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ABSTRACT

Multi-layer perceptron (MLP) is a fundamental component of deep learning that
has been extensively employed for various problems. However, recent empirical
successes in MLP-based architectures, particularly the progress of the MLP-Mixer,
suggest that our understanding of how MLPs achieve better performance remains
limited and there is an underlying mechanism. In this research, we reveal that the
MLP-Mixer effectively behaves as a wide MLP with sparse weights. Initially, we
clarify that the mixing layer of the Mixer has an effective expression as a wider
MLP whose weights are sparse and represented by the Kronecker product. It is also
regarded as an approximation of Monarch matrices. Next, we confirmed similarities
between the mixer and the unstructured sparse-weight MLP in hidden features and
performance when adjusting sparsity and width. To verify the similarity in much
wider cases, we introduced the RP-Mixer, a more memory-efficient alternative to
the unstructured sparse-weight MLP. Then we verified similar tendencies between
the MLP-Mixer and the RP-Mixer, confirming that the MLP-Mixer behaves as a
sparse and wide MLP, and that its better performance is from its extreme wideness.
Notably, when the number of connections is fixed and the width of hidden layers
is increased, sparsity rises, leading to improved performance, consistent with the
hypothesis by Golubeva, Neyshabur and Gur-Ari (2021). Particularly, maximizing
the width enables us to quantitatively determine the optimal mixing layer’s size.

1 INTRODUCTION

Multi-layer perceptron (MLP) and its variants are fundamental components of deep learning employed
in various problems and for understanding the basic properties of neural networks. Despite their
simplicity and long history (Schmidhuber, 2015), it has become apparent only recently that there is
still significant room for improvement in the predictive performance of MLP-based architectures.
Some studies have developed learning or pruning algorithms to obtain better weights (Neyshabur,
2020; Pellegrini & Biroli, 2022; d’Ascoli et al., 2019) while others have proposed some modifications
to the network architectures (Golubeva et al., 2021; Tolstikhin et al., 2021; Touvron et al., 2022). The
latter line of study, which the current study follows, includes thought-provoking empirical facts.

Golubeva et al. (2021) reported that the prediction performance improves by increasing the width and
the sparsity of connectivity when the number of trainable parameters is fixed. In other words, under
appropriate control of the parameter size, a wide sparse MLP works better than its dense counterpart.
The MLP-Mixer is another noteworthy example of recent developments in MLP-based architectures
(Tolstikhin et al., 2021). It does not rely on convolutions or self-attention and is entirely composed of
MLP layers; instead, it utilizes MLPs applied across spatial locations or feature channels. This can
be regarded as an MLP that applies fully connected (FC) layers on both sides of the feature matrix.
Despite its simplicity, the MLP-Mixer achieved a performance on image classification benchmarks
comparable to that of more structured deep neural networks.

While the performance of MLP-based architectures has improved, our understanding of which factors
help this performance improvement remains limited. Currently, the MLP-Mixer is expected to achieve
the highest accuracy among MLP-based architectures. However, there are few studies on experimental
and theoretical attempts to understand its internal mechanisms (Yu et al., 2022; Sahiner et al., 2022).
To further advance the MLP-based architecture, it is crucial to address questions such as at what point
the mixer differs from a conventional MLP and which settings contribute to its superior performance.
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In this study, we reveal some underlying mechanics of the MLP-Mixer and contribute to enriching our
understanding of its appropriate design. We find that a wide and sparse MLP (Golubeva et al., 2021)
and the MLP-Mixer, seemingly unrelated MLP variants, are essentially related, and this relationship
plays a fundamental role in understanding the inner workings of the MLP-Mixer. The contributions
of this study are summarized as follows:

• We show an effective expression of MLP-Mixer as an MLP by vectorizing the mixing layers (in
Section 3). It is composed of the permutation matrix and the Kronecker product and provides
an interpretation of mixing layers as an extremely wide MLP with sparse (structured) weights.
Furthermore, a certain MLP-Mixer can be regarded as an approximation of MLP with the
Monarch matrix (in Section 3.3).

• We found similar tendencies between the mixer and unstructured sparse-weight MLP in hidden
features and the performance under widening with a fixed number of connections. For wider
sparse-weight MLPs, the unstructured approach becomes impractical due to its extensive memory
and computational demands. As a solution, we introduce the RP-Mixer, a memory-efficient,
computationally undemanding, and lightly structured alternative (in Section 4.2). Then, we
confirmed the MLP-Mixer and the alternative have similar tendencies in wider cases (in Section 5).

• Before introducing the RP-Mixer, we characterize the Mixers as a special example of a general
class: Permuted-Kronecker (PK) family (in Section 4.1). Based on the hypothesis by Golubeva
et al. (2021), with maximizing the widths in the PK family, we find the appropriate sizes of
channel and token mixing layers (in Section 5.1 & 5.2). Therefore, this work provides not only a
qualitative understanding but also quantitative implications that can help architecture designs.

2 PRELIMINARIES

2.1 RELATED WORK

MLP-based architectures. The salient property of an MLP-Mixer is that it is composed entirely of
FC layers. This property is unique to the MLP-Mixer (and its concurrent work ResMLP (Touvron
et al., 2022)) and different from attention-based architectures (Dosovitskiy et al., 2021). While some
previous work focused on providing a relative evaluation of performance compared with the attention
module (Yu et al., 2022; Sahiner et al., 2022), our purpose is to understand the essential function of
the MLP-Mixer and to provide a novel characterization as a wide and sparse MLP. Golubeva et al.
(2021) investigated that the generalization performance can be improved by increasing the width
in FC layers. Because they fixed the number of weights, an increase in the width caused a higher
sparsity. They revealed that even for fixed sparse connectivity throughout training, a large width
can improve the performance better than the dense layer. As the MLP-Mixer is expressed by an
extremely wide MLP with certain sparse weights, we can apply their argument to the mixing layers
and determine the appropriate layer size.

Structured weight matrices: (i) Sparse matrix. Parameter sparsity is widely used to improve
the performance and efficiency of neural networks. One approach is to determine nonzero weights
dynamically, such as dense-to-sparse training (Neyshabur, 2020), pruning (Frankle & Carbin, 2019),
and sparse-to-sparse training (Dettmers & Zettlemoyer, 2019; Evci et al., 2020; Liu et al., 2022).
The other is to constrain the trainable weights from the beginning of training. statically (Dao et al.,
2022; Golubeva et al., 2021). The current study follows the latter approach; specifically, we reveal
that the mixing layers of the MLP-Mixer are implicitly related to such fixed sparse connectivity. (ii)
Kronecker product. Constraining weight matrices to the Kronecker product and its summation
has been investigated in the model-compression literature. Some works succeeded in reducing the
number of learnable parameters without deteriorating the prediction performance (Zhou et al., 2015;
Zhang et al., 2021) while others applied them for the compression of trained parameters (Hameed
et al., 2022). In contrast, we find a Kronecker product expression hidden in the MLP-Mixer, which
can be regarded as an approximation of the Monarch matrix proposed in Dao et al. (2022).

Notably, our study is completely different from simply applying the sparsity of Golubeva et al. (2021),
Kronecker-product weights, or Monarch matrices to the dense weight matrices of the mixing layers.
Our finding is that effective MLP expression and its generalization (i.e., the PK family) inherently
possess these properties.

2



Under review as a conference paper at ICLR 2024

2.2 NOTATIONS

MLP-Mixer An MLP-Mixer is defined as follows (Tolstikhin et al., 2021). Initially, it divides an
input image to patches. Next, a per-patch FC layer is performed. After that, the blocks described
as follows are repeatedly applied to them: for the feature matrix from the previous hidden layer
X ∈ RS×C ,

Token-MLP(X) = W2φ(W1X), Channel-MLP(X) = φ(XW3)W4, (1)

where W1 ∈ RγS×S , W2 ∈ RS×γS , W3 ∈ RC×γC and W4 ∈ RγC×C . In this paper, we set the
expansion factor of the hidden layers of token and channel-mixing MLPs to the same value γ for
simplicity. The block of the MLP-Mixer is given by the map X 7→ Y , where

U = X + Token-MLP(LN(X)), Y = U + Channel-MLP(LN(U)). (2)

In the end, the global average pooling and the linear classifier are applied to the last hidden layer.

Remark on per-patch FC layer: The first layer of the MLP-Mixer is given by the so-called per-
patch FC layer, which is a single-layer channel mixing. The input image is divided into S0 patches of
size C0, and the original study set the size of the mixing layers to (S,C) = (S0, C0). In contrast,
to investigate the contribution of each input image size and hidden layer size independently, it is
rational to change (S,C) independent of (S0, C0). Therefore, we make the per-patch FC transform
the input size C0 to the output size C and the first token mixing layer transform S0 to S. A more
detailed formulation of the architectures is presented in Section A of the Supplementary Material.
Our results hold, even for (S,C) = (S0, C0) as discussed later.

3 SIMILARITY BETWEEN MLP-MIXER AND MLP VIA VECTORIZATION

To address the similarity between MLP-Mixer and MLP, we consider vectorization of feature tensors
and effective width.

Vectorization and effective width: We represent the vectorization operation of the matrix X ∈
RS×C by vec(X); more precisely, (vec(X))(j−1)d+i = Xij , (i = 1, . . . , S, j = 1, . . . , C). We also
define an inverse operation mat(·) to recover the matrix representation by mat(vec(X)) = X . There
exists a well-known equation for the vectorization operation and the Kronecker product denoted by
⊗;

vec(WXV ) = (V > ⊗W )vec(X), (3)

for W ∈ RS×S and V ∈ RC×C . The vectorization of the feature matrix WXV is equivalent to a
fully connected layer of width m := SC with a weight matrix V > ⊗W . We refer to this m as the
effective width of mixing layers.

In MLP-Mixer, when we treat each S × C feature matrix X as an SC-dimensional vector vec(X),
the right multiplication by an C × C weight V and the left weight multiplication by a S × S weight
W are represented as follows by (3):

vec(XV ) = (V > ⊗ IS)vec(X), vec(WX) = (IC ⊗W )vec(X). (4)

This expression clarifies that the mixing layers work as an MLP with special weight matrices with
the Kronecker product. As usual, the size of S and C is approximately 102 ∼ 103, and this implies
that the Mixer is equivalent to an extremely wide MLP with m = 104 ∼ 106. Moreover, the ratio of
non-zero entries in the weight matrix IC ⊗W is 1/C and that of V > ⊗ IS is 1/S. Therefore, the
weight of the effective MLP is highly sparse.

Furthermore, to consider only the left-multiplication of weights, we introduce commutation matrices.

Commutation Matrix: A commutation matrix Jc is defined as

Jcvec(X) = vec(X>), (5)

where X is an S×C matrix. Note that for any x ∈ Rm and entry-wise function φ, Jcφ(x) = φ(Jcx).
In addition, we have J>

c (IS ⊗ V >)Jc = V > ⊗ IS for any C × C matrix V .
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Figure 1: (a) Average of diagonal entries of CKA between trained MLP-Mixer (S = C = 64, 32)
and MLP with different sparsity, where p is the ratio of non-zero entries in M . (b) CKA between
MLP-Mixer (S = C = 64) and MLP with the corresponding p = 1/64, and (c) CKA between
the Mixer and a dense MLP. (d) Test accuracy of MLPs with sparse weights and MLP-Mixers with
different widths γm under the fixed number of connections per layer Ω = 219. Each experiment is
done on CIFAR10 with four random seeds.

Case of S-Mixer: As a starting point, let us introduce an S-Mixer, which is a simple version of the
MLP-Mixer, by removing hidden layers of mixing MLPs:

Token-Layer(X) = φ(WX), Channel-Layer(X) = φ(XV ). (6)

We find that the following expression holds for the mixing layers:
Proposition 3.1 (Effective expression of MLP-Mixer as MLP). Suppose an S-Mixer for simplicity.
A feature matrix H = φ(φ(WX)V ) ∈ RS×C is expressed as a shallow MLP with width m = SC
using the Kronecker products:

vec(H) = φ
(
J>
c

(
IS ⊗ V >)φ (Jc (IC ⊗W ) vec (X))

)
. (7)

The derivation is straightforward, as described in Section B.1. This expression clarifies that the mixing
layers work as an MLP with special weight matrices with the commutation matrix and Kronecker
product.

Case of MLP-Mixer: It is easy to generalize the above expression for the S-Mixer to a standard
MLP-Mixer, where each mixing operation is composed of shallow neural networks (1). The MLP-
Mixer (2) is expressed as follows: Y = Channel-MLP(Token-MLP(X)))

u = φ(Jc(IC ⊗W2)φ((IC ⊗W1)x)), y = φ(J>
c (IS ⊗W>

4 )φ((IS ⊗W>
3 )u)) (8)

where u = vec(U) and y = vec(Y ). This equivalence with a wide MLP with sparse weights is
simple and easy to follow but has been missing in the literature. One can regard this as an implicit
bias behind Mixers.

3.1 COMPARING HIDDEN FEATURES

To validate the similarity of networks in a robust and scalable way, we look at the similarity of hidden
features of MLPs with sparse weights and MLP-Mixers based on the centered kernel alignment
(CKA) (Nguyen et al., 2021). In practice, we computed the mini-batch CKA (Nguyen et al.,
2021, Section 3.1(2)) among features of trained networks. Detailed settings of all experiments are
summarized in Section. C.

In the literature on sparse weights, a naive implementation is to set a random sparse mask (Golubeva
et al., 2021). We denote by unstructured sparse-weight MLP (SW-MLP in short) an MLP whose
weights are replaced by M � A where A is a parameter matrix and M is a static mask matrix
whose entries are drawn from the Bernoulli distribution with a probability p > 0 of being one at
the initialization phase. In this section, we consider a SW-MLP constructed by replacing IC ⊗W
(resp.V > ⊗ IS) of an MLP-Mixer by M �A where A is a full parameter matrix and M is the static
mask with p = 1/C(resp. 1/S). In Fig. 1(a), we observed the averaged CKA achieved the maximum
as an appropriate sparsity of the MLPs. By comparing Fig. 1(b) and (c), we found that CKA matrix
with sparse MLP was clearly higher than dense MLP. In particular, the sparse Mixer was similar to
sparser MLP in hidden features.
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3.2 COMPARING ACCURACY WITH INCREASING EFFECTIVE WIDTH

To validate the similarity, we compare the test accuracy of both networks with different sparsity.
Under the fixed number of connectivity per layer, denoted by Ω, the sparsity is equivalent to the
wideness. Fig.1(d) shows the test accuracy of MLP-Mixers and corresponding sparse weight MLPs
under fixed Ω = 219 and γ = 2, for several widths γm. We observed both networks’ test accuracy
increased as width increased. Note that we observed the test accuracy of both networks decreased as
width (sparsity) increased except for too-wide cases around γm = 8000 in Fig.1(d). Golubeva et al.
(2021) reported that if the sparsity became too high, the generalization performance of SW-MLP
slightly decreased. They discussed that this decrease was caused by the deterioration of trainability,
that is, it became difficult for the gradient descent to decrease the loss function. This seems rational
because of the spectrum of the weight M �A and IC ⊗W (or V > ⊗ IS) are different. We discuss
on the spectrum in Section D.1. In conclusion, MLP and MLP-Mixer have a similar tendency for the
performance with increasing width, except in extreme cases.

3.3 MONARCH MATRIX HIDDEN BEHIND MIXERS

Dao et al. (2022) proposed a Monarch matrix M ∈ Rn×n defined by

M = J>
c LJcR, (9)

where L and R are the trainable block diagonal matrices, each with
√
n blocks of size

√
n×

√
n. The

previous work claimed that the Monarch matrix is sparse in that the number of trainable parameters
is much smaller than in a dense n× n matrix. Despite this sparsity, by replacing the dense matrix
with a Monarch matrix, it was found that various architectures can achieve almost comparable
performance while succeeding in shortening the training time. Furthermore, the product of a few
Monarch matrices can represent many commonly used structured matrices such as convolutions and
Fourier transformations.

Surprisingly, the MLP-Mixer and Monarch matrix, two completely different concepts developed in
the literature, have hidden connections. By comparing (7) and (9), we find that
Corollary 3.2. Suppose a block of S-Mixer H with C = S whose activation function in the
intermediate layer is linear, that is, H = φ(WXV ). Then, vec(H) is equivalent to an MLP whose
weight matrix is given by a Monarch matrix with weight-sharing diagonal matrices, that is, φ(Mx)
with n = SC, L = IS ⊗ V > and R = IC ⊗W .

In Section B.4, we additionally discuss the Monarch matrix.

4 ALTERNATIVE TO SPARSE WEIGHT MLP

As seen in Section 3, MLP-Mixers have similar tendencies to wide and sparse MLPs. In much
wider models, to continue comparing MLP-Mixer and unstructured sparse-weight MLP, we need an
alternative to static-masked MLP because of its huge computational costs and memory requirements.
Thus we further discuss on structure of MLP-Mixer with its effective expression, and then, by
destroying a part of it, we introduce an alternative model of static-masked MLP.

4.1 PK FAMILY

To introduce an alternative to sparse-weight MLPs, we propose a permuted Kronecker (PK) family as
a generalization of the MLP-Mixer.

Permutation matrix: An m×m permutation matrix J is a matrix given by (Jx)i = xσ(i), (i =
1, 2, . . . ,m) for an index permutation σ. In particular, the commutation matrix Jc is a permutation
matrix (Magnus & Neudecker, 2019). Note that for any permutation matrix J , x ∈ Rm and entry-wise
function φ, Jφ(x) = φ(Jx).
Definition 4.1 (PK layer and PK family). Let J1, J2 be m × m permutation matrices. For X ∈
Rn1×n2 , we define the PK layer as follows:

PK-LayerW (X; J1, J2) := φ[J2(In1
⊗W )J1vec(X)], (10)
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Model Memory(CIFAR/ImageNet) FLOPs(CIFAR/ImageNet) Runtime(CIFAR)
SW-MLP 3.22GB / 23.2TB 805M / 5.80T 28.2(±0.00) s/epoch
RP-Mixer 3.94MB / 26.3MB 12.5M / 4.06G 6.41(±0.01) s/epoch

MLP-Mixer 3.93MB / 26.3MB 12.5M / 4.06G 6.08(±0.26) s/epoch

Table 1: Comparison on memory requirements, FLOPs(floating point operations), and averaged
runtime. For the three models, we set S = 256, C = 588, L = 8, γ = 4 for ImageNet and
S = 64, C = 48, L = 3, γ = 2 for CIFAR.

where we set m = n1n2, W ∈ Rn2×n2 and In denotes an n× n identity matrix. We refer to the set
of architectures whose hidden layers are composed of PK layers as the PK family.

Since Jc is a permutation matrix, the normal S-Mixer and MLP-Mixer belong to the PK family. (See
Section B.3 for the details.) The important point of the PK-Layer is that its width m is possibly large,
but there is no need to explicitly preserve the m ×m weight matrix in memory. We can compute
the forward signal propagation by a relatively small matrix multiplication in the same manner as the
MLP-Mixer: First, J1vec(X) =: y is a rearrangement of X entries. Next, we compute pre-activation
by using the matrix product (In1

⊗W )y = Wmat(y). Finally, we apply entry-wise activation and
rearrangement by J2. Thus, the PK layer is memory-friendly, whereas the naive dense MLP requires
preserving an m×m weight matrix and is computationally demanding.

4.2 RANDOM PERMUTED MIXERS

In normal Mixers, J1 and J2 are restricted to the identity or commutation. This means that the
sparse weight matrices of the effective MLP are highly structured because their block matrices are
diagonal. To destroy the structure, we introduce RP-Mixers. A RP S-Mixer has (J1,J2) in each
PK layer, which is given by random permutation matrices as U = PK-LayerW (X; J1, J2) and
PK-LayerV >(U ; J ′

1, J
′
2). Similarly, for a RP MLP-Mixer, we set the PK layer corresponding to token

mixing and channel mixing to the random permutation matrices. From (10), this is equivalent to the
effective MLP with width SC (and γSC for the MLP-Mixer) and sparse weight

Weff = J2(In1
⊗W )J1. (11)

Because (J1, J2) are random permutations, the non-zero entries of Weff are scattered throughout the
matrix. In this sense, RP Mixers seemingly become much closer to random sparse weights than the
normal Mixers. As a technical remark, we can implement RP Mixers without skip connections more
simply by using a random J2 and setting J1 = I . This is because the product of J2 in the current
layer and J1 in the next layer is also an instance of a random permutation (See Section B.2).

Table 1 shows the computational resource of SW-MLPs and RP-Mixers. In the setting for ImageNet,
SW-MLP requires huge memory and runtime, whereas RP-Mixer needs 103 to 106 times less. Note
that the spacial complexity of the SW-MLP (resp. the RP-Mixer) is O(m2) = O(S2C2) (resp.O(C2+
S2)) as S,C → ∞. Therefore, the RP-Mixer is more memory-efficient and computationally
undemanding than the SW-MLP.

5 REVISIT THE SIMILARITY IN WIDER CASES

In this section we continue the discussion on whether the MLP-Mixer (or S-Mixer) exhibits tendencies
similar to those of unstructured (or lightly-structured) sparse-weight MLPs in wider cases than
Section 3. The following hypothesis has a fundamental role:

Hypothesis 5.1 (Golubeva et al. (2021)). An increase in the width while maintaining a fixed number
of weight parameters leads to an improvement in test accuracy.

Intuitively, Golubeva et al. (2021) challenged the question of whether the performance improvement
of large-scale deep neural networks was due to an increase in the number of parameters or an increase
in width. They empirically succeeded in verifying Hypothesis 5.1; that is, the improvement was due
to the increase in width in normal MLPs and ResNets (note that the width of ResNet indicates the
channel size).
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MLP CIFAR-10 CIFAR-100 max. width #connections
β-LASSO (Neyshabur, 2020) 85.19 59.56 - 256M

Mixer-SS/8 84.09 (±1.55) 55.76(±1.83) 6.3× 104 256M
Ours 87.93 (±0.47) 61.87(±1.36) 1.2× 105 255M

Table 2: Test accuracy on CIFAR-10/100 from scratch. By setting S and C closer under the same
number of total connections throughout layers, the maximal width of layers became larger in ours.
Its test accuracy eventually improved than β-LASSO. Each experiment is done with three random
seeds.

MLP ImageNet-1k max. width Ω S C
Mixer-B/16Tolstikhin et al. (2021) 76.44 6.0× 105 2.6 ×108 196 786

Ours 76.74 (± 0.19 ) 6.2× 105 2.6 ×108 256 588

Table 3: Test accuracy on ImageNet-1k from scratch. Experiments of our model are done with three
random seeds.

Figure 2: Theoretical line of
m and p (Ω = 108, γ = 1)

Here, for the MLP-Mixer, the average number of non-zero entries
per layer (denoted by Ω) is given by

Ω = γ(CS2 + C2S)/2. (12)

From (11), the number of non-zero entries in the PK layer is
n1n

2
2. This means that for a block of the S-Mixer (7), the aver-

age number of non-zero entries per layer (denoted by Ω) is given
by Ω = (CS2 + C2S)/2. The average number Ω of S-Mixer is
reduced to γ = 1 in (12), which maintains the readability of the
equations.

By (12), we have S = (
√
C2 + 8Ω/(γC)− C)/2. For a fixed Ω

and γ, the effective width is controlled by m = SC. Fig. 2 shows m
as a function of C. The width m has a single-peak form and is maximized at (C∗, S∗) as follows:

C∗ = S∗ = (Ω/γ)1/3, max
S,C

m = (Ω/γ)2/3. (13)

The ratio of non-zero entries p := Ω/m2 is minimized at this point, that is, the sparsity is maximized.

5.1 INCREASING WIDTH

Fig. 3 shows that the test accuracy improves as the effective width of the Mixers increases. We
trained the normal and RP S-Mixers for various values of S and C with fixed Ω. The normal and RP
S-Mixers show similar tendencies of increasing test accuracy with respect to the effective width m.
The normal and RP MLP-Mixers also show similar tendencies as is shown in Section D.1. Because
the static-mask SW-MLP requires an m×m weight matrix, an SW-MLP with a large Ω cannot be
shown in the figure. In contrast, we can use a large effective width for the Mixers, and the accuracy
continues to increase as the width increases. This can be interpreted as the Mixers realizing a width
setting where naive MLP cannot reach sufficiently. Eventually, the figure suggests that such an
extremely large width is one of the factors contributing to the success of the Mixer.

Table 2 shows a comparison of MLP-Mixer with a dynamic sparsity β-LASSO (Neyshabur, 2020).
We found a wider Mixer (Ours) has better performance than β-LASSO. Table 3 shows a comparison
of Mixer-B/16(Tolstikhin et al., 2021) and a wider Mixer (Ours). In both results, the wideness
improved the performance even if Ω is fixed. We observed in Table 3, by setting S and C closer under
fixed Ω, the maximal width of layers became larger in ours. Its test accuracy eventually improved
more than the original MLP-Mixer B/16.

5.2 PERFORMANCE AT THE HIGHEST WIDTH AND SPARSITY

Fig. 4 confirms that the maximum width (13) derived from Hypothesis 5.1 adequately explains the
empirical performance of the Mixers. Models were trained using supervised classifications for each
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dataset. For CIFAR-10, CIFAR-100 and STL-10, we trained normal and RP S-Mixers. We fixed the
dimension of the per-patch FC layer and changed S and C while maintaining a fixed number of Ω. It
can be observed that the test accuracy is maximized around C = S, as expected from Hypothesis 5.1
and (13). This tendency was common to the normal and RP Mixers. For ImageNet-1k, we trained
normal and RP MLP-Mixers. Similarly, its performance is maximized around C = S.

5.3 INCREASING EXPANDING FACTOR

The effective MLP expression of the MLP-Mixer (8) has two widths: m = SC and γSC. As both
are proportional to SC, we gave focused on changing SC and fixed γ so far. Here, we consider a
complementary setting, that is, changing γ with fixed m = SC. By substituting S = m/C into
(12), we obtain γ = 2Ω/(m(C +m/C)). Similar to m of C shown in Fig. 2, this γ is a single-peak
function of C and takes its maximum as

C∗ = S∗ =
√
m, max

S,C
γ = Ω/(m

√
m). (14)

Fig. 5(left) confirms that increasing the width (γ) leads to performance improvement as is expected
from Hypothesis5.1. We trained normal and RP MLP-Mixers with various γ in a realistic range. We
plotted some cases of fixed Ω under the same m. Fig. 5(right) shows the test accuracy maximized
around C = S as is expected from (14).

5.4 DEPENDENCE ON DEPTH

As shown in Figures 3-5, both the normal and RP Mixers exhibited similar tendencies for a fixed
depth. Fig. 6 confirms that by increasing the depth, i.e., the number of blocks, RP S-Mixers can even
become comparable to the normal ones or better than them in some cases. First, we observed that,
when the depth was limited, the RP Mixers were inferior to the normal Mixers in most cases. As
we increased the depth, we observed that in some cases, overfitting occurred for the normal Mixer,
but not for the RP one (see also the training and test losses shown in Section D.6). In such cases,
the results of the RP Mixers were comparable (in Figs. 6(left, right)) or better (in Fig. 6(center)).
Although RP Mixers are not necessarily better than normal ones, it is intriguing that even RP Mixers
defined by a random structure can compete with normal Mixers.
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Figure 5: (Left) Increasing expansion factor γ improves the test accuracy in normal and RP MLP-
Mixers. (Right) The highest accuracy is achieved around C = S with fixed m = 4096.
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Figure 6: RP Mixers can become comparable to or even beat normal ones if the depth increases. We
set C = S = 128.

6 CONCLUSION AND FUTURE WORK

This work provides novel insight that the MLP-Mixer effectively behaves as a wide MLP with sparse
weights. The effective expression of the Mixer as the MLP elucidates the PK family as a more
general class, RP-Mixers with more unstructured sparse weights, and hidden connections to the MLP
with Monarch matrices. We empirically verified the similarities of MLP-Mixers with unstructured
sparse and wide MLPs, or with RP-Mixers as an alternative in wider situations. Moreover, we
empirically demonstrated that Mixers achieved higher prediction accuracy when the mixing layer
sizes were set to increase the effective width of the Mixers. These results imply that one reason for
the high performance of the Mixer is that it achieves an extremely large effective width through sparse
connectivity. Thus, our work provides some quantitative suggestions on the appropriate design of
mixing layers and a foundation for exploring further sophisticated designs of MLP-based architectures
and the efficient implementation of neural networks.

In future work, it will be interesting to explore the possibility of other architectures or structured
weights that can achieve a very large effective width, such as in the Mixers, while keeping the number
of weights fixed. The MLP-Mixer and PK families allow matrix-form forward signal propagation,
which is memory-friendly in that there is no need for naive preservation of a huge weight matrix. It
would be interesting to clarify whether other potential candidates for memory-friendly architectures
can achieve large effective widths. It would also be interesting to analyze the expressivity of MLPs
with structured weights theoretically. In particular, because the effective weights of certain Mixers
can be regarded as Monarch matrices approximated by weight sharing, evaluating the validity of such
an approximation and the effects of Monarch products seems to be an interesting theme from the
perspective of structural matrices.

Reproducibility Statement: We have detailed all experimental settings in Section C in the Appendix
as Supplementary Materials. We also documented the number of random seeds and the GPUs used
for the experiments. The claims made in the propositions within the main text are written in Section B.
Additionally, the codes used for the experiments have been submitted as supplementary material. The
experiments on ImageNet-1k were conducted using standard settings based on the publicly available
library, pytorch-image-models (Wightman, 2019).
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Supplementary Materials
A DETAILS OF ARCHITECTURES

Here, we overview more technical details of all models: MLP-Mixer, Simple Mixer (S-Mixer), and
MLP with sparse weights (SW-MLP). In Section A.1, we introduce the transformation from the input
image to the first hidden layer. In Section A.2, we overview some detailed formulation of the models
including skip connection and layer normalization.

A.1 PER-PATCH FC LAYER

In all experiments, for a patch size P , the input image is decomposed into HW/P 2 non-overlapping
image patches with size P × P ; we rearrange the H ×W input images with 3 channels into a matrix
whose size is given by (HW/P 2)× 3P 2 = S0 × C0. For the rearranged image X ∈ RS0×C0 , the
per-patch fully connected (FC) layer is given by

Y = XW>, (S.1)

where W is a C × C0 weight matrix. We use the per-patch FC layer not only for Mixers but also for
SW-MLP.

A.2 MLP-MIXER AND S-MIXER

Let us denote a block of the MLP-Mixer by

fW1,W2(X) = φ(XW>
1 )W>

2 , (S.2)

and that of the S-Mixer by

fW1
(X) = φ(XW>

1 ). (S.3)

We set φ = GELU.

A.2.1 MLP-MIXER

We set the layer normalization (LN) by

LN(X) =
X −m(X)√
v(X) + ε

� γ + β, X ∈ RS×C , (S.4)

where � denotes the Hadamard product , m(X) (resp. v(X)) is the empirical mean (resp. the empirical
variance) of X with respect to the channel axis, and γ, β are trainable parameters. We set ε = 10−5

in all experiments.

In the implementation of fully connected layers, we use only the right matrix multiplications in the
same way as the original MLP-Mixer Tolstikhin et al. (2021). A token-mixing block X 7→ U of
MLP-Mixer is given by

U = X + fW1,W2
(LN(X)>)>, (S.5)

where W1 is S × γS and W2 is γS × S. Similarly, we set a channel-mixing block U 7→ Y as

Y = U + fW3,W4
(LN(U)), (S.6)

where W3,W4 are weight matrices.

We refer to the composed function X 7→ Y of the token-mixing block and the channel-mixing one
as a base block of the MLP-Mixer. The MLP-Mixer with L-blocks is composed in the order of the
per-patch FC layer, the L base blocks, and the global average pooling with the layer normalization,
and the last fully connected classification layer.
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A.2.2 S-MIXER

The S-Mixer without random permutations is implemented by replacing the MLP-block fW1,W2
and

fW3,W4
in the MLP-Mixer with FC blocks. That is, token-mixing and channel-mixing blocks are

given by

U = X + fW (LN(X)>)>, (S.7)
Y = U + fV (LN(U)), (S.8)

where W and V are weight matrices. The transpose of the input matrix in the token-mixing block
is implemented by rearrangement of entries. We decided to apply both skip-connection and layer
normalization even in the S-Mixer. This is a rather technical requirement for ensuring the decrease of
training loss in deep architectures.

A.2.3 MIXERS WITH PERMUTED KRONECKER LAYERS

Here we implement generalized MLP-Mixer and S-Mixer with permutation matrices and PK-layers.
Recall that for any matrix X ,

X> = Mat(Jcvec(X)), (S.9)

where Jc is the m×m commutation matrix. Therefore, the token-mixing block of the S-Mixer is

U = X +Mat ◦ J>
c ◦ vec ◦ fW ◦Mat ◦ Jc ◦ vec ◦ LN(X) (S.10)

= X +Mat ◦ PK-LayerW (LN(X); Jc, J
>
c ). (S.11)

Similarly, the channel-mixing block of the S-Mixer is equal to

Y = U +Mat ◦ PK-LayerV (LN(U); I, I), (S.12)

where I is the identity matrix. Note that skip-connections gather Jc and J>
c in the same mixing block

for compatibility in shapes of hidden units.

To get examples of PK family and to generalize Mixers, we implement the random permuted (RP)
S-Mixer with skip-connections by replacing Jc and J>

c with i.i.d. random permutation matrices J1
and J2:

U = X +Mat ◦ PK-LayerW (LN(X); J1, J2). (S.13)

We implement the random permutations by random shuffling of output m = SC indexes of vectors.
We freeze it during the training step. Note that we avoid using an m×m matrix representation of Jx
for memory efficiency. We implement the random permuted (RP) MLP-Mixer by the same way as
the RP-S-Mixer.

A.2.4 THE SKIP-CONNECTION IN THE FIRST BLOCK

The first token-mixing block has the input shape (S0, C) and the output shape (S,C). However, we
need to change S with fixing S0 in some experiments. To control the difference of S0 and S, we set
the first token-mixing block as follows:

U = SkipLayer(X) + PK-LayerW (LN(X); J1, J2), (S.14)

where the skip layer is given by

SkipLayer(X) = LN(W̃X), (S.15)

where W̃ is a S × S0 weight matrix. For a fair comparison, we use the skip layer even if S = S0 in
the experiments that we sweep S. We use the same setting for the MLP-Mixer as for the S-Mixer.

A.2.5 SPARSE-WEIGHT (SW) MLP

Let 0 < p ≤ 1 and m ∈ N. We implement each matrix of a static sparse weight FC block with the
freezing rate p as follows:

x 7→ x+ φ((M �W ) LN(x)), x ∈ Rm, (S.16)
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where M is the mask matrix whose m2p entries are randomly chosen and set to be one with a
probability p and the others are set to be zero with a probability 1 − p. The mask matrix M is
initialized before training and it is frozen during training.

We also consider the SW-MLP consists of sparse weight MLP-blocks as follows:

x 7→ x+ φ ((M2 �W2)φ((M1 �W2) LN(x))) , x ∈ Rm. (S.17)

W1 and W2 are weight matrices with hidden features γm, where γ is an expansion factor. M1,M2

are mask matrices whose γm2p entries are randomly chosen and set to be one with a probability 1
and the others are set to be zero with a probability 1− p.

SW-MLP with L-blocks is composed in the order of the per-patch FC layer, vectorization, L static
sparse weight FC blocks (or MLP blocks), and the last classification FC layer.

B ANALYSIS

B.1 DERIVATION OF PROPOSITION 4.1

For H = φ(φ(WX)V ), by using vec(WXV ) = (V > ⊗W )vec(X), we have

vec(H) = φ((V > ⊗ IS)vec(φ(WX)) (S.18)

= φ((V > ⊗ IS)φ((IC ⊗W )x)). (S.19)

Because J>
c (A⊗B)Jc = (B ⊗A) Magnus & Neudecker (2019) and any permutation matrix J is

commutative with the entry-wise activation function: Jφ(x) = φ(Jx), we obtain

vec(H) = φ(J>
c (IS ⊗ V >)φ(Jc(IC ⊗W )x)). (S.20)

It may be informative that a similar transformation between the matrix and vector is used in a
completely different context of deep learning, that is, the Kronecker-factored Approximate Curvature
(K-FAC) computation for natural gradient descent Martens & Grosse (2015). K-FAC assumes layer-
wise preconditioner given by the Kronecker product, that is, (B ⊗A)−1vec(∇WLoss(W )) where A
and B correspond to the Gram matrices of the forward and backward signals. This K-FAC gradient can
be computed efficiently because it is reduced to a matrix computation of A−1∇WLoss(W )(B>)−1.
Therefore, the trick of formulating a large matrix-vector product for the product among relatively
small matrices is common between K-FAC and the aforementioned effective expression.

B.2 PRODUCT OF RANDOM PERMUTATIONS

The uniformly distributed random m × m permutation matrix is given by J = Jg where g is the
uniformly distributed random variable on the permutation group Sm of m elements. Then the uniform
distribution over Sm is the Haar probability measure, which is translation invariant (see Folland
(2013) for the detail), that is, J = JσJg is also uniformly distributed if σ is Sm-valued uniformly
distributed random variables and g ∈ Sm is constant. Therefore, J = JσJρ is a uniformly distributed
random permutation matrix for independent and uniformly distributed random variables σ and ρ on
Sm.

B.3 REPRESENTATION AS A PK-FAMILY

By comparing (7) and (10), one can see that the block of the S-Mixer is

U = PK-LayerW (X; I, Jc), PK-LayerV >(U ; I, J>
c ) (S.21)

For MLP-Mixer, the Token-MLP is

U = PK-LayerW2
(PK-LayerW1

(X; I, J1); J
>
1 , Jc) (S.22)

and Channel-MLP is

PK-LayerW>
4
(PK-LayerW>

3
(U ; I, J2); J

>
2 , J>

c ) (S.23)

for the arbitrary permutation matrices J1 and J2.
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B.4 DISCUSSION ON MONARCH MATRIX

Corollary 3.2 provides an interpretation of the Mixers: The use of FC layers with Monarch matrices
has been experimentally demonstrated to be efficient in terms of memory and time. However, as

√
n

(i.e., the number of block matrices and the size of their widths) increases, it becomes more challenging
to store them in memory despite the sparseness of the Monarch matrix. In Section B.4, we show the
detail. The MLP-Mixer approximates the block diagonal matrix of the Monarch matrix by sharing the
same block and allowing an efficient

√
n×

√
n matrix expression H (i.e., approximating the MLP

with the Monarch matrix by the PK family). Although we need to restrict the activation function in
the intermediate layer to a linear function, it is interesting that the Mixers can implement Monarch
matrices as a special case. If the S-Mixer includes a sequential part where the linear activation
function is applied successively L times, we can also implement the product of Monarch matrices
under weight sharing, such as φ(ML · · ·M2M1x).

C EXPERIMENTAL SETTING

C.1 FIGURE 1

We set the number of blocks of the MLP-Mixer, denoted by L, to 3. Both the Token-mixing block
and the Channel-Mixing block are present L times each, resulting in a total of 6 blocks when counted
separately. We also set γ = 2.

For the comparison, the sparse-weight MLP replaces the components within the MLP-Mixer, namely
(IC ⊗W1), (IC ⊗W2) and (W>

3 ⊗ IS), (W
>
4 ⊗ IS), with the form M �A. In this context, there’s

no distinction between the token-mixing and the channel-mixing blocks, leading to a total of 6 blocks.

In Figure 1 (a), we compare the MLP-Mixer with S = C = 64, 32 and the SW-MLP. The sparsity
of the SW-MLP is taken as 2−n where n ranges from 0 to 10. We set the patch size as 4. Each
network is trained on CIFAR10 with a batch size of 128, for 600 epochs, a learning rate of 0.01, using
auto-augmentation, AdamW optimizer, momentum set to 0.9, and cosine annealing. We utilize three
different random seeds for each training.

Figure 1(b) shows the CKA (for a specific seed) of the MLP-Mixer with S = C = 64 and the MLP
with a sparsity of 1/64, based on the results from Figure 1(a). However, the features targeted for CKA
are taken from the layer just before the skip-connection in each block, and they are displayed on the
axis in the order of proximity to the input, labeled as 1 through 6. Figure 1(c) similarly compares the
dense MLP (i.e. sparsity= 1).

In Figure 1(d), we compare the MLP-Mixer and the MLP under the same training settings as in Figure
1(a). Now, here Ω = 219 and γ = 2, with C values being 4,8,12, 16, 20, 24, 28, 32, 36, 40, 44, 48,
64. The S values are determined corresponding to C while keeping Ω fixed, resulting in values: 173,
152, 136, 124, 113, 104, 96, 89, 83, 64. We utilized four different random seeds for each training.

C.2 TABLE 1

We used single Tesla V100 GPU to compute the runtime. The training is by AdamW with the
mini-batch size 128. We used 32-bit float. The runtime is averaged over 600 epochs. The averaged
runtime is on four different random seeds.

C.3 TABLE 2

For our experiments, we utilized Tesla V100 GPUs, accumulating approximately 300 GPU hours.
The networks were trained on datasets, either CIFAR-10 or CIFAR-100. We set L = 2 and γ = 4.
For the Mixer-SS/8 configuration, the parameters were set as p = 8, S = 16, and C = 986. In our
specific approach, the parameters were defined as p = 4, S = 64, and C = 487. The training was
conducted over 4000 epochs with the cosine-annealing. We employed the AdamW optimizer and
incorporated auto-augmentation techniques. The chosen mini-batch size was 1024, and experiments
were run with three distinct random seeds. To optimize results, we conducted a hyper-parameter
search for the best initial learning rate from the set {0.04, 0.05, 0.06}. The rate that provided the
highest accuracy, when averaged over the random seeds, was subsequently chosen for experiments.
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Specifically, the learning rate 0.06 was selected for Mixer-SS/8 on CIFAR-100, while 0.04 was the
preferred rate for all other scenarios.

C.4 FIGURE 3

We utilized Tesla V100 GPUs and approximately 400 GPU hours for this experiment. We trained
three types of MLPs; S-Mixer, RP S-Mixer, and SW-MLP architectures. All MLPs incorporated a
per-patch FC layer as the first block, with a patch size of P = 4. The input token size was fixed at
S0 = (32/P )2 = 64. We trained the models on the CIFAR-10, CIFAR-100, and STL-10 datasets,
along with data augmentations such as random cropping and random horizontal flipping. The input
images were resized to a size of 32× 32× 3. We employed Nesterov SGD with a mini-batch size
128 and a momentum of 0.9 for training, running for 200 epochs. The initial learning rate was set to
0.02, and we used cosine annealing for learning rate scheduling. To ensure robustness, we conducted
three trials for each configuration and reported the mean and standard deviation of the results. Unless
otherwise specified, these settings were used throughout the whole study on CIFAR-10, CIFAR-100,
and STL-10.

(i) S-Mixer and RP S-Mixer We conducted training experiments on the S-Mixer architecture with
eight blocks. In order to explore various cases of integer pairs (S,C) that approximately satisfy the
equation

Ω =
CS2 + SC2

2
. (S.24)

The number of connections, denoted as Ω, was fixed at Ω = 218, 221, 227. For each value of Ω, the
pairs (C,S) were chosen in a symmetric manner. It should be noted that if (C,S) = (a, b) is a
solution, then (C,S) = (b, a) is also a solution. The selected pairs for each value of Ω are as follows:

• Ω = 218: (C,S) = (16, 173), (32, 113), (48, 83), (64, 64), (83, 48), (113, 32), (173, 16).

• Ω = 221: (C,S) = (16, 504), (32, 346), (64, 226), (128, 128), (226, 64), (346, 32), (504, 16).

• Ω = 227: (C,S) = (128, 1386), (256, 904), (512, 512), (904, 256), (1386, 128).

(ii) SW-MLP. For a fair comparison between the Mixers and SW-MLPs, we set the first layer of
both models to the same per-patch FC structure. We trained SW-MLPs with eight blocks, where the
hidden layers of these MLPs share a common Ω = 218 connectivity pattern. Following the per-patch
fully connected layer, the feature matrix is vectorized and processed as a standard MLP with masked
sparse connectivity.

For each freezing rate 1− p, we determined the width m of the hidden units using the equation:

Ω = m2p, m =

√
Ω

p
. (S.25)

We set 1 − p = 0.1, 0.3, 0.5, 0.7, 0.9, which correspond to m = 540, 612, 724, 935, 1619, respec-
tively.

C.5 FIGURE 4

We trained eight-block models for each datasets.

CIFAR-10, 100, STL-10. We utilized Tesla V100 GPUs and approximately 200 GPU hours for our
experiments. We used a single GPU per each run. We set Ω = 218 and used the same pairs (S,C)
satisfying equation S.24 as Sec. C.4.

We set the initial learning rate to 0.1. On CIFAR-10, we trained models 200 epochs, 600-epochs on
CIFAR-100, and we did five trials with random seeds. We trained models 2000-epochs on STL-10
with three random seeds.
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ImageNet-1k. We utilized Tesla V100 GPUs and approximately 4000 GPU hours for our experi-
ments. for training MLP-Mixer and RP MLP-Mixer on ImageNet-1k; we used a GPU cluster of 32
nodes of 4 GPUs per node for each run.

We set the expansion factor γ = 4 for both token-mixing MLP and channel-mixing MLP. We set
Ω = 290217984 = (7682 · 196 + 768 · 1962)γ/2 on a baseline P = 16, (S,C) = (196, 768). We
sweep P = 7, 8, 14, 16, 28, 32 and set C = 3P 2 and set S so that it approximately satisfies the
equation

Ω =
γ(CS2 + SC2)

2
. (S.26)

For each setting, we did three trials with random seeds.

Training on the ImageNet-1k is based on the timm library Wightman (2019). We used AdamW
with an initial learning rate of 10−3 and 300 epochs. We set the mini-batch size to 4096 and used
data-parallel training with a batch size of 32 in each GPU. We use the warm-up of with the warm-up
learning rate 10−6 and the warm-up epoch 5. We used the cosine annealing of the learning rate with
a minimum learning rate 10−5. We used the weight-decay 0.05. We applied the random erasing in
images with a ratio of 0.25. We also applied the random auto-augmentation with a policy rand-m9-
mstd0.5-inc1. We used the mix-up with α = 0.8 and the cut-mix with α = 1.0 by switching them in
probability 0.5. We used the label smoothing with ε = 0.1.

C.6 TABLE 2

We set L = 8, p = 14, C = 588, S = 256, and γ = 4.57. The other settings are the same as in
Figure 4(d).

C.7 FIGURE 5

We conducted our experiments using Tesla V100 GPUs, with a total of approximately 100 GPU hours
utilized. For our experiments on CIFAR-10, we trained both MLP-Mixer and RP MLP-Mixer models.
We set the initial learning rate to be 0.1.

Left Figure: In the left figure, we considered different values of Ω, specifically Ω = 219, 220, 221, 222.
The output dimension of the per-patch FC layer was set to 64, 128, 256, 512, respectively. Addition-
ally, we varied the value of C as C = 32, 64, 128, 256, 512, 1024. The expansion factor, denoted as
γ, was determined by the equation

γ =
2Ω

CS2 + SC2
. (S.27)

We plotted the runs where the training accuracy exceeded 0.8 after training.

Right Figure: In the right figure, we fixed Ω = 221 and m = 212. We set the pairs of
C = 16, 32, 64, 83, 113, 173 and S = m/C. The expansion factor was determined using Equa-
tion equation S.27. We performed three trials for each setting with random seeds.

C.8 FIGURE 6

For our experiments in Figure 5, we utilized Tesla V100 GPUs, with approximately 70 GPU hours
utilized. We trained both S-Mixer and RP S-Mixer models on CIFAR-10, CIFAR-100, and STL-10
datasets. We considered different numbers of blocks, specifically L = 4, 8, 12, 16, 20. The values of
S and C were fixed at 128. Each configuration was evaluated using three trials with different random
seeds.

D SUPPLEMENTARY EXPERIMENTS

D.1 TRAINABILITY OF HIGHLY SPARSE WEIGHTS

Golubeva et al. (2021) found that as the sparsity (width) increased to some extent, the generalization
performance improved. They also reported that if the sparsity became too high, the generalization
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Figure S.1 : On the trainability of SW-MLP. (Left) Trainability decreases as the sparsity 1 − p
becomes too high. We set γ according to Golubeva et al. (2021) under fixed Ω = 216. We performed
five trials for each p with random seeds. (Center) The singular value distribution of the sparse weight
at random initialization. We set a = 1.5, Ω = 103 and performed 50 trials. (Right) The largest
eigenvalue monotonically increases as the sparsity increases.

performance slightly decreased. They discussed that this decrease was caused by the deterioration
of trainability, that is, it became difficult for the gradient descent to decrease the loss function. In
fact, we confirmed their decrease of the performance in SW-MLP as is shown in Figure S.1 (left).
In contrast, we hardly observed such a decrease in performance for the Mixers. This seems rational
because we can take an arbitrary small sparsity 1− p for the SW-MLP while it is lower-bounded for
the Mixers as is described in Section 4.

As a side note, we give here quantitative insight into the trainability from the perspective of the
singular value of the weight matrix. Some previous work reported that the large singular values of
weight matrices at random initialization cause the deterioration of trainability in deep neural networks
Bjorck et al. (2018). Following this line of study, let us consider a random weight of SW-MLP. Set
the width by m = Ω(1+a)/2 and the sparsity by p = 1/Ωa with a constant a > 0 and take a large Ω
limit. We use this scaling because our interest is in the case where the expected number of weights,
i.e., m2p = Ω, is independent of the scaling of p. We generate Z = M �W where Wij ∼ N (0, 1)
and M is a static mask matrix whose entries are given by the Bernoulli distribution with probability
p. The singular value of the weight matrix Z is equivalent to the square root of the eigenvalue of
Q = ZZ>. Because we are uninterested in a trivial scale factor, we scaled the matrix Q as Q/c
where c denotes the average over the diagonal entries of Q. This makes the trace of Q, that is, the
summation (or average) of eigenvalues, a constant independent of a. We computed the eigenvalues of
Q and obtained the singular values of Z denoted by λ.

As is shown in Figure S.1 (center), the spectrum of the singular values peaked around zero but
widely spread up to its edge. Figure S.1 (right) demonstrates that the largest singular value becomes
monotonically large for the increase of a. Because the larger singular value implies the lower
trainability Bjorck et al. (2018), this is consistent with the empirical observation of Golubeva et al.
(2021) and our Figure S.1 (left).

In contrast, the Mixers are unlikely to suffer from the large singular values as follows. Suppose
S-Mixer with S = C � 1 for simplicity. Then, each layer of the effective MLP has p = 1/C
which corresponds to the scaling index a = 1/3 in SW-MLP. Actually, its singular value becomes
further better than a = 1/3, because the weight matrices of the normal and RP Mixers are structured:
Consider the singular values of Z = J2(IC ⊗W )J1 with a C × C random Gaussian matrix W and
permutation matrices (J1, J2). Then, the singular values of Z are equivalent to those of W , excluding
duplication. Therefore, the singular values of the Mixers are determined only by the dense weight
matrix W . Define Q = WW>. Because the normalized matrix Q/c obeys the Marchenko-Pastur
law in the random matrix theory and its largest eigenvalue is given by 4 in the infinite C limit
Bai & Silverstein (2010). This means that the largest singular value of the normalized W is 2 and
corresponds to a = 0 of SW-MLP (i.e., dense MLP) with the infinite Ω limit in Figure S.1 (right).
Thus, we can say that from the perspective of random weights, the trainability of the Mixers is
expected to be better than that of SW-MLP.

We can also extend our analysis to the models incorporating the expansion factor γ. For SW-MLP
with MLP blocks, the expected number of weights is given by Ω = γpm2. We just need to replace p
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in the S-Mixer case to γp and the monotonic increase of the largest singular value appears as well.
For the MLP-Mixer, its normalized W is a γC × C matrix. According to the Marchenko-Pastur law
for rectangular random matrices, as C → ∞, the largest singular value approaches a constant value
of 1 +

√
γ. This corresponds to the singular value of a = 0 in the corresponding SW-MLP, and the

result is similar as in the S-Mixer.

Note that the effective width of the mixing layers is sufficiently large but still has an upper bound
(13). It satisfies

(
√
1 + 8Ω/γ − 1)/2 ≤ m ≤ (Ω/γ)2/3, (S.28)

where the equality of the lower bound holds for S = 1 or C = 1. In contrast, for SW-MLP, we
have no upper bound and only the lower bound

√
Ω ≤ m, where this equality holds for a dense

layer. We can consider an arbitrarily small p and a large m for a fixed Ω if we neglect the issue of
memory (Golubeva et al., 2021). Golubeva et al. (2021) reported that extremely small p can cause a
decrease in test accuracy owing to the deterioration of trainability. We observed a similar deterioration
for the SW-MLP, as shown in this section, but not for the Mixers. This is expected because m is
upper-bounded in the Mixers and the trainability is less damaged than that of the SW-MLP with high
sparsity.

D.2 MLP-MIXER WITH INCREASING WIDTH

Figure S.2 shows the test accuracy improves as the width increases on the models SW-MLP and
normal and RP MLP-Mixer even if the expansion factor γ is incorporated in the models. We set the
expansion factor γ = 4. We set the initial learning rate to be 0.1. For normal and RP MLP-Mixer, we
set C = 16, 32, 48, 64, 83, 113, 173 and determined S by combinations of C and Ω = 218, 220. For
SW-MLP, we set p = 0.1, 0.3, 0.5, 0.7, 0.9 and set the width by m =

√
Ω/γp.

1042 × 103 3 × 103 4 × 103 6 × 103

Width
62

64

66

68

70

72

74

76

78

Te
st

 A
cc

ur
ac

y

1042 × 103 3 × 103 4 × 103 6 × 103

Width

34
36
38
40
42
44
46
48
50

Normal:218

RP:218

Normal:220

RP:220

SW-MLP:220

Figure S.2 : Test accuracy improves as the effective width increases. MLP-Mixer, RP-MLP-Mixer,
and SW-MLP with γ = 4 on (Left) CIFAR-10, (Right) CIFAR-100.

D.3 REPLACEMENT OF Jc IN SPECIFIC LAYERS

Figure S.3 provides more detailed insight into the case where the depth is limited and RP Mixers
perform worse than normal Mixers. We investigated special S-Mixers whose l-th block was replaced
with its RP counterpart while the other layers remained the same. Interestingly, when the accuracy
deterioration apparently appears (e.g., cases of CIFAR-10 and STL-10 in Figure 6), this deterioration
is attributed to the first block. This seems rational because the neighboring image patches are likely
to be correlated, which makes the input units to the first token mixing correlated. Although the usual
mixing weights can reflect such neighboring structures, RP Mixers randomly choose tokens and may
lose the neighboring structure specific to the images. However, as the depth increases, the token
mixing layers can merge all the tokens, which is consistent with the increase in the accuracy of the
RP Mixers, as confirmed in Figure 6. Thus, we conclude that the RP and normal mixing layers have
almost the same inductive bias, especially, in the upstream layers.

We utilized Tesla V100 GPUs and approximately 10 GPU hours for our experiments. Consider the
S-Mixer architecture consisting of four blocks and S = C = 64. In this study, we trained a modified
version of the S-Mixer architecture by replacing one of the four blocks with a block that incorporates
random permutation. The training was conducted on CIFAR-10, CIFAR-100, and STL-10 datasets.
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Figure S.3 : Replacing a single block of the normal Mixer with a corresponding RP block clarifies
that the upstream layers are functionally commutative with the RP block. (Left) CIFAR-10, (Center)
CIFAR-100, (Right) STL-10. We set C = S = 128.

The optimizer and training settings used in this experiment were consistent with those described in
Section C.8.

D.4 REMARK ON INPUT PATCH SIZE
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Figure S.4 : Dependence on
C0

In this study, we focused on changing the size of the mixing layers
and fixed the input token and channel size (S0, C0). In other words,
the patch size P , satisfying C0 = 3P 2, is fixed. While we observe
that our experimental results hold regardless of the patch size, one
naive question is whether there is any optimal patch size for achiev-
ing the highest accuracy. Although this is beyond the scope of this
study, we show the performance depending on C0 in Figure S.4 as a
side note. The number of mixing layers is fixed at C = S = 64. We
observed that the optimal C0 depended on data; C0 = 48 (S0 = 64)
for CIFAR-10 and 100, and C0 = 108 (S0 = 225) for STL-10.
Note that the dimension of an input image is S0C0 = 3, 072 for
CIFAR datasets and 24, 300 for STL-10. It would be rational that
the optimal patch size depends on the detailed information of data.

We utilized Tesla V100 GPUs and approximately 30 GPU hours for
our experiments. We conducted training experiments on CIFAR-10,
CIFAR-100, and STL-10 datasets using both S-Mixer and RP S-Mixer architectures with S = C = 64,
along with four blocks. For optimization, we set the initial learning rate to be 0.1.

For CIFAR-10 and CIFAR-100, we trained the models for 200 epochs and evaluated them with
different patch sizes (P = 1, 2, 4, 8, 16, 32). We performed three trials with different random seeds
for each setting. On the STL-10 dataset, we resized the images to 90× 90× 3 and trained the models
for 400 epochs. We varied the patch size (P = 1, 3, 6, 10, 18, 30) and performed five trials with
different random seeds for each setting.

D.5 RP CAN PREVENT THE OVERFITTING

In Figure S.5 , we explored several values of C fixed Ω, the normal model shows overfitting of more
than twice the magnitude compared to the RP model, especially C is the largest one in the exploring
range. In this case, S takes the smallest value among the explored values. This suggests that RP has a
regularization effect beyond the token-mixing side and affects the channel-mixing side, particularly
when C is large.

To mitigate overfitting, additional augmentation (auto-augmentation, based on Cubuk et al. (2019))
was applied to the dataset, and the model was switched from S-Mixer to MLP-Mixer (γ = 4) due to
the observed slower decrease in training loss for S-Mixer in Figure S.6 . RP S-Mixer outperformed
S-Mixer in terms of test loss for C = 173, indicating that RP still provides overfitting prevention
even with relatively strong data augmentations.

Figure S.6 (right) illustrates that RP did not reach the relatively small training loss as the normal
model. To address this, SGD was replaced with AdamW as the optimizer, with a reduced initial
learning rate (lr = 0.01) due to the instability observed with lr = 0.1 in Figure S.7 . This resulted
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Figure S.5 : (Left) The average test loss curves are shown for C = 16, 32, 64, 114, 173 and five trials
with different random seeds. The models used in this experiment were Normal and RP S-Mixers
trained on CIFAR-10 with L = 8 for 600 epochs. The initial learning rate was set to 0.1. (Right) The
test loss curve for C = 173 represents the worst case of overfitting. The shaded area in both figures
represents the range between the maximum and minimum values.

in reduced overfitting in the C > S region, and RP performed exceptionally well compared to the
normal model for C = S = 64. In Figure S.7 , neither the normal nor RP models exhibited a
significant increase in test loss for C = S. However, while the normal model’s test loss plateaued,
the RP model continued to decrease its test loss, eventually surpassing the normal model in terms of
test accuracy. This highlights the potential of RP to outperform the normal model with a choice of
optimization such as AdamW.

Figure S.6 : (Left) Average of test loss curves. (Right) Average train loss with C = 173. In both
figures, the area shows max and min values. We trained normal and RP MLP-Mixer with γ = 4 with
an initial learning rate of 0.1 and a mini-batch size of 256 for 600 epochs. The results are average of
five trials. The shaded area in the figure represents the range of values between the maximum and
minimum values.
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Figure S.7 : Results of training with AdamW and auto-augmentation with S = C = 64. The RP
MLP-Mixer exceeded the results of the normal one in test loss and test accuracy. (Left) Average of
test loss curves. (Right) Average train loss. (Lower) Test Accuracy curves. We set the initial learning
rate to be 0.01 with a mini-batch size of 256 and 600 epochs. In all figures, the results are average of
five trials and the area shows the range between the maximum and minimum values.
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