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Abstract

Exclusion is an important and universal linguis-001
tic skill that humans use to express what they002
do not want. There is little research on exclu-003
sionary retrieval, where users express what they004
do not want to be part of the results produced005
for their queries. We investigate the scenario of006
exclusionary retrieval in document retrieval for007
the first time. We present ExcluIR, a set of re-008
sources for exclusionary retrieval, consisting of009
an evaluation benchmark and a training set for010
helping retrieval models to comprehend exclu-011
sionary queries. The evaluation benchmark in-012
cludes 3,452 high-quality exclusionary queries,013
each of which has been manually annotated.014
The training set contains 70,293 exclusionary015
queries, each paired with a positive document016
and a negative document. We conduct detailed017
experiments and analyses, obtaining three main018
observations: (i) existing retrieval models with019
different architectures struggle to comprehend020
exclusionary queries effectively; (ii) although021
integrating our training data can improve the022
performance of retrieval models on exclusion-023
ary retrieval, there still exists a gap compared024
to human performance; and (iii) generative re-025
trieval models have a natural advantage in han-026
dling exclusionary queries.027

1 Introduction028

Selective attention (Treisman, 1964; LaBerge,029

1990; Cherry, 2020), defined as the ability to focus030

on relevant information while disregarding irrele-031

vant information, plays a crucial role in shaping032

user’s search behaviors. This principle, originating033

from cognitive psychology, not only shapes human034

perception of the environment but also extends its035

influence to interactions with information retrieval036

systems. When searching for information, users037

can express a desire to exclude certain informa-038

tion. We refer to this phenomenon as exclusionary039

retrieval, where users explicitly indicate their pref-040

erence to exclude specific information.041

What are the American sci-fi action movies
released in 2019?

What other sci-fi movies (besides Avengers:
 Endgame) were released in 2019?

Alita: Battle Angel
Alita: Battle Angel is a 2019
American cyberpunk action
film based on Yukito
Kishiro's manga series Battle
Angel Alita...

Avengers: Endgame
Avengers: Endgame is a
2019 American superhero
film based on the Marvel
Comics superhero team the
Avengers...

Non-exclusionary query

Exclusionary query

Figure 1: A comparison between non-exclusionary and
exclusionary queries. Exclusionary queries often spec-
ify content to be excluded (e.g., “Avengers: Endgame”)
to express the user’s requirements for omitting certain
information. In this case, if the retrieval system fails
to comprehend the exclusionary nature of a query (e.g.,
one containing the term “besides,”) it will produce re-
trieval results that users do not desire.

Exclusionary retrieval emphasizes a crucial need 042

for precision and relevance in information retrieval. 043

It shows how users use their knowledge and ex- 044

pectations to find information that meets their spe- 045

cific needs. Therefore, the failure to understand 046

exclusionary queries can present a potentially seri- 047

ous problem. For example, as shown in Figure 1, 048

imagine a user searching for movies in the retrieval 049

system. He poses a query like “What other sci- 050

fi movies (besides Avengers: Endgame) were re- 051

leased in 2019?” If the retrieval system cannot 052

correctly address this exclusionary requirement, it 053

may return results containing content irrelevant 054

to the user’s interests (e.g., the movie “Avengers: 055

Endgame”), thus reducing user satisfaction. 056

Research on exclusionary retrieval remains rela- 057

tively rare. Early studies mainly focus on keyword- 058

based methods (Nakkouzi and Eastman, 1990; Mc- 059

Quire and Eastman, 1998; Harvey et al., 2003). 060

The key idea is to construct boolean queries that 061

include negation terms, which is essentially a 062
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post-processing strategy. However, these methods063

have limitations due to their reliance on structured064

queries, making them unsuitable for more diverse065

and complex natural language queries. Although066

recent work has explored the impact of negation067

in modern retrieval models (Rokach et al., 2008;068

Koopman et al., 2010; Weller et al., 2024), their069

focus is on comprehending the negation seman-070

tics within documents rather than the exclusionary071

nature of queries.072

At present, there is no evaluation dataset to as-073

sess the capability of retrieval models in exclu-074

sionary retrieval. To address this gap, our first075

contribution in this paper is the introduction of076

the resources for exclusionary retrieval, namely077

ExcluIR. ExcluIR contains an evaluation bench-078

mark to assess the capability of retrieval models079

in exclusionary retrieval, while also providing a080

training dataset that includes exclusionary queries.081

The dataset is built based on HotpotQA (Yang082

et al., 2018). We first use ChatGPT1 to generate083

an exclusionary query for two given relevant docu-084

ments, requiring that only one document contains085

the answer while explicitly rejecting information086

from the other document. Subsequently, we em-087

ploy 17 workers to check each data instance in the088

benchmark to ensure data quality. The training set089

comprises 70,293 exclusionary queries, while the090

benchmark includes 3,452 human-annotated exclu-091

sionary queries. This dataset can evaluate whether092

retrieval models can correctly retrieve documents093

when dealing with exclusionary queries, providing094

a new perspective for evaluating retrieval models.095

Our second contribution is to investigate the per-096

formance of existing retrieval methods with differ-097

ent architectures on exclusionary retrieval, includ-098

ing sparse retrieval (Robertson and Zaragoza, 2009;099

Nogueira et al., 2019), dense retrieval (Karpukhin100

et al., 2020; Ni et al., 2022a), and generative re-101

trieval methods (Bevilacqua et al., 2022; Wang102

et al., 2022a). We conduct extensive experiments103

and arrive at three main observations: (i) Exist-104

ing retrieval models with different architectures105

cannot fully understand the real intent of exclusion-106

ary queries; (ii) Generative retrieval models pos-107

sess unique advantages in exclusionary retrieval,108

while late interaction models (Khattab and Za-109

haria, 2020; Santhanam et al., 2022) like Col-110

BERT have obvious limitations in handling such111

1https://platform.openai.com/docs/
models/gpt-3-5

queries; (iii) Fine-tuning the retrieval models with 112

the training set of ExcluIR can improve the per- 113

formance on exclusionary retrieval, but the re- 114

sults are still far from satisfactory. We provide 115

in-depth analyses of these observations. These 116

conclusions contribute valuable insights for future 117

research on addressing the challenges of exclusion- 118

ary retrieval. We share the benchmark and evalua- 119

tion scripts on https://anonymous.4open. 120

science/r/ExcluIR. 121

2 Dataset Construction 122

As depicted in Figure 2, the construction of the Ex- 123

cluIR dataset involves the following steps: (i) we 124

first extract document pairs from HotpotQA (Yang 125

et al., 2018), where each data instance consisting of 126

two interrelated documents; (ii) for each document 127

pair, we employ ChatGPT to generate an exclusion- 128

ary query. (iii) to enhance the diversity of the syn- 129

thetic queries, we further use ChatGPT to rephrase 130

them; and (iv) finally, to ensure a high quality of 131

the dataset, we establish annotation guidelines and 132

hire workers for manual correction. 133

2.1 Collecting documents pairs 134

We begin the construction process by collecting 135

documents from the HotpotQA (Yang et al., 2018) 136

dataset, which is designed for multi-hop reasoning 137

in question-answering task. Each data instance in- 138

cludes two supporting documents that are related. 139

The model needs to comprehend the association 140

between them and extract information from them 141

to answer the question. We extract two related doc- 142

uments from each data instance to form our docu- 143

ment pairs. In total, we collected 74,293 document 144

pairs. After merging and removing duplicates, we 145

obtained a document collection containing 90,406 146

documents. 147

2.2 Generating exclusionary queries 148

To efficiently construct our dataset, we design a 149

prompt carefully to guide ChatGPT in generating 150

exclusionary queries for each pair of documents 151

(see Appendix A). To ensure that the generated 152

queries cover both positive and negative documents, 153

we design a two-step construction strategy. Specifi- 154

cally, we first instruct ChatGPT to generate a query 155

relevant to both documents, and then guide Chat- 156

GPT to revise this query by adding a constraint 157

to include the semantics of refusal to information 158

from the negative document. 159
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Figure 2: Overview of ExcluIR dataset construction
process.

2.3 Rewriting synthetic queries160

Although the prompt has been carefully adjusted,161

the generated queries often express the exclusion-162

ary phrases in a limited manner, such as “excluding163

any information about,” “except for any informa-164

tion,” and “without referencing any information165

about.” These expressions lack naturalness and166

deviate from real-world queries. To increase the167

diversity and naturalness of the queries, we further168

instruct ChatGPT to rephrase them. Then, we par-169

tition the ExcluIR dataset obtained in this step into170

training and test sets. The test set is further manu-171

ally corrected to construct the benchmark, which172

we will describe next.173

2.4 Manually correcting data174

To build a reliable ExcluIR benchmark, we hire 17175

workers for manual data correction. We first sam-176

ple 4,000 instances from the 74,293 exclusionary177

queries obtained in the previous step. Each instance178

contains two documents along with a synthetic179

query generated by ChatGPT. We ask workers to180

check the synthetic exclusionary query to ensure181

its naturalness and correctness and they are encour-182

aged to express the exclusionary nature of queries183

using diverse expressions. The requirements are184

detailed in Appendix B. To facilitate the correction185

process, we construct an online correction system.186

In the system, we define three operations for work-187

ers to correct each data instance:188

(1) Criteria Met. If the synthetic query already189

meets the criteria, no further modifications are190

necessary.191

(2) Query Modification. If the synthetic query fails192

to meet the criteria, modify or rewrite the query193

to align with the requirements.194

(3) Discard Data. If it is difficult to write a query195

that meets the criteria based on these two doc-196

uments, the workers can choose to discard the197

data.198

Figure 3: Distribution of the lengths of exclusionary
queries in ExcluIR.

2.5 Quality assurance 199

We take several measures to ensure data quality: 200

(i) we provide detailed documentation guidelines, 201

including task definition, correction process, and 202

specific criteria for exclusionary queries; (ii) we 203

present multiple examples of exclusionary queries 204

to help workers understand the task and require- 205

ments; (iii) we record a video to demonstrate the 206

entire correction process and emphasize the key 207

considerations that need special attention; (iv) we 208

adopt a real-time feedback mechanism to allow 209

workers to share the issues they encounter during 210

the correction process; we discuss these issues and 211

provide solutions accordingly; and (v) we randomly 212

sample 10% of the data of each worker for quality 213

inspection. If there are errors in the sampled data, 214

we will ask the worker to correct the data again. 215

2.6 Dataset statistics 216

Following the dataset construction process de- 217

scribed above, we obtain 3,452 human-annotated 218

entries for the benchmark and 70,293 exclusion- 219

ary queries for the training set. The average word 220

counts for exclusionary queries in the training set 221

and benchmark are 22.37 and 21.64, respectively. 222

To further investigate the diversity of data, we visu- 223

alize the distribution of the lengths of exclusionary 224

queries in Figure 3. We show that the lengths of 225

exclusionary queries are diverse, reflecting varying 226

levels of complexity and details. 227

3 Experimental Setups 228

Methods for comparison. In our evaluation of dif- 229

ferent retrieval motheds for exclusionary retrieval, 230

we select sparse retrieval (BM25, DocT5Query), 231

dense retrieval (DPR, Sentence-T5, GTR, Col- 232

BERT), and generative retrieval (GENRE, SEAL, 233

NCI) models. Detailed descriptions of these meth- 234

ods and implementation details are provided in Ap- 235

pendix C. 236

Evaluation metrics. For the original test 237
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queries, we report the commonly used metrics: Re-238

call at rank N (R@N , N = 1, 5, 10) and Mean239

Reciprocal Rank at rank N (MRR@N , N = 10).240

Recall measures the proportion of relevant docu-241

ments that are retrieved in the top N results. MRR242

is the mean of the reciprocal of the rank of the first243

relevant document.244

In ExcluIR, each exclusionary query q has a pos-245

itive document d+ and a negative document d−.246

Thus, the difference between the rank of d+ and247

the rank of d− can reflect the retrieval model’s ca-248

pability of comprehending the exclusionary query.249

So we report ∆R@N and ∆MRR@N , which can250

be formulated as:251

∆R@N=R@N(d+)−R@N(d−),

∆MRR@N=MRR@N(d+)−MRR@N(d−).
(1)252

In addition, we report Right Rank (RR), which is253

the proportion of results where d+ is ranked higher254

than d−. The expected value of RR is 50% with255

random ranking.256

4 Results and Analyses257

In this section, we present five groups of experi-258

mental results and analyses to study: (i) the per-259

formance of the existing retrieval models on Ex-260

cluIR (Section 4.1), (ii) the strategy to improve the261

performance on ExcluIR, including expanding the262

training data domain (Section 4.2), incorporating263

our dataset into the training data (Section 4.3), and264

increasing the size of the model (Section 4.4), and265

(iii) the explanation for the superiority of generative266

retrieval in ExcluIR (Section 4.5).267

4.1 How well do existing methods perform on268

ExcluIR?269

To evaluate the performance of various re-270

trieval models trained on existing datasets in Ex-271

cluIR, we conduct our experiments on two well-272

known standard retrieval datasets: Natural Ques-273

tions (NQ) (Kwiatkowski et al., 2019) and Hot-274

potQA (Yang et al., 2018). NQ is a large-scale275

dataset for document retrieval and question answer-276

ing. The version we use is NQ320k, which consists277

of 320k query-document pairs. HotpotQA is a278

question-answering dataset that focuses on multi-279

hop reasoning. We split the original HotpotQA in280

the same way as our ExcluIR dataset, resulting in a281

70k training set and a 3.5k test set.282

The main performance of retrieval methods on283

the ExcluIR benchmark and other test data are pre-284

sented in Table 1 and 2. We have the following 285

observations from the results. 286

First, although these methods achieve good per- 287

formance on the standard test data including Hot- 288

potQA and NQ320k, their performance on the Ex- 289

cluIR benchmark is unsatisfactory. Nearly all mod- 290

els score less than 10% higher than random rank- 291

ing on the RR metric. Despite the fact that the 292

Sentence-T5 and GTR models trained on NQ320k 293

achieve the highest ∆R@1/∆MRR/RR scores, 294

they are far from achieving ideal performance. This 295

is attributed to the fact that negative documents are 296

erroneously retrieved and ranked high, indicating 297

that these models fail to comprehend the exclusion- 298

ary nature of queries. 299

Second, sparse retrieval methods demonstrate a 300

significant limitation in comprehending the exclu- 301

sionary nature of queries, so they have almost no 302

ability to handle ExcluIR. As shown in Table 2, 303

the RR scores of BM25 and DocT5Query are only 304

53.48% and 53.85%, which are only slightly higher 305

than random. Their ∆R@1 and ∆MRR scores are 306

lower than most neural retrieval models trained on 307

NQ320k. This is because these methods are based 308

on a lexical match between queries and documents. 309

This limitation prevents them from focusing on the 310

exclusionary phrases in the query, instead leading 311

to a high relevance score for negative documents. 312

Third, the diversity of training data impacts 313

the model’s ability to comprehend exclusionary 314

queries. As can be seen from Table 1 and 2, the 315

models trained on NQ320k exhibit better perfor- 316

mance on ExcluIR than those trained on HotpotQA. 317

We believe this is because the queries in NQ320k 318

are more diverse and contain more exclusionary 319

queries. Therefore, increasing the domain and di- 320

versity of training data can be beneficial for exclu- 321

sionary retrieval. We will conduct further experi- 322

mental analysis in Section 4.2. 323

Furthermore, we also evaluate the performance 324

of additional models trained on different datasets 325

in ExcluIR. Due to space constraints, these results 326

are presented in Appendix D. 327

4.2 How does expanding the training data 328

affect the performance? 329

To further understand the impact of training data 330

on performance in exclusionary retrieval, we select 331

representative models from each category for ad- 332

ditional experiments. We extend the experiment 333

in Table 1 by adding the NQ320k dataset to the 334

training data. We consider two settings for ex- 335
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Type Model
HotpotQA ExcluIR

R@2 R@5 R@10 MRR R@1 MRR ∆R@1 ∆MRR RR
Sparse
Retrieval

BM25 67.16 76.65 80.98 92.47 49.68 65.17 7.82 4.66 53.48
DocT5Query 69.19 77.88 81.65 94.10 50.98 67.50 7.85 3.81 53.85

Dense
Retrieval

DPR 55.53 67.44 73.49 81.73 49.63 65.79 7.34 5.01 54.02
Sentence-T5 57.63 68.45 74.29 82.48 51.04 66.27 10.11 7.01 55.41
GTR 61.82 73.57 79.42 85.50 54.87 70.88 14.40 8.79 57.42
ColBERT 73.58 83.73 87.95 94.44 54.00 71.24 10.72 6.42 55.57

Generative
Retrieval

GENRE 48.87 51.67 53.24 75.25 48.03 63.22 4.35 0.13 52.10
SEAL 60.78 72.26 78.20 85.76 51.33 67.88 11.64 7.71 55.52
NCI 47.60 58.14 64.37 74.59 37.22 51.37 1.97 2.29 50.93

Table 1: Performance of models trained on HotpotQA and tested on HotpotQA and ExcluIR. For the evaluation on
HotpotQA, we report Recall@2 rather than Recall@1, since each query in HotpotQA has two supporting documents.

Type Method
NQ320k ExcluIR

R@1 R@5 R@10 MRR R@1 MRR ∆R@1 ∆MRR RR
Sparse
Retrieval

BM25 37.96 61.24 68.86 47.86 49.68 65.17 7.82 4.66 53.48
DocT5Query 42.63 66.18 73.38 52.69 50.98 67.50 7.85 3.81 53.85

Dense
Retrieval

DPR 54.81 79.50 85.52 65.39 48.55 60.50 16.45 13.49 58.76
Sentence-T5 59.63 82.78 87.42 69.57 57.76 66.34 32.90 27.96 67.83
GTR 62.35 84.67 89.17 71.90 59.79 69.00 34.85 28.12 68.31
ColBERT 60.08 84.19 89.41 70.50 57.01 70.88 20.02 15.26 59.97

Generative
Retrieval

GENRE 56.25 71.21 74.00 62.80 31.63 37.63 11.44 10.15 58.65
SEAL 55.24 75.13 80.97 63.86 43.54 55.17 16.11 15.27 60.02
NCI 60.41 76.10 80.19 67.18 31.46 38.95 15.87 16.81 56.84

Table 2: Performance of models trained on NQ320k and tested on NQ320k and ExcluIR.

panding training data: “Mix” means mixing the336

two datasets for simultaneous training, and “Seq”337

means training on NQ320k with continual train-338

ing on HotpotQA. The results in Table 3 show that339

the impact of expanding the training data domain340

on ExcluIR varies across models. Specifically, we341

have the following observations.342

For the bi-encoder models, including DPR and343

Sentence-T5, the “Seq” strategy results in im-344

proved performance on ExcluIR. We believe that345

this is because the initial training on the NQ320k346

enhances the model’s general comprehension capa-347

bilities, as evidenced by the improved performance348

on the HotpotQA test set.349

However, expanding the training data does not350

help ColBERT and SEAL achieve better results on351

ExcluIR. While ColBERT exhibits competitive per-352

formance on two standard datasets, its performance353

diminishes on ExcluIR. This is because ColBERT354

calculates the document relevance score based on355

token-level matching, leading it to overlook ex-356

clusionary phrases in queries, which is crucial for 357

exclusionary retrieval. We visualize the relevance 358

calculation of ColBERT to further understand its 359

performance in Appendix H. As for SEAL, the in- 360

herent limitation of generative retrieval models in 361

poorly generalizing to new or out-of-distribution 362

documents explains why expanding the training 363

data does not lead to improved performance on 364

ExcluIR (Lee et al., 2023; Mehta et al., 2023). 365

Overall, expanding training data does not stably 366

enhance the performance of models on ExcluIR. 367

We consider the primary reason to be the lack of 368

exclusionary queries in the training data. Therefore, 369

in the next section, we will investigate the impact 370

of incorporating our training set which consists of 371

exclusionary queries into the training data. 372

4.3 How does incorporating our dataset into 373

training data affect the performance? 374

Previous experiments have demonstrated that mod- 375

els trained on HotpotQA and NQ320k perform un- 376

5



Model Training Set
HotpotQA ExcluIR

R@2 R@5 R@10 MRR R@1 MRR ∆R@1 ∆MRR RR

DPR
HotpotQA 55.53 67.44 73.49 81.73 49.63 65.79 7.34 5.01 54.02
NQ+H(Mix) 53.19 65.05 71.52 79.57 48.93 64.47 6.95 4.59 53.94
NQ+H(Seq) 56.91 69.02 74.59 82.74 50.87 67.12 8.66 5.99 54.66

Sentence-T5
HotpotQA 57.63 68.45 74.29 82.48 51.04 66.27 10.11 7.01 55.41
NQ+H(Mix) 54.32 65.67 72.02 79.56 51.45 66.58 11.27 8.71 56.10
NQ+H(Seq) 58.40 69.05 74.72 82.66 52.49 67.82 12.92 9.44 56.82

ColBERT
HotpotQA 73.58 83.73 87.95 94.44 53.69 70.82 10.64 6.35 55.53
NQ+H(Mix) 71.54 82.46 86.40 94.58 52.78 69.91 8.86 5.21 54.49
NQ+H(Seq) 73.26 83.42 87.69 94.68 51.27 69.21 5.82 2.10 52.93

SEAL
HotpotQA 60.78 72.26 78.20 85.76 51.33 67.88 11.64 7.71 55.52
NQ+H(Mix) 61.65 72.80 78.61 86.39 51.25 67.68 11.50 7.23 55.63
NQ+H(Seq) 59.86 71.19 76.88 84.30 50.52 66.73 10.77 6.79 55.36

Table 3: Performance of models after expanding the training data domain. NQ+H(Mix) indicates mixing the
NQ320k and HotpotQA datasets for simultaneous training. NQ+H(Seq) indicates initial training on the NQ320k
dataset followed by continual training on the HotpotQA dataset.

satisfactorily on ExcluIR. We believe that this is377

partly due to a lack of exclusionary queries in the378

training data. Therefore, in this section, we incor-379

porate the ExcluIR training set into the training380

data to assess its impact on performance. From the381

results in Figure 4, we have three main observa-382

tions.383

First, merging the ExcluIR training set into the384

training data can significantly enhance the model’s385

ability to comprehend exclusionary queries. For in-386

stance, with NQ320k as the original dataset, SEAL387

achieves 18% improvement (60.02% vs. 78.02%)388

in RR by integrating the ExcluIR training set,389

with only a small (1.08%) decrease (63.86% vs.390

62.78%) in performance on the original test data.391

This is because the ExcluIR training set contains a392

large number of exclusionary queries, which can393

help the retrieval model to better comprehend the394

exclusionary nature of queries.395

Second, when training data contain exclusion-396

ary queries, generative retrieval methods are more397

adept at learning the exclusionary nature of queries398

compared to dense retrieval methods. As shown in399

Figure 4, although dense retrieval models trained400

on two original datasets perform better on ExcluIR,401

augmenting the ExcluIR training set leads to a402

greater improvement in generative retrieval models,403

ultimately surpassing dense retrieval methods over-404

all. On average, generative retrieval models, includ-405

ing GENRE, SEAL, and NCI, achieve a 17.75%406

improvement, in contrast to the average 4.77% im-407

provement observed in dense retrieval models. This 408

is because the generative retrieval model is more 409

suitable for capturing the complex relationships be- 410

tween queries and documents in terms of model 411

architecture and training objectives. We present a 412

more detailed analysis in Section 4.5. 413

Third, consistent with the conclusion in Sec- 414

tion 4.2, ColBERT fails to achieve satisfactory 415

performance, even after fine-tuning on ExcluIR. 416

As demonstrated in Figure 4, among the models 417

trained with the ExcluIR training set, ColBERT ex- 418

hibits the lowest performance, with an RR score of 419

59.59% on HotpotQA w/ ExcluIR and 59.71% on 420

NQ320k w/ ExcluIR. As mentioned in Section 4.2, 421

the relevance score calculation method used by Col- 422

BERT is not conducive to handling exclusionary 423

queries. We provide a more detailed analysis in 424

Appendix H. 425

4.4 How does model size affect performance? 426

To analyze the impact of model size on the per- 427

formance of ExcluIR, we increase model sizes of 428

DPR, sentence-t5, GENRE, and NCI, and train 429

them on different datasets. Specifically, for DPR, 430

we use two variants: bert-base-uncased and bert- 431

large-uncased. For sentence-t5, GENRE and NCI, 432

we adopt t5-base and t5-large. 433

The results are presented in Table 4. We note 434

that increasing the model size generally improves 435

performance on ExcluIR when the training data 436

includes exclusionary queries. This is consistent 437

6



Figure 4: Performance of models under different train-
ing data settings. The upper figures show the RR score
of various models on the ExcluIR benchmark, and the
lower figures show the performance of these models
on HotpotQA and NQ320k. The different colors of the
bars represent different training data. Full results are
presented in Appendix E.

with observations by Ravichander et al. (2022),438

who show that larger models are better at under-439

standing the implications of negated statements in440

documents.441

However, when training on original datasets, in-442

creasing the model size does not always lead to443

improved performance on ExcluIR. The results in444

Table 6 also support this observation. For example,445

the performance of stsb-roberta-large decreases sig-446

nificantly compared to stsb-roberta-base. This in-447

dicates that simply increasing model size cannot448

solve the challenges of exclusionary retrieval, we449

should investigate building more training data and450

proposing new training strategies.451

4.5 Why are generative retrieval models452

superior in ExcluIR?453

Generative retrieval models have inherent advan-454

tages in comprehending exclusionary queries. We455

try to analyze and explain the reason based on the456

architecture of generative models.457

First, as a comparison, we show that bi-encoder458

models have a representation bottleneck for exclu-459

sionary queries. When two documents are similar460

but have some differences that the user would like461

to distinguish, it is difficult to ensure that the vector462

representation of the query remains distant from the463

negative document while closely aligning with the464

positive document. This representation bottleneck465

Training set Model Base Large

HotpotQA

DPR 54.02 54.25 ↑
Sentence-T5 55.41 53.78 ↓
GENRE 52.10 49.01 ↓
NCI 50.93 50.64 ↓

HotpotQA
w/ ExcluIR

DPR 61.19 62.63 ↑
Sentence-T5 66.75 69.01 ↑
GENRE 69.07 70.96 ↑
NCI 73.75 73.61 ↓

NQ320k

DPR 58.76 61.62 ↑
Sentence-T5 67.83 69.02 ↑
GENRE 58.65 55.82 ↓
NCI 56.84 62.54 ↑

NQ320k
w/ ExcluIR

DPR 61.00 63.47 ↑
Sentence-T5 68.00 69.65 ↑
GENRE 70.48 72.86 ↑
NCI 72.97 74.45 ↑

Table 4: RR scores with different model sizes on Ex-
cluIR. For DPR, the base version is bert-base-uncased,
and the large version is bert-large-uncased. For sentence-
t5, GENRE and NCI, the base version is t5-base, and
the large version is t5-large. ↑ indicates that an increase
in model size improves performance, while ↓ indicates
the opposite. Full results are presented in Appendix F.

prevents the model from correctly comprehending 466

the true intent of the query. We present this proof 467

in Appendix G. 468

Generative retrieval models adopt a sequence-to- 469

sequence framework, such as T5 or BART, which 470

estimates the probability of generating the docu- 471

ment IDs given the query using a conditional prob- 472

ability model: P (d|q). When generating document 473

IDs, multiple cross-attention layers in the decoder 474

can capture the token-level semantic information in 475

the query, a phenomenon also explored by Wu et al. 476

(2024). Assuming the decoder consists of L layers, 477

for the l-th layer (0 ≤ l < L), the cross-attention 478

layer is given by: 479

S(l+1) = softmax

(
Q(l)K(l)T

√
dk

)
V (l), (2) 480

where Q(l) = W
(l)
q S(l), K(l) = W

(l)
k H

(l)
q , 481

V (l) = W
(l)
v H

(l)
q , and H

(l)
q = [eq1 , · · · , eqN ] are 482

query token vectors generated by encoder, S(l) = 483

[ed1 , · · · , edM ] are generated embedding vectors 484

for docid tokens at l-th layer, W (l)
q , W (l)

k and W
(l)
v 485

are learnable cross-attention weight matrices. We 486

visualize the cross attention in generative models to 487

7



Maximal inner product search

Dual Encoder Dual EncoderDocs Query

Cross Attention
Weight

Exclusionary Phrase

Dense Retrieval 

Cross Attention in Generative Retrieval Models Decoder

query token vector

exclusionary term vector,
like 'EXCEPT'

docid token vector

Figure 5: Summary of the analysis that shows the differ-
ences between dense retrieval and generative retrieval
models in handling ExcluIR.

summarize our analysis. As shown in Figure 5, the488

multi-level cross-attention mechanism allows the489

model to strongly focus on key terms in the query,490

including exclusionary phrases (highlighted in dark491

green). Thus, even when faced with queries with492

complex semantics, generative retrieval models are493

capable of effectively capturing the query intent.494

5 Related Work495

Early studies in exclusionary retrieval primarily fo-496

cus on keyword-based methods. These approaches497

typically treat user queries as logical expressions of498

boolean operations (Nakkouzi and Eastman, 1990;499

Strzalkowski, 1995; McQuire and Eastman, 1998;500

Harvey et al., 2003). However, these methods de-501

pend on explicit and deterministic rules, lack the502

flexibility to handle subtle and conditional exclu-503

sions, and are not suitable for more realistic re-504

trieval scenarios.505

In addition, there is a task related to exclusionary506

retrieval, known as argument retrieval (Wachsmuth507

et al., 2018), which aims to retrieve the best coun-508

terargument for a given argument on any contro-509

versial topic. While argument retrieval implicitly510

requires the model to find the counterargument to511

the query, the intention of exclusion is not explicitly512

expressed in the query. Wang et al. (2022b) first513

investigate exclusionary retrieval in Text-to-Video514

Retrieval (T2VR). They demonstrate that existing515

video retrieval models performed poorly when deal-516

ing with queries like “find shots of kids sitting on517

the floor and not playing with the dog.” To the best518

of our knowledge, there has been no research on519

exclusionary retrieval in document retrieval.520

(Weller et al., 2024) introduce NevIR, a bench-521

mark designed to assess the ability of neural infor- 522

mation retrieval systems to handle negation. NevIR 523

requires retrieval models to rank two documents 524

that differ only in negation, where both documents 525

remain consistent in all other aspects except the key 526

negation. Similarly, Rokach et al. (2008); Koop- 527

man et al. (2010) investigate the impact of nega- 528

tion contexts within documents on retrieval per- 529

formance. For example, a search for “headache” 530

might retrieve patient records containing “the pa- 531

tient has no symptoms of headache.” Our work 532

is different as we focus on exclusionary retrieval, 533

studying whether the retrieval model can compre- 534

hend the intent of exclusionary queries. 535

6 Conclusion 536

In this work, we focus on a common yet understud- 537

ied retrieval scenario called exclusionary retrieval, 538

where users explicitly express which information 539

they do not want to obtain. We have provided 540

the community with a new benchmark, named Ex- 541

cluIR, which focuses on exclusionary queries that 542

explicitly express the information users do not want 543

to obtain. We have conducted extensive experi- 544

ments that demonstrate that existing retrieval meth- 545

ods with different architectures perform poorly on 546

ExcluIR. Notably, ExcluIR cannot be solved by 547

simply adding training data domains or increasing 548

model sizes. Additionally, our analyses indicate 549

that generative retrieval models inherently excel 550

at comprehending exclusionary queries compared 551

with sparse and dense retrieval models. We hope 552

that this work can inspire future research on Ex- 553

cluIR. 554

Limitations 555

This work has the following limitations. First, al- 556

though the training data we build can significantly 557

improve the performance of various retrieval mod- 558

els on ExcluIR, there is still a considerable gap 559

from human performance (with RR score of 100%). 560

In future work, we plan to investigate how to make 561

use of the advantages of generative retrieval to fur- 562

ther improve the ability of retrieval models in ex- 563

clusionary retrieval. Second, in practical retrieval 564

scenarios, the exclusions in the query can be ex- 565

pressed in different ways. Some are directly stated 566

within a single-round query, while others are im- 567

plied within the context of multi-round queries. 568

For example, users might prefer that the results of 569

the current query do not include content retrieved 570

8



in previous rounds, even though this intent of ex-571

clusion is not directly expressed within the query.572

In this work, we have only considered the former573

scenario, further research is required to explore a574

broader range of exclusionary retrieval scenarios.575

Ethical Considerations576

We realize the potential risks in the research of577

ExcluIR, thus, it is necessary to pay attention to578

the ethical issues. All raw data collected in this579

study are sourced from publicly available datasets,580

with ethical considerations approved by publishers.581

In the process of data annotation, all workers are582

informed of the research objectives in advance. We583

did not collect any personal or privacy-sensitive584

information and all data used in our research is585

obtained following legal and ethical standards.586
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We present the prompt that was used to guide Chat- 770

GPT in generating and rephrasing the exclusionary 771

query for each pair of documents in Table 5. 772

B Requirements for manual correction 773

During manual correction, to ensure the quality of 774

data, we provide the following requirements for 775

workers. 776

(1) The query should be relevant to the positive 777

document. 778

(2) The query should include an exclusionary con- 779

straint to clearly refuse to inquire about the 780

information in the negative document. 781

(3) The query should contain enough information, 782

not just using a person’s name to represent a 783

document. 784
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Task Prompt template

Generation You will be provided with two documents, and you need to:
1. generate a query that is relevant to both Document 1 and Document

2; and

2. revise this query to include a constraint or condition that makes it
explicitly refuse to inquire about any information in Document 1.

Reply Format:
Query:
Revised Query:

Rephrasing Rephrase the following query to make it smoother, more reasonable, more
natural and more realistic. Do not answer this query but just polish it. You
should make this query more like a real human query, but do not change
the semantics of this query.

Query:
raw query

Rewritten Query:

Table 5: Prompt templates for query generation and rephrasing.

(4) You should use diverse expressions to express785

the exclusionary constraint, rather than repeti-786

tively using the same terms like ‘excluding.’787

C The detailed experimental setups788

C.1 Methods for comparison789

To evaluate the performance of various retrieval790

models on exclusionary retrieval, we select three791

types of retrieval models with different architec-792

tures: sparse retrieval, dense retrieval, and genera-793

tive retrieval.794

Sparse retrieval methods calculate the relevance795

score of documents using term matching metrics796

such as TF-IDF (Robertson and Walker, 1997).797

• BM25 (Robertson and Zaragoza, 2009) is a clas-798

sical probabilistic retrieval method based on the799

normalization of the frequency of the term and800

the length of the document.801

• DocT5Query (Nogueira et al., 2019) expands802

documents by generating pseudo queries using a803

fine-tuned T5 model before building the BM25804

index (Raffel et al., 2020).805

Dense retrieval uses pre-trained language mod-806

els (PLMs) as the backbones to represent queries807

and documents as dense vectors for computing rel-808

evance scores.809

• DPR (Karpukhin et al., 2020) is a dense retrieval810

model based on dual-encoder architecture, which811

uses the representation of the [CLS] token of 812

BERT (Devlin et al., 2019). 813

• Sentence-T5 (Ni et al., 2022a) uses a fine-tuned 814

T5 encoder model to encode queries and docu- 815

ments into dense vectors. 816

• GTR (Ni et al., 2022b) has the same architecture 817

as Sentence-T5 and has been pretrained on two 818

billion question-answer pairs collected from the 819

Web. 820

• ColBERT (Khattab and Zaharia, 2020) is a late 821

interaction model that learns embeddings for 822

each token in queries and documents, and then 823

uses a MaxSim operator to calculate the rele- 824

vance score. 825

Generative retrieval is an end-to-end retrieval 826

paradigm. 827

• GENRE (De Cao et al., 2020) retrieves entities 828

by generating their names through a seq-to-seq 829

model, it can be applied to document retrieval 830

by directly generating document titles. The orig- 831

inal GENRE is trained based on BART as the 832

backbone, and we reproduce it using T5. 833

• SEAL (Bevilacqua et al., 2022) retrieves docu- 834

ments by generating n-grams within them. 835

• NCI (Wang et al., 2022a) proposes a prefix-aware 836

weight-adaptive decoder architecture, leveraging 837

semantic document identifiers and various data 838

augmentation strategies like query generation. 839
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C.2 Implementation details840

In our experiments, we use Elasticsearch to eval-841

uate BM25 on both raw documents and the docu-842

ments augmented with DocT5Query. We train DPR843

and ColBERT using the bert-base-uncased archi-844

tecture, train Sentence-T5, GENRE, and NCI using845

the t5-base architecture, and train SEAL using the846

BART-large architecture. We reproduce NCI and847

SEAL by their official implementations and other848

methods are reproduced by our own implementa-849

tions. For query generation, we use a pre-trained850

model, DocT5Query (Nogueira et al., 2019), to851

generate pseudo queries for each document. For852

the training of neural retrieval models, the max in-853

put length is set to 256 and the batch size is set to854

32.855

D The experimental results of additional856

models on ExcluIR857

We present more results in Table 6 showing858

the performance of models on the ExcluIR859

dataset. Most of the models are from sentence-860

transformers (Reimers and Gurevych, 2019), ex-861

cept for RocketQA (Qu et al., 2021; Ren et al.,862

2021) and monot5 (Nogueira et al., 2020). Since863

cross-encoder models are used for re-ranking, it864

is very time-consuming to calculate the relevance865

score of all documents in the corpus. Therefore,866

We first retrieve the top 100 documents using867

BM25, and then re-rank them. We find that the868

Recall@100 of BM25 for positive and negative869

documents is 95.77% and 94.74%, so this strategy870

can ensure fairness.871

E The complete results of training with872

ExcluIR on HotpotQA and NQ320k873

Table 7 and 8 show full results of retrieval models874

performance after augmenting the HotpotQA and875

NQ320k with the ExcluIR training set, respectively.876

F The complete results of different model877

sizes on ExcluIR878

Table 9 shows the complete results of different879

model sizes on ExcluIR.880

G Limitations of bi-encoder models in881

ExcluIR with similar positive and882

negative documents.883

Bi-encoder models embed queries and documents884

into a high-dimensional space to compute the rele-885

vance score. These methods are effective when the 886

semantics of the query and documents are straight- 887

forward and do not overlap. However, in ExcluIR, 888

exclusionary queries contain the semantics of neg- 889

ative documents. We demonstrate that bi-encoder 890

models struggle to distinguish between positive and 891

negative documents when their vector representa- 892

tions are close in embedding space. This limitation 893

leads to a bottleneck for bi-encoder models in Ex- 894

cluIR. Here is the proof. 895

Definition 1. Let A, B be queries or documents. 896

We define qA,B := f(A,B) where f(A,B) is the 897

query encoding vector of query A and negative 898

query B. dA := g(A) where g(·) is the document 899

encoding vector function. All vectors are normal- 900

ized to 1. 901

We also define x, y to be ε-close if there exists 902

δ ∈ (0, 19) such that Pr(⟨x, y⟩ > 1− ε) > 1− δ. 903

Assumption 1. We make the following assump- 904

tions, with A, B as in Definition 1. 905

• dA and dB are ε-close, which means both A 906

and B are related documents but have some 907

differences that the user would like to distin- 908

guish. 909

• qA,B and dA are ε-close, which means qA,B 910

have good representation to retrieve dA. Sim- 911

ilar is true for qB,A and dB . 912

• ⟨qB,A, dB⟩ − ⟨qB,A, dA⟩ ≥ 1 − ε with high 913

probability, which means qB,A prefers dB 914

rather than dA. 915

• ε < 3− 2
√
2. 916

Claim 1. With A, B as in Definition 1, with high 917

probability we have 918

⟨qA,B, dB⟩ − ⟨qA,B, dA⟩ > 0. 919

Proof. We reason as follows: 920

⟨qA,B, dB⟩ − ⟨qA,B, dA⟩ (3) 921

= ⟨qA,B − qB,A, dB − dA⟩ (4) 922

+ ⟨qB,A, dB⟩ − ⟨qB,A, dA⟩. (5) 923

Specifically, 924

|⟨qA,B − qB,A, dB − dA⟩| (6) 925

≤ ∥qA,B − qB,A∥∥dB − dA∥ (7) 926

≤
√
∥qA,B∥2 + ∥qB,A∥2∥dB − dA∥ (8) 927

=
√
2
√
2− 2⟨dB, dA⟩ (9) 928

≤ 2
√
ε. (10) 929
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Type Training Data Params Model ∆R@1 ∆MRR RR

Bi-
Encoders

MSMarco 218M RocketQA v1 31.62 24.94 65.13
NQ 218M RocketQA v1 25.09 21.47 61.31
NQ 218M RocketQA v2 17.93 15.74 53.61
Multi-Datasets 23M all-MiniLM-L6-v2 26.41 19.42 62.09
Multi-Datasets 33M all-MiniLM-L12-v2 27.62 21.05 63.29
Multi-Datasets 109M all-mpnet-base-v2 39.32 32.01 69.04
Multi-Datasets 82M all-distilroberta-v1 37.56 27.63 67.98
Multi-Datasets 66M multi-qa-distilbert-cos-v1 25.90 18.42 61.77
Multi-Datasets 109M multi-qa-mpnet-base-dot-v1 37.80 29.04 68.41
Multi-Datasets 23M multi-qa-MiniLM-L6-cos-v1 24.11 17.87 60.97

Multi-Datasets 278M
paraphrase-multilingual-
mpnet-base-v2

33.72 27.61 65.85

Cross-
Encoders

MSMarco 23M ms-marco-MiniLM-L-6-v2 27.56 16.61 63.35
MSMarco 33M ms-marco-MiniLM-L-12-v2 27.08 16.47 63.12
SQuAD 109M qnli-electra-base 23.60 27.76 53.87
STSB 125M stsb-roberta-base 13.48 15.13 59.38
STSB 355M stsb-roberta-large 6.50 8.26 50.27
MSMarco 223M monot5-base-msmarco-10k 32.54 18.87 65.85
MSMarco 738M monot5-large-msmarco-10k 42.80 23.71 70.91
MSMarco 2852M monot5-3b-msmarco-10k 42.17 23.35 70.74
MSMarco 109M RocketQA-v2_marco_ce 37.22 21.11 68.24
MSMarco 335M RocketQA-v1_marco_ce 40.39 22.40 70.02
NQ 335M RocketQA-v1_nq_ce 41.56 22.98 70.48

Table 6: The performance of various models on ExcluIR. Training Data indicates the source of training data for the
model, and Params indicates the number of parameters in the model.

Therefore, with probability 1− 3δ we have930

⟨qA,B, dB⟩ − ⟨qA,B, dA⟩ (11)931

≥ −2
√
ε+ ⟨qB,A, dB⟩ − ⟨qB,A, dA⟩ (12)932

≥ −2
√
ε+ 1− ε (13)933

> 0.934

H Why does ColBERT underperform in935

ExcluIR?936

Late interaction models like ColBERT struggle937

to comprehend the exclusionary nature of queries.938

From the previous experimental results, we can see939

that ColBERT performs worse than other neural940

retrieval models in ExcluIR. As ColBERT uses a941

late interaction architecture, it calculates document942

relevance scores based on the matching of token-943

level vectors between queries and documents. Con-944

sequently, exclusionary phrases in queries pose a945

challenge for matching with document tokens.946

As we can see in Figure 6, the token ‘exclude’ in947

the query exhibits relatively low relevance with ev-948

ery token in the negative document. This indicates 949

that ColBERT barely comprehends the true intent 950

of the query. We also notice that ‘decemberists’ 951

appears both in the query and negative document, 952

contributing a very high relevance score, which 953

is disadvantageous for exclusionary retrieval. Al- 954

though the ‘decemberists’ band is mentioned in the 955

query, the intent of the query is to avoid retrieving 956

information about this band. Therefore, ColBERT 957

inherently lacks the capability to comprehend the 958

queries with complex intentions, limiting its ef- 959

fectiveness in ExcluIR. We present more cases in 960

Table 7–10. 961

I Cases from the ExcluIR dataset 962

Table 10 shows some cases taken from the ExcluIR 963

dataset. 964
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Model Training Data
HotpotQA ExcluIR

R@2 R@5 R@10 MRR R@1 MRR ∆R@1 ∆MRR RR

DPR
HotpotQA 55.53 67.44 73.49 81.73 49.63 65.79 7.34 5.01 54.02
H. w/ ExcluIR 58.26 70.48 76.81 83.60 59.30 73.20 24.45 17.88 62.63

Sentence-T5
HotpotQA 57.63 68.45 74.29 82.48 51.04 66.27 10.11 7.01 55.41
H. w/ ExcluIR 58.65 69.60 75.48 83.72 63.73 75.85 33.78 24.49 66.75

GTR
HotpotQA 61.82 73.57 79.42 85.50 54.87 70.88 14.40 8.79 57.42
H. w/ ExcluIR 61.99 73.83 79.45 84.86 64.98 77.75 34.85 23.85 67.79

ColBERT
HotpotQA 73.58 83.73 87.95 94.44 54.00 71.24 10.72 6.42 55.57
H. w/ ExcluIR 72.90 83.26 87.50 94.80 58.14 74.95 18.80 12.74 59.59

GENRE
HotpotQA 48.87 51.67 53.24 75.25 48.03 63.22 4.35 0.13 52.10
H. w/ ExcluIR 48.60 51.26 53.03 74.71 64.98 72.54 38.71 18.34 69.07

SEAL
HotpotQA 60.78 72.26 78.20 85.76 51.33 67.88 11.64 7.71 55.52
H. w/ ExcluIR 60.34 72.39 77.97 84.85 69.03 78.66 48.95 39.55 76.29

NCI
HotpotQA 47.60 58.14 64.37 74.59 37.22 51.37 1.97 2.29 50.93
H. w/ ExcluIR 47.80 59.15 64.75 75.28 59.76 68.90 42.29 38.38 73.75

Table 7: The complete results of the impact of augmenting HotpotQA with ExcluIR training set.

Model Training Data
NQ320k ExcluIR

R@1 R@5 R@10 MRR R@1 MRR ∆R@1 ∆MRR RR

DPR
NQ320k 54.81 79.50 85.52 65.39 48.55 60.50 16.45 13.49 58.76
N. w/ ExcluIR 55.08 79.31 85.49 65.58 55.04 67.89 21.52 16.38 61.00

Sentence-T5
NQ320k 59.63 82.78 87.42 69.57 57.76 66.34 32.90 27.96 67.83
N. w/ ExcluIR 59.80 81.58 87.13 69.36 63.09 74.57 34.47 26.19 68.00

GTR
NQ320k 62.35 84.67 89.17 71.90 59.79 69.00 34.85 28.12 68.31
N. w/ ExcluIR 61.44 83.82 88.34 71.01 65.64 76.98 39.05 28.46 69.98

ColBERT
NQ320k 60.08 84.19 89.41 70.50 57.01 70.88 20.02 15.26 59.97
N. w/ ExcluIR 60.20 83.59 88.60 70.29 57.91 73.52 19.30 13.05 59.71

GENRE
NQ320k 56.25 71.21 74.00 62.80 31.63 37.63 11.44 10.15 58.65
N. w/ ExcluIR 55.15 70.00 72.85 61.55 65.67 73.01 41.19 20.31 70.48

SEAL
NQ320k 55.24 75.13 80.97 63.86 43.54 55.17 16.11 15.27 60.02
N. w/ ExcluIR 53.86 74.84 80.34 62.78 70.39 78.40 52.14 43.25 78.02

NCI
NQ320k 60.41 76.10 80.19 67.18 31.46 38.95 15.87 16.81 56.84
N. w/ ExcluIR 60.61 76.53 80.55 67.46 56.92 64.67 41.13 39.92 72.97

Table 8: The complete results of the impact of augmenting NQ320k with ExcluIR training set.
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Training
set

Model
Base Large

∆R@1 ∆MRR RR ∆R@1 ∆MRR RR

HotpotQA

DPR 7.34 5.01 54.02 8.00 6.22 54.25 ↑
Sentence-T5 10.11 7.01 55.41 7.21 5.23 53.78 ↓
GENRE 4.35 0.13 52.10 −1.71 −3.09 49.01 ↓
NCI 1.97 2.29 50.93 1.05 1.41 50.64 ↓

HotpotQA
w/ ExcluIR

DPR 21.32 14.93 61.19 24.55 17.88 62.63 ↑
Sentence-T5 33.78 24.49 66.75 37.05 26.50 69.01 ↑
GENRE 38.71 18.34 69.07 42.15 20.20 70.96 ↑
NCI 42.29 38.38 73.75 43.74 38.56 73.61 ↑

NQ320k

DPR 16.45 13.49 58.76 20.83 17.16 61.62 ↑
Sentence-T5 32.90 27.96 67.83 34.36 29.94 69.02 ↑
GENRE 11.44 10.15 58.65 11.03 8.88 55.82 ↓
NCI 15.87 16.81 56.84 21.27 22.86 62.54 ↑

NQ320k
w/ ExcluIR

DPR 21.52 16.38 61.00 25.52 19.15 63.47 ↑
Sentence-T5 34.47 26.19 68.00 37.34 28.70 69.65 ↑
GENRE 41.19 20.31 70.48 46.04 23.24 72.86 ↑
NCI 41.13 39.92 72.97 43.13 41.86 74.45 ↑

Table 9: Performance with different model sizes on ExcluIR.

Figure 6: A relevance calculation visualization between query and negative document of ColBERT. Each value
in the heatmap represents the result of the dot product between the query token vector and the negative document
token vector. The red highlight indicates the relevance of the token ‘excluding’ in the query to each token in the
negative document, and the pink highlights indicate the token with the highest relevance score.
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Figure 7: An example of ColBERT on negative document relevance scoring. ColBERT overlooks the semantics of
‘aside from’ and instead, due to the presence of lexical matches such as ‘bob dylan’, assigned a high relevance score
to this negative document.

Figure 8: An example of ColBERT on negative document relevance scoring. ColBERT overlooks the semantics of
‘other than’ and instead, due to the presence of lexical matches such as ‘noel’, assigned a high relevance score to
this negative document.
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Figure 9: An example of ColBERT on negative document relevance scoring. ColBERT overlooks the semantics
of ‘else’, ‘besides’ and instead, due to the presence of lexical matches such as ‘traction engine’, assigned a high
relevance score to this negative document.

Figure 10: An example of ColBERT on negative document relevance scoring. ColBERT overlooks the semantics of
‘in addition to’ and instead, due to the presence of lexical matches such as ‘2013 nfl draft’, assigned a high relevance
score to this negative document.
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Exclusionary
query

Aside from Bob Dylan’s involvement in composing the soundtrack for the
2001 film Blow, who else was involved in the movie?

Positive
document

Blow is a 2001 American biographical crime film about the American
cocaine smuggler George Jung, directed by Ted Demme. David McKenna
and Nick Cassavetes adapted Bruce Porter’s 1993 book “Blow: How a
Small Town Boy Made $100 Million with the Medellín Cocaine Cartel
and Lost It All” for the screenplay. It is based on the real-life stories of
George Jung, Pablo Escobar, Carlos Lehder Rivas (portrayed in the film
as Diego Delgado), and the Medellín Cartel. The film’s title comes from a
slang term for cocaine.

Negative
document

“All the Tired Horses” is a song written by Bob Dylan, released on his
1970 double album “Self Portrait”. The song was featured in the 2001 film
“Blow”.

Exclusionary
query

Can you please recommend a film starring Paul Walker, other than
Christmas-themed drama film “Noel”?

Positive
document

Paul William Walker IV (September 12, 1973 – November 30, 2013)
was an American actor. Walker began his career guest-starring in several
television shows such as “The Young and the Restless” and “Touched by
an Angel”. Walker gained prominence with breakout roles in coming of
age and teen films such as “She’s All That” and “Varsity Blues” (1999).
In 2001, Walker gained international fame for his portrayal of Brian
O’Conner in the street racing action film “The Fast and the Furious”
(2001), and would reprise the role in five of the next six installments but
died in the middle of the filming of “Furious 7” (2015). He also starred
in films such as “Joy Ride” (2001), “Timeline” (2003), “Into the Blue”
(2005), “Eight Below”, and “Running Scared” (2006).

Negative
document

Noel is a 2004 Christmas-themed drama film written by David Hubbard
and directed by Chazz Palminteri. It stars Penélope Cruz, Susan Saran-
don, Paul Walker, Alan Arkin, Daniel Sunjata and an uncredited Robin
Williams. It was filmed in Montreal, Canada.

Exclusionary
query

In addition to participating in the 2013 NFL Draft, D C. What major events
did Jefferson encounter in 2013?

Positive
document

D. C. Jefferson (born May 7, 1989) is an American football tight end who
is currently a free agent. He played college football at Rutgers University.
He was drafted in the seventh round with the 219th overall pick by the
Arizona Cardinals in the 2013 NFL Draft. Jefferson was released on
November 4, 2013 after he was arrested on suspicion of driving under the
influence.

Negative
document

The 2013 NFL draft was the 78th annual meeting of National Football
League (NFL) franchises to select newly eligible football players. The
draft, which is officially called the “NFL Player Selection Meeting,” was
held at Radio City Music Hall in New York City, New York, on April 25
through April 27.

Table 10: Cases of ExcluIR dataset.
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