures that are less sensitive to DP noise, including group
normalization, weight standardization, smoothed activation, and smoothed weights.

These methods aim to reduce the magnitude of the injected DP noise or make the model and/or the
DP algorithm less sensitive to large DP noise. However, the improvement is either empirical or only
works for specific model structures and is unable to be generalized to other DP training tasks.

Signal processing for optimization: A few existing works analyze the optimization procedure from
the signal processing perspective. They mainly focus on optimizing strongly convex problems using
deterministic algorithms (Hu and Lessard, 2017; An et al., 2018); Gannot (2022) provides stability
and convergence analysis from the frequency domain for inexact gradient methods. However, the
results are still restricted to non-DP optimization and to strongly convex problems.

3 A signal processing perspective

As discussed in Section 2.3, most of the existing works that aim to improve the performance of
DP training are reducing the per-iteration injected DP noise. These approaches treat the update
directions in each step independently, omitting the underlying dynamics and correlations between
the steps. However, the gradient directions typically change smoothly due to the smoothness of the
machine-learning model; therefore, the update directions are not independent over time.

With the intuition that the gradients over iterations are not independent, we provide the frequency-
domain analysis of the stochastic gradients. Specifically, in the frequency domain, we treat the
(stochastic) gradients from t = 0 to t = T as a time series and analyze the long-term correlation and
dependencies across all gradients. In contrast, the time domain refers to the analyses that only focus
on the gradient at step t: for instance, Bu et al. (2024); Yang et al. (2022) leverage the L-Lipschitz
smoothness or the second-order Taylor expansion to bound/approximate the objective function in
step t after the update is performed. By analyzing the DP optimizers’ updates in the frequency
domain, we can make use of our prior knowledge of the correlation among the update directions.

To explain our motivation in a simplified manner, we temporarily ignore the per-sample gradient
clipping and focus our narrative on the noise: suppose xt+1 = xt − ηtgt with gt = ∇F (xt) +wt

and wt being the Gaussian noise. We will come back to the clipping in Section 3.2. In what fol-
lows, we decompose the sequence of stochastic gradients {gt} into two parts: 1) the gradient signal
{∇F (xt)} and the noise {gt−∇F (xt)}. We employ the power spectral density (PSD) to character-
ize the distribution of power into frequency components of a continuous signal. Mathematically, the
power spectral density (PSD) of a sequence {st}t=0,1,... is Ps(ν) = F{ϕs(τ)}, where F denotes
the Fourier transform from time domain (τ) to frequency domain (ν) (Oppenheim et al., 1996), and
ϕ is the auto-correlation coefficient as ϕs(τ) = E ⟨st, st−τ ⟩ .
On the one hand, the gradient sequence {∇F (xt)}t=0,1,... can be treated as a low-frequency signal,
where we apply the Cauchy Schwarz inequality to get

ϕ∇f (τ) = E ⟨∇F (xt),∇F (xt−τ)⟩ =
1

2
E
[
∥∇F (xt)∥2 + ∥∇F (xt−τ)∥2 − ∥∇F (xt)−∇F (xt−τ)∥2

]
≥ 1

2
E

[
∥∇F (xt)∥2 + ∥∇F (xt−τ)∥2 − L2η2τ

τ∑
i=1

∥gt−i∥2
]
.

This indicates that as long as the stepsize η is small, the auto-correlation coefficients decrease as τ
increases (as illustrated in Figure 1a, blue line). Therefore, the PSD also decreases as ν increases,
i.e., {∇F (xt)} is a low-frequency signal (as illustrated in Figure 1b, blue line).

4

−500 −250 0 250 500
Time τ

0.000

0.001

0.002

0.003

0.004

φ
∇
f
(τ
)

φ∇f

φw

(a) Auto-correlation coefficients

−2 0 2
Normalized frequency ν

10−5

10−4

10−3

10−2

10−1

100

P
S
D
P
(ν
)

P∇f

Pw

(b) PSD coefficients

−3 −2 −1 0 1 2 3
Normalized frequency ν

10−5

10−4

10−3

10−2

10−1

100

P
S
D
P
(ν
)

P∇f

Pw

Filter

(c) PSD & an ideal low-pass filter

Figure 1: An illustration of the auto-correlation ϕ(τ) and power spectrum density P (ν) of
{∇F (xt)} and wt where ϕ∇f decays proportional to τ2 and wt is a white noise. (c) illustrates
how an ideal low-pass filters out the high-frequency noise and keeps the low-frequency signal.

On the other hand, the noise signal {wt} := {gt − ∇F (xt)} is a white noise, where its auto-
correlation is non-zero when τ = 0 and is zero otherwise (as illustrated in Figure 1a, red line):

ϕw(τ) = E ⟨wt,wt−τ ⟩
{
≤ dσ2

DP +
σ2

SGD
B , τ = 0

= 0, otherwise.

Therefore, Pw(ν) = dσ2
DP +

σ2
SGD
B ,∀ν (as illustrated in Figure 1b, red line).

3.1 Low-pass filter and noise reduction

From the above discussion, we observed that although the gradient and the DP noise are not separa-
ble in each step t (time-domain), they are distinguishable in the frequency domain. In particular, the
noise power is equally distributed over all frequencies, while the gradient is concentrated around the
lower frequencies. Therefore, we can apply the classical signal processing tools, such as frequency
domain low-pass filters, to help improve the performance of DP optimization.

A low-pass filter amplifies the low-frequency component of the signal and suppresses the high-
frequency part. Figure 1c shows an ideal low-pass filter that keeps the frequencies where the gradient
is larger (ν ∈ [−0.6, 0.6]) and blocks the frequencies where the noise is larger (ν < −0.6∪ν > 0.6).
Signal-to-Noise Ratio (SNR) is a useful measure to characterize the quality of a noisy signal, i.e.,
the privatized gradient {gt} in DP optimization. Given the PSD of the gradient and the noise, the
SNR of the privatized gradient is

∑
ν P∇f (ν)∑
ν Pw(ν) . As illustrated in Figure 1, when there is no low-pass

filter (i.e., in Figure 1b), the SNR is small as the noise dominates in the high-frequency. In contrast,
by applying the low-pass filter (i.e., in Figure 1c), most of the signals in the low-frequencies are
kept, and the noise in the high frequencies is filtered, so the SNR increases. A linear low-pass filter
on {gt} can be written as a recursive linear combination of the history signals:

mt = −
na∑
τ=1

aτmt−τ +

nb∑
τ=0

bτgt−τ ,

where the sequence {mt} is the filtered output, {aτ}, {bτ} are the filter coefficients. Additinally, the
“order” of the filter is defined as max{na, nb}. By carefully designing the coefficients, the low-pass
filter can take different shapes and filter different frequencies.

In contrast to low-pass filters, the existing approaches improving the performance of DP optimiza-
tion can be viewed as increasing the SNR in the time domain, i.e., reducing the magnitude of the
noise injected in each step while preserving most of the gradient signal. Because the low-pass fil-
ter reduces noise in the frequency domain, and the existing noise reduction approaches lie in the
time domain, the two approaches are orthogonal to each other. Therefore, the low-pass filter can be
combined with existing approaches to further improve the DP optimizers’ performance.

3.2 The impact of per-sample gradient clipping

The above analysis assumes that the clipping operation is inactive by choosing a large enough clip-
ping threshold C. In practice, the clipping operation is usually active. By assuming the clipped

5

gradient ∇FC(x) has zero curl, the DP optimizer optimizes an alternative problem:

min
x∈Rd

FC(x), where FC(x) =

∫ 1

0

∇FC(zx)
⊤xdz, ∇FC(x) =

1

N

∑
ξ∈D

clip (∇f(x; ξ), C) . (2)

Then the signal of the DP optimizer becomes the gradient of the alternative problem {∇FC(xt)}
and the noise becomes {wt} = {gt − ∇FC(xt)}. As clipping is a non-expansive operator, i.e.,
∥clip (x, C)− clip (y, C)∥ ≤ ∥x− y∥ , the alternative problem FC(·) is also L′-smooth with L′ ≤
L. Therefore, a similar argument could be made on the gradient signal {∇FC(xt)} and the noise
{wt}} when the clipping threshold is small and the clipping operation is active.

4 The proposed DOPPLER approach

Building on the discussions in Section 3, we proposed a universal approach to improve DP optimiza-
tion performance: DP OPtimizer with Low-Pass fiLter for noisE Reduction (DOPPLER). Taking
DPSGD as an example, by applying DOPPLER, the main steps of the modified DPSGD algorithm
are illustrated in Algorithm 2. The key steps of the low-pass filter are described in Lines 6-8. Line
6 computes the filtered update direction mt as a recursive linear combination of the current gra-
dient, past gradients, and past update directions. mt estimates the first moment of the privatized
gradient and can be expanded as a moving average of gt, i.e., mt =

∑t+nb

τ=0 κτgt−τ . However, as
{mτ}, {gτ} are initialized with zeros (Line 2), mt is biased towards zero, especially in the early
steps. To correct the initialization bias, in Line 7, the optimizer computes the bias correction factor
ca,t that is used in Line 8 to guarantee the weights κτ in the moving average are summed to 1.

Connection to momentum method: The DOPPLER approach is a generalized version of the mo-
mentum method from a first-order filter to higher orders. The momentum method uses one buffer mt

to store the exponential moving average of gt, while DOPPLER uses multiple buffers {mt−τ}na−1
τ=0

to compute a more complex moving average of gt.

Compatibility: Algorithm 2 demonstrates how DOPPLER can be combined with the DPSGD
algorithm while it is not restricted to DPSGD. The DOPPLER approach is compatible with other
advanced DP optimizers, e.g., Adam (Kingma and Ba, 2015; Tang et al., 2024) and GaLore (Zhao
et al., 2024). It serves as a base component for DP optimizers to improve their performance.

5 Theoretical analysis

5.1 Convergence analysis

In this section, we analyze the convergence of DPSGD with DOPPLER. First, we make the follow-
ing assumption on the gradient auto-correlation coefficients.

A 4 (Gradient auto-correlation) For all t ∈ {0, . . . , T − 1}, there exists sequences {cτ}, {c−τ}
such that the following condition holds:

⟨∇F (xt),∇F (xt−τ)⟩ ≥ cτ ∥∇F (xt)∥2 + c−τ ∥∇F (xt−τ)∥2 , ∀τ ≥ 0, (3)
c−τ ≥ 0, ∀τ ≥ 0. (4)

Algorithm 2 DPSGD with DOPPLER
1: Input: x0,D, η, C, σDP, {aτ}na

τ=1, {bτ}nb
τ=0

2: Initialize: {m−τ}na
τ=1 = 0, {g−τ}nb

τ=1 = 0, {ca,−τ}an
τ=1 = 0, {cb,−τ}bnτ=0 = 0

3: for t = 0, . . . , T − 1 do
4: Randomly draw minibatch Bt from D
5: gt =

1
|Bt|

∑
ξ∈Bt

clip (∇f(x; ξ), C) +wt # Compute private gradient
where wt ∼ N (0, σ2

DP · Id)
6: mt = −∑na

τ=1 aτmt−τ +
∑nb

τ=0 bτgt−τ # Apply filter
7: cb,t = 1, ca,t = −∑na

τ=1 aτ ca,t−τ +
∑nb

τ=0 bτ cb,t−τ # Compute bias
8: m̂t = mt/ca,t # Correct initialization bias
9: xt+1 = xt − ηm̂t # Parameter update

10: end for

6

Clearly, we have c0 = 1
2 > 0. From the discussion in Section 3, we see that the above assumption

can be satisfied as long as η is small enough, i.e.,

η ≤

√
(1− 2c−τ) ∥∇F (xt−τ)∥2 + (1− 2cτ) ∥∇F (xt)∥2

L
√∥∥∑τ

τ1=1 ∇F (xt−τ1)
∥∥2 + τ(dσ2

DP + σ2
SGD/B)

= O
(√

1

τ

)
.

The pattern of the sequence {cτ} characterizes the frequency of the gradients as discussed in Sec-
tion 3. If cτ ’s are all positive and slowly decreasing, then ∇F (xt) and ∇F (xt−τ) are highly corre-
lated, so {∇F (xt)} lies in lower frequencies. However, cτ is not necessarily positive. When some of
cτ ’s are negative, or cτ ’s are oscillating between positive and negative values, it means that ∇F (xt)
and ∇F (xt−τ) are negatively correlated, and {∇F (xt)} may contain high-frequency signals.

Before we present the theorem, let us define the normalized SNR as

SNR =

∑T−1
t=0

∑t
τ=0 cτκτ∑T−1

t=0

∑t
τ=0 κ

2
τ

, (5)

and define the expanded coefficients κτ as

κτ =

min{nb,τ}∑
τ2=0

bτ2

na∑
τ1=1

za,τ1(pa,τ1)
τ−τ2 , s.t.

na∑
τ=1

za,τ
1− pa,τx

=
1

1 +
∑na

τ=1 aτx
τ
, (6)

which satisfies mt = −∑na

τ=1 aτmt−τ +
∑nb

τ=0 bτgt−τ =
∑t

τ=0 κτgt−τ . Note that pa,τ might be
complex, but κτ are guaranteed to be real. With A4, we have the following convergence result for
Algorithm 2.

Theorem 2 (Convergence) Assume the problem satisfies A1-A4. By choosing C ≥ G, η ≤
min{ 2c−τ

Lκτ
}, and running Algorithm 2 for T iterations, the algorithm satisfies:

Et∼P (t) ∥∇F (xt)∥2 ≤ F (x0)− F ⋆

ηST
+

ηL

2SNR

(
dσ2

DP +
σ2

SGD

B

)
, (7)

where we define ST =
∑T−1

t=0

∑t
τ=0 cτκτ = O(T); the expectation is taken over t = 0, . . . , T − 1,

such that P (t) =
∑t

τ=0 cτκτ

ST
.

The proof of Theorem 2 is given in Appendix B. Compared with vanilla DPSGD (Abadi et al.,
2016), by adopting DOPPLER the noise is scaled by a factor of 1

2SNR . Thus, as long as SNR > 1
2 ,

the noise is reduced. Next, we will use the above result to obtain privacy-utility tradeoff.

5.2 Privacy guarantee

Our low-pass filter is post-processing on the privatized gradient. Since DP is immune to post-
processing Dwork and Roth (2014), Algorithm 2 provides the same DP guarantee as DPSGD, sat-
isfying Theorem 1. By directly combining Theorem 1 and Theorem 2, we can obtain the following
privacy-utility trade-off for Algorithm 2.

Theorem 3 (Privacy-utility trade-off) Assume the problem satisfies A1-A4. By choosing C = G,

σ2
DP = C2T ln(1/δ)

N2ϵ2 , η ≤ min{ 2c−τ

Lκτ
}, and running Algorithm 2 for T = O

(
Nϵ

√
SNR(F (x0)−F⋆)

C
√

dL ln(1/δ)

)
iterations, the algorithm satisfies (ϵ, δ)-DP and the expected gradient satisfies:

Et∼P (t) ∥∇F (xt)∥2 = O
(
C
√

dL(F (x0)− F ⋆) ln(1/δ)√
SNRNϵ

)
,

where P (t) =
∑t

τ=0 cτκτ∑T−1
t=0

∑t
τ=0 cτκτ

and κ,SNR are defined in (6), (5), respectively.

Theorem 3 implies that DPSGD with DOPPLER shares the same convergence rate

O
(

C
√

d ln(1/δ)

Nϵ

)
as the vanilla DPSGD (Abadi et al., 2016). However, by using the low-pass

filter, the performance of DPSGD improves by a constant factor 1√
SNR

, which is discussed next.

7

5.3 Impact of the low-pass filter

Here, we provide SNR value for some choices of the filter coefficients and discuss how to design
low-pass filters.

• For SGD (no filter), we have κ0 = 1, and κτ = 0, ∀τ > 0. Then, the normalized SNR is
SNR = 1

2 . This recovers the convergence result for DPSGD in Abadi et al. (2016).

• Momentum-SGD Cutkosky and Mehta (2020) is a special case of the low-pass filter, with filter
coefficients: a1 = −0.9, b0 = 0.1. and κτ = 0.1 × 0.9τ . Then, the normalized SNR is SNR ≥
1.9×

(
1
2 +

∑t−1
τ=0 0.9

τ cτ

)
, which is larger than vanilla DPSGD. This indicates that DPSGD with

momentum can reduce the impact of DP noise compared with DPSGD w/o momentum.

• We can further improve the SNR by optimizing the filter coefficients under a fixed order:

max
{aτ},{bτ}

SNR, s.t.
nb∑
τ=0

bτ −
na∑
τ=1

aτ = 1. (8)

From (8), we observe that the pattern of the auto-correlation coefficients cτ determines the choice of
the filter coefficients. When κτ ∝ cτ , SNR is maximized. However, in general, finding the optimal
filter coefficients by optimizing (8) before training is difficult, as {cτ} is determined by the problem
and the DP optimizer’s updates and can be time-varying.

Optimal FIR filter: When the filter takes the form of a finite impulse response (FIR) (i.e., an = 0),
we can estimate {cτ} and optimize bτ ’s according to (8) during training. To estimate cτ , we have:

cτ
A4

≤
(
⟨∇F (xt),∇F (xt−τ)⟩ − c−τ ∥∇F (xt−τ)∥2

)
/ ∥∇F (xt)∥2

A2

≤ E
[
⟨gt,gt−τ ⟩ − c−τ

(
∥gt−τ∥2 − dσ2

DP − σ2
SGD/B

)]
/E

[
∥gt∥2 − dσ2

DP − σ2
SGD/B

]
≈ E

[
⟨gt,gt−τ ⟩ −

1

2
max{∥gt−τ∥2 − dσ2

DP, 0}
]
/E

[
max{∥gt∥2 − dσ2

DP, ϵ1},
]

where in the last approximation we set c−τ = 1
2 and assume dσ2

DP dominates σ2
SGD/B; the max

are taken as ∥·∥2 ≥ 0 and we choose ϵ1 = 10−3 as a small positive number for numerical stability.
After obtaining c′τ s, b′τ s have a closed-form solution bτ = cτ∑bn

τ=0 cτ
. This estimation only relies on

the stored privatized gradients {gt−τ}nb
τ=0, so it does not spend an extra privacy budget or memory.

Therefore, it can also be implemented along with DOPPLER, as an adaptive approach to adjust the
filter coefficients for an optimal performance.

6 Numerical experiments
In this section, we investigate how the low-pass filter affects the performance of various DP op-
timizers on different datasets, privacy budgets, and models. Due to the page limitation, detailed
implementation and extra numerical results are given in Appendix C. The code for the experiments
is available at https://anonymous.4open.science/r/Low-pass-SGD-C7A1.

6.1 Experiment Settings

Dataset: We conduct experiments on computer vision datasets (MNIST, CIFAR-10, and CIFAR-
100 (Krizhevsky et al., 2009)) and natural language processing datasets, GLUE (Wang et al., 2018).

Model: We conduct experiments on various models, including the 5-layer CNN described in De
et al. (2022), the modified ResNet in Kolesnikov et al. (2019), EfficientNet with group normaliza-
tion (Tan and Le, 2019), and ViT (Dosovitskiy et al., 2020) for the CV tasks and RoBERTa-base (Liu
et al., 2019) for the GLUE dataset. If not specified, the models are initialized with random weights
without pretraining.

Algorithm: We compared the impact of DOPPLER on several base algorithms, including the DP
version of SGD, Adam, and GaLore. The updates of the algorithms are given in Algorithm 2 and
Algorithm 3 in Appendix C.2. We use LP- to denote the DP optimizer with DOPPLER.

8

https://anonymous.4open.science/r/Low-pass-SGD-C7A1

(a) PSD of wt and gt. (b) PSD of gt of SGD and LP-SGD.

Figure 2: The recorded PSD of Gaussian noise {wt}, and the stochastic gradients of SGD and LP-
SGD of ResNet-50 training on CIFAR-10 dataset.

(a) CIFAR-10 with ϵ = 8. (b) CIFAR-100 with ϵ = 8. (c) MNIST with ϵ = 8.

Figure 3: Comparision between DPSGD and LP-DPSGD for pre-training on different datasets.

(a) DPSGD and LP-DPSGD. (b) DPAdam and LP-DPAdam. (c) DPGalore and LP-DPGalore.

Figure 4: Comparision between DP optimizers w and w/o low-pass filters for pre-training with
different ϵ’s on CIFAR-10 dataset.

Hyper-parameters choices: The choices of the filter coefficients ai, bi are empirical; specific
choices used in the experiments are listed in Table 2 in Appendix C.1.

The learning rate, batch size, and number of training epochs are tuned for best testing accuracy
using grid search. Detailed hyper-parameters and search grids are given in Appendix C.1. For all
experiments, we fix the privacy parameter δ = 1/N1.1 to obtain a reasonable privacy notion.

6.2 Numerical results

PSD of the stochastic gradient: First, we record the stochastic gradients of SGD and SGD with
DOPPLER training ResNet-50 for 40 epochs (T = 4000 steps) on the CIFAR-10 dataset. Then,
we compute the PSD of the recorded stochastic gradients. The results are given in Figure 2. We
can observe that the recorded PSD of wt is filling all frequencies, and gt is a low-frequency signal.
After applying the low-pass filter, the PSD of the filtered gradient lies in the low-frequency domain,
and the high-frequency signals (and noise) are suppressed.

Results for different datasets. The comparisons between LP-DPSGD and DPSGD on different
datasets are given in Figure 3. We can observe that LP-DPSGD outperforms DPSGD on MNIST,
CIFAR-10, and CIFAR-100 datasets under the same privacy budget ϵ = 8. The results on the GLUE
dataset is in Appendix C.3.

Results for different algorithms: The comparisons between DP optimizers, including DPSGD,
DPAdamBC (Tang et al., 2024), and DPGaLore (an extension of GaLore (Zhao et al., 2024)),
with and without DOPPLERis shown in Figure 4. We can observe that all DP optimizers with
DOPPLERoutperform the baseline under different levels of privacy budget ϵ′s.

9

7 Conclusion and discussion
In this paper, we introduce a signal processing perspective to understand and analyze DP optimizers.
By identifying the difference between the gradient and noise signal in the frequency domain, we
propose DOPPLER, a low-pass filter approach, to filter out the DP noise and improve the signal-
to-noise ratio of the privatized gradient. Our proposed filtering method is compatible with existing
DP optimizers, and extensive experiments have shown that the low-pass filter could improve DP
optimizers’ performance in the case when the DP noise is large, e.g., in the pertaining stage and for
training large models.

Limitations: Designing higher-order filters requires hyper-parameter tuning or prior knowledge of
the gradients’ auto-correlation pattern; implementing a high-order low-pass filter is memory ineffi-
cient (requires storing na + nb optimization states for each trainable parameter), which eliminates
the usage of the proposed method when optimizing very large-scale foundation models with limited
memory resource.

Acknowledgements

This work is supported by a gift from the USC-Meta Center for Research and Education in AI, and
a gift from Google. Mingyi Hong is supported partially by NSF under the grants EPCN-2311007
and CCF-1910385.

References
M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang. Deep learn-

ing with differential privacy. In Proceedings of the 2016 ACM SIGSAC conference on computer
and communications security, pages 308–318, 2016.

Z. Allen-Zhu and E. Hazan. Variance reduction for faster non-convex optimization. In International
conference on machine learning, pages 699–707. PMLR, 2016.

W. An, H. Wang, Q. Sun, J. Xu, Q. Dai, and L. Zhang. A pid controller approach for stochastic
optimization of deep networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 8522–8531, 2018.

G. Andrew, O. Thakkar, B. McMahan, and S. Ramaswamy. Differentially private learning with
adaptive clipping. Advances in Neural Information Processing Systems, 34:17455–17466, 2021.

Z. Bu, Y.-X. Wang, S. Zha, and G. Karypis. Automatic clipping: Differentially private deep learning
made easier and stronger. Advances in Neural Information Processing Systems, 36, 2024.

N. Carlini, F. Tramer, E. Wallace, M. Jagielski, A. Herbert-Voss, K. Lee, A. Roberts, T. Brown,
D. Song, U. Erlingsson, et al. Extracting training data from large language models. In 30th
USENIX Security Symposium (USENIX Security 21), pages 2633–2650, 2021.

C. A. Choquette-Choo, K. D. Dvijotham, K. Pillutla, A. Ganesh, T. Steinke, and A. G. Thakurta.
Correlated noise provably beats independent noise for differentially private learning. In The
Twelfth International Conference on Learning Representations.

A. Cutkosky and H. Mehta. Momentum improves normalized sgd. In International conference on
machine learning, pages 2260–2268. PMLR, 2020.

S. De, L. Berrada, J. Hayes, S. L. Smith, and B. Balle. Unlocking high-accuracy differentially
private image classification through scale. arXiv preprint arXiv:2204.13650, 2022.

S. Denisov, H. B. McMahan, J. Rush, A. Smith, and A. Guha Thakurta. Improved differential privacy
for sgd via optimal private linear operators on adaptive streams. Advances in Neural Information
Processing Systems, 35:5910–5924, 2022.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 4171–4186, 2019.

10

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on Learning Representations, 2020.

C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Theoretical Computer
Science, 9(3-4):211–407, 2014.

O. Gannot. A frequency-domain analysis of inexact gradient methods. Mathematical Programming,
194(1):975–1016, 2022.

J. Hong, Z. Wang, and J. Zhou. Dynamic privacy budget allocation improves data efficiency of
differentially private gradient descent. In Proceedings of the 2022 ACM Conference on Fairness,
Accountability, and Transparency, pages 11–35, 2022.

B. Hu and L. Lessard. Control interpretations for first-order optimization methods. In 2017 Ameri-
can Control Conference (ACC), pages 3114–3119. IEEE, 2017.

P. Kairouz, B. McMahan, S. Song, O. Thakkar, A. Thakurta, and Z. Xu. Practical and private (deep)
learning without sampling or shuffling. In International Conference on Machine Learning, pages
5213–5225. PMLR, 2021.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. In International Conference on
Learning Representations (ICLR), San Diega, CA, USA, 2015.

A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver, J. Yung, S. Gelly, and N. Houlsby. Big transfer
(bit): General visual representation learning. In European Conference on Computer Vision, 2019.

A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.

X. Li, F. Tramer, P. Liang, and T. Hashimoto. Large language models can be strong differentially
private learners. In International Conference on Learning Representations, 2021.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoy-
anov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692,
2019.

I. Loshchilov and F. Hutter. SGDR: stochastic gradient descent with warm restarts. In 5th In-
ternational Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.
net/forum?id=Skq89Scxx.

Z. Luo, D. J. Wu, E. Adeli, and L. Fei-Fei. Scalable differential privacy with sparse network finetun-
ing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 5059–5068, 2021.

A. V. Oppenheim, A. S. Willsky, and S. H. Nawab. Signals & systems (2nd ed.). Prentice-Hall, Inc.,
USA, 1996. ISBN 0138147574.

X. Pan, M. Zhang, S. Ji, and M. Yang. Privacy risks of general-purpose language models. In 2020
IEEE Symposium on Security and Privacy (SP), pages 1314–1331. IEEE, 2020.

N. Papernot, A. Thakurta, S. Song, S. Chien, and Ú. Erlingsson. Tempered sigmoid activations
for deep learning with differential privacy. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 9312–9321, 2021.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, et al. Imagenet large scale visual recognition challenge. International journal of
computer vision, 115:211–252, 2015.

M. Tan and Q. Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In
International conference on machine learning, pages 6105–6114. PMLR, 2019.

Q. Tang, F. Shpilevskiy, and M. Lécuyer. Dp-adambc: Your dp-adam is actually dp-sgd (unless
you apply bias correction). In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pages 15276–15283, 2024.

11

https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Skq89Scxx

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,
E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language models. arXiv preprint
arXiv:2302.13971, 2023.

A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. Bowman. Glue: A multi-task benchmark
and analysis platform for natural language understanding. In Proceedings of the 2018 EMNLP
Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 353–355,
2018.

B. Wang, Q. Gu, M. Boedihardjo, L. Wang, F. Barekat, and S. J. Osher. Dp-lssgd: A stochastic
optimization method to lift the utility in privacy-preserving erm. In Mathematical and Scientific
Machine Learning, pages 328–351. PMLR, 2020.

S. Winder. Analog and digital filter design. Elsevier, 2002.

X. Yang, H. Zhang, W. Chen, and T.-Y. Liu. Normalized/clipped sgd with perturbation for differen-
tially private non-convex optimization. arXiv preprint arXiv:2206.13033, 2022.

D. Yu, S. Naik, A. Backurs, S. Gopi, H. A. Inan, G. Kamath, J. Kulkarni, Y. T. Lee, A. Manoel,
L. Wutschitz, et al. Differentially private fine-tuning of language models. In International Con-
ference on Learning Representations, 2021.

M. Zaheer, S. Reddi, D. Sachan, S. Kale, and S. Kumar. Adaptive methods for nonconvex optimiza-
tion. Advances in neural information processing systems, 31, 2018.

J. Zhao, T. Wang, T. Bai, K.-Y. Lam, Z. Xu, S. Shi, X. Ren, X. Yang, Y. Liu, and H. Yu. Reviewing
and improving the gaussian mechanism for differential privacy. arXiv preprint arXiv:1911.12060,
2019.

J. Zhao, Z. Zhang, B. Chen, Z. Wang, A. Anandkumar, and Y. Tian. Galore: Memory-efficient
llm training by gradient low-rank projection. In 5th Workshop on practical ML for limited/low
resource settings, 2024.

12

A Additional Background

In this section, we provide the details of the frequency-domain analysis and low-pass filter approach.
First, we discuss the basic concepts in signal processing. Then, we discuss the filter method in signal
processing.

A.1 Frequency domain analysis

In signal processing, frequency domain analysis is used to analyze the periodical or long-term be-
havior of a (time series) signal/data. In the frequency domain analysis, we use the frequency ν as
the indices of the signal, e.g., {X(ν)}, X(ν) ∈ C, where each term X(ν) records the amplitude and
phase of the sine wave of frequency ν that composes the signal; in contrast, in the time domain, we
use time t as the indices of a signal, e.g., {xt}, where each term xt records the value of the signal
at a given time t. In this paper, we treat each coordinate i ∈ [1, . . . , d] of the privatized gradient
over the iterates as an individual signal, i.e. {g1[i], g2[i], . . . , gT [i]}. Thus, the gradient over iterates
gives us d one-dimensional signals, and we can look at their frequency domain representation of
each signal.

Benefit of frequency-domain analysis:

• Certain properties of a signal can be hard to observe/characterize in the time domain. For example,
a long-time correlation or a cyclic behavior of the signal is not easy to directly observe in the
time domain. By converting the signal to the frequency domain, such properties can easily be
captured and analyzed. For example, the signal xt = sin(t) has nonzero entries in almost all
times. However, the frequency domain representation of this signal has only one entry that is non-
zero, i.e., X(1) = 1 and all other entries are zero, i.e., X(ν) = 0,∀ν ̸= 1. This means xt has only
one periodic signal in it.

• Certain mathematical analyses can be significantly simplified in the frequency domain. For ex-
ample, linear differential equations in the time domain are converted to algebraic equations in the
frequency domain; filters as convolutions in the time domain are converted to point-wise multipli-
cation in the frequency domain. These properties greatly simplify the analysis of the dynamics of
the signals and filters (Oppenheim et al., 1996).

Transform from time to frequency domain: To obtain a frequency domain representation
of a discrete signal, one can apply the Discrete Fourier transform (DFT) (F{xt} : X(ν) =∑T−1

t=0 x(t)e
−2πit

T ν)) to the signal. By directly applying DFT to a signal and obtaining {X(ν)},
one can identify how the signal is composed of sin waves of different frequencies ν with their am-
plitudes and phases. In the paper, we apply DFT to the auto-correlation of a signal and obtain its
power spectrum density (PSD). The PSD of a signal shows the distribution of the power of a signal
on different frequencies. For example, the PSD of x(t) = sin(t) is P (ν) = 1/2 for ν = ± 1

2π and 0
elsewhere.

A.2 Low-pass filter

Frequency filter: A frequency filter is a transformation of a signal that only allows
certain frequencies to pass and blocks/attenuates the remaining frequencies. For exam-
ple, for a signal x(t) = sin(t) + sin(10t), we can apply an (ideal) low-pass fil-
ter F (ν) = 1 when |ν| ≤ 1

2π and 0 otherwise. Then, after applying the fil-
ter, F ∗ x(t) = sin(t), the output signal only keeps the low-frequency signal.

Figure 5: Illustration of the low-pass filter.

In this work, we use (time-invariant) linear filters for
DP noise reduction. A linear filter attenuates certain
frequencies by using a linear combination of the input
signal. Considering gt as the time signal, the general
form of a linear filter on gt is

mt =

t∑
τ=0

κτgt−τ = −
na∑
τ=1

aτmt−τ +

nb∑
τ=0

bτgt−τ ,

13

where κτ are the filter coefficients. The second formula is a recursive way of writing the filter.

Filter design: The property of the filter depends on the choice of the filter coefficients. Designing a
filter consists of the following steps:

• Decide filter order/tab na, nb. Larger na, nb give the filter more flexibility and better possible
performance, at a cost of more memory consumption. In our experiment, we tested on 0th-3rd
order filters, i.e., max{na, nb} ≤ 3.

• Decide filter coefficients {aτ}, {bτ}. Filter design can, in general, be a complex procedure, and
it involves deciding on trade-offs among different properties of the filter (Winder, 2002). Two
standard constraints on the filter coefficients are: a) −∑ aτ +

∑
bτ = 1, to ensure the filter has

unit gain, i.e., the mean of the signal remains unchanged; and b) the solutions x to 1+
∑

aτx
τ = 0

satisfies |x| < 1, to ensure the filter is stable, i.e.,
∑ |κt| < ∞. In the paper, we directly follow the

design of the Chebyshev filter and Butterworth filter and tune their cut-off frequency (and ripple)
to achieve the best performance and maintain these properties.

A.3 Additional related work

DP optimization with correlated noise: DP optimization with correlated noise have been investi-
gated in Kairouz et al. (2021); Denisov et al. (2022); Choquette-Choo et al.. These works treat the
DPSGD update as releasing a weighted prefix sum with DP noise, i.e., A(G0:t +W0:t), where A is
the prefix sum matrix (a lower-triangular all-one matrix) and W0:t is the i.i.d. DP noise. Kairouz
et al. (2021); Denisov et al. (2022) apply certain decomposition A = BC and change the update to
B(CG0:t +W0:t) = AG0:t +BW0:t, and Choquette-Choo et al. provides a theoretical justification
that when B is a high-pass filter, and gt are correlated, the algorithm outperforms original DPSGD.
In contrast, our method can be written as AM(G0:t +W0:t), where M is a low-pass filter.

• The correlated noise methods and our proposed method can all be viewed as processing the signal
in the frequency domain to ”separate” the noise and the gradient.

• The existing correlated noise methods 1) pre-process the gradient/noise to separate the gradient
and the DP noise in the frequency domain, and therefore require careful design of the matrices
B,C for each problem and optimizer, 2) require extra memory (O(d log(t)) to O(dt)), which is
unrealistic for large scale training, and 3) only work for SGD update, since Adam cannot be written
as such a prefix sum of privatized gradient. In contrast, our method 1) post-processes the noisy
signal to extract the gradient from the noise from the frequency domain, 2) only requires O(d)
extra memory, which is independent of t, and 3) is compatible with any first-order optimizer since
it just post-processes the gradient.

B Missing proof details in the main paper

In this section, we provide the proof for Theorem 2. First, by A1, we have

F (xt+1)− F (xt) ≤ ⟨∇F (xt),xt+1 − xt⟩+
L

2
E
[
∥xt+1 − xt∥2

]
= −η ⟨∇F (xt),mt⟩+

Lη2

2
∥mt∥2 .

(9)

We can expand mt as follows:

mt = −
na∑
τ=1

aτmt−τ +

nb∑
τ=0

bτgt−τ

mt +

na∑
τ=1

aτmt−τ =

nb∑
τ=0

bτgt−τ

(1 +

na∑
τ=1

aτz
−τ)M(z)

(a)
= (

nb∑
τ=0

bτz
−τ)G(z)

M(z)
(b)
=

1

1 +
∑na

τ=1 aτz
−τ

(

nb∑
τ=0

bτz
−τ)G(z)

14

M(z)
(c)
=

na∑
τ=1

za,τ
1− pa,τz−1

(

nb∑
τ=0

bτz
−τ)G(z)

M(z)
(d)
=

na∑
τ1=1

za,τ1

∞∑
τ0=0

(pa,τ1z
−1)−τ0(

nb∑
τ2=0

bτ2z
−τ2)G(z)

M(z)
(e)
=

nb∑
τ2=0

bτ2

na∑
τ1=1

za,τ1

∞∑
τ0=0

(pa,τ1)
τ0z−τ0−τ2G(z)

mt
(f)
=

nb∑
τ2=0

bτ2

na∑
τ1=1

za,τ1p
τ0
a,τ1gt−τ0−τ2

=

t∑
τ=0

κτgt−τ ,

where in (a) we applies the z-transform Z{·} to both side of the sequence and use the property
that Z{xt−k} = z−kX(z) (Oppenheim et al., 1996); (b) divides both sides by 1 +

∑na

τ=1 aτz
−τ ;

in (c) we define {za,τ}, {pa,τ} such that
∑na

τ=1
za,τ

1−pa,τz−1 = 1
1+

∑na
τ=1 aτz−τ ; (d) expands 1

1−p =∑∞
t=0 p

t; in (e) we rearrange there terms; in (f) we apply the inverse z-transform and notice that
g<0 = 0; and in the last equation we define κτ =

∑min{nb,τ}
τ2=0 bτ2

∑na

τ1=1 za,τ1(pa,τ1)
τ−τ2 . Plug the

expansion of mt back to (9), we have

E[F (xt+1)− F (xt)] ≤ −η

〈
∇F (xt),E[

t∑
τ=0

κτgt−τ]

〉
+

Lη2

2
E

∥∥∥∥∥
t∑

τ=0

κτgt−τ

∥∥∥∥∥
2


(a)

≤ −η

t∑
τ=0

κτ ⟨∇F (xt),∇F (xt−τ)⟩+
Lη2

2

∥∥∥∥∥
t∑

τ=0

κτgt−τ

∥∥∥∥∥
2


(b)

≤ −η

t∑
τ=0

κτ ⟨∇F (xt),∇F (xt−τ)⟩

+
Lη2

2

∥∥∥∥∥
t∑

τ=0

κτ∇F (xt−τ)

∥∥∥∥∥
2

+

t∑
τ=0

κ2
τ

(
dσ2

DP +
σ2

SGD

B

)
(c)

≤ −η

t∑
τ=0

κτ cτ ∥∇F (xt)∥2 − η

t∑
τ=0

κτ c−τ ∥∇F (xt−τ)∥2

+
Lη2

2

(
t∑

τ=0

κτ ∥∇F (xt−τ)∥2 +
t∑

τ=0

κ2
τ

(
dσ2

DP +
σ2

SGD

B

))
(d)

≤ −η

t∑
τ=0

κτ cτ ∥∇F (xt)∥2 +
Lη2

2
+

t∑
τ=0

κ2
τ

(
dσ2

DP +
σ2

SGD

B

)
(10)

where in (a) we apply A3 and set C ≥ G, so that E[gt] = ∇F (xt); (b) applies A2 to the last
term, and use the fact that wt ∼ N (0, σ2

DP · Id), and the noise are independent; (c) applies A4 to
the first term and uses Jensen’s inequality to the second term with ∥·∥2 being convex; in (d) we set

η ≤ minτ{ 2c−τ

Lκτ
}. Clearly, we have

∑t
τ=0 κτ ≤

∑nb
τ=0 bτ

1−
∑na

τ=1 aτ
. Averaging over t = 0, . . . , T − 1, and

deciding both side by η, then the theorem is proved.

C Missing experiment details in the main paper

In this section, we provide the missing details for the experiments in the main paper and additional
experiments.

15

0 5 10 15 20 25 30
τ

0.0

0.2

0.4

0.6

0.8

1.0

κ
τ

SGD

Momentum-SGD

first-order ver. 1

first-order ver. 2

second-order

(a) Time response κτ of Tab. 2

10−3 10−2 10−1 1 π
Frequency [Hz]

−100

−80

−60

−40

−20

0

A
m
pl
it
ud
e
[d
B
]

SGD

Momentum-SGD

first-order ver.1

first-order ver. 2

second-order

(b) Frequency response of Tab. 2

0 5 10 15 20 25 30
τ

0.0

0.1

0.2

0.3

κ
τ

f1

f2

f3

f4

f5

f6

(c) Time response κτ of Tab. 4

10−3 10−2 10−1 1 π
Frequency [Hz]

−100

−80

−60

−40

−20

0

20

A
m
pl
it
ud
e
[d
B
]

f1

f2

f3

f4

f5

f6

(d) Frequency response of Tab. 4

Figure 6: The time and frequency response of the filters used in the paper.

Experiments compute resources: Each experiment is conducted on an EPYC-7513 CPU with one
NVIDIA A100 (80 GB) GPU. The runtime ranges from 1 hour to 48 hours. The codes for the
optimizers and the job scripts are given in the supplementary.

C.1 Hyper-parameter choice

In this section, we provide the hyper-parameter choices and search grids for different experiment
settings. The search grids for the experiments are given in Table 1.

Table 1: Search grids for each hyper-parameter.
Hyper-parameter Search grid

Epoch {50, 80, 120, 150}
CIFAR10/CIFAR100 batch size {500, 1000, 2000, 5000}

GLUE batch size {1024, 2048, 4096}
SGD stepsize {0.8, 0.5, 0.4, 0.2, 0.1}

Adam/GaLore stepsize {3e− 3, 1e− 3, 3e− 4, 1e− 4, 3e− 5}

The filter coefficients used in the experiments are given in Table 2.

Table 2: Possible choice of the coefficients for the filter of different orders.
Filter bτ aτ

SGD 1 N/A
Momentum-SGD 0.1 −0.9

1st-order ver.1 {1, 1}/11 −9/11
1st-order ver.2 {3,−1}/11 −9/11

2nd-order {1, 2, 1}/58 {−92, 38}/58

C.2 Algorithm variants

We provide the update rules for different DP optimizer variants used in the main paper in Algo-
rithm 3. Different components of the optimizers are highlighted with different colors. the blue lines
are additional steps for the Adam update, and brown lines are the components of the GaLore (Zhao
et al., 2024) optimizer.

16

Algorithm 3 DP-GaLore with DOPPLER
1: Input: x0,D, η, C, σDP, {aτ}na

τ=1, {bτ}nb
τ=0, β, ϵAdam, I, r

2: Initialize: {m−τ}na
τ=1 = 0, {g−τ}nb

τ=1 = 0, {ca,−τ}an
τ=1, {cb,−τ}bnτ=0, v−1 = 0

3: for t = 0, . . . , T − 1 do
4: Randomly draw minibatch Bt from D
5: gt =

1
|Bt|

∑
ξ∈Bt

clip (∇f(x; ξ), C) +wt # Compute private gradient
where wt ∼ N (0, σ2

DP · Id)
6: if Use GaLore then
7: if t mod I ≡ 0 then
8: P = FindProjector(gt, r)
9: end if

10: g̃t = P⊤gt # Low-dimension projection
11: else
12: g̃t = gt

13: end if
14: vt = (1− β)vt−1 + β(g̃t)

2 # Compute 2nd-order moment
15: mτ = −∑na

τ=1 aτmt−τ +
∑nb

τ=0 bτ g̃t−τ # Apply filter
16: cb,t = 1, ca,t = −∑na

τ=1 aτ ca,t−τ +
∑nb

τ=0 bτ cb,t−τ # Compute bias
17: m̂t = mt/ca,t # Correct initialization bias
18: v̂t = vt/(1− βt) # Correct initialization bias
19: d̃t = m̂t/max{

√
v̂t, ϵAdam}

20: if Use GaLore then
21: dt = Pd̃t # Inverse projection to original dimension
22: else
23: dt = d̃t

24: end if
25: xt+1 = xt − ηdt # Parameter update
26: end for

C.3 Additional experiments: the GLUE dataset

We also conduct experiments on the GLUE dataset (Wang et al., 2018). We fine-tune a RoBERTa-
base model (Liu et al., 2019) with the pretrained weights from https://huggingface.co/
FacebookAI/roberta-base. We follow the training script provided in Li et al. (2021). The
results are shown in Table 3. For comparison, we also include the results from Li et al. (2021).
From the result of DPAdamBC and LP-DPAdamBC, we observe a slight accuracy improvement by
using DOPPLER. However, in the fine-tuning tasks, we do not see significant improvement by using
DOPPLER compared with the result reported in Li et al. (2021).

Table 3: Test accuracy on language tasks with RoBERTa-base, ϵ = {3, 8}.

Method ϵ = 3 ϵ = 8
MNLI QQP QNLI SST-2 MNLI QQP QNLI SST-2

DPAdam (Li et al., 2021) 82.45 85.56 87.42 91.86 83.20 86.08 87.94 92.09
DPAdamBC 82.39 85.29 86.44 91.10 82.48 85.94 87.06 91.25

LP-DPAdamBC 83.55 85.71 87.63 91.71 83.80 86.50 87.76 91.82

C.4 Additional experiments: ablation studies

In this section, we provide additional numerical results for several ablation studies w.r.t. the impact
of different components in the experiment.

Results for different models. The results for pretraining different models are given in Figure 7.
We observe that DOPPLERuniformly improves the DP pretraining performance for different model
structures in pre-training.

Ablation study on filter coefficients. The results for DPSGD accompanied with different low-pass
filter coefficients in Table 2 are given in Figure 8a. We observe that different filters have different
impacts on the algorithm’s performance. For training on the CIFAR-10 dataset, the first-order filter
is sufficient to have a good performance, while different coefficient choices for filters of the same

17

https://huggingface.co/FacebookAI/roberta-base
https://huggingface.co/FacebookAI/roberta-base

(a) 5-layer CNN (b) Vit-small

(c) EfficientNet (d) ResNet-50

Figure 7: Comparision between DPSGD LP-DPSGD for pre-training different models on CIFAR-10
dataset with ϵ = 8.

order also have different performances. The second-order filter provides an over-smoothing to the
gradient, leading to slow convergence in the early stage of training. Although the second-order filter
does not have a good performance, it could have a better performance when the number of training
steps is longer (e.g., when training on the Imagenet dataset (Russakovsky et al., 2015)).

(a) Filters in Tab. 2

15

25

35

45

55

0 20 40 60 80

T
es

t
A

cc
u
ra

cy

Epoch

f1 f2
f3 f4
f5 f6

(b) Filters in Tab. 4

Figure 8: LP-DPSGD for pre-training on CIFAR-10 with different filter coefficients.

An additional set of first- and second-order filters with different coefficients in Table 4. Coefficient
choices f1 and f2 compare different values of bτ ; f3 and f4 compare the impact of the values of aτ ;
f5 and f6 compare the impact of filter orders nb and na.

Table 4: Possible choice of the coefficients for the filter of different orders.
Filter bτ aτ

f1 {0.075, 0.025} {−0.9}
f2 {0.025, 0.075} {−0.9}
f3 {0.1, 0.1} {−0.8}
f4 {0.2, 0.2} {−0.6}
f5 {0.025, 0.05, 0.025} {−0.9}
f6 {0.025, 0.025} {−1.8, 0.85}

Impact of different clipping operations. The results for LP-DPSGD with different clipping meth-
ods are given in Figure 9. We observe automatic clipping (Bu et al., 2024) (Norm) is better than

18

vanilla clipping described in (Abadi et al., 2016) (Clip); treating all layers as one vector (Flat) is
better than clipping each layer separately (Layer).

Figure 9: DPLPSGD for pre-training on CIFAR-10 with different clipping strategies.

Impact of learning rate and scheduler: We report part of our hyper-parameter search pro-
cess. First, we report the test accuracy for different learning rates with fixed epochs (150) and
(8, 1/500001.1)-DP. The results are shown in Figure 10. The optimal learning rate is 10−3; a larger
learning rate speeds up the training in the early stage but hurts the final performance; a smaller
learning rate results in slow convergence. In Figure 11, we compare the optimizer with and without
a learning rate scheduler. Specifically, we use the Cosine-Annealing with warmup from Loshchilov
and Hutter (2017). From the result, we see when the number of epochs is large, the learning rate
scheduler improves the training performance, while in the early stage, the scheduler slows down the
convergence.

Figure 10: LP-DPAdamBC for pre-training on CIFAR-10 with different learning rates.

Figure 11: LP-DPSGD with and without learning rate scheduler

Finetuning on CIFAR dataset: We also provide the experiment result for fine-tuning ViT models
on the CIFAR-10 dataset under different privacy budgets. As illustrated in Figure 12, the perfor-
mance of LP-DPSGD improves by less than 1% for small ϵ′s. For larger ϵ′s, the gap is smaller.
DOPPLER works has more improvement when the injected DP noise is large (i.e., ϵ is small).

19

Figure 12: DPSGD and LP-DPSGD for fine-tuning ViT on CIFAR-10 with different ϵ’s.

20

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claim matches with the results in the main paper
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, we provide a discussion at the end of the paper. And the limitation of the
assumptions are discussed right after the the definitions.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

21

Justification: We provide assumption in the statement of the theorems and proofs in the
appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the codes in the supplementary and the parameters are given in
the experiment section and the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

22

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Yes, we included the code for the experiment in the supplementary
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The parameters are either provided in the citations or given in the appendix
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [No]
Justification: We did not report the error bar, partially due to the unknown distribution of
the error. In addition, most of our experimental results were done with one run due to the
large size nature of them.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The training details are included in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no significant societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

24

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The code provided contains the license information.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

25

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [Yes]
Justification: The code of the algorithm is well-documented.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

26

	Introduction
	Preliminaries
	Notations & assumptions
	Differential privacy (DP) and differentially private SGD (DPSGD)
	Related work

	A signal processing perspective
	Low-pass filter and noise reduction
	The impact of per-sample gradient clipping

	The proposed DOPPLER approach
	Theoretical analysis
	Convergence analysis
	Privacy guarantee
	Impact of the low-pass filter

	Numerical experiments
	Experiment Settings
	Numerical results

	Conclusion and discussion
	Additional Background
	Frequency domain analysis
	Low-pass filter
	Additional related work

	Missing proof details in the main paper
	Missing experiment details in the main paper
	Hyper-parameter choice
	Algorithm variants
	Additional experiments: the GLUE dataset
	Additional experiments: ablation studies

