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Abstract

We study the convex hull membership (CHM) problem in the pure exploration setting
where one aims to efficiently and accurately determine if a given point lies in the convex
hull of means of a finite set of distributions. We give a complete characterization of the
sample complexity of the CHM problem in the one-dimensional case. We present the first
asymptotically optimal algorithm called Thompson-CHM, whose modular design consists of
a stopping rule and a sampling rule. In addition, we extend the algorithm to settings that
generalize several important problems in the multi-armed bandit literature. Furthermore,
we discuss the extension of Thompson-CHM to higher dimensions. Finally, we provide
numerical experiments to demonstrate the empirical behavior of the algorithm matches our
theoretical results for realistic time horizons.

1 Introduction

The multi-armed bandit (MAB) problem is a fundamental problem in sequential decision making where an
agent has make a series of decisions to pull an arm of a K slot machine in order to maximize the total reward.
Each of the arms is associated with a fixed but unknown probability distribution (Auer et al., 2002; Lai et al.,
1985). An enormous literature has accumulated over the past decades on the MAB problem, such as clinical
trials and drug testing (Bastani & Bayati, 2020; Durand et al., 2018), recommendation system and online
advertising (Bouneffouf et al., 2012; 2014; Nguyen, 2021; Tang et al., 2013; Zhou et al., 2017), information
retrieval (Bouneffouf et al., 2013; Losada et al., 2017), and finance (Huo & Fu, 2017; Misra et al., 2019;
Mueller et al., 2019; Shen et al., 2015). The MAB problem was first studied theoretically in the seminal
work (Robbins, 1952) and followed by a vast line of work in two canonical settings: regret minimization
(Agrawal & Goyal, 2013; Auer, 2002; Auer et al., 2002; Chapelle & Li, 2011; Chu et al., 2011; Dudik et al.,
2011; Langford & Zhang, 2007; Li et al., 2010; Srinivas et al., 2009; Valko et al., 2013) and pure exploration
(Chen et al., 2017; Garivier & Kaufmann, 2016; Locatelli et al., 2016; Russo, 2016).

In this paper, we study the convex hull membership (CHM) problem in a pure exploration setting, where
a learner sequentially performs experiments in a stochastic multi-armed bandit environment to identify if
a given point lies in the convex hull of means of K arms as efficiently and accurately as possible. Pure
exploration problems are usually studies in one of two settings: fixed-confidence of success or fixed-budget
of samples. We work in the former. The usual non-stochastic version of the CHM problem is well studied
in Filippozzi et al. (2023) and has attracted significant attention in different scientific areas and proven
its crucial applications in image processing (Jayaram & Fleyeh, 2016; Yang & Cohen, 1999), robot motion
planning (Lengyel et al., 1990; Streinu, 2000) and pattern recognition (Katzin, 2018; Roy et al., 2008).

The stochastic CHM problem arises in important applications including fairness (Martinez et al., 2020) and
multi-task learning (Lin et al., 2019), where we consider the problem of hypothesis testing whether θ∗ ∈ Θ ⊂
Rd is a Pareto optimal for a multi-objective optimization problem: H0 : θ∗ ∈ argminθ∈θ(F1(θ), · · · , Fm(θ))
versus H1 : H0 is false. Essentially, we test whether there exists non-negative (λ1, · · · , λm) with summation
equal to 1 such that

∑m
i=1 λi∇Fi(θ∗) = 0, or equivalently, 0d ∈ Conv({∇Fi(θ∗)}m

i=1. In a multi-task
learning setup, ∇Fi(θ) = EPi [∇li(θ)] where Pi’s and li’s are the underlying distributions and loss functions
of the i-th task for i ∈ [m]. Since Pi’s are unknown, we utilize the empirical version of ∇Fi which follows
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distributions with different means and fits in our stochastic CHM setting. Nevertheless, there is almost no
literature on the stochastic convex hull membership problem where we have to sample in order to estimate
the positions of the means. Recently, Niss et al. (2022) provided the first theoretical bounds for the CHM
problem. Unfortunately, their results have significant gaps between the upper and lower complexity bounds.
To the best of our knowledge, this fundamental primitive of developing the complexity bounds and an
(asymptotically) optimal algorithm for the CHM problem remains open in the literature before this work.

To tackle the aforementioned problem, we introduce Thompson-CHM, a Thompson-Sampling-based algo-
rithm that has asymptotic sample complexity matching the information-theoretic lower bound proved in
Garivier & Kaufmann (2016). The sample complexity lower bound is modeled as a function of the character-
istic time (Garivier & Kaufmann, 2016), which can be captured by the value of a zero-sum pure exploration
game between two players (Chernoff, 1959; Degenne et al., 2019). As discussed in Section 4, any successful
pure exploration player needs to solve this pure exploration game, and therefore, the intuition behind the
game is essential to our algorithm design. The design of the strategy to match the lower bound is based on
the individual confidence interval for each of the K arms so that any algorithm using this stopping time can
ensure an output of a correct decision with high probability (at least 1 − δ) no matter what sampling rule
the algorithm applies.

We remark that Kaufmann et al. (2018) first proposed an active sequential testing procedure to study the
lowest mean of a finite set of distributions, and provide a conditional modification of the popular heuristic
Thompson Sampling (named as Murphy Sampling) to tackle the limitations of the Lower Confidence Bound
algorithm (LCB) and standard Thompson Sampling in different settings. However, a major challenge in
extending Thompson Sampling to our CHM problem is to study the extreme means (largest and lowest
mean in one-dimensional setting) simultaneously. To tackle this challenge, we borrow a two-arm sampling
construction proposed in the Best-Arm Identification setting. Russo (2016) pointed out that Thompson
Sampling can have a poor asymptotic performance and this defect can be improved by a top-two arm
sampling modification to prevent the algorithm from sampling the arm of interest too frequently. This
modification automatically controls the measurement effort of each arm and ensures that the long-term
asymptotic behavior is closely linked to the optimal allocation of the algorithm. To the best of our knowledge,
conditional Thompson sampling and two-arm sampling have never been combined before.

Our novel sampling rule is independent of the confidence parameter δ and ensures the sampled proportion of
each arm asymptotically matches the estimated-best allocation design derived by the pure exploration game
in the one-dimensional setting. Therefore, it automatically adapts exploration for both feasible and infeasible
cases in the CHM problem. We provide a theoretical analysis of the asymptotic optimality and extend it
to two more important settings: interval CHM problem (identifying if an interval (γ−, γ+) intersects with
the convex hull of the means of K arms) and the d-dimensional CHM problem when d ≥ 2. The first
extension generalizes the CHM problem and reproduces the state-of-art results for several important MAB
problems in the literature, including thresholding bandit (Locatelli et al., 2016) and sequential test for lowest
mean (Kaufmann et al., 2018). Moreover, the stochastic CHM problem in d-dimensional setting has several
important applications but its complete solution remains open.

To highlight and summarize our results, our contribution in this work is threefold:

• We prove the information-theoretical lower bound on the sample complexity of the one-dimensional convex
hull membership (CHM) problem and reveal an oracle allocation of different arms for algorithm design.

• We introduce a novel Thompson-Sampling-based algorithm that automatically adapts the right explo-
ration and oracle allocation for both feasible and infeasible cases and we rigorously prove the algorithm is
asymptotically optimal and its complexity exactly matches the theoretical lower bound.

• Our final contribution is two important extensions of the Thompson-CHM algorithm. First, we extend the
algorithm to the one-dimensional interval CHM problem by presenting the sample complexity bounds and the
analogous asymptotically optimal algorithm, and discuss how this extension generalizes several fundamental
BAI problems in the literature. We also investigate the potential extension to the d-dimensional CHM
problem (d ≥ 2) by showing the sample complexity bound which shares the same behavior as the one-
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dimensional case, and defer more details including the variant of the Thompson-CHM algorithm to the
appendix.

2 Related Work

In this section, we briefly discuss some works and applications that motivate our work and are closely related
to the convex hull membership problem in the literature.

Thresholding Bandits: One closely related previous work is a popular combinatorial pure exploration
bandit problem known as the thresholding bandit problem where the learner’s objective is to find the set
of arms whose means are above a threshold. It was first introduced in Chen et al. (2014) and has been
extensively studied in both fixed-confidence and fixed-budget settings (Chen et al., 2014; Garivier et al.,
2017; Kano et al., 2019; Locatelli et al., 2016; Tao et al., 2019). Compared to the thresholding bandit
problem, the convex hull membership problem only requires a boolean decision and needs the existence for
both arms above and below the threshold to guarantee feasibility. A naive approach using the thresholding
bandit problem to solve the CHM problem is to find the set of arms with means above and below the
threshold by applying a thresholding bandit algorithm twice, and use the results to build a conclusion on if
the threshold lies in the convex hull of the set of the arm means. Compared to the proposed Thompson-CHM
algorithm, this two-step procedure is sub-optimal and expends unnecessary samples to determine the true
sets of arms with means above and below the threshold.

Fair Sampling and Minimax Pareto Fairness: A recent series of works on fairness sampling and
minimax Pareto fairness (Abernethy et al., 2020; Anahideh et al., 2022; Martinez et al., 2020; Nargesian
et al., 2021) share similar frameworks with the fair data sampling procedure that is related to the CHM
problem. As discussed in Niss et al. (2022), the main challenge of fair data sampling is to collect data of
desired distribution requirements, therefore it reveals an appropriate representation of majority and minority
groups in the data. In Anahideh et al. (2022), authors propose a fair active learning framework to balance
the trade-off between model accuracy and fairness, in order to avoid discrimination in machine learning
models. In Martinez et al. (2020), group fairness is formulated as a multi-objective optimization problem
and proposes conditions for the classifier to be Pareto-efficient and achieve minimax risk, which is closely
related to the stochastic CHM setting.

3 Problem Setup and Formulation

We define the problem of efficiently and accurately identifying if a given point lies in (or if a given interval/set
intersects with, respectively) the convex hull of means of K probability distributions ν1, · · · , νK in dimension
d based on their stochastic sequential samples as the d-dimensional convex hull membership (d-dim CHM)
problem. In this paper, we start with the one-dimensional setting where the probability distributions are in
the canonical one-dimensional exponential family. In the canonical one-dimensional exponential family, the
marginal distribution of a value x given an unknown parameter θ ∈ R takes the form

P (x|θ) = h(x) exp{η(x)θ −A(θ)}

where h(x), η(x) and A(θ) are known functions.

Throughout the paper, we denote by µ = (µ1, · · · , µK) the vector of unknown true means of the distri-
butions ν1, · · · , νK , and λ will be used as possible alternatives of the mean vector. The Kullback-Leibler
divergence is a standard measure of how one probability distribution P differs from another Q with the
form KL(P,Q) =

∑
x P (x) ln(P (x)/Q(x)). For the canonical one-dimensional exponential family, it in-

duces a bijection between the natural parameter and the mean parameter, and we define the Kullback-
Leibler divergence of two distributions with means µ1 and µ2 as a function d : (µ1, µ2) → R+. Let
Conv(µ) = Conv(µ1, · · · , µK) denote the convex hull of the mean vector, which is the smallest convex
set that contains all the means µ1, · · · , µK . At each time t = 1, 2, · · · , a decision maker chooses one arm
At ∈ {1, · · · ,K} and independently draws a reward from distribution Xt,At

∼ νAt
. Let Ft denote the

sigma algebra generated by (A1, X1,A1 , · · · , At, Xt,At
). We aim to design a sequential hypothesis testing
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procedure that consists of a Ft−1-measurable sampling policy πt, a stopping rule τ with respect to Ft, and
a Fτ -measurable decision rule Iπ(µ) ∈ {feasible, infeasible}.

We now state the formal definition of feasible and infeasible cases.
Definition 3.1. (feasibility and infeasibility) Given µ = (µ1, · · · , µK), where µi ∈ Rd for i = 1, · · · ,K. For
any set S, the problem defined above is S-feasible if the set S ∩ Conv(µ) ̸= ∅, otherwise, the problem is
S-infeasible. When the set only contains a single element S = {γ}, the problem is simply called γ-feasible
and γ-infeasible, respectively.

In the one-dimensional case, given a threshold γ ∈ R, our objective is to identify whether the unknown mean
vector µ is γ-feasible, which is equivalent to determining if γ lies in the closed interval between the smallest
mean reward I∗(µ) = argmin1≤k≤K µi and the largest mean reward I∗(µ) = argmax1≤k≤K µi based on the
sequential observations while minimizing the expected stopping time τ and maximizing the probability to
correctly identify the result. For simplicity, we assume the threshold γ (and the extreme points of the set
S, respectively) does not equal µi for i = 1, · · · ,K. This aims to avoid infinite samples to distinguish any
means of the distributions that are too close to the threshold. This assumption can be easily relaxed by
introducing a “precision” term ε to identify an ε-optimal design instead (Locatelli et al., 2016; Russo, 2016).
Additionally, we further assume the extreme points (or the vertices) of the convex hull Conv(µ) are unique.

In the literature, two distinct settings have been extensively studied. In the fixed-confidence setting, given
a fixed confidence parameter δ ∈ (0, 1), the forecaster aims for a strategy that achieves the confidence δ
about the quality of the decision rule while minimizing the sample needed, and in the fixed-budget setting,
the number of exploration rounds is fixed, and the forecaster tries to maximize the probability of making
the right decision. We will focus on the fixed-confidence setting in this paper and introduce the δ-correct
strategy.
Definition 3.2. (δ-correctness) Let D be a set of distributions on Rd. Given δ ∈ (0, 1), we call an identifi-
cation strategy δ-correct on the problem class µ ∈ DK if with probability at least 1 − δ, the strategy returns
the correct underlying case in a finite expected stopping time, i.e., P(E[τ ] ≤ ∞) = 1, and when µ is feasible,
P(Iπ(µ) = feasible) ≥ 1 − δ, otherwise P(Iπ(µ) = infeasible) ≥ 1 − δ, here Iπ(µ) is the decision rule of the
strategy.

Before continuing, we pause to introduce some further notations here. We let Na(t) =
∑t

s=1 1{As = a} be
the number of selections of arm a up to round t, and Sa(t) =

∑t
s=1 Xs1{As = a} be the sum of the gathered

observations from that arm and µ̂a(t) = Sa(t)/Na(t) be their empirical mean.

4 A General Lower Bound

In this section, we extend the general information-theoretical sample complexity lower bound proved in
Garivier & Kaufmann (2016) to work for the one-dimensional convex hull membership problem.

Define Alt(µ) = {λ|Iπ(λ) ̸= Iπ(µ)} to be the set of multi-armed bandit models where the identification
result is different from that in µ, and ∆ = {w = (w1, · · · , wK) ∈ RK

+ |w1 + · · · + wK = 1} is a probability
simplex of dimension K. The following bound was proved by Garivier & Kaufmann (2016) that Eµ[τ ] ≥
T ∗(µ)kl(δ, 1 − δ), where kl(x, y) = x ln( x

y ) + (1 − x) ln( 1−x
1−y ) and

T ∗(µ)−1 = sup
w∈∆

inf
λ∈Alt(µ)

∑
a

wad(µa, λa).

Note that kl(δ, 1 − δ) ∼ ln(1/δ) as δ → 0, the lower bound above directly implies lim infδ→0
Eµ[τ ]

ln(1/δ) ≥
T ∗(µ). This max-min problem was first discussed in the seminal work by Chernoff (1959), and the value of
T ∗(µ)−1 can be viewed as the value of a zero-sum simultaneous-move pure exploration game between two
players. The player SUP aims to choose an optimal proportion of allocations w as a mixed strategy, and the
adversary player INF tries to choose the worst-case alternative arm means that is hard to distinguish from
the underlying truth to mislead SUP to an incorrect answer.
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This general information-theoretic bound was established to analyze the sample complexity of the Best-Arm
Identification problem (Garivier & Kaufmann, 2016), and was studied in different settings (Degenne et al.,
2019; 2020) along with its popular variant that tackles pure exploration bandit problems with multiple
correct answers (Degenne & Koolen, 2019). To match this general lower bound, the sampling proportion
E[Nτδ

]/Eµ[τδ] must converge to the minimizer w∗ ∈ ∆ of the pure exploration game as δ → 0. This
intuition inspires works on different sampling rules and their corresponding threshold functions β(t, δ) to
ensure correct recommendation with high probability (at least 1 − δ) (Degenne et al., 2019; Kaufmann &
Koolen, 2021), and novel sampling rules to match the lower bound N(t)/t → w∗ (Kaufmann et al., 2018).
With these considerations in mind, we can establish the sample complexity bound and the asymptotically
optimal algorithm for the CHM problem. Specifically, following Degenne et al. (2020), we say that a δ-correct
algorithm is asymptotically optimal if for all µ, lim supδ→0

Eµ[τ ]
ln(1/δ) ≤ T ∗(µ).

Without loss of generality, in the one-dimensional CHM problem, we assume that µ1 < µ2 ≤ µ3 ≤ · · · ≤
µK−1 < µK . The strict inequalities come from the aforementioned assumption of unique extreme points
of Conv{µ}. We have the following lower bound of any δ-correct algorithm. The proof is provided in the
appendix.
Theorem 1. Given a threshold γ ∈ R, the expected sample complexity Eµ[τ ] of any δ-correct 1-dimensional
CHM strategy satisfies lim infδ→0

Eµ[τ ]
ln(1/δ) ≥ T ∗(µ), where

T ∗(µ) =
{

1
d(µ1,γ) + 1

d(µK ,γ) γ ∈ Conv{µ}∑
1≤i≤K

1
d(µi,γ) γ /∈ Conv{µ}

,

and

w∗
a(µ) =


1

d(µa,γ)∑
i∈{1,K}

1
d(µi,γ)

1{a∈{1,K}} γ ∈ Conv{µ}
1

d(µa,γ)∑
1≤i≤K

1
d(µi,γ)

γ /∈ Conv{µ}
.

Surprisingly, the characteristic time and oracle weights that match the general information-theoretic sample
complexity show completely different behaviors in feasible and infeasible cases. In the feasible case where τ
lies in the convex hull Conv(µ), the algorithm should only sample the arms with minimum and maximum
means, while in the infeasible case, the strategy should sample every single arm with specific fraction inversely
proportional to the Kullback-Leibler divergence between its mean and the threshold γ. We remark that the
previous work on sequentially testing and learning the lowest mean (Kaufmann et al., 2018) demonstrates
a similar phenomenon. In essence, this commonality arises from the fact that the one-dimensional CHM
problem generalizes the problem of learning the smallest mean (see section 6.1 for details).

5 Algorithm

In this section, we introduce an asymptotically optimal Thompson-Sampling-based algorithm for the one-
dimensional CHM problem for a given threshold γ ∈ R.

5.1 Stopping rule

From a learning point of view, the question of stopping at time t is essentially a classical statistical problem:
does the past collected information allow us to assess that the threshold γ lies in or outside the convex hull
set Conv(µ) with risk at most δ? Inspired by Kaufmann et al. (2018), a natural design of the stopping rule
is to compare separately each arm to the threshold γ and stop when either one arm lies significantly below γ
and one arm lies significantly above γ, or all arms lie significantly below γ, or all arms lie significantly above
γ.

We denote d+(u, v) = d(u, v)1{u ≤ v} and d−(u, v) = d(u, v)1{u ≥ v}. We define the first stopping time τ1
when all arms lie significantly above γ:

τ1 = inf{t ∈ N−|∀a,Na(t)d−(µ̂a(t), γ) ≥ Thresh(δ,Na(t))}.
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Similarly, we define the second stopping time τ2 when all arms lie significantly below γ:
τ2 = inf{t ∈ N+|∀a,Na(t)d+(µ̂a(t), γ) ≥ Thresh(δ,Na(t))}.

The third stopping time is when one arm is significantly below γ and another arm lies significantly above γ:
τ3 = inf{t ∈ N+|∃a1, a2, such that Na1(t)d+(µ̂a1(t), γ) ≥ Thresh(δ,Na1(t))

and Na2(t)d−(µ̂a2(t), γ) ≥ Thresh(δ,Na2(t))}.

Here Thresh(δ,Na(t)) is a threshold function to be specified later. Our algorithm stops if any of the three
cases happen, i.e., it stops at τ = min{τ1, τ2, τ3} and returns feasibility or infeasibility based on the case
detected. The stopping rule and decision rule ensures that, when the threshold function Thresh(δ,Na(t))
is carefully designed and the sampling rule guarantees the sampling allocation proportion converges to the
solution w of the max-min problem, the algorithm Thompson-CHM is δ-correct.
Lemma 5.1. Let τδ be a stopping rule satisfying τδ ≤ τ . Thresh(δ, r) is non-decreasing in r and the
following holds: ∀r ≥ r0, Thresh(δ, r) ≤ ln(r/δ) + o(ln(1/δ)), then for any µ and an anytime sampling
strategy such that Nt

t → w∗(µ), we have lim supδ→0
τδ

ln(1/δ) ≤ T ∗(µ) almost surely, and Thompson-CHM is
δ-correct for the CHM problem.

5.2 Sampling rule

Our contribution is a sampling rule that extends and generalizes a variant of Thompson sampling (called
Murphy Sampling) introduced in Kaufmann et al. (2018) to the one-dimensional CHM problem that ensures
the algorithm allocates the optimal proportion to each arm asymptotically, therefore guarantees the asymp-
totical optimality by Lemma 5.1. The sampling rule can automatically adapt the asymptotic optimality for
both feasible cases and infeasible cases.

We denote by Πt = P(·|Ft) the posterior distribution of the mean parameters after t rounds. Inspired
by Kaufmann et al. (2018) that introduces Murphy Sampling after Murphy’s Law, as it performs some
conditioning to the “worst event” to learn the smallest mean, we introduce Thompson-CHM (Algorithm 1)
to tackle the one-dimensional CHM problem.

Algorithm 1 Thompson-CHM
Input: probability distributions with mean vector µ, stopping rule τ with threshold function Thresh(δ, t),
risk δ, threshold γ, Bernoulli distribution parameter βt.
Output: decision rule Iπ(µ) ∈ {feasible, infeasible}
for t = 1, · · · do

if stopping rule τ holds then
if τ = τ3 then

return Iπ(µ) = {feasible}
else

return Iπ(µ) = {infeasible}
end if

end if
Sample θt = (θt,1, · · · , θt,K) ∼ Πt−1(·|µ feasible).
Sample B ∼ Bernoulli (βt)
if B = 1 then

Play arm At = argmin(θt)
else

Play arm At = argmax(θt)
end if

end for

Note that the top-two Thompson Sampling conditions the standard Thompson Sampling on the event
argmax µ ̸= argmax θt with pre-specified probability β (Russo, 2016), and the Murphy Sampling condi-
tions on min(µ) below the threshold (Kaufmann et al., 2018). In contrast, Thompson-CHM conditions on
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the “feasibility” of the underlying mean vector µ and in each round t, the algorithm proceeds to pull an arm
in the sample θt = (θt,1, · · · , θt,K) with largest or smallest mean based on the previous information Ft−1.
The next theorem guarantees that following this sampling procedure, the algorithm Thompson-CHM can
ensure the sampling proportion of each arm converges to the optimal allocation w∗ asymptotically, regardless
of the position of γ with respect to the convex hull Conv{µ}. Therefore, we can conclude that the algorithm
Thompson-CHM is asymptotically optimal in sample complexity.

Theorem 2. The algorithm Thompson-CHM ensures that Nt

t → w∗(µ) almost surely for any µ if βt =
d(min θr,γ)−1

d(min θr,γ)−1+d(max θr,γ)−1 .

We let ψa(t) be the posterior probability of sampling arm a at time t, i.e. ψa(t) = P(At = a|Ft−1), and
define Ψa(t) and ψ̄a(t) as the summation and mean of ψa(t) over time t.

For the feasible case, the first step of the sampling rule performs the same as Thompson Sampling, and the
probability of drawing the first arm at time t can be written as a weighted sum (with weights βt and 1 − βt)
of the posterior probabilities that the first sample in θt is the maximum and minimum. The asymptotic
convergence of sample proportions N1(t)/t → w∗

1(µ) can be derived by the combination of facts that the
former probability converges to 1 and βt converges to w∗

1(µ). The proof of NK(t)/t → w∗
K(µ) is symmetric.

For the infeasible case when the lowest mean is larger than threshold γ or the largest mean is smaller than
γ, the core idea of the proof is based on the following proposition, and the complete proofs of Theorem 1,
Lemma 5.1, and Theorem 2 are deferred to the appendix.

Proposition 5.2. (Simplified version of Lemma 12 of Russo (2016)) Consider any sampling rule, if for any
arm a ∈ [K] and all c > 0,

∑
t ψa(t)1{ψ̄a(t) ≥ w∗

a + c} < ∞, then ψ̄(t) → w∗.

The above result gives a sufficient condition in which ψ̄(t) converges to the optimal allocation w∗, and
implies that for any arm a that meets ψ̄a(t) ≥ w∗

a + c, the arm has been over-allocated compared to the
optimal proportion w∗

a. Hence the total measurements the arm gets must be bounded in order to reduce
towards w∗

a for optimality. The rest of the proof is to establish the condition holds for Thompson-CHM
algorithm. We develop the conclusion by showing that, if arm a has been over-allocated compared to w∗

a, then
Πt(θt,a < γ < θt,b) is exponentially small compared to maxa,b Πt(θt,a < γ < θt,b). Based on the known result,
for any open set Θ̃ ⊂ Θ, the posterior concentrates at rate Πt(Θ̃) .= exp

(
−tminλ∈Θ̃

∑
a ψ̄a(t)d(µa, λa)

)
,

where xt
.= yt means 1

t ln xt

yt
→ 0. Combined with the properties of T ∗(µ) in the pure exploration game and

the concentration rate of the posterior, we can show that there exists δ′ > 0 such that,

ψa(t) ∼ Πt(θt,a < γ < θt,b)
maxa,b Πt(θt,a < γ < θt,b) ≤ exp(−t(δ′ + εt)),

where εt is a sequence converging to 0. This implies for any arm a such that ψ̄a(t) ≥ w∗
a + c, ψa(t) has an

exponential decay rate, and Proposition 5.2 immediately yields ψ̄(t) → w∗.

It is worth mentioning that one can tackle the one-dimensional CHM problem by first checking if γ is smaller
than the minimum mean and then checking if γ is larger than the maximum mean. Using the results in
Kaufmann et al. (2018), this strategy’s sample complexity is at most two times the sample complexity
stated in Theorem 1. However, this procedure has obvious drawbacks compared to our solution. First, this
procedure does not generalize to higher dimensions since minimum and maximum means have no analogs in
higher dimensions. Moreover, even in the one-dimensional case, this procedure incurs sub-optimality in its
sample complexity in the infeasible case. By sequentially checking the one-sided setting twice, the arm that
is farthest away from γ will be sampled more than the optimal w∗(µ) (and all other arms will be sampled
less than w∗(µ), respectively), especially when the arms are not spread out significantly. This demonstrates
the sub-optimality of this easy solution as our main results indicate an algorithm matching the theoretical
lower bound should follow the optimal allocation w∗(µ). More details are discussed in the appendix.
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6 Extensions of the Thompson-CHM Algorithm

6.1 Interval CHM Problem

In this section, we show that our results in Section 4 and Section 5 are fully generalizable to the interval
feasibility setting, where our goal is to determine if the open set (γ−, γ+) intersects with the convex hull set
of µ. Here, we allow γ− to be −∞ and γ+ to be +∞ for better generalization results.

6.1.1 Asymptotic Optimality and the Algorithm

We build the first result on the general sample complexity lower bound.
Theorem 3. Given thresholds −∞ ≤ γ− ≤ γ+ ≤ +∞, let (γ∗, µ∗) = argminγ∈{γ−,γ+},µ∈µ |γ − µ|. The
expected sample complexity Eµ[τ ] of any δ-correct 1-dimensional CHM strategy satisfies lim infδ→0

Eµ[τ ]
ln(1/δ) ≥

T ∗(µ), where

T ∗(µ) =
{

1
d(µ1,γ+) + 1

d(µK ,γ−) (γ−, γ+) ∩ Conv{µ} ≠ ∅∑
1≤i≤K

1
d(µi,γ∗) (γ−, γ+) ∩ Conv{µ} = ∅

,

and

w∗
a(µ) =


1

d(µ1,γ+)
1{a=1}+ 1

d(µK ,γ−)
1{a=K}

1
d(µ1,γ+)

+ 1
d(µK ,γ−)

(γ−, γ+) ∩ Conv{µ} ≠ ∅

1
d(µa,γ∗)∑

1≤i≤K

1
d(µi,γ∗)

(γ−, γ+) ∩ Conv{µ} = ∅

The stopping rule is similar with minor adjustments. To be more specific, we again define the first stopping
time τ1 when all arms lie significantly above γ+:

τ1 = inf{t ∈ N−|∀a,Na(t)d−(µ̂a(t), γ+) ≥ Thresh(δ,Na(t))}.

Similarly, we define the second stopping time τ2 when all arms lie significantly below γ−:

τ2 = inf{t ∈ N+|∀a,Na(t)d+(µ̂a(t), γ−) ≥ Thresh(δ,Na(t))}.

To identify the feasible case, the third stopping time is when one arm is significantly below γ+ and another
arm lies significantly above γ−:

τ3 = inf{t ∈ N+|∃a1, a2, such that Na1(t)d+(µ̂a1(t), γ+) ≥ Thresh(δ,Na1(t))
and Na2(t)d−(µ̂a2(t), γ−) ≥ Thresh(δ,Na2(t))}.

Again, the algorithm stops if any of the three cases happens and τ = min{τ1, τ2, τ3}, and the following
lemma ensures that the algorithm Thompson-CHM is δ-correct in the interval feasibility framework.
Lemma 6.1. Let τδ be a stopping rule satisfying τδ ≤ τ . Thresh(δ, r) is non-decreasing in r and the
following holds: ∀r ≥ r0, Thresh(δ, r) ≤ ln(r/δ) + o(ln(1/δ)), then for any µ and an anytime sampling
strategy such that Nt

t → w∗(µ), we have lim supδ→0
τδ

ln(1/δ) ≤ T ∗(µ) almost surely, and Thompson-CHM is
δ-correct for the interval CHM problem.

The sampling rule in the interval CHM problem remains the same and we have the next theorem.
Theorem 4. The algorithm Thompson-CHM ensures that Nt

t → w∗(µ) almost surely for any µ if βt =
d(min θr,γ+)−1

d(min θr,γ+)−1+d(max θr,γ−)−1 . Here βt is the Bernoulli parameter in the Thompson-CHM algorithm.

8
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6.1.2 Connections with Other State-of-art Results

We comment on some important connections of Section 6.1 with the previous state-of-art results in the
MAB literature. Trivially, when γ− = γ+, we immediately derive the same results as the CHM problem,
implying a direct generalization to the regular CHM problem. If we set γ− = −∞, the Bernoulli parameter
βt becomes 0, and this reproduces the same Murphy Sampling results from the state-of-art sequential test
paper for learning the minima mean (Kaufmann et al., 2018).

On the other hand, by setting γ+ = +∞, the interval CHM problem shares the same setup with the
thresholding bandit problem with the threshold γ−. In the infeasible case when γ− is larger than the largest
mean in µ, testing if there exists an arm with a mean above the threshold is essentially equivalent to finding
all arms with means above the threshold since to identify both questions, one needs to traverse all arms to
conclude that the means of all arms are actually below the threshold, and our complexity bound exactly
matches the state-of-art optimal bound of thresholding bandit (Locatelli et al., 2016). When µ is feasible,
the CHM problem is strictly easier than the thresholding bandit, and our complexity is strictly smaller than
the state-of-art result. Notably, the Thompson-CHM algorithm adapts both feasible and infeasible cases for
the thresholding bandit problem without knowing any information on the threshold as a priori.

6.2 Convex hull membership problem in higher dimensions

We now investigate and discuss the extensions of the Thompson-CHM to d-dimensional setting where d ≥ 2.
Before proceeding, we define the vertices set (or extreme point set) Vert(S) of a convex set S to be the union
of points that do not fall on any line segment connecting any two unique points in set S. The following
theorem states that the lower bound for the CHM problem exhibits a shared behavior in all dimensions: in
the feasible case, the optimal strategy should only sample arms whose means are extreme points, and in the
infeasible case, it should sample all arms.
Theorem 5. Let Vert(Conv{µ}) = (µs1 , · · · , µsm

) be the vertices set of Conv{µ}. Given γ ∈ Rd where
2 ≤ d < ∞, the expected sample complexity Eµ[τ ] of any δ-correct d-dimensional CHM strategy satisfies
lim infδ→0

Eµ[τ ]
ln(1/δ) ≥ T ∗(µ), where

T ∗(µ) =
{
f0(µs1 , · · · , µsm

, γ) γ ∈ Conv{µ}∑
1≤i≤K

1
d(µi,γ) γ /∈ Conv{µ}

,

and

w∗
a(µ) =


∑m

i=1 fi(µs1 , · · · , µsm
, γ)1{a=si} γ ∈ Conv{µ}

1
d(µa,γ)∑

1≤i≤K

1
d(µi,γ)

γ /∈ Conv{µ} .

Here f0, f1, · · · , fm are non-negative real-value functions, and
∑m

i=1 fi(µs1 , · · · , µsm
, γ) = 1.

Using Theorem 5, we can generalize the Thompson-CHM algorithm to higher dimensions by simply replacing
the Bernoulli distribution with a categorical distribution with parameters βi = fi(µs1 , · · · , µsm , γ) and
assuming oracle access to the functions fi for 1 ≤ i ≤ k. We discuss more details of the Thompson-CHM
algorithm in d-dimensional setting (d ≥ 2) in the appendix.

7 Numerical results

The paper’s main results are reflected in some numerical experiments in this section. We consider 7 Bernoulli
bandits with means µ = (0.1, 0.2, · · · , 0.7), and we consider Beta prior and different γ’s to compare the
sample complexity and sample weights to the theoretical results in both feasible and infeasible cases. We
use the threshold function developed in Kaufmann et al. (2018): Thresh(δ, r) = ln(1 + ln(r)) + T (ln(1/δ))
and T : R+ → R+ is a function defined by T (x) = 2h−1

(
1 + h−1(1+x)+ln ζ(2)

2

)
, where h(u) = u − ln(u) for

u ≥ 1 and ζ(s) =
∑∞

n=1 n
−s. We also adopt the empirical implementation of T (x) from Kaufmann et al.

(2018) in our experiments. The property of the threshold function is verified in Kaufmann et al. (2018).

9
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We first pick different values of γ to compare the theoretical sample complexity and the sample complexity
of Thompson-CHM in both feasible and infeasible cases. We choose γ to be (0.15, 0.25, 0.35, 0.45, 0.55, 0.65)
for the feasible case and (0.75, 0.8, 0.85, 0.9, 0.95) for the infeasible case. Figure 1 demonstrates the efficiency
of the algorithm Thompson-CHM. In both feasible and infeasible cases, the sample complexity of Thompson-
CHM matches the theoretical results proved in Theorem 1 well for realistic time horizons.
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Figure 1: Sample complexity for different γ’s in feasible cases (left) and infeasible cases (right).

Figure 2 provides insights into the asymptotic convergence performance of the sampling proportions Na(τ)/τ
in Thompson-CHM in both feasible and infeasible cases. In the feasible case when γ = 0.25, we note that
Thompson-CHM spent the most fraction of time sampling the side arms (especially the minimum arm since
γ is much closer to the arm with minimum mean compared to the arm with maximum mean). In the
infeasible case when γ = 0.9, we can observe that the sampling proportion of the algorithm almost matches
the theoretical optimal w∗(µ) in Theorem 1.
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Figure 2: Empirical proportion of samples compared to optimal allocation w∗(µ) in feasible cases (left) and
infeasible cases (right) estimated using 100 repetitions.

8 Discussion and conclusion

This work thoroughly investigates the convex hull membership (CHM) problem in the pure exploration
setting. We propose a novel asymptotically optimal algorithm to tackle this problem, which we refer to as
Thompson-CHM algorithm. The sampling rule combines the ideas of top-two Thompson sampling (Russo,
2016) and Murphy sampling (Kaufmann et al., 2018), and it can automatically guarantee the sampled
proportion of each arm converges to the optimal allocation derived by the information-theoretical lower
bound in the one-dimensional setting, regardless of relative position between the threshold and the arm

10
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mean set. Moreover, we extend our results to the interval CHM setting that generalizes some important
MAB problems in the literature and investigate the extensions of the Thompson-CHM algorithm in higher
dimensions.

Future work will attempt to derive a complete solution to d-dimensional CHM problems with broader settings
when d ≥ 2. We conjecture that the sample complexity bounds and the asymptotically optimal algorithm
are identical to the one-dimensional case. The current theoretical results reveal challenges in the feasible
d-dimensional setting due to the complex geometric structure in the “alternative” set. It would be interesting
to fully understand the CHM problem in d-dimensional case when d ≥ 2.
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A Appendix and Proofs

A.1 Proofs for one-dimensional γ-CHM problem

We provide proofs of Theorem 1, Lemme 5.1 and Theorem 2 in this Section. As discussed in Section 6.1.2,
the interval CHM problem fully generalizes the regular CHM problem, and the analogous results in the
interval CHM problem follow the exactly same proofs and can be derived by properly adjusting γ to γ− and
γ+ in this section. Therefore, we only prove Theorem 1, Lemme 5.1 and Theorem 2 for the ease of extensions
to the Gaussian bandit setting with unknown variances.

A.1.1 Proof of Theorem 1

We recall µ1 = min{µ1, · · · , µK} and µK = max{µ1, · · · , µK}. In the one-dimensional case, the γ-CHM
problem is to test if γ ∈ Conv(µ). For the feasible case,

Alt(µ) = {λ|Iπ(λ) = infeasible} = {λ| max
1≤i≤K

λi < γ or min
1≤i≤K

λi > γ}.

Therefore,
T ∗(µ)−1 = max

w∈∆
min

λ∈Alt(µ)

∑
a

wad(µa, λa)

= max
w∈∆

min
( ∑

a:µa<γ

wad(µa, γ),
∑

a:µa>γ

wad(µa, γ)
)

= max
w1+wK =1

min (w1d(µ1, γ), wKd(µK , γ))

= d(µ1, γ)d(µK , γ)
d(µ1, γ) + d(µK , γ)

= 1
d(µ1, γ)−1 + d(µK , γ)−1 .

From the derivation, we can see the optimization problem derives its optimal solution when the strategy
only samples arms with maximum and minimum mean with proportions w1 = d(µ1,γ)−1

d(µ1,γ)−1+d(µK ,γ)−1 and
wK = d(µK ,γ)−1

d(µ1,γ)−1+d(µK ,γ)−1 . Now we consider the infeasible case. Without loss of generality, we assume
µ1 > τ (the case when µK < τ can be proved in the same way due to symmetry). In this case,

Alt(µ) = {λ|Iπ(λ) = feasible} = {λ|λ1 < γ < λK}.

and
T ∗(µ)−1 = max

w∈∆
min

λ∈Alt(µ)

∑
a

wad(µa, λa)

= max
w∈∆

min
1≤a≤K

wad(µa, γ)

= 1∑
1≤a≤K d(µa, γ)−1 .

We can see from that in the infeasible case, the decision-maker should sample all arms, and for each arm
a ∈ {1, · · · ,K}, it should be sampled with proportion wa =

1
d(µa,γ)∑

i∈µ

1
d(µi,γ)

.

A.1.2 Proof of Lemme 5.1

Now we proceed to prove Lemma 5.1. We will make use of the following proposition.
Proposition A.1. (Lemma 22 of Kaufmann et al. (2016)) For every β, η > 0, if

x ≥ 1
β

ln
(
e ln(1/βη)

βη

)
,
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then we have

βx ≥ ln
(
x

η

)
+ o

(
ln
(

1
η

))
.

Now for the feasible case, on the event that

N1(t)
t

→ w∗
1(µ), µ̂1(t) → µ1,

and
NK(t)
t

→ w∗
K(µ), µ̂K(t) → µK ,

for any ε > 0, there exists t0 > 0, such that for any t > t0, we have

N1(t)d+(µ̂1(t), γ) ≥ (1 − ε)tw∗
1(µ)d(µ1, γ),

and
NK(t)d−(µ̂K(t), γ) ≥ (1 − ε)tw∗

K(µ)d(µK , γ).

Following this,

τ ≤ τ3 ≤ inf{t|N1(t)d+(µ̂1(t), γ) ≥ Thresh(δ,N1(t)) and NK(t)d−(µ̂K(t), γ) ≥ Thresh(δ,NK(t))}
≤ inf

{
t|N1(t)d+(µ̂1(t), γ) ≥ Thresh(δ, t) and NK(t)d+(µ̂K(t), γ) ≥ Thresh(δ, t)

}
≤ inf {t|(1 − ε)tw∗

1(µ)d(µ1, γ) ≥ Thresh(δ, t) and (1 − ε)tw∗
K(µ)d(µK , γ) ≥ Thresh(δ, t)}

≤ inf
{
t|(1 − ε)tmin (w∗

1(µ)d(µ1, γ), w∗
K(µ)d(µK , γ)) ≥ ln

(
t

δ

)
+ o

(
ln
(

1
δ

))}
≤ inf

{
t|(1 − ε)tT ∗(µ)−1 ≥ ln

(
t

δ

)
+ o

(
ln
(

1
δ

))}
.

Hence we have τ(1 − ε)T ∗(µ)−1 ≤ ln
(

t
δ

)
+ o

(
ln
( 1

δ

))
. By setting β = (1 − ε)T ∗(µ)−1, x = τ and η = δ,

Proposition A.1 directly yields

τ ≤ 1
(1 − ε)T ∗(µ)−1 ln

e ln
(

1
(1−ε)T ∗(µ)−1δ

)
(1 − ε)T ∗(µ)−1δ


≤ 1

(1 − ε)T ∗(µ)−1

(
ln
(

e

(1 − ε)T ∗(µ)−1

)
+ ln

(
1
δ

)
+ ln ln

(
1

(1 − ε)T ∗(µ)−1δ

))
≤ 1

(1 − ε)T ∗(µ)−1 ln
(

1
δ

)
+ o

(
ln
(

1
δ

))
Notice that ε is arbitrary, we have

lim sup
δ→0

τ

ln(1/δ) ≤ T ∗(µ).

For the infeasible case, WLOG we assume µ1 > γ (proof of the symmetric case µK < γ is identical). On the
event that for any arm a ∈ {1, · · · ,K},

Na(t)
t

→ w∗
a(µ), µ̂a(t) → µa,

and for arbitrary ε > 0, similarly, there exists t0, and for any t > t0, we have the following inequality to
hold:

Na(t)d−(µ̂a(t), γ) ≥ (1 − ε)tw∗
a(µ)d(µa, γ).
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Using a parallel statement of the feasible case,

τ ≤ τ3 ≤ inf{t|∀a,Na(t)d(µ̂a(t), γ) ≥ Thresh(δ,N1(t))}
≤ inf

{
t|∀a,Na(t)d−(µ̂a(t), γ) ≥ Thresh(δ, t)

}
≤ inf

{
t|∀a, (1 − ε)tw∗

a(µ)d(µa, γ) ≥ ln
(
t

δ

)
+ o

(
ln
(

1
δ

))}
≤ inf

{
t|(1 − ε)t min

1≤a≤K
{w∗

a(µ)d(µa, γ)} ≥ ln
(
t

δ

)
+ o

(
ln
(

1
δ

))}
≤ inf

{
t|(1 − ε)tT ∗(µ)−1 ≥ ln

(
t

δ

)
+ o

(
ln
(

1
δ

))}
.

Following the same statements and by applying Proposition A.1, we have

τ ≤ 1
(1 − ε)T ∗(µ)−1 ln

(
1
δ

)
+ o

(
ln
(

1
δ

))
.

Thus, in the infeasible case,
lim sup

δ→0

τ

ln(1/δ) ≤ T ∗(µ)

also holds.

A.1.3 Proof of Theorem 2

We again consider feasible and infeasible cases separately. We recall the following notations

ψa(t) = P(At = a|Ft−1), Ψa(t) =
t∑

i=1
ψa(i), and ψ̄a(t) = 1

t
Ψa(t).

Our proof is based on a classic result (see Corollary 1 of Russo (2016)) that for any arm a ∈ [K], if Ψa(t) → ∞,
then

wa(t)
ψ̄a(t)

= Na(t)
Ψa(t) → 1 a.s

and the following result from Kaufmann et al. (2018).
Proposition A.2. (Theorem 12 of Kaufmann et al. (2018)) Given a threshold γ, for any µ =
{(µ1, · · · , µK)|µ1 ≤ · · · ≤ µK , and µ1 < γ}. If we sequentially sample as follows: for any t ∈ N+, sample
θt ∼ Πt−1(·| min1≤i≤K µi < γ), then play the arm At with lowest mean in θt. Then the sampling procedure
ensures that the sampling frequencies satisfy

N1(t)
t

→ 1,

and for any 2 ≤ a ≤ K,
Na(t)
t

→ 0

almost surely.

Back to our proof, now we consider the feasible case first. In this case, we have µ with property µ1 < γ < µK .
For any n ∈ N+,

ψ1(t) = βtΠt

(
θt,1 < min

j ̸=1
θt,j |µ feasible

)
+ (1 − βt)Πt

(
θt,1 > max

j ̸=1
θt,j |µ feasible

)
.

Notice that {argmina θa = 1} and {µK > γ} are independent events,

Πt

(
θt,1 < min

j ̸=1
θt,j |µ feasible

)
→ 1 a.s..
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And Πt (θt,1 < minj ̸=1 θt,j |µ feasible) + Πt (θt,1 > minj ̸=1 θt,j |µ feasible) ≤ 1 directly yields

Πt

(
θt,1 > max

j ̸=1
θt,j |µ feasible

)
→ 0 a.s..

Combine with the fact that βt → d−1(µ1,γ)
d−1(µ1,γ)+d−1(µK ,γ) , we get N1(t)

t → w∗
1(µ). Similarly,

ψK(t) = βtΠt

(
θt,K < min

j ̸=1
θt,j |µ feasible

)
+ (1 − βt)Πt

(
θt,K > max

j ̸=1
θt,j |µ feasible

)
.

With the facts that Πt (θt,K < minj ̸=1 θt,j |µ feasible) → 0 and Πt (θt,K > maxj ̸=1 θt,j |µ feasible) → 1 almost
surely, this leads to NK(t)

t → w∗
K(µ). Notice that w∗

1(µ) + w∗
K(µ) = 1, we have shown that N(t)

t → w∗(µ)
almost sure in the feasible case.

For the infeasible case, we use the following proposition.

Proposition A.3. (Simplified version of Lemma of Russo (2016)) Consider any sampling rule, if for any
arm a ∈ [K] and all c > 0, ∑

t

ψa(t)1{ψ̄a(t) ≥ w∗
a + c} < ∞,

then ψ̄(t) → w∗.

By applying a similar proof strategy in Russo (2016) and Kaufmann et al. (2018), we aim to prove the
precondition in Proposition 5.2. For any a ∈ [K] and c > 0, consider any round n where ψ̄a(t) ≥ w∗

a + c, we
have

ψa(t) = βt
Πt−1(a = argmini θt,i, b = argmaxi θt,i,mini θt,i < γ < maxi θt,i)

Πt−1(mini θt,i < γ < maxi θt,i)

+ (1 − βt)
Πt−1(a = argmaxi θt,i, b = argmini θt,i,mini θt,i < γ < maxi θt,i)

Πt−1(mini θt,i < γ < maxi θt,i)

≤ βt
Πt−1(θt,a < γ < θt,b)

maxa,b Πt−1(θt,a < γ < θt,b) + (1 − βt)
Πt−1(θt,b < γ < θt,a)

maxa,b Πt−1(θt,b < γ < θt,a) .

Following Russo (2016), recall we use xt
.= yt to denote that t−1 ln (xt/yt) → 0. Based on any known posterior

concentration rate result (for example, Proposition 5 in Russo (2016)) that for any open set Θ̃ ⊂ Θ, the
posterior concentrates at the rate Πt(Θ̃) .= exp

(
−tminλ∈Θ̃

∑
a ψ̄a(t)d(µa, λa)

)
. Moreover, for any a, b ∈ [K],

Πt(θt,a < γ < θt,b) .= exp
(

−t min
θt feasible

∑
a

ψ̄a(t)d(µa, θt,a)
)

= exp
(

−tmin
( ∑

a:µa<γ

ψ̄a(t)d(µa, γ),
∑

a:µa>γ

ψ̄a(t)d(µa, γ)
))

.

This means, there is a sequence εt → 0 such that for any t,

Πt(θa < γ < θb) ∈ exp
(

−t

(
min

( ∑
a:µa<γ

ψ̄a(t)d(µa, γ),
∑

a:µa>γ

ψ̄a(t)d(µa, γ)
))

± εt

)
,

which implies
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ψa(t) ≤ βt
Πt−1(θt,a < γ < θt,b)

maxa,b Πt−1(θt,a < γ < θt,b) + (1 − βt)
Πt−1(θt,b < γ < θt,a)

maxa,b Πt−1(θt,b < γ < θt,a) .

=
exp

(
−t
(

min
( ∑

a:µa<γ ψ̄a(t)d(µa, γ),
∑

a:µa>γ ψ̄a(t)d(µa, γ)
))

− εt

)
maxa exp

(
−t
(

min
( ∑

a:µa<γ ψ̄a(t)d(µa, γ),
∑

a:µa>γ ψ̄a(t)d(µa, γ)
))

+ εt

)
= exp

{
−t
[
min

( ∑
a:µa<γ

ψ̄a(t)d(µa, γ),
∑

a:µa>γ

ψ̄a(t)d(µa, γ)
)

− min
a

min
( ∑

a:µa<γ

ψ̄a(t)d(µa, γ),
∑

a:µa>γ

ψ̄a(t)d(µa, γ)
)]

− 2εt

}
≤ exp

{
−t
[
min

( ∑
a:µa<γ

(w∗
a + c)d(µa, γ),

∑
a:µa>γ

(w∗
a + c)d(µa, γ)

)
− min

( ∑
a:µa<γ

w∗
ad(µa, γ),

∑
a:µa>γ

w∗
ad(µa, γ)

)]
− 2εt

}
.

≤ exp
{

−t
[
cmin

( ∑
a:µa<γ

d(µa, γ),
∑

a:µa>γ

d(µa, γ)
)

− 2εt

]}

When εt → 0 the ψa(t) is bounded by an exponential decay term, therefore∑
t

ψa(t)1{ψ̄a(t) ≥ w∗
a + c} ≤ ∞.

Therefore, we have ψ̄(t) → w∗, and by the conclusions above, N(t)/t → w∗.

A.2 d-dimensional CHM problem when d ≥ 2

In this section, we provide further details and discussions about potential extensions of Thompson-CHM
algorithm to the higher dimensional case. Before moving forward, we first prove Theorem 5, which gives
insight into how to generalize our algorithm.

A.2.1 Proofs of Theorem 5

For the infeasible case when γ /∈ Conv(µ), the proof is identical to the one-dimensional case and we omit it
here.

For the feasible case when γ ∈ Conv(µ). We assume λ∗ ∈ Alt(µ) is the optimal solution in the game
T ∗(µ)−1 = supw∈∆ infλ∈Alt(µ)

∑
a wad(µa, λa). For any µi ∈ {µ1, · · · , µK}\Vert(Conv{µ}), we consider two

different cases.

• Case 1: if µi ∈ Conv(λ), then we have λi = µi, and therefore wi = 0.

• Case 2: if µi ∈ Conv(µ)\Conv(λ), in this case, λi ̸= µi, WLOG we assume µ1, µ2, · · · , µs are the
means that differs from those in the optimal solution λ∗, i.e. {1, 2, · · · , s} = {j|µj ̸= λ∗

j }, so 1 ≤ i ≤ s.
If wi ̸= 0, then d(µi, λ

∗
i ) > d(µj , λ

∗
j ) for all j ∈ {1, 2, · · · , s}\{i}, this contradicts with the fact that

µi ∈ Conv{µ1, · · · , µs, λ1, · · · , λs}.

Combining the statements above, we can see that for all µi’s that is not one of the vertices of Conv{µ}, in
order to win the optimization game T ∗(µ)−1, no proportion of the corresponding arm should be sampled.

A.2.2 Potential extension of Thompson-CHM algorithm

As discussed in Section 6.2, the Thompson-CHM algorithm outperforms the trivial solution (first checking
if γ is smaller than the minimum mean and then checking if γ is larger than the maximum mean) in both
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generalizability and optimality. For the generalizability part, the Thompson-CHM can possibly generalize
to higher dimensional cases and we will discuss more details in this section. For the optimality part, by the
results in Kaufmann et al. (2018), the allocations of different arms in the trivial solution are not in align
with the optimal w∗(µ) and therefore, lead to a sub-optimal sample complexity compared to the Thompson-
CHM algorithm. For example, in the infeasible case when γ < µ1 < · · · < µK , by utilizing the result in
Kaufmann et al. (2018) twice, sampling proportion of arm K is 2d(µK ,γ)−1∑K

i=1
d(µi,γ)−1+d(µK ,γ)−1

, and for arm j

satisfying 1 ≤ j ≤ K − 1, its sampling proportion is d(µj ,γ)−1∑K

i=1
d(µi,γ)−1+d(µK ,γ)−1

. This is a direct example of
the sub-optimality of the trivial solution to the CHM problem in the one-dimensional case.

Theorem 5 demonstrates an important phenomenon that shares in all dimensions: in the feasible case, the
optimal strategy should only sample arms whose means are extreme points, and in the infeasible case, it
should sample all arms. And if we can prove analogs of the results for the stopping rule, it is possible to fully
extend Thompson-CHM algorithm to higher dimensions. We call λ∗ the point that is on the boundary of
Conv(µ) that minimizes the l2 distance between γ and γ∗, and we vertically project all the means µ1, · · · , µK

to the line that connects γ and γ∗, and denote the projected points to be µ∗
1, · · · , µ∗

K , then the d-dimensional
distributions with means µ1, · · · , µK are feasible (infeasible) with respect to γ if and only if the 1-dimensional
distributions with means µ∗

1, · · · , µ∗
K are feasible (infeasible) with respect to γ on the line that connects γ

and γ∗. With this important fact, it is possible to prove our conjecture that the analog of Thompson-
CHM (described below) is also asymptotically optimal in higher dimensions using similar techniques in the
one-dimensional case.

We now generalize the Thompson-CHM algorithm to higher dimensions by replacing the Bernoulli distri-
bution with a categorical distribution with parameters βi = fi(µs1 , · · · , µsm

, γ). Assuming oracle access to
the functions fi for 1 ≤ i ≤ k, the analog of Thompson-CHM algorithm in d-dimensional case is stated
below. The future work is to find the exact form of functions fi and prove the asymptotic optimality of
d-dimensional Thompson-CHM algorithm.

Algorithm 2 d-dimensional Thompson-CHM (d ≥ 2)
Input: probability distributions with mean vector µ, stopping rule τ with threshold function Thresh(δ, t),
risk δ, threshold γ, Categorical distribution parameter β1, · · · , βK .
Output: decision rule Iπ(µ) ∈ {feasible, infeasible}
for t = 1, · · · do

if stopping rule τ holds then
if τ = τ3 then

return Iπ(µ) = {feasible}
else

return Iπ(µ) = {infeasible}
end if

end if
Sample θt = (θt,1, · · · , θt,K) ∼ Πt−1(·|µ feasible).
Sample B ∼ Categorical (β1, · · · , βK)
if B = i then

Play arm At = i
end if

end for
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