
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

T3: REDUCING BELIEF DEVIATION IN REINFORCE-
MENT LEARNING FOR ACTIVE REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Active reasoning requires large language models (LLMs) to interact with external
sources and strategically gather information to solve problems. Central to this
process is belief tracking: maintaining a coherent understanding of the problem
state and the missing information toward the solution. However, due to limited
reasoning capabilities, LLM-based agents often suffer from belief deviation: they
struggle to correctly model beliefs, lose track of problem states, and fall into
uninformative or repetitive actions. Once this happens, errors compound and
reinforcement learning (RL) training fails to properly credit the crucial exploratory
steps. To address this issue, we propose to track the deviation of model beliefs and
develop T3, a simple yet effective method that detects excessive belief deviation and
truncates trajectories during training to remove uninformative tails. By preserving
credit for informative prefixes, T3 systematically improves policy optimization.
Across 5 challenging tasks, T3 consistently enhances training stability, token
efficiency, and final performance, achieving up to 30% gains while cutting rollout
tokens by roughly 34%. These results highlight belief control as a key principle for
developing robust and generalizable LLM-based active reasoners.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable reasoning capabilities across diverse
domains (Huang & Chang, 2022; Plaat et al., 2024; Li et al., 2025b), further advanced by reinforce-
ment learning (RL) with outcome rewards (Wang et al., 2024; Srivastava & Aggarwal, 2025; Xu
et al., 2025; Guo et al., 2025; OpenAI, 2025; Team et al., 2025). Recently, along with the increasing
agentic applications of LLMs (Zhang et al., 2025a; Plaat et al., 2025), the community seeks to extend
the success of RL to long-horizon and multi-turn reasoning (Wu et al., 2025; Laban et al., 2025;
Li et al., 2025a). In particular, active reasoning is one of the most important multi-turn reasoning
settings, which requires the LLM agent to strategically raise questions and actively acquire missing
knowledge to complete the reasoning task (Zhou et al., 2025; Badola et al., 2025).

However, LLM agents are shown to be struggling in multi-turn or active reasoning: along with the
unfolding of interactions, they often generate redundant, irrelevant, or uninformative actions (Yuan
et al., 2025; Fu et al., 2025; Zhang et al., 2025b), or even collapse into unproductive loops (Zhou
et al., 2025). Furthermore, even with RL training, LLM agents still suffer from suboptimal policies.
For example, it can produce globally suboptimal outcomes (Wang et al., 2025) or undermine the
robustness to unseen tasks (Zhang et al., 2025b). Hence, it raises an intriguing research question:

Why do LLM agents get trapped in active reasoning, and how can we mitigate it?

To answer the question, we start by modeling active reasoning as a Partially Observable Markov Deci-
sion Process (POMDP). Traditional POMDP literature assumes perfect belief estimate (e.g., Bayesian
filtering) given the past observations (Kaelbling et al., 1998). When implementing POMDP using
LLMs, it requires LLMs to track and model the belief state, which is inherently imperfect due to the
limited reasoning capabilities of LLMs. Under mild assumptions, we show that: under the imperfect
belief updates of LLM agents, trajectories are driven into a Belief-Trap Region (BTR, Def. 1), where
actions cease to be informative, errors accumulate, and reasoning stagnates (Thm. 1). Furthermore,
we demonstrate that the vanilla policy optimization paradigm is fundamentally undermined by such
belief-trap dynamics: once trapped, the uninformative tail of the trajectory can contaminate the credit

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

A man watched as another man
was executed for a murder he
was guilty of. Strangely, the
executed man looked exactly
like him. How could this be?

Did the man have an identical
twin who was executed,
allowing him to witness the
execution?

Yes.

Did the execution involve the
man’s look-alike twin, enabling
him to watch it happen?

Again? Yes...

A man watched as another man
was executed for a murder he
was guilty of. Strangely, the
executed man looked exactly
like him. How could this be?

Yes.

Did the man manipulate
evidence and testimonies to
frame his identical twin for
the murder?

Yes!
BTR Entry

Early
Truncation

Did the man have an identical
twin who was executed,
allowing him to witness the
execution?

Rollout Generation

Credit Assignment

Vanilla Method Ours: Truncating Belief-Trapped Trajectories

Figure 1: Overall framework of T3, where (bt, at, ot) denote the agent’s internal belief, its chosen
action, and the resulting environmental feedback at turn t. By truncating belief-trapped trajectories, we
prevent the agent from entering the belief-trap region (BTR) where credit assignment is contaminated
and becomes misleading, allowing learning signals to concentrate on genuinely informative actions.
As a result, policy optimization becomes more stable and effective under complex active reasoning.

assigned to crucial early-stage actions, and even invert their estimated gradients (Thm. 2), thereby
hindering effective exploration and leading to sub-optimality of the policy optimization.

To mitigate the issue, we propose T3 (Truncating Belief-Trapped Trajectories), a simple yet effective
method that halts trajectories upon detecting entry into the BTR. By truncating the uninformative tail,
T3 preserves the credit assigned to the informative prefix, yielding lower-variance and less-biased
gradient estimates (Cor. 1). As it is intractable to probe the exact entry to BTR for LLMs, we develop
the T3 condition (Def. 2) that seeks detectable proxies in the reasoning trace of LLMs. We find that it
is relatively easy to find highly effective proxy signals for T3 condition, such as detecting repetitive
queries, as verified in experiments. The simplicity of T3 enables it to be seamlessly integrated
into standard policy optimization frameworks (e.g., PPO, GPRO, and GSPO) without altering the
underlying algorithm, offering a practical drop-in solution to the credit assignment problem.

We evaluate T3 on 4 datasets and 5 tasks from recent challenging active reasoning benchmarks,
including AR-Bench (Zhou et al., 2025) and Multi-Turn Puzzles (Badola et al., 2025). Across
all settings, T3 consistently improves training stability, token efficiency, and final performance,
achieving gains of up to 30% while cutting rollout tokens by roughly 34%. It further shows robust
benefits across LLM sizes, architectures, and even under out-of-distribution scenarios. These results
demonstrate that controlling belief traps not only systematically improves policy optimization but
also provides a principled path toward building reliable active reasoning agents.

2 REINFORCEMENT LEARNING FOR ACTIVE REASONING

2.1 THEORETICAL FORMULATIONS

Due to space limits, in this section, we will state the necessary setup to derive our theoretical results
and leave the details to Appendix B. To strengthen the connection between our theoretical analysis
and the practical behavior of LLM-based agents, we conduct empirical studies that directly examine
the key theoretical components and summarize the findings in Appendix C (an overview in Fig. 2).

We model the problem of active reasoning as a Partially Observable Markov Decision Process
(POMDP) (S,A,O, T,O,R, γ) (Kaelbling et al., 1998). The agent tries to raise strategic questions
a ∈ A to obtain reward R and update its belief b ∈ ∆(S) given an underlying state s ∈ S, and the
environment returns a new piece of information o ∈ O to the agent. For simplicity, we assume the
underlying ground-truth latent state s⋆ is fixed during an episode.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(a) Qwen-2.5-7B (b) Qwen-2.5-32B

0 100 200 300 400 500
Token Index

1.6

1.5

1.4

1.3

1.2

1.1

1.0

To
ke

n
Ad

va
nt

ag
e

(m
ea

n)

w/o Truncation
w/ Truncation-T3

(c) CD

0 100 200 300 400 500
Token Index

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

To
ke

n
Ad

va
nt

ag
e

(m
ea

n)

w/o Truncation
w/ Truncation-T3

(d) PE

Figure 2: Overview of the empirical verification on Asp. 1, Thm. 2, and Cor. 1. (a)(b) We visualize
the fitted empirical lower bound (the red line) ĉθ ≈ m̂θΨ̂ − ĉ0 on the region Ψ̂ ≥ Û0 (the dashed
vertical line) for the PE task (c.f., Sec. 3.1) across Qwen-2.5-7B and 32B models. Both models
exhibit a clear positive lower-bound slope required in Asp. 1. (c)(d) We report token-wise mean GAE
values on failed rollouts for the CD and PE tasks (Qwen-2.5-7B), comparing without vs. with our
T3 truncation. Both exhibit a clear negative drift of early-token advantages (Thm.2) and the drift
mitigation when applying T3 (Cor. 1). See the complete experimental details in Appendix C.

Belief Updates. We mainly compare the dynamics of an oracle reasoner and an imperfect LLM
reasoner. The oracle reasoner will maintain an oracle belief distribution b∗t ,1 i.e., a posterior over
latent states given the full history of interactions, and update beliefs via the Bayes’ rule B⋆ :

b⋆t+1(s) := B⋆(b⋆t , at, ot) =
O(ot | s, at)b⋆t (s)

pb(ot | at)
, (1)

where pb(ot | at) :=
∑

s′∈S O(ot | s′, at)b⋆t (s′) is the Bayes-normalizer. In contrast, an LLM
agent maintains an agent belief bt that represents its internal understanding of the problem and what
information remains missing, and updates itself through Bθ with θ as the parameters of the LLM.

Task Progress. We are interested in the discrepancies introduced to the task progress by the LLM
agent during the interactions. To measure the task progress, we introduce a truth-anchored potential
function Ψ(b) := − log b(s⋆) that captures how concentrated the belief is given the underlying state
s⋆, where Ψ(b) ∈ [0,∞), with Ψ(b) = 0 iff b(s⋆) = 1 (task completion). Lower values of Ψ(b)
indicate higher confidence in the true state. We then establish the following discrepancy:

cθ(bt) := Eat
Eot

[
Ψ
(
Bθ(bt, at, ot)

)
−Ψ

(
B⋆(bt, at, ot)

)]
. (2)

Perfectly modeling the belief states in active reasoning requires the LLM agent to perfectly understand
the problem and what information might be missing, which is challenging. We introduce the following
assumption to instantiate the imperfect belief state modeling capabilities of LLMs.

Assumption 1 (Update-Error Growth). There exist constants mθ > 0, c0 ≥ 0, and a threshold
U0 ≥ 0 such that for all b with Ψ(b) ≥ U0, cθ(b) ≥ mθ Ψ(b)− c0.

Intuitively, Assumption 1 assumes that the errors of belief update are amplified as the belief deviates.
In high-uncertainty regimes, the agent’s update error grows at least linearly with Ψ. Then, we have

Theorem 1 (Informal). Under the POMDP setup, assuming (i) the oracle reasoner converges
to Ψ0, (ii) non-degenerate observations, and (iii) an Lπ-Lipschitz policy, there exists a threshold
U=max

{
U0, (Ψ0 + B̄ + c0)/mθ

}
, where B̄ = 2 (− log η Lπ + 1/η), such that (a) If Ψ(btS) ≥ U

for some tS , then for all t ≥ tS , Eat,ot

[
Ψ(bt+1) | bt

]
≥ Ψ(bt); (b) if U0 = 0 and Ψ(b⋆1) ≥ µ, then

tS ≤ 1 +

⌈
log 1+mθ

mθU+δ
mθ(Ψ(b1)−Ψ(b⋆1))+δ

⌉
, for δ = mθ µ− (c0 + B̄) > 0.

A formal statement and proof of Theorem 1 is given in Appendix B.3. Intuitively, Thm. 1 implies that
the progress of the LLM agent stops after some time tS if the LLM agent can not model the belief
states properly, which we term Belief Trap Region as follows:

Definition 1 (Belief Trap Region, BTR). A setRθ ⊆ ∆(S) is called a belief trap region for an agent
parameterized by θ if it is absorbing and induces non-positive progress: for any belief b ∈ Rθ and all
subsequent times t once entered, E[Ψ(bt+1) | bt = b] ≥ Ψ(b).

1For the ease of notation, we will only add t when the context is about dynamics.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Misguided credit assignment. Inside BTR, {Ψt} is supermartingale-like under the agent’s evolu-
tion: the process does not trend down in expectation. In other words, once trajectories enter BTR,
additional steps are uninformative and tend to reinforce the stall, which substantially reduces the
sample efficiency of policy optimization, as long stretches of uninformative interactions provide
little useful learning signal. More critically, we demonstrate that entering the BTR corrupts credit
assignment: the uninformative tail can contaminate the credit of early-stage exploratory actions, or
even invert their signs, thereby discouraging exploration and leading to suboptimal behaviors.

We formalize this by analyzing the generalized advantage estimator (GAE) (Schulman et al., 2015),
Ât =

∑T−t−1
j=0 (γλ)jδt+j , where γ∈ (0, 1) is the discount factor, λ∈ [0, 1] is the GAE parameter,

and the TD-error is defined as δt = rt + γVt+1− Vt with rt the intermediate reward and Vt the value
function at step t. Here rt follows the outcome-based RL setting, where only the terminal step yields
an outcome reward. The following theorem shows how the BTR can drive the expected advantage of
early actions negative, thereby inverting the gradient direction.

Theorem 2 (Informal). Under the same setup as Thm. 1, assuming (i) the value in policy optimization
is calibrated Vt = g(bt(s

∗)) for an increasing, differentiable g with infx g
′(x) ≥ κV > 0, and (ii) the

belief drifts downward on average by at least ρb > 0: E[bk+1(s
∗)− bk(s∗) | Fk] ≤ −ρb for k ≥ tS ,

then, then, for any t < tS , the expected advantage is bounded: E[Ât] ≤ γ
(
Spre(t)− κV ρbS⊖

tail(t)
)
,

where Spre(t) =
∑tS−t−1

j=0 (γλ)j and S⊖
tail(t) =

∑T−t−2
j=tS−t(γλ)

j . Therefore, a sufficient condition for

E[Ât] < 0 is: κV ρb > Spre(t)/S
⊖
tail(t). In particular, when γλ → 1 (a common setting for sparse

reward tasks), the condition simplifies to κV ρb > ∆/L, where ∆ = tS − t and L = T − 1− tS are
the prefix and tail lengths, respectively.

A formal statement of Thm. 2 is given in Appendix B.4. Thm. 2 quantifies the credit assignment
failure: the negative drift from a long uninformative tail (L large) can overwrite the positive credit
from the informative prefix, causing the overall gradient to point in the wrong direction and penalize
earlier exploratory actions. Therefore, Thm. 2 naturally motivates T3: terminating a rollout upon
entering the BTR preserves the credit assigned to informative prefix actions and eliminates the
detrimental effect of the uninformative tail.

Corollary 1 (Value of Truncation). Let Âpre
t be the advantage estimator truncated at tS . Under

the assumptions of Thm. 2, early truncation yields a less biased gradient estimate: E[Âpre
t] ≥

E[Ât] + γκV ρbS
⊖
tail(t).

Corollary 1 implies that truncating the trajectory at tS removes the uninformative tail and yields a
less biased policy optimization. Yet it is not directly implementable in practice for two-fold reasons.
1) Belief modeling complexity: the belief state b is defined over the latent state space S, which is
often vast and intricate. In LLMs, belief is only implicitly expressed through its chain-of-thought
traces or internal activation status, both of which are difficult to model precisely. 2) Unobservable
thresholds: even with sufficient conditions for BTR entry (Thm. 1), the critical threshold U and its
related parameters (e.g., mθ, c0, B̄) are agent-specific and cannot be directly measured.

2.2 FROM THEORY TO PRACTICE: PROXY SIGNALS

From Theory to Practice: Proxy Signals. We introduce practical yet theory-aligned proxy signals.
The key insight is that although the exact BTR entry point is unobservable, the stalling of epistemic
progress — the core characteristic of the BTR — can be captured through observable surrogates.
Accordingly, we formulate a general proxy condition for truncation based on detecting such stalls:

Definition 2 (T3 Condition). Let Ht denote the hypothesis space at step t. The T3 condition for
trajectory truncation at step t is defined as follows: there exists a minimum progress threshold
∆min ≥ 0 such that for all steps τ in the window [t − k, t), d(Hτ ,Hτ+1) ≤ ∆min, where k is the
window size and d(·, ·) is a metric quantifying the change between consecutive hypothesis spaces.

T3 will truncate at step t if the condition is detected and satisfied. Here, Ht represents the set of
solutions consistent with all information gathered so far; it may be either finite or infinite depending
on the task. In particular, for tasks with a finite and enumerable hypothesis space Ht, modeling
the agent’s belief as uniform over Ht (and assuming s⋆ ∈ Ht) yields an exact correspondence
Ψ(bt) = log |Ht|, which constructs a provably exact observable surrogate for dynamics of potential.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Relation to the BTR formalism. Conceptually, this proxy principle is directly aligned with our
BTR formalism: BTRs are characterized by stalled progress in the truth-anchored potential (i.e.,
E[∆Ψt] ≥ 0), and in goal-directed reasoning tasks, such stalls manifest as a failure to further
constrain the hypothesis space. Def. 2 formalizes this insight by introducing 1) a task-agnostic metric
d(Ht,Ht+1) to quantify incremental refinement of the hypothesis space, 2) the threshold ∆min to
capture the notion of a minimum informative update, and 3) the window of length k to reflect the
temporal persistence of BTRs, which arise from sustained non-positive refinement rather than from a
single noisy step. This abstraction naturally covers a wide range of task structures.

To further quantify this relation, the following proposition provides a guarantee under a standard
biased noisy model, linking T3 ingredients to an upper bound on false-truncation probability.
Proposition 1 (Informal). Define the true single-step potential progress gt := Ψ(bt) − Ψ(bt+1)
and the observable refinement proxy dt := d(Ht,Ht+1). Assume that (i) outside the BTR, single-
step potential progress is uniformly informative: gt ≥ ρ > 0, and (ii) the proxy admits a biased
Gaussian-noise model: dt = gt + βt + ξt, where |βt| ≤Md, ξt ∼ N (0, σ2) independently across t.
If ∆min < ρ−Md, then a sufficient condition for the T3 rule to keep the false-truncation probability
on any k-step non-BTR segment below δ ∈ (0, 1) is k (ρ−Md −∆min)

2 ≥ 2σ2 log(1/δ).

A proof is given in Appendix B.9. This result shows that, even in the presence of both systematic
bias and stochastic noise in the proxy, the T3 rule remains statistically robust. In particular, the
construction ofH and metric d(·, ·) directly determines the bias bound Md. Choosing a metric with
smaller induced bias, increasing k, or decreasing ∆min reduces the probability of false truncation at an
exponential rate. We additionally present an analysis on the effect of false-truncation in Appendix C.3.

Practical instantiation and toward general-purpose detectors. In practice, since the structure of
hypothesis spaces and notions of progress differ across tasks, obtaining these components naturally
relies on task-level meta-knowledge for observable signals which best reflect these ingredients. We
show how to instantiate it for practical tasks in Sec. 3.1. Moreover, guided by the T3 principle,
we can further reduce the reliance on task-specific knowledge on hypothesis spaces by utilizing
general-purpose truncation detectors. We conduct preliminary explorations, and results show that
these surrogates can be directly plugged into the T3 criterion and still yield consistent improvements
across multiple tasks. We present these findings and discuss their implications in Appendix E.1.

Key advantages. This principle serves as a meta-wrapper, providing clear guidance for designing
effective proxy signals without resorting to complex heuristics or heavy engineering, relying instead
on progress-based criteria that capture the essence of belief-trap dynamics. The resulting truncation
rules integrate seamlessly into standard policy optimization frameworks (e.g., PPO, GRPO, GSPO)
without altering their algorithms, making T3 a practical drop-in solution to the long-standing credit
assignment challenge in active reasoning.

3 EXPERIMENTS

3.1 DATASET-SPECIFIC PROXY TRUNCATION CONDITIONS

We evaluate T3 on five interactive reasoning tasks from AR-Bench (Zhou et al., 2025) and Multi-
Turn Puzzles (Badola et al., 2025). Our general truncation principle (Def. 2) is instantiated with
task-specific proxies. See ablation studies of the truncation conditions in Sec. 3.3.3. Note that we do
adaptations to some of these datasets for RL training. See mode details in Appendix F.1.

GuessNumbers (GN). The agent deduces a hidden number through guesses and structured feedback
indicating the count of digits in the correct position or misplaced. The hypothesis spaceHt is the set
of numbers consistent with all previous interactions {a≤t, o≤t} so far, and the progress measure is
naturally defined as d(Hτ ,Hτ+1) := |Hτ | − |Hτ+1|. Early truncation: a trajectory is cut at the step
t if the agent’s guess at lies outsideHt−1, corresponding to k = 1 with d(Ht−1,Ht) ≤ 0, indicating
a failure to refine the feasible set with logically consistent guesses.

SituationPuzzles (SP). The agent is expected to unravel a paradoxical puzzle by posing yes/no
questions to a judge model. Here Ht denotes the set of plausible explanations consistent with the
dialogue history. Since Ht can be complex or even unbounded, we approximate the stalling of
informativeness d(Hτ ,Hτ+1) < ∆min by the judge’s feedback: each step is uninformative if the
feedback of the judge is “unknown”. Early truncation: if this occurs for k = 5 consecutive steps, we

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Main results across five active reasoning tasks. We report Exact Match (EM), F1 (word,
char), and Binary Similarity depending on the task. We also report the average rank across all metrics.

CD SP GN PE MR Avg.

EM F1-word F1-char EM Binary Sim EM Rank

Direct Inference
o3-mini 92.67 20.64 39.35 95.28 44.67 83.33 4.67
Gemini-2.5-Pro 92.23 24.12 49.28 90.84 16.67 83.00 5.67
Qwen-2.5-7B-Inst. 12.50 19.46 41.62 20.94 23.67 27.67 8.17

Reinforcement Learning
PPO 61.67 28.77 74.56 91.62 42.00 24.33 6.50
PPO w. T3 77.83 ↑ 16.2% 36.85 ↑ 8.1% 81.50 ↑ 6.9% 93.98 ↑ 2.4% 49.00 ↑ 7.0% 38.00 ↑ 13.6% 4.50
GRPO 79.33 36.46 83.73 61.26 51.67 12.00 5.50
GRPO w. T3 81.33 ↑ 2.0% 39.45 ↑ 3.0% 84.58 ↑ 0.8% 91.36 ↑ 30.1% 52.33 ↑ 0.7% 32.67 ↑ 20.7% 3.17
GSPO 77.67 36.63 82.17 96.07 59 14.67 4.33
GSPO w. T3 81.00 ↑ 3.3% 36.96 ↑ 0.3% 82.08 ↓ 0.1% 99.74 ↑ 3.7% 62.00 ↑ 3.0% 55.67 ↑ 41.0% 2.50

truncate the trajectory, signaling entrapment in an unproductive line of questioning. Here we leverage
a LLM-judge-based proxy. We also evaluate a judge-free proxy in Sec. 3.3.3.

CircuitDecoding (CD). The agent identifies hidden Boolean circuits from a large candidate pool. At
each step, the agent queries a circuit with a binary input and eliminates inconsistent candidates through
feedbacks. The hypothesis spaceHt is the surviving candidate set consistent with all observations,
and progress is defined as the reduced space size d(Hτ ,Hτ+1) := |Hτ | − |Hτ+1|, analogous to GN.
Early truncation: we monitor |Ht| and truncate if it fails to decrease (d(Hτ ,Hτ+1) ≤ 0) for k = 3
turns, indicating that queries no longer reduce uncertainty.

PreferenceEstimation (PE) / MovieRecommendation (MR). In PE, the agent aims to infer a hidden
vector v⋆ about user preference on movies by iteratively raising pairwise comparisons of the given
reference movies. In MR, the agent is required to recommend unseen movies to the user based on
the learned preference vector, requiring generalization beyond the training distribution. Here Ht

is the subspace of plausible preference vectors consistent with past feedback. AsHt is continuous
and cannot be enumerated, we approximate its epistemic progress via the LLM’s explicit estimate
vt. Early truncation: we approximate d(Hτ ,Hτ+1) by the gain in similarity between the agent’s
estimate and the oracle preference, i.e., Sim(vτ+1, v

⋆) − Sim(vτ , v
⋆). If similarity decreases for

k = 2 consecutive steps, the trajectory is truncated, preventing further training on diverging beliefs.
As the proxy depends on the ground-truth preference v⋆, which may not always be available in
practice, we also explore alterative proxy without access to the ground-truth and demonstrate the
promise of T3 in Appendix D.3.

3.2 EXPERIMENTAL SETUP

Baselines. To evaluate the effectiveness of T3, we compare it against the following baselines: 1)
Direct Inference without Training, where we evaluate representative proprietary reasoning LLMs,
including o3-mini and Gemini-2.5-Pro; 2) PPO (Schulman et al., 2017), 3) GRPO (Shao et al., 2024),
and 4) GSPO (Zheng et al., 2025). PPO and GRPO are widely adopted RL methods for enhancing
the reasoning capabilities of LLMs. GSPO is a recently proposed method by the Qwen team that has
drawn attention. See more details in Appendix F.2.

Implementation Details. The main experiments of RL training are conducted on Qwen2.5-7B-
Instruct (Yang et al., 2024). Analyses on other architecture scales and types can be seen in Sec. 3.3.4.
For the GN, CD, PE, and MR tasks, the interactive feedback is rule-based; for the SP dataset, a
Qwen2.5-14B-Instruct model simulates the “user” and provides the interactive feedback. See more
implementation details in Appendix F.3.

Evaluation Metrics. For the GN, CD, and MR tasks, we report Exact Match (EM), which measures
whether the final prediction made by the LLM exactly matches the hidden number, ground-truth
circuit, or the correct movie recommendation. For the SP task, we use the F1 score (both word-level
and character-level) to assess the similarity between the ground-truth explanation and the solution
produced by the LLM. For PE, we report Binary Similarity, which compares the LLM-estimated

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 50 100 150 200
Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

re
wa

rd

PPO vanilla
PPO w. ours

(a) CD (PPO)

0 25 50 75 100 125 150
Step

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

re
wa

rd

GRPO vanilla
GRPO w. ours

(b) SP (GRPO)

0 50 100 150 200
Step

0.2

0.4

0.6

0.8

1.0

re
wa

rd

GSPO vanilla
GSPO w. ours

(c) GN (GSPO)

0 50 100 150 200
Step

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

re
wa

rd

PPO vanilla
PPO w. ours

(d) PE (PPO)

Figure 3: Training dynamics of rewards.

0 50 100 150 200
Step

1000

2000

3000

4000

5000

re
wa

rd

PPO vanilla
PPO w. ours

(a) CD (PPO)

0 25 50 75 100 125 150
Step

500

1000

1500

2000

2500

3000
Re

sp
on

se
 L

en
gt

h

GRPO vanilla
GRPO w. ours

(b) SP (GRPO)

0 50 100 150 200
Step

200

300

400

500

600

700

800

Re
sp

on
se

 L
en

gt
h

GSPO vanilla
GSPO w. ours

(c) GN (GSPO)

0 50 100 150 200
Step

2000

2500

3000

3500

re
wa

rd

PPO vanilla
PPO w. ours

(d) PE (PPO)

Figure 4: Training dynamics of response length.

vector against the ground-truth preference vector using cosine similarity. Specifically, we threshold
the cosine score at 0.88: values above the threshold are labeled as 1, and values below as 0. In
Appendix D.1, we also explore the sensitivity with other thresholds.

3.3 EXPERIMENTAL RESULTS AND ANALYSES

In this part, we first present overall performance, followed by analyses of T3 on out-of-distribution
generalization, ablation studies of truncation conditions, and the impact of LLM architectures.

3.3.1 OVERALL PERFORMANCE

Overall Performance. The main experimental results are summarized in Table 1. It can be found
that all RL-trained agents, both with and without T3, substantially outperform the zero-shot baseline,
confirming the necessity of RL in incentivizing active-reasoning capabilities. Compared to vanilla RL
methods, incorporating T3 consistently improves final performance across datasets and algorithms,
with non-marginal gains observed in 14 out of 18 reported metrics. On CD, PPO+T3 boosts EM by
16.2% and GRPO+T3 yields further gains, while on SP, GRPO+T3 achieves the best F1-word and
F1-char scores. On GN, T3 delivers striking improvements, raising GRPO by 30.1% and helping
GSPO reach a near-perfect 99.74% EM. In PE and MR, T3 also brings steady gains, with GSPO+T3

improving movie recommendation accuracy by 41.0%. Overall, these results demonstrate that T3

provides consistent and significant benefits across diverse active reasoning tasks.

Comparing to frontier reasoning models. We can also find that advanced reasoning LLMs perform
strongly on active reasoning tasks where the latent state space S is finite and enumerable (e.g., GN
and CD), but show limitations when S is infinite and unenumerable. In SP and PE, their metrics lag
behind those of RL-trained Qwen-7B models, indicating that effective reasoning over unbounded
state spaces is not achievable by large-scale RL with outcome reward training alone, but requires
principled mechanisms such as T3 to strengthen credit assignment.

Better Stability and Optimality of Training. Beyond final performance, T3 substantially improves
training dynamics. As shown in Fig. 3, vanilla RL methods for active reasoning exhibit higher
variance and instability, with rewards prone to collapsing after partial convergence. By contrast, T3

enables them to maintain monotonic or near-monotonic reward improvement without catastrophic
drops (or at much later steps). Therefore, agents not only converge more reliably but also reach
higher optima. These results highlight the dual benefit of T3: stabilizing reinforcement learning
while guiding policies toward more informative and effective active-reasoning behaviors.

Higher Token Efficiency of Training. While the reward dynamics wrt. step (Fig. 3) seem to indicate
that RL with T3 achieves slightly slower reward growth in the early stage, early truncation ensures

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

that each rollout consumes fewer tokens on average (c.f., Fig. 4), and therefore, our method actually
exhibits higher token efficiency overall. For example, under PPO on CD, to reach a reward level of
0.65, our method consumes 66.4% of the total tokens compared to vanilla on average; under GSPO
on GN, to reach 0.96, it requires 76.3% of the tokens. More importantly, while vanilla methods
stagnate and fail to improve further, our method continues to enhance rewards, achieving up to 0.8 on
CD and 0.99 on GN.

3.3.2 OUT-OF-DISTRIBUTION ANALYSIS

Table 2: Evaluations of T3 on out-of-distribution (OOD)
scenarios of PE (under Qwen-2.5-7B-Inst.) and CD (Qwen-
2.5-14B-Inst., c.f., Sec. 3.3.4) tasks under the PPO method.

PE (PPO) CD (PPO)
Vanilla w. T3 Vanilla w. T3

Reference Size (S) Candidate Size (S)
S = 5 40.0 44.3 ↑ 4.3% S = 10 67.8 86.3 ↑ 18.5%

S = 10 42.0 49.0 ↑ 7.0% S = 15 61.7 74.7 ↑ 13.0%

S = 15 39.3 47.0 ↑ 7.7% S = 20 48.2 55.8 ↑ 7.7%

S = 20 41.0 53.7 ↑ 12.7% S = 25 35.2 46.0 ↑ 10.8%

S = 30 42.3 46.3 ↑ 4.0% S = 30 31.5 35.7 ↑ 4.2%

Reference Sampling Hidden Circuit Size (C)
min-max 45.7 56.0 ↑ 10.3% C = 2 67.8 86.3 ↑ 18.5%

uniform 42.0 49.0 ↑ 7.0% C = 3 60.3 75.3 ↑ 15.0%

max 50.7 61.3 ↑ 10.7% C = 4 42.7 49.3 ↑ 6.6%

To better understand whether the
agents learn the generalizable policies
for active reasoning, we further evalu-
ate T3 under distribution shifts in two
representative tasks: CircuitDecoding
(CD) and Preference Estimation (PE).
In CD, we vary two key factors rel-
ative to training: the number of hid-
den circuits (training uses 2, we test
up to 4) and the candidate pool size
(training uses 10, we test up to 30). In
PE, we vary the number of reference
movies (training uses 10, we test 5-30)
and the sampling distribution of their
scores (training uses uniform, we test
skewed side distributions).

The results are given in Table 2. Across all OOD settings, T3 consistently improves over vanilla
PPO. In CD, although accuracy drops as the task becomes harder with larger candidate pools or more
hidden circuits, the relative gains from T3 remain pronounced, reaching +10.8% with 25 candidates
and +15.0% with 3 circuits. In PE, performance varies non-monotonically with reference size, where
moderate contexts (e.g., S = 20) achieve the best results (+12.7%). Too few references increase the
ambiguity of preference estimation, while too many introduce noise and redundancy, making the
agent more prone to entering the BTR (see Appendix D.2 for an empirical verification). Similarly, for
reference sampling, T3 delivers improvements across all conditions, with the largest margin under
max-skewed sampling (+10.7%). Overall, these results show that T3 consistently enhances OOD
robustness across diverse settings, even in more challenging regimes where the distribution deviates
largely from the training.

3.3.3 ABLATION STUDY ON TRUNCATION CONDITIONS

Table 3: Ablation Study of Truncation Conditions on the SP, CD, and
PE tasks. Beyond the window size k as seen in Def. 2, we consider
alternative truncation methods, described in α and β.

SP (GRPO) CD (PPO) PE (PPO)
Method F1-word Method EM Method Binary Sim

Vanilla 36.46 Vanilla 61.67 Vanilla 42.00
k = 3 38.62 ↑ 2.16% k = 2 69.17 ↑ 7.50% k = 2 49.00 ↑ 7.00%

k = 5 39.45 ↑ 2.99% k = 3 77.83 ↑ 16.2% k = 4 44.33 ↑ 2.33%

k = 9 36.96 ↓ 0.50% k = 4 79.33 ↑ 17.6% k = 7 42.00 ↑ 0.00%

α = 0.9 39.44 ↑ 2.98% β = 0.1 69.00 ↑ 7.33% β = 0.2 43.33 ↑ 1.33%

α = 0.93 38.81 ↑ 2.35% β = 0.2 57.50 ↓ 4.17% β = 0.5 44.67 ↑ 2.67%

α = 0.96 37.93 ↑ 1.47% β = 0.5 13.17 ↓ 48.5% β = 0.8 39.00 ↓ 3.00%

The effectiveness of T3

hinges on the design of the
proxy signal for truncating
the BTR tail. We hence
ablate different truncation
conditions to analyze their
robustness and trade-offs.
First, we vary the window
size k. Furthermore, we
consider alternative trunca-
tion strategies beyond our
main design. For the SP
task, we consider Question
Semantic Similarity (Sim-α): a trajectory is truncated if the cosine similarity between the embed-
ding of the current query and any previous one exceeds a threshold α, where we leverage the
E5-large-v2 model (Wang et al., 2022) to calculate embeddings. This proxy detects redundant or
circular questioning, and we evaluate α ∈ {0.9, 0.93, 0.96}. For the CD and PE tasks, we consider a
random truncation (Rand-β) strategy, where each step is truncated independently with probability of
β. We test β ∈ {0.1, 0.2, 0.5} for CD and {0.2, 0.5, 0.8} for PE.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
Step

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f E

ar
ly

 Tr
un

ca
tio

n

sim-0.9
sim-0.93
sim-0.96

(a) SP (GRPO)

0 20 40 60 80 100
Step

0.0

0.2

0.4

0.6

Ra
tio

 o
f E

ar
ly

 Tr
un

ca
tio

n k=1
k=2
k=3
k=4

(b) CD (PPO)

0 20 40 60 80 100
Step

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ra
tio

 o
f E

ar
ly

 Tr
un

ca
tio

n

k=2
rand-0.2
rand-0.5
rand-0.8

(c) PE (PPO)

Figure 5: Training dynamics of the ratio of early truncation w.r.t. steps under different truncation
conditions for the SP (a), CD (b), and PE (c) tasks.

The results are reported in Table 3. For SP, increasing k improves performance up to around k = 5,
after which the gains diminish. The similarity-based proxy also provides consistent improvements
over vanilla GRPO, demonstrating that T3 is robust to various forms of the proxy as long as it can
detect the BTR entry reasonably. For CD, varying k shows stable improvements, and especially
k = 3, 4 yield large gains over vanilla PPO. We also observe that even random truncation can still
have a mild improvement if the ratio β gets properly assigned, indicating the significance of the
BTR issue that even a simple truncation condition can stabilize the training. For PE, k = 2 achieves
the best performance, while the gains diminish as the condition becomes looser. Importantly, these
results reveal that the proxy condition must be set at a moderate level: if it is too loose (e.g., k = 9
for SP), truncation has little effect, causing accumulations of belief tracking error; if it is too strict
(e.g., β = 0.2, 0.5 for CD), it terminate trajectories prematurely, suppresses early-stage exploratory
actions and leaves insufficient learning signals for effective training.

Training Dynamics of Early Truncation. Furthermore, we examine the temporal evolution of
the early-truncation frequency during training, as shown in Fig. 5. For clarity, the truncation ratio
at training step t is defined as ratiot = # rollouts truncated at step t

total rollouts at step t . This quantity tracks how often the
policy enters the truncation region throughout optimization. Combining these dynamics with the final
performance (Table 3) yields a clear pattern: For tasks where the latent state space S is unbounded
(SP and PE), the most beneficial regime is a high and stable truncation ratio from early steps: in SP,
the similarity proxy with α = 0.9 quickly saturates near 1.0 and delivers the best F1; in PE, k = 2
likewise achieves the highest performance. This indicates that when S is infinite, promptly removing
BTR tails protects the learning signal. Notably, in PE, the random truncations (β = 0.5, 0.8) produce
similar ratios to k = 2 yet only worse final performance, underscoring the necessity of truncation
conditions which detect BTR entry rather than cut indiscriminately.

By contrast, for tasks with finite and enumerable spaces (the CD task), a low-to-moderate truncation
ratio is sufficient and preferable: k = 3, 4 maintain a small ratio throughout training and yield the
largest EM gains, whereas aggressive settings (k = 1, 2) drive the ratio up and hurt exploration,
leading to weaker results. In summary, the most effective dynamics are: high/early truncation for
unbounded S to prevent BTR-tail contamination, and moderate truncation for finite S to preserve
productive exploration, which precisely aligns with our theory-guided proxy design.

3.3.4 IMPACT OF LLM ARCHITECTURE

We further extend T3 to different LLMs, including Qwen-2.5 in different scales, as well as different
variants of Llama-3.1-8B. As shown in Fig. 6a and 6b, across Qwen-2.5 3B, 7B, and 14B, we observe
that the 3B model shows only limited improvements, whereas the 7B and 14B variants achieve clear
gains under RL. More importantly, the performance of larger LLMs is further boosted by substantially
larger margins under T3 compared to the 3B. This aligns with our formulation in Sec. 2: weaker
belief-tracking ability corresponds to a larger mθ, making smaller models more prone to quickly
falling into BTR, where even truncation cannot provide sufficient informative training signals.

A similar pattern holds across architecture types. As shown in Fig. 6c, we compare the effectiveness of
T3 across LLaMA-3.1-8B-Instruct, Qwen-2.5-7B-Instruct, and DeepSeek-R1-Distill-LLaMA-8B. We
observe that LLaMA-8B-Instruct improves only marginally under T3, while its DeepSeek-distilled
variant and Qwen-7B benefit substantially. This echoes recent findings that Qwen exhibits stronger
reasoning behaviors than LLaMA (Gandhi et al., 2025), which we believe include belief-tracking
abilities under partial observability. Notably, the distilled LLaMA variant with T3-equipped RL

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

3B 7B 14B
Architecture Size

0

10

20

30

40

50

60

Bi
na

ry
 S

im

w.o. RL
PPO
PPO w. ours
Performance Gain

0

2

4

6

8

 B
in

ar
y

Si
m

(a) PE (PPO)

3B 7B 14B
Architecture Size

0

20

40

60

80

EM

w.o. RL
PPO
PPO w. ours
Performance Gain

0

5

10

15

20

 E
M

(b) CD (PPO)

Llama Qwen Distilled-Llama
Architecture Type

0

20

40

60

80

EM

w.o. RL
PPO
PPO w. ours
Performance Gain

0

5

10

15

20

 E
M

(c) CD (PPO)

Figure 6: Effectiveness of T3 on different sizes (a, b) and types (c) of LLM architectures. The
“Performance Gain” denotes the improvement of T3 compared to the vanilla RL method.

achieves the best overall performance, exhibiting the largest performance gains. We conjecture that
distillation may effectively boost the belief-tracking capability under finite state spaces, thereby
enhancing the utility of T3 in preserving credit assignment. In our formulation, both size- and
type-dependent differences can be attributed to varying belief-tracking abilities and the associated
mθ, which governs how easily trajectories get trapped in the BTR.

4 RELATED WORK

Active Reasoning requires LLMs to interact with external sources and actively acquire missing
information to solve complex tasks. Prior work has improved LLMs’ ability to handle ambiguity
and incompleteness through making clarification and information-seeking actions. For example,
Proactive CoT (Deng et al., 2023) prompts LLMs to identify ambiguous problems and generate
clarification questions, while UoT (Hu et al., 2024) quantifies the contribution of each question
in reducing uncertainty. However, challenges remain when transitioning from LLMs’ single-turn
success to multi-turn active reasoning (Kwan et al., 2024; Liang et al., 2024; Badola et al., 2025),
even with several advanced strategies such as tree-based searching or post-training approaches, as
highlighted in existing works (Zhou et al., 2025). In contrast, we leverage RL to incentivize active
reasoning capabilities, and propose T3 to address key issues when applying RL in this setting.

Credit Assignment and Multi-turn RL. Credit assignment is crucial to long-horizon or multi-turn
RL. Existing methods have extensively explored rule-based approaches (Yu et al., 2024; Dou et al.,
2024; Zhang et al., 2025b) to shape intermediate rewards. Several recent works also proposed to
measure the progress of stepwise actions toward overall task completion as intermediate rewards.
Specifically, CURIO (Wan et al., 2025) constructs a potential function over an ideal belief state to
assign intermediate rewards, assuming that the latent state space is finite and enumerable. Sotopia-
RL (Yu et al., 2025) relies on reward labeling with proprietary LLMs. SPA-RL (Wang et al., 2025)
trains reward models for intermediate rewards by enforcing a summation constraint with respect to
the final outcome reward. In our studied active reasoning scenario, belief deviation under partial
observability makes it difficult for outcome-based rewards to properly assign credit to key reasoning
steps. Our proposed T3 mitigates this by halting the trajectory before the reasoning process becomes
trapped in excessive belief deviation and the error accumulation overwhelms credit assignment.

5 CONCLUSION

In this work, we identified belief deviation and the entry to the belief-trap region as a key failure
mode that drives instability and sub-optimality in RL for LLM-based active reasoning. To counter
its harmful accumulation, we proposed T3, a simple yet effective early-truncation mechanism that
halts belief-trapped trajectories. Empirical results on five active-reasoning tasks demonstrate that T3

consistently improves both stability and performance across diverse RL algorithms. Our findings
establish belief deviation as a central bottleneck and show that controlling it is a principled pathway
toward building robust and generalizable active reasoning agents.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Kartikeya Badola, Jonathan Simon, Arian Hosseini, Sara Marie Mc Carthy, Tsendsuren Munkhdalai,
Abhimanyu Goyal, Tomáš Kočiskỳ, Shyam Upadhyay, Bahare Fatemi, and Mehran Kazemi. Multi-
turn puzzles: Evaluating interactive reasoning and strategic dialogue in llms. arXiv preprint
arXiv:2508.10142, 2025.

Yang Deng, Lizi Liao, Liang Chen, Hongru Wang, Wenqiang Lei, and Tat-Seng Chua. Prompting
and evaluating large language models for proactive dialogues: Clarification, target-guided, and
non-collaboration. arXiv preprint arXiv:2305.13626, 2023.

Shihan Dou, Yan Liu, Haoxiang Jia, Limao Xiong, Enyu Zhou, Wei Shen, Junjie Shan, Caishuang
Huang, Xiao Wang, Xiaoran Fan, et al. Stepcoder: Improve code generation with reinforcement
learning from compiler feedback. arXiv preprint arXiv:2402.01391, 2024.

Dayuan Fu, Keqing He, Yejie Wang, Wentao Hong, Zhuoma Gongque, Weihao Zeng, Wei Wang,
Jingang Wang, Xunliang Cai, and Weiran Xu. Agentrefine: Enhancing agent generalization through
refinement tuning. arXiv preprint arXiv:2501.01702, 2025.

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D Goodman. Cognitive
behaviors that enable self-improving reasoners, or, four habits of highly effective stars. arXiv
preprint arXiv:2503.01307, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Zhiyuan Hu, Chumin Liu, Xidong Feng, Yilun Zhao, See-Kiong Ng, Anh Tuan Luu, Junxian He,
Pang Wei W Koh, and Bryan Hooi. Uncertainty of thoughts: Uncertainty-aware planning enhances
information seeking in llms. Advances in Neural Information Processing Systems, 37:24181–24215,
2024.

Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey.
arXiv preprint arXiv:2212.10403, 2022.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in partially
observable stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

Wai-Chung Kwan, Xingshan Zeng, Yuxin Jiang, Yufei Wang, Liangyou Li, Lifeng Shang, Xin Jiang,
Qun Liu, and Kam-Fai Wong. Mt-eval: A multi-turn capabilities evaluation benchmark for large
language models. arXiv preprint arXiv:2401.16745, 2024.

Philippe Laban, Hiroaki Hayashi, Yingbo Zhou, and Jennifer Neville. Llms get lost in multi-turn
conversation. arXiv preprint arXiv:2505.06120, 2025.

Yubo Li, Xiaobin Shen, Xinyu Yao, Xueying Ding, Yidi Miao, Ramayya Krishnan, and Rema
Padman. Beyond single-turn: A survey on multi-turn interactions with large language models.
arXiv preprint arXiv:2504.04717, 2025a.

Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian
Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, et al. From system 1 to system 2: A survey of
reasoning large language models. arXiv preprint arXiv:2502.17419, 2025b.

Zhenwen Liang, Dian Yu, Wenhao Yu, Wenlin Yao, Zhihan Zhang, Xiangliang Zhang, and Dong
Yu. Mathchat: Benchmarking mathematical reasoning and instruction following in multi-turn
interactions. arXiv preprint arXiv:2405.19444, 2024.

Wenquan Lu, Yuechuan Yang, Kyle Lee, Yanshu Li, and Enqi Liu. Latent chain-of-thought? decoding
the depth-recurrent transformer. arXiv preprint arXiv:2507.02199, 2025.

OpenAI. Openai o3-mini. https://openai.com/index/openai-o3-mini/, January
2025.

11

https://openai.com/index/openai-o3-mini/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Aske Plaat, Annie Wong, Suzan Verberne, Joost Broekens, Niki van Stein, and Thomas Bäck.
Reasoning with large language models, a survey. CoRR, 2024.

Aske Plaat, Max van Duijn, Niki van Stein, Mike Preuss, Peter van der Putten, and Kees Joost
Batenburg. Agentic large language models, a survey. arXiv preprint arXiv:2503.23037, 2025.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, pp. 1279–1297, 2025.

Saksham Sahai Srivastava and Vaneet Aggarwal. A technical survey of reinforcement learning
techniques for large language models. arXiv preprint arXiv:2507.04136, 2025.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Yanming Wan, Jiaxing Wu, Marwa Abdulhai, Lior Shani, and Natasha Jaques. Enhancing personal-
ized multi-turn dialogue with curiosity reward. arXiv preprint arXiv:2504.03206, 2025.

Hanlin Wang, Chak Tou Leong, Jiashuo Wang, Jian Wang, and Wenjie Li. Spa-rl: Reinforcing llm
agents via stepwise progress attribution. arXiv preprint arXiv:2505.20732, 2025.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. arXiv preprint
arXiv:2212.03533, 2022.

Shuhe Wang, Shengyu Zhang, Jie Zhang, Runyi Hu, Xiaoya Li, Tianwei Zhang, Jiwei Li, Fei Wu,
Guoyin Wang, and Eduard Hovy. Reinforcement learning enhanced llms: A survey. arXiv preprint
arXiv:2412.10400, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Shirley Wu, Michel Galley, Baolin Peng, Hao Cheng, Gavin Li, Yao Dou, Weixin Cai, James Zou,
Jure Leskovec, and Jianfeng Gao. Collabllm: From passive responders to active collaborators.
arXiv preprint arXiv:2502.00640, 2025.

Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong Lan,
Jiahui Gong, Tianjian Ouyang, Fanjin Meng, et al. Towards large reasoning models: A survey of
reinforced reasoning with large language models. arXiv preprint arXiv:2501.09686, 2025.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Haofei Yu, Zhengyang Qi, Yining Zhao, Kolby Nottingham, Keyang Xuan, Bodhisattwa Prasad
Majumder, Hao Zhu, Paul Pu Liang, and Jiaxuan You. Sotopia-rl: Reward design for social
intelligence. arXiv preprint arXiv:2508.03905, 2025.

Yuanqing Yu, Zhefan Wang, Weizhi Ma, Zhicheng Guo, Jingtao Zhan, Shuai Wang, Chuhan Wu,
Zhiqiang Guo, and Min Zhang. Steptool: A step-grained reinforcement learning framework for
tool learning in llms. 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Siyu Yuan, Zehui Chen, Zhiheng Xi, Junjie Ye, Zhengyin Du, and Jiecao Chen. Agent-r: Training
language model agents to reflect via iterative self-training. arXiv preprint arXiv:2501.11425, 2025.

Guibin Zhang, Hejia Geng, Xiaohang Yu, Zhenfei Yin, Zaibin Zhang, Zelin Tan, Heng Zhou,
Zhongzhi Li, Xiangyuan Xue, Yijiang Li, et al. The landscape of agentic reinforcement learning
for llms: A survey. arXiv preprint arXiv:2509.02547, 2025a.

Zijing Zhang, Ziyang Chen, Mingxiao Li, Zhaopeng Tu, and Xiaolong Li. Rlvmr: Reinforcement
learning with verifiable meta-reasoning rewards for robust long-horizon agents. arXiv preprint
arXiv:2507.22844, 2025b.

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
Yuqiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. arXiv preprint
arXiv:2507.18071, 2025.

Zhanke Zhou, Xiao Feng, Zhaocheng Zhu, Jiangchao Yao, Sanmi Koyejo, and Bo Han. From
passive to active reasoning: Can large language models ask the right questions under incomplete
information? arXiv preprint arXiv:2506.08295, 2025.

Zhenhong Zhou, Haiyang Yu, Xinghua Zhang, Rongwu Xu, Fei Huang, and Yongbin Li. How
alignment and jailbreak work: Explain llm safety through intermediate hidden states. arXiv
preprint arXiv:2406.05644, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

LLM USAGE DISCLOSURE

In our work, we mainly use GPT-5 for writing enhancements, primarily to improve grammar and text
clarity.

REPRODUCIBILITY STATEMENT

We describe our dataset details in Appendix F.1. For additional training details, see Sec. 3.2 and
Appendix F.3. For prompt templates, see Figures 10 to 15. With the chairs’ approval, we will also
provide an anonymous code link during the rebuttal period.

A NOTATION SUMMARY

Symbol Meaning Domain / Notes
Spaces, states, dynamics
S,A,O Latent state space, action

space, observation space
Sets

s⋆ Episode-wise fixed, unknown
true latent state

s⋆ ∈ S

T (s′ | s, a) Transition function Degenerate in our work (s⋆
fixed)

O(o | s, a) Observation model Assump. 3; O ≥ η on reach-
able tuples

R, γ Reward function; discount fac-
tor

γ ∈ (0, 1]

Beliefs, policies, and updates
∆(S) Probability simplex over S Set
b⋆t , bt Oracle (Bayesian) belief;

agent (LLM) belief at time t
∈ ∆(S)

B⋆(b, a, o) Oracle Bayes update Posterior under O
Bθ(b, a, o) Agent belief update with pa-

rameters θ
π(· | b) Belief-conditioned policy Distribution on A

Distances and potentials
d(b, b′) =

∑
s |b(s)− b′(s)| ℓ1 distance on beliefs ∈ [0, 2]

TV(P,Q) = supA |P (A)−Q(A)| Total variation distance Probability measures
Ψ(b) = − log b(s⋆) Truth-anchored potential ∈ [0,∞); = 0 iff b(s⋆) = 1
Ψt, Ψ

⋆
t Ψ(bt); Ψ(b⋆t) Scalars

Progress / informativeness
I(b, a) One-step informativeness un-

der oracle update
See Def. 4

Pθ(b) Agent’s expected one-step
progress

See Def. 5

cθ(b) Agent–Bayes update error See Def. 6

Belief Trap Region (BTR)
Rθ Belief trap region (absorbing;

non-positive progress)
If b ∈ Rθ: Pθ(b) ≤ 0 and
E[Ψ(bt+1) | bt = b] ≥ Ψ(b)

tS Hitting time intoRθ First entry time

RL / GAE quantities
Vt := V (bt) Value function; calibration

Vt = g(bt(s
⋆))

g increasing, infx g
′(x) ≥

κV > 0

(continued on next page)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Symbol Meaning Domain / Notes
δt := rt + γVt+1 − Vt TD-error Scalar
λ GAE parameter ∈ (0, 1]

Ât =
∑T−t−1

j=0 (γλ)jδt+j GAE advantage estimator Scalar

Assumptions / constants
η Non-degeneracy lower bound

for O
(0, 1]

Lπ Policy sensitivity constant TV(π(· | b), π(· | b′)) ≤
Lπ d(b, b

′)
mθ, c0, U0 Update-error growth parame-

ters
cθ(b) ≥ mθΨ(b) − c0 if
Ψ(b) ≥ U0

B̄ = 2
(
− log η · Lπ + 1

η

)
Technical constant From Prop. 2

U = max{U0, (Ψ0 + B̄ + c0)/mθ} BTR threshold in Ψ (sufficient
condition)

Ψ0 := Ψ(b⋆1)

∆1 := Ψ(b1)−Ψ(b⋆1) Initial gap (agent vs. oracle) Used in hitting-time bound
ut Oracle potential upper bound

sequence
Non-increasing, u1 = Ψ0,
ut ↘ 0

µ Pre-entry lower bound on Ψ⋆
t Ψ⋆

t ≥ µ for t < tS
δ := mθµ− (c0 + B̄) Trap margin (not TD-error) Positive in Prop. 3

Others
Spre(t) =

∑tS−t−1
j=0 (γλ)j Geometric prefix weight

S⊖
tail(t) =

∑T−t−2
j=tS−t(γλ)

j Geometric tail weight

B MORE DETAILS ON THE THEORY

B.1 DETAILED THEORETICAL SETUP

Problem Formulation We consider the active reasoning where an LLM agent interacts with an
external environment to acquire missing information and infer the solution via a sequence of actions
and observations (Zhou et al., 2025). This can be modeled as a Partially Observable Markov Decision
Process (POMDP), defined by the tuple (S,A,O, T,O,R, γ), where S is the space of unobservable
latent states, A the action space, O the observation space, T (s′ | s, a) the transition dynamics,
O(o | s, a) the observation model, R the reward function, and γ the discount factor. In our work, we
assume that the underlying latent state is fixed during an episode, and denote it as s⋆.

An ideal Bayesian reasoner would maintain an oracle belief distribution b∗t ∈ ∆(S), i.e., a posterior
over latent states given the full history of interactions. Specifically, the oracle belief b⋆ is recursively
updated via Bayes’ rule B⋆ upon taking action a and observing o:

b⋆t+1(s) := B⋆(b⋆t , a, o) =
O(o | s, a)b⋆t (s)

pb(o | a)
, (3)

where pb(o | a) :=
∑

s′∈S O(o | s′, a)b⋆t (s′) is the Bayes-normalizer.

In contrast, an LLM agent does not perform exact Bayesian filtering. Instead, it maintains an agent
belief bt, which represents its internal understanding of the latent state and what information remains
missing. This belief may be implicit in the LLM’s hidden state or explicit in the trajectory (e.g.,
via Chain-of-Thought (Wei et al., 2022)). Given the action-observation pair (a, o), the agent belief
evolves by bt+1(s) := Bθ(bt, a, o), where θ denotes agent model parameters.

We compare the agent’s trajectory (bt, at, ot)t≥1 with that of the oracle reasoner (b⋆t , a
⋆
t , o

⋆
t)t≥1.

Specifically, the oracle samples actions from π(· | b⋆t) and observations from O(· | s⋆, a⋆t), updating
its belief via B⋆ (Eq. 3). The agent follows its own update rule Bθ, sampling actions and observations
by π(· | bt) and O(· | s⋆, at). To quantify the discrepancy between beliefs, we use the ℓ1-distance:
d(b, b′) :=

∑
s∈S |b(s)− b′(s)| ≤ 2, and denote dt := d(bt, b

⋆
t).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B.2 DYNAMICS OF BELIEF TRAPPING OF LLM AGENTS IN ACTIVE REASONING

We begin by modeling task progress of active reasoning. Specifically, we introduce a truth-anchored
potential function Ψ : ∆(S) 7→ R≥0 that captures how concentrated the belief is on the true state s⋆.
Definition 3 (Truth-anchored potential). For belief b ∈ ∆(S) and ground-truth state s⋆, define

Ψ(b) := − log b(s⋆).

It holds that Ψ(b) ∈ [0,∞), with Ψ(b) = 0 iff b(s⋆) = 1 (task completion). Lower values of Ψ(b)
indicate higher confidence in the true state.

Based on this, we assume that the oracle’s belief (b⋆t)t≥1 is well-behaved and guaranteed to eventually
converge to the truth.
Assumption 2 (Oracle Potential Convergence). Along the oracle trajectory (b⋆t , a

⋆
t , o

⋆
t)t≥1, the

potential Ψ⋆
t := Ψ(b⋆t) is bounded and convergent to zero. Specifically, there exists a deterministic

nonincreasing sequence (ut)t≥1 with u1 = Ψ(b⋆1) =: Ψ0 and ut ↘ 0 such that

Ψ⋆
t ≤ ut for all t ≥ 1.

In particular, Ψ⋆
t ≤ Ψ0 for all t and limt→∞ Ψ⋆

t = 0.

To analyze the agent’s behavior, we define several key quantities. Through the following definitions,
we measure the expected information gain of an action under the ideal Bayesian update (Def. 4), and
the actual one-step progress when updating belief via the agent LLM (Def. 5). We further quantify
the discrepancy between the agent’s update and the Bayesian update (Def. 6).
Definition 4 (One-Step Informativeness). For belief b and action a, define

I(b, a) := Ψ(b)− Eo∼O(·|s⋆,a)

[
Ψ
(
B⋆(b, a, o)

)]
.

This captures the expected improvement of Ψ-progress when taking action a from belief b.
Definition 5 (One-step Agent Progress). The agent’s expected Ψ-progress given the current belief b:

Pθ(b) := Ψ(b) − Ea∼π(·|b)Eo∼O(·|s⋆,a)

[
Ψ
(
Bθ(b, a, o)

)]
.

Definition 6 (Agent-Bayes update error). For a belief b, define the conditional update error

cθ(b) := Ea∼π(·|b) Eo∼O(·|s⋆,a)

[
Ψ
(
Bθ(b, a, o)

)
−Ψ

(
B⋆(b, a, o)

)]
.

We now state several technical assumptions required for our analysis.
Assumption 3. There exists η ∈ (0, 1] such that O(o | s, a) ≥ η for all reachable (o, s, a).
Assumption 4 (Policy Sensitivity). There exist Lπ ≥ 0 such that for any beliefs b, b′,

TV
(
π(· | b), π(· | b′)

)
≤ Lπ d(b, b

′),

where TV(P,Q) := supA⊆A |P (A)−Q(A)| denotes the total variation distance between probability
distributions.
Assumption 5 (Update-Error Growth). There exist constants mθ > 0, c0 ≥ 0, and a threshold
U0 ≥ 0 such that for all b with Ψ(b) ≥ U0,

cθ(b) ≥ mθ Ψ(b)− c0.
That is, in high-uncertainty regimes, the agent’s update error grows at least linearly with Ψ.

Assumption 5 intuitively describes that the errors of belief update are amplified with the belief
diffusing. We next formalize the regime in which such misspecification dominates the oracle’s
informativeness:
Definition 7 (Belief Trap Region, BTR). A setRθ ⊆ ∆(S) is called a belief trap region for an agent
parameterized by θ if it is absorbing and induces non-positive progress: for any belief b ∈ Rθ and all
subsequent times t once entered,

Pπ(b) ≤ 0 and equivalently E[Ψ(bt+1) | bt = b] ≥ Ψ(b).

Inside BTR, {Ψt} is supermartingale-like under the agent’s evolution: the process does not trend
down in expectation. Practically, once trajectories enter this set, additional steps are uninformative
and tend to reinforce the stall.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.3 DETAILED STATEMENT OF THEOREM 1

Next, we investigate the characteristics of the BTR as follows:
Proposition 2 (Sufficient Condition of entering BTR). Under Assumptions 3–5, define the constant
B̄ := 2 (− log η Lπ + 1/η). Then there exists a threshold U := max

{
U0, (Ψ0 + B̄ + c0)/mθ

}
such that the following holds: if Ψ(btS) ≥ U for some tS , then for all t ≥ tS ,

Pθ(bt) ≤ 0 and Eat,ot

[
Ψ(bt+1) | bt

]
≥ Ψ(bt).

This result formalizes the absorbing nature of the belief-trap region: once the potential Ψ exceeds
the threshold U , the trajectory is locked into a regime where exploration is ineffective and the task
progress no longer proceeds. Now we delve into the properties of the BTR entry time tS :
Proposition 3. Strengthen Assumption 1 to global. Assume there exists µ > 0 such that Ψ⋆

t ≥ µ for
all t < tS . Assume δ := mθ µ − (c0 + B̄) > 0. Then the (expected) hitting time intoRθ obeys
the explicit upper bound

tS ≤ 1 +

⌈
log 1+mθ

mθ U + δ

mθ ∆1+ δ

⌉
.

The proofs for Proposition 2 and Proposition 3 are given in Appendix B.6 and Appendix B.7,
respectively. This gives an explicit upper bound on the time to enter the trap: without checking belief
errors accumulate, hitting BTR occurs inevitably and fairly quickly once belief updates deteriorate.

B.4 DETAILED STATEMENT OF THEOREM 2

Theorem 3 (BTR Induces Advantage Inversion). Under the following assumptions:

(i) Calibration: Vt = g(bt(s
∗)) for an increasing, differentiable g with infx g

′(x) ≥ κV > 0.

(ii) Belief Drop in BTR: E[bk+1(s
∗)− bk(s∗) | Fk] ≤ −ρb for k ≥ tS .

then, for any t < tS , the expected advantage is bounded:

E[Ât] ≤ γ
(
Spre(t)− κV ρbS⊖

tail(t)
)
, (4)

where Spre(t) =
∑tS−t−1

j=0 (γλ)j and S⊖
tail(t) =

∑T−t−2
j=tS−t(γλ)

j . Therefore, a sufficient condition for

E[Ât] < 0 is:

κV ρb >
Spre(t)

S⊖
tail(t)

. (5)

In particular, when γλ→ 1 (a common setting for sparse reward tasks), the condition simplifies to
κV ρb > ∆/L, where ∆ = tS − t and L = T − 1− tS are the prefix and tail lengths, respectively.

The proof for Theorem 3 is given in Appendix B.8. This proposition quantifies the credit assignment
failure: the negative drift from a long uninformative tail (L large) can overwrite the positive credit
from the informative prefix, causing the overall gradient to point in the wrong direction and penalize
earlier exploratory actions. This analytical result motivates the need for a mechanism to cut the
trajectory upon entering the BTR, thereby isolating the prefix and preserving the correct credit
assignment.

B.5 IMPORTANT LEMMAS

Before proving the propositions, we start by providing two important lemmas, and their proofs in
Appendix B.10 and B.11.
Lemma 1 (Belief-Lipschitz Continuity of Informativeness). Under Assumption 3, for any fixed
action a ∈ A and any beliefs b, b′ ∈ ∆(S), we have∣∣ I(b, a)− I(b′, a) ∣∣ ≤ 1

η
∥b− b′∥1. (6)

Consequently, for any action distribution q,∣∣∣Ea∼qI(b, a)− Ea∼qI(b′, a)
∣∣∣ ≤ 1

η
∥b− b′∥1. (7)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Lemma 2 (Policy-Lipschitz Continuity of Informativeness). Under Assumption 3, for any fixed belief
b ∈ ∆(S) and any two action distributions q, q′ on A, we have

|Ea∼qI(b, a)− Ea∼q′I(b, a)| ≤ Λ · ∥q − q′∥TV,

where Λ := − log η and ∥q − q′∥TV := supA⊆A |q(A)− q′(A)| denotes the total variation norm.

B.6 PROOF OF PROPOSITION 2

Proof. From Definitions 4, 5, and 6, we have:

Pθ(bt) = Eat∼π(·|bt)[I(bt, at)]− cθ(bt). (8)

Let at ∼ π(· | bt) and a⋆t ∼ π(· | b⋆t). Leveraging the results in Lemma 1 and 2, we bound the
difference in expected informativeness:∣∣∣Ea⋆

t
[I(b⋆t , a⋆t)]− Eat

[I(bt, at)]
∣∣∣ (9)

≤
∣∣∣Ea⋆

t
[I(b⋆t , a⋆t)]− Eat

[I(b⋆t , at)]
∣∣∣+ ∣∣∣Eat

[I(b⋆t , at)]− Eat
[I(bt, at)]

∣∣∣ (10)

≤ ΛTV(π(· | b⋆t), π(· | bt)) + Lb d(b
⋆
t , bt) (11)

≤ (ΛLπ + Lb) dt. (12)

From Assumption 2, we have:

Ea⋆
t
[I(b⋆t , a⋆t)] = Ψ(b⋆t)− E[Ψ(b⋆t+1)] ≤ Ψ0. (13)

Combining with Eq. 12 yields:

Eat
[I(bt, at)] ≤ Ψ0 + (ΛLπ + Lb)dt. (14)

Since dt ≤ 2, we obtain:

Eat [I(bt, at)] ≤ Ψ0 + 2(ΛLπ + Lb) = K. (15)

Now, from Assumption 1, if Ψ(bt) ≥ U0, then:

cθ(bt) ≥ mθΨ(bt)− c0. (16)

Substituting into Eq. 8 gives:

Pθ(bt) ≤ K −
(
mθΨ(bt)− c0

)
. (17)

Thus, if Ψ(bt) ≥ (K + c0)/mθ and Ψ(bt) ≥ U0 (i.e., Ψ(bt) ≥ U), then Pθ(bt) ≤ 0, meaning:

E[Ψ(bt+1) | bt] ≥ Ψ(bt). (18)

Since cθ(·) is lower-bounded by a function that is nondecreasing in Ψ (Assumption 1), this argument
applies inductively for all t ≥ t0, confirming the supermartingale property and the stalling behavior.

B.7 PROOF OF PROPOSITION 3

Proof. For simplicity, let Ψt := Ψ(bt) and Ψ⋆
t := Ψ(b⋆t). From the definitions of agent progress

Pπ(b) and update error cθ(b), we have the one-step expectation:

E[Ψt+1 | Ft] = Ψt − Eat∼π(·|bt)[I(bt, at)] + cθ(bt). (19)

For the oracle, it holds that:

E[Ψ⋆
t+1 | Ft] = Ψ⋆

t − Ea⋆
t∼π(·|b⋆t)[I(b

⋆
t , a

⋆
t)]. (20)

Subtracting these two equations yields the fundamental drift identity for the gap ∆t = Ψt −Ψ⋆
t :

E[∆t+1 −∆t | Ft] =
(
Ea⋆

t
[I(b⋆t , a⋆t)]− Eat [I(bt, at)]

)
+ cθ(bt). (21)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

From what have been shown in Eq. 12, we have,∣∣Ea⋆
t
[I(b⋆t , a⋆t)]− Eat

[I(bt, at)]
∣∣ ≤ (ΛLπ + Lb)dt ≤ 2 (ΛLπ + Lb) =: B̄. (22)

Substituting into 21 gives:

E[∆t+1 −∆t | Ft] ≥ −B̄ + cθ(bt). (23)

The strengthened Assumption 1 implies:

cθ(bt) ≥ mθΨt − c0 = mθ(∆t +Ψ⋆
t)− c0. (24)

Substituting into 23 yields:

E[∆t+1 −∆t | Ft] ≥ mθ∆t +
(
mθΨ

⋆
t − (c0 + B̄)

)
. (25)

Rearranging terms:

E[∆t+1 | Ft] ≥ (1 +mθ)∆t +
(
mθΨ

⋆
t − (c0 + B̄)

)
. (26)

By the law of total expectation, we have,

E
[
E[∆t+1 | Ft]

]
≥ E

[
(1 +mθ)∆t +

(
mθΨ

⋆
t − (c0 + B̄)

)]
(27)

E[∆t+1] ≥ (1 +mθ)E[∆t] +mθE[Ψ⋆
t]− (c0 + B̄). (28)

Iterating this inequality gives:

E[∆T] ≥ (1 +mθ)
T−1∆1 +

T−1∑
k=1

(1 +mθ)
T−1−kE

[
mθΨ

⋆
k − (c0 + B̄)

]
. (29)

As assumed in the proposition, there exists µ > 0 such that for all k ≥ 1, Ψ⋆
k ≥ µ almost surely. This

implies E[Ψ⋆
k] ≥ µ. Then:

E
[
mθΨ

⋆
k − (c0 + B̄)

]
≥ mθµ− (c0 + B̄) =: δ. (30)

Substituting into Eq. 29:

E[∆T] ≥ (1 +mθ)
T−1∆1 + δ

T−1∑
k=1

(1 +mθ)
T−1−k (31)

= (1 +mθ)
T−1∆1 + δ

(1 +mθ)
T−1 − 1

mθ
. (32)

We now show that E[ΨT] exceeds U in finite time. Recall:

E[ΨT] = E[∆T] + E[Ψ⋆
T] ≥ E[∆T]. (33)

A sufficient condition is therefore:

(1 +mθ)
T−1∆1 + δ

(1 +mθ)
T−1 − 1

mθ
≥ U. (34)

Since δ > 0 and 1 +mθ > 1, the left-hand side grows exponentially with T . Thus, for any U > 0,
there exists a finite T such that Eq. 34 holds. Specifically, we have:

(1 +mθ)
T−1 ≥ mθU + δ

mθ∆1 + δ
. (35)

Taking logarithms yields the explicit bound:

T ≥ 1 +

⌈
1

log(1 +mθ)
log

(
mθU + δ

mθ∆1 + δ

)⌉
. (36)

This completes the proof.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B.8 PROOF OF THEOREM 3

Proof. We decompose the advantage estimator: Ât = Pre(t) + Tail(t), where

Pre(t) =
tS−t−1∑
j=0

qjδt+j , Tail(t) =
T−t−1∑
j=tS−t

qjδt+j , and q = γλ.

For any k < tS , the TD-error δk = γVk+1 − Vk (since rk = 0). Because Vk ∈ [0, 1],

E[δk | Fk] = γE[Vk+1 | Fk]− Vk ≤ γ · 1− 0 = γ.

Taking full expectation and summing over the prefix yields:

E[Pre(t)] ≤ γSpre(t). (37)

We split the tail into the main part and the terminal step:

Tail(t) =
T−t−2∑
j=tS−t

qjδt+j︸ ︷︷ ︸
Tail−(t)

+qT−t−1δT−1.

For the terminal step, δT−1 = RT − VT−1, so E[δT−1 | FT−1] = 0, and thus E[qT−t−1δT−1] = 0.

Now, fix k ∈ {tS , . . . , T − 2}. We analyze E[δk | Fk]:

E[δk | Fk] = γE[Vk+1 − Vk | Fk] + (γ − 1)Vk (38)
≤ γE[Vk+1 − Vk | Fk] (since Vk ≥ 0 and γ − 1 ≤ 0). (39)

By the calibration assumption, Vk+1 − Vk = g(bk+1(s
∗))− g(bk(s∗)). Since g is differentiable with

g′ ≥ κV > 0, and since E[bk+1(s
∗)− bk(s∗) | Fk] ≤ −ρb by assumption, we have:

E[Vk+1 − Vk | Fk] = E[g′(ξk)(bk+1(s
∗)− bk(s∗)) | Fk] (40)

≤ κV E[bk+1(s
∗)− bk(s∗) | Fk] (since g′(ξk) ≥ κV) (41)

≤ −κV ρb. (42)

Therefore, E[δk | Fk] ≤ −γκV ρb. Taking full expectation and summing over the tail gives:

E[Tail−(t)] ≤ −γκV ρbS⊖
tail(t). (43)

Combining Eq. 37 and Eq. 43 proves the main bound Eq. 4. The inversion condition Eq. 5 follows
directly by requiring the right-hand side of Eq. 4 to be negative.

From what have been proved above, we have:

E[Ât] = E[Pre(t)] + E[Tail(t)] ≤ E[Âpre
t]− γκV ρbS⊖

tail(t).

Rearranging terms yields: E[Âpre
t] ≥ E[Ât] + γκV ρbS

⊖
tail(t).

B.9 PROOF OF PROPOSITION 1

Proof. Fix any k-step segment (t + 1, . . . , t + k) that lies entirely outside the BTR, so that gs ≥
ρ > 0 for all s ∈ {t + 1, . . . , t + k}. By definition of the biased Gaussian-noise model, we have
ds = gs + βs + ξs, where |βs| ≤ M, ξs ∼ N (0, σ2) independently across s. On a step s outside
the BTR, a local false truncation event occurs when the proxy falls below the threshold ∆min (c.f.,
Def. 2) despite gs ≥ ρ:

Es := {ds < ∆min} = {gs + βs + ξs < ∆min}.

Using gs ≥ ρ and |βs| ≤M , we obtain gs + βs ≥ ρ−M . Hence

Pr(Es) = Pr(gs + βs + ξs < ∆min) ≤ Pr(ρ−M + ξs < ∆min) = Pr
(
ξs < ∆min − (ρ−M)

)
.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Define the margin a := ρ −M −∆min. By the assumption ∆min < ρ −M , we have a > 0 and
therefore,

Pr(Es) ≤ Pr(ξs < −a).
Since ξs ∼ N (0, σ2), the standard concentration inequality gives, for any a > 0, we have

Pr(ξs ≤ −a) ≤ exp
(
− a2

2σ2

)
.

Applying this with a = ρ−M −∆min > 0 yields

Pr(Es) ≤ exp
(
− (ρ−M−∆min)

2

2σ2

)
. (44)

Recall that the T3 rule with window size k triggers at the end of a k-step segment only if all k steps in
the window are classified as “non-informative”. For a non-BTR segment (t+1, . . . , t+k), activating
T3 therefore corresponds to the intersection of the k single-step events Et+1, . . . , Et+k:

Et+1,...,t+k :=

t+k⋂
s=t+1

Es.

By independence of the noises {ξs} across s and because each Es is determined by ξs, we have

Pr(Et+1,...,t+k) =

t+k∏
s=t+1

Pr(Es).

Applying the single-step bound (Eq. 44) uniformly yields

Pr(Et+1,...,t+k) ≤ exp
(
− k(ρ−M−∆min)

2

2σ2

)
.

To ensure that the false-truncation probability on any k-step non-BTR segment is at most δ ∈ (0, 1),
it suffices to require

exp
(
− k(ρ−M−∆min)

2

2σ2

)
≤ δ,

which is equivalent to
k (ρ−M −∆min)

2 ≥ 2σ2 log(1/δ).

B.10 PROOF OF LEMMA 1

Proof. We begin by showing the closed form of one-step informativeness I(b, a). Combing Defini-
tions 3, 4 and Eq. 3, we have,

I(b, a) = Ψ(b)− Eo∼O(·|s⋆,a) [Ψ(B⋆(b, a, o))] (45)

= − log b(s⋆)− Eo∼O(·|s⋆,a)

[
− log

(
O(o | s⋆, a)b(s⋆)

pb(o | a)

)]
(46)

= Eo∼O(·|s⋆,a)

[
log

O(o | s⋆, a)
pb(o | a)

]
. (47)

For fixed a, Let P (o) := O(o | s⋆, a), and Qb(o) := pb(o | a) =
∑

s b(s)O(o | s, a). Then we have:

I(b, a) = Eo∼P

[
log

P (o)

Qb(o)

]
= EP [logP (o)]︸ ︷︷ ︸

constant in b

−EP [logQb(o)]. (48)

By the non-degeneracy assumption (Assumption 3), O(o | s, a) ≥ η for all reachable o, s. Conse-
quently, for any belief b and any observation o,

Qb(o) =
∑
s∈S

b(s)O(o | s, a) ≥
∑
s∈S

b(s) · η = η. (49)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Thus, Qb(o) ≥ η and Qb′(o) ≥ η hold for all o.

For any x, y ≥ η > 0, we have the elementary bound

| log x− log y| =
∣∣∣∣∫ x

y

1

t
dt

∣∣∣∣ ≤ |x− y|
min{x, y}

≤ |x− y|
η

. (50)

Applying this with Qb(o) and Qb′(o) yields:

| logQb(o)− logQb′(o)| ≤
|Qb(o)−Qb′(o)|

η
for all o. (51)

Taking expectation under P and properties of expectation, we get:
|EP [logQb(o)]− EP [logQb′(o)]| ≤ EP [| logQb(o)− logQb′(o)|] (52)

≤ EP

[
|Qb(o)−Qb′(o)|

η

]
(53)

≤ 1

η
∥Qb −Qb′∥1. (54)

Since I(b, a) = const− EP [logQb(o)], it follows that

|I(b, a)− I(b′, a)| ≤ 1

η
∥Qb −Qb′∥1. (55)

We have

|Qb(o)−Qb′(o)| =

∣∣∣∣∣∑
s∈S

(b(s)− b′(s))O(o | s, a)

∣∣∣∣∣ ≤∑
s∈S
|b(s)− b′(s)|O(o | s, a). (56)

Summing over o gives:

∥Qb −Qb′∥1 =
∑
o∈O
|Qb(o)−Qb′(o)| ≤

∑
o∈O

∑
s∈S
|b(s)− b′(s)|O(o | s, a) (57)

=
∑
s∈S
|b(s)− b′(s)|

∑
o∈O

O(o | s, a) (58)

= ∥b− b′∥1. (59)
Combining this with Eq. 55 yields the pointwise bound:

|I(b, a)− I(b′, a)| ≤ 1

η
∥b− b′∥1. (60)

For any action distribution q, by the linearity of expectation:

|Ea∼qI(b, a)− Ea∼qI(b′, a)| ≤ Ea∼q |I(b, a)− I(b′, a)| ≤ Ea∼q

[
1

η
∥b− b′∥1

]
=

1

η
∥b− b′∥1.

(61)

B.11 PROOF OF LEMMA 2

Proof. For fixed b, define f(a) := I(b, a). We first show that f is bounded. By non-degeneracy,
O(o | s, a) ≥ η for all o, s, a. Consequently, for any a,

pb(o | a) =
∑
s∈S

b(s)O(o | s, a) ≥ η and O(o | s⋆, a) ≥ η.

By Eq. 47, we have

0 ≤ I(b, a) = Eo∼O(·|s⋆,a)

[
log

O(o | s⋆, a)
pb(o | a)

]
≤ Eo∼O(·|s⋆,a)[log(1/η)] = − log η.

Hence, ∥f∥∞ ≤ − log η, where ∥ · ∥∞ denotes the supremum norm ∥f∥∞ := supa∈A |f(a)|.
The result now follows from a standard property of the total variation norm: for any bounded function
f ,

|Ea∼qf(a)− Ea∼q′f(a)| ≤ ∥f∥∞ · ∥q − q′∥TV ≤ (− log η) · ∥q − q′∥TV.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

C EMPIRICAL VERIFICATION OF THE THEORY

C.1 EMPIRICAL VERIFICATION OF ASSUMPTION 1

A direct empirical validation of Assumption 1 is inherently challenging, as neither the oracle Bayesian
update B⋆ nor the LLM agent’s internal belief state bt is directly observable. To address this, we
design a controlled study on the PE task that enables practical and theoretically aligned approximations
of all relevant quantities.

(i) Approximating the potential Ψ. Each interaction round in PE provides the model’s explicit
estimate of the latent user-preference vector, denoted by wt. Since the ground-truth preference w⋆ is
available, we define

d(wt) := ∥wt − w⋆∥22,
and use d(wt) as an observable proxy of the potential, i.e.,

Ψ̂t := d(wt) ≈ Ψ(bt).

This proxy preserves the essential properties of the theoretical potential: it is non-negative and equals
zero if and only if the task is solved.

(ii) Approximating the oracle Bayesian update B⋆. Although the true Bayesian posterior is
inaccessible, we construct a principled surrogate update rule B̂ following a standard update manner
based on traditional machine learning. Specifically, given the model’s query at := (A,B) where
A,B denote the movie pair to compare and the observed feedback ot, we define

w′
t+1 := B̂(wt, at, ot) = wt +Ktmt

(
ot −m⊤

t wt

)
, Kt =

σ2
0

σ2
0∥mt∥22 + σ2

.

Here, mt ∈ Rd is the movie-attribute difference vector for the pair of movies selected by the LLM’s
query, i.e., mt = attr(A) − attr(B). The binary observation ot ∈ {−1,+1} corresponds to the
user’s response and is given by ot = sign(m⊤

t w
⋆). The terms σ2

0 and σ2 denote prior and observation
noise variances; following standard practice, we set both to 1.0. In contrast, the LLM agent updates
its estimate via

wt+1 := Bθ(wt, at, ot),

which reflects the internal belief dynamics induced by its parameters θ.

(iii) Constructing observable samples of the update-error term. Using the above approximations,
we instantiate the update-error quantity via

ĉθ(bt) := d(wt+1)− d(w′
t+1) ≈ cθ(bt).

We toally collect over 150k samples of pairs {(Ψ̂t, ĉθ(bt))} using rollouts from the Qwen-2.5 series
models, which provide a sufficiently rich empirical basis for inspecting the assumption.

(iv) Estimating mθ, U0, c0 via lower-envelope fitting. Since Assumption 1 concerns only a lower
bound relationship, we estimate the empirical lower envelope using a principled two-step procedure:

(a) Lower-envelope extraction via binning. According to Asp. 1, belief deviation of the LLM agent
will be further amplified once it progresses into an uncertain region. Hence we empirically select
a proper value of Û0 such that large belief deviations are observed. We then partition the range
[Û0,Ψmax] into B equal-width bins [ψb−1, ψb). For each bin b, we compute:

xb := E[Ψ̂t | Ψ̂t ∈ bin b], yb := Quantile0.1
(
ĉθ(bt) | Ψ̂t ∈ bin b

)
,

where yb captures the empirical 10th-percentile lower envelope within the bin.

(b) Linear estimation on the active region. Restricting to the active region Ψ̂t ≥ Û0, we fit a linear
model to the extracted lower-envelope points:

yb ≈ m̂θ xb − ĉ0.
The resulting (m̂θ, ĉ0) provide empirical estimates of the coefficients in Assumption 1.

We visualize the whole procedure and the fitted linear model in Fig. 7. The above procedure yields an
interpretable empirical characterization of the lower-bound growth pattern required by Assumption 1.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

(a) Qwen-2.5-7B-Instruct (b) Qwen-2.5-32B-Instruct

Figure 7: Empirical visualization of Assumption 1 on the PE task. The dashed vertical line marks the
empirically determined threshold Û0. Blue points show all samples, while orange points represent the
binned lower envelope, obtained by partitioning the range of {Ψ̂t ≥ Û0} into equal-width bins and
taking the 10th percentile of ĉθ within each bin. The red line is a linear fit to these lower-envelope
points. For (a), we empirically select Û0 = 10, and obtain the linear fit: ĉθ = 0.0969× Ψ̂− 3.0478.
For (b), similarly, we select Û0 = 2 and obtain ĉθ = 0.4655× Ψ̂− 1.5158.

0 100 200 300 400 500
Token Index

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

To
ke

n
Ad

va
nt

ag
e

(m
ea

n)

w/o Truncation
w/ Truncation-T3

(a) PE

0 100 200 300 400 500
Token Index

1.6

1.5

1.4

1.3

1.2

1.1

1.0

To
ke

n
Ad

va
nt

ag
e

(m
ea

n)

w/o Truncation
w/ Truncation-T3

(b) CD

0 100 200 300 400 500
Token Index

1.0

0.9

0.8

0.7

To
ke

n
Ad

va
nt

ag
e

(m
ea

n)

6 Turns (w/o Truncation)
6 Turns (w/ Truncation-T3)
10 Turns (w/o Truncation)
10 Turns (w/ Truncation-T3)
15 Turns (w/o Truncation)
15 Turns (w/ Truncation-T3)

(c) Tail Length (PE)

0 100 200 300 400 500
Token Index

1.6

1.5

1.4

1.3

1.2

1.1

1.0

To
ke

n
Ad

va
nt

ag
e

(m
ea

n)

w/o Truncation
T3 (k=6)
T3 (k=5)
T3 (k=4)
T3 (k=3)
T3 (k=2)

(d) T3 Truncation Strength (CD)

Figure 8: Empirical verification of Theorem 2 and Corollary 1. (a-b) Without truncation, early-token
advantages exhibit a clear negative drift, while T3 consistently elevates them across PE and CD
tasks. (c) Longer uninformative tails (higher maximum interaction turns, from 6 to 15) cause stronger
suppression of early advantages. (d) Stronger T3 truncation (smaller k) yields cleaner, less-biased
early advantages.

C.2 VERIFICATION OF THEOREM 2 AND COROLLARY 1

To empirically validate the credit assignment pathology formalized in Theorem 2 and the mitigating
effect of T3 stated in Corollary 1, we designed a controlled experiment to isolate the impact of the
uninformative trajectory tail on the advantage estimates of preceding exploratory actions.

Experimental Setup. Given a fixed policy optimized via standard PPO paradigm, we generated two
sets of rollouts: one using the standard method (w/o Truncation) and one using the T3 truncation rule
(w/ Truncation). To precisely measure the contamination effect of the uninformative tail without the

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500
Token Index

1.0

0.5

0.0

0.5

1.0

To
ke

n
Ad

va
nt

ag
e

(m
ea

n)

= 0.1
= 0.5
= 0.9

w/o Truncation

(a) PE

0 100 200 300 400 500
Token Index

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

To
ke

n
Ad

va
nt

ag
e

(m
ea

n)

= 0.1
= 0.5
= 0.9

w/o Truncation

(b) CD

Figure 9: Empirical verification of the effect of false positive on (a) PE and (b) CD tasks. More
aggressive false-positive truncation (larger α) systematically reduces the advantages of early ex-
ploratory actions, reflecting the removal of positive future return contributions.

confounding factor of successful outcomes, we filtered and exclusively analyzed rollouts that resulted
in a failure (i.e., a final reward of 0). We then computed the Generalized Advantage Estimation
(GAE) for each token in the first 500 tokens of these failed trajectories. Finally, we calculated the
mean advantage at each token index across all rollouts within each condition.

Main Results. The results across the CD and MR datasets are presented in Fig. 8a and 8b. In the
w/o Truncation condition, the mean advantage of early tokens is suppressed, while applying the
T3 truncation rule (w/ Truncation) consistently elevates the mean advantage of the early tokens. This
demonstrates that the uninformative tail inside the BTR introduces a negative drift that systematically
corrupts the advantage estimates of the preceding exploratory actions, and shows that the T3 early-
truncation mechanism effectively alleviates this issue, preserving the integrity of the gradient signal
during policy optimization.

Effect of Tail Length and Truncation Strength: We further vary the effective tail length and
truncation strength. As shown in Fig. 8c, longer uninformative tails in the w/o Truncation setup led to
a more severe suppression of early-token advantages. Fig. 8d exhibits that stronger (more aggressive)
truncation in the w/ Truncation setup resulted in higher and less corrupted advantage estimates for
the preserved trajectory prefix. This is consistent with the theoretical outcome of this work.

C.3 COMPLEMENTARY ANALYSIS OF FALSE-POSITIVE TRUNCATION AND ITS IMPACT

Since T3 relies on observable surrogates of the BTR to construct the truncation condition, the
frequency of false positives is empirically limited. However, premature (false-positive) truncation can,
in principle, remove useful exploratory steps and harms optimization. We provide both an analytical
discussion and a diagnostic experiment.

Analytical perspective. Under the standard GAE decomposition, the advantage of an early token t
aggregates future TD-errors: At =

∑T
u=t(γλ)

u−t δu. Theorem 2 characterizes the “uninformative
tail” regime in which the expected TD-errors δu are negative; failing to truncate such tails induces a
downward drift on At. A premature truncation corresponds to the opposite scenario: the trajectory
has not yet entered the belief-trap region, and truncating at this point may discard future steps whose
TD-errors δu would have been positive. Consequently, At may be reduced due to the loss of these
potentially informative and reward-contributing steps.

Diagnostic experiment. To make this effect concrete, we conducted a controlled diagnostic experi-
ment. We fixed a trained vanilla-PPO policy and generated a set of full rollouts. To focus our study
on the effect of false positives, we filtered the rollouts to those with a final reward of 1, ensuring
that the retained trajectories contain genuinely informative future signals and do not enter the BTR.
On these trajectories, we simulated false-positive truncation as follows: With probability α, the
trajectory is forcibly truncated at turn 3 (the maximum allowed turn is 10). With probability 1− α,
the trajectory proceeds normally to completion. This creates a clean setting in which any degradation
can be attributed solely to premature truncation. For each early-stage token position t = 1:500, we
computed the mean GAE advantage across rollouts for different α values.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Results. We present the results for the CD and PE datasets at Fig. 9. As expected, more aggres-
sive false-positive truncation systematically reduces the advantages of early exploratory actions,
confirming that premature (false-positive) truncation negatively impacts credit assignment.

D COMPLEMENTARY EMPIRICAL ANALYSIS

In this section, we present complementary experimental results to provide further insights.

D.1 RATIONALE OF SELECTING BINARY SIMILARITY THRESHOLD IN PE

In the PE task, the reward is derived from the cosine similarity between the model-predicted preference
vector and the ground-truth preference. We convert the similarity into a binary reward by activating it
only when the similarity exceeds a prescribed threshold. To understand the effect of this threshold,
we evaluate several settings {0.85, 0.88, 0.90, 0.95} using Qwen-2.5-7B-Instruct trained with PPO.

Table 5 summarizes the results. Lower thresholds (e.g., below 0.80) cause the reward to activate almost
continuously, which diminishes the discriminative value of high-quality predictions. Conversely, very
high thresholds (e.g., above 0.95) make activations extremely rare, preventing PPO from learning
effectively. Mid-range thresholds between 0.85 and 0.90 consistently yield stable training dynamics
and strong downstream performance. We use 0.88, which lies within this empirically robust region,
in the main experiments of the PE task.

Table 5: Effect of the binary-similarity threshold on PE performance (BinarySim accuracy). All
results use Qwen-7B-Instruct trained with PPO.

Threshold 0.85 0.88 0.90 0.95

PPO (vanilla) 55.33 42.00 33.67 4.33
PPO + T3 63.00 49.00 37.67 3.67

D.2 EFFECT OF REFERENCE-SET SIZE ON REDUNDANCY-INDUCED STALLING

Empirical Verification. To further examine the role of redundancy in inducing belief-trap regions
(BTR) in the PE task as mentioned in Sec. 3.3.2, we investigate how the frequency of truncation
varies with the size of the reference set S. We evaluate truncation ratios across different reference-set
sizes S ∈ {10, 15, 20, 25, 30} for the Qwen-2.5-Instruct model family. Table 6 reports the results.

Table 6: Truncation ratio (%) under different reference-set sizes S for Qwen-2.5-Instruct models.
Larger S corresponds to more potentially redundant comparisons.

S 10 15 20 25 30

3B 41.67 39.67 46.67 44.33 50.00
7B 50.67 53.67 54.00 56.67 56.67
14B 23.33 30.33 27.00 33.00 33.33
32B 38.00 39.67 39.33 50.33 46.33

Across all model scales, the truncation ratio exhibits a general upward trend as S increases from 10 to
30. This pattern indicates that larger reference sets introduce additional noisy or redundant pairwise
comparisons, which in turn make epistemic progress harder to achieve and increase the likelihood of
entering a redundancy-induced BTR.

D.3 T3 ON PE-LIKE TASKS WITHOUT ACCESS TO THE GROUND TRUTH

The proxy rule for the PE/MR task described in Sec. 3.1 relies on the ground-truth preference vector v⋆.
However, the truncation mechanism does not require access to the ground-truth. Instead, we employ
a fully belief-driven truncation rule that relies solely on the agent’s internal preference estimates. Let

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

v̂t denote the model’s predicted preference vector at round t. We define an epistemic-stalling signal
via a k-step moving average of update magnitudes:

stallt =

(
1

k

t∑
j=t−k+1

∥v̂j+1 − v̂j∥2

)
< ε, (62)

where k is the sliding-window length and ε is a truncation threshold. The threshold is obtained from
the empirical distribution of the k-step moving-average updates ∆̄(k)

t computed from offline rollouts.
Specifically, ε is set to a chosen quantile (e.g., 60%, 75%, 85%) of this distribution, ensuring that
the criterion is entirely ground-truth-free. A trajectory is truncated once Eq. 62 is triggered, i..e, the
agent’s belief updates become small for consecutive steps, indicating epistemic stalling.

Table 7 summarizes the results on the PE dataset. Despite the absence of oracle information, the
belief-based truncation retains strong performance, closely matching or surpassing the oracle-based
T3 reported in the main paper.

Table 7: Performance of T3 on the PE task without access to v⋆. Thresholds ε correspond to quantiles
of offline ∆̄(k)

t statistics. BinarySim accuracy is reported for Qwen-2.5-7B-Instruct trained with PPO.
vanilla and T3-gt represent vanilla-PPO and T3 in the main text (with access to the ground-truth
v⋆), respectively.

Quantile 60% 75% 85% vanilla T3-gt

ε 0.18 0.28 0.36 – –
BinarySim 44.33 50.67 49.00 42.00 49.00

D.4 EXPLORATION OF ADAPTIVE T3 TRUNCATION RULE

Adaptive T3 via online threshold selection. Motivated by extending T3 beyond fixed, offline-
chosen thresholds, we further investigate an adaptive variant in which the truncation threshold evolves
alongside the policy. For the PE task, the belief-based stalling criterion is employed the same as
Appendix D.3 and Eq. 62 with k = 4. To obtain ε adaptively, every 6 training steps we collect a
batch of fully untruncated rollouts under the current policy and compute the empirical distribution of
the k-step moving-average update magnitudes ∆̄(k)

t . The threshold is then updated according to a
fixed quantile α of this distribution:

ε ← Quantileα

(
{∆̄(k)

t }online

)
.

This mechanism yields a dynamically adjusted truncation threshold that tracks the scale of the model’s
ongoing belief updates.

Table 8 reports the performance across quantiles α. The results exhibit non-monotonic dependence on
α. Notably, at α = 0.6, the adaptive variant achieves a substantial improvement, outperforming both
the PPO baseline and the oracle-based T3 result reported in the main text. These results highlight
the potential for extending the T3 principle to adaptive thresholding, and we leave a more in-depth
exploration to future work.

Table 8: Adaptive T3 on the PE dataset. The threshold ε is updated online from the α-quantile of the
current ∆̄(k)

t distribution.

α 20% 40% 60% 80% 90% vanilla T3-gt

BinarySim 43.67 44.33 60.33 43.67 39.67 42.00 49.00

E POTENTIAL FUTURE WORK

E.1 MORE GENERAL-PURPOSE PROXY DESIGN.

Task-agnostic surrogate signals for epistemic stalling. In main experiments, since the structure
of hypothesis spaces and notions of progress differ across tasks, instantiating T3 naturally relies

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

on task-level meta-knowledge for observable signals. However, guided by the T3 principle, we
can further reduce the reliance on task-specific knowledge via utilizing general-purpose truncation
detectors. We explore two broad, task-agnostic families of surrogate signals as follows.

(i) Semantic redundancy signals. In multi-turn LLM-agent settings, epistemic stalling frequently
manifests as semantic redundancy, where the model repeatedly issues circular queries or revisits
previously resolved informational subgoals, as shown in prior studies (Zhou et al., 2025; Yuan et al.,
2025). Such redundancy is often detectable via embedding similarity, clustering, etc.

Building on this intuition, we have several successful explorations this direction: i) In the SP task, the
truncation based on question-semantic similarity (c.f., Sec. 3.3.3) yields consistent performance gains.
ii) Moreover, for tasks with continuous latent spaces, such as the PE task, tracking the convergence of
the model’s internal preference vector estimate provides an effective proxy for redundancy: truncation
is triggered when the estimate ceases to change meaningfully (c.f., Appendix D.3 and D.4). This
convergence reflects an epistemic “stall” analogous to query redundancy in dialog scenarios such as
the SP. Our experiments show the effectiveness of the manner.

(ii) Internal state signals. Recent empirical analyses suggest that hidden representations of Trans-
former and LLM models could encode intermediate judgment or reasoning states (Lu et al., 2025;
Zhou et al., 2024). Although the precise hidden-state signatures corresponding to epistemic stalling re-
main an open question, characterizing such patterns (e.g., consecutive high similarity of hidden states)
is a promising direction for future work. Such signals may be especially valuable in open-domain
tasks where a structured hypothesis space is not readily defined.

F SETUP DETAILS

F.1 DATASET DETAILS AND PROMPT TEMPLATES

In this section, we present more details for the datasets and tasks evaluated in this work. See dataset
statistics in Table 9.

SituationPuzzles (SP). This task introduces a challenging active reasoning task where the LLM
player must uncover a coherent narrative from an initially puzzling scenario. Each puzzle begins
with a brief, paradoxical statement. The solver interacts iteratively with a judge by asking binary
yes-no questions, gathering feedback from the judge to constrain the solution space. The goal is
to formulate a complete and plausible explanation that resolves the apparent contradiction. We
directly use this dataset from the AR-Bench (Zhou et al., 2025). In our experiments, we utilize a
Qwen2.5-14B-Instruct model to provide the interactive feedback.

The prompt template for the SituationPuzzles dataset can be seen in Fig. 11. For SituationPuzzles,
put a specific puzzle to solve into {puzzle} of the prompt. The prompt template for the judge LLM
is shown in Fig. 13. The judge will receive {surface} and {bottom} to understand the whole
puzzle, and give yes-no feedback according to the player LLM’s question.

GuessNumbers (GN). Adapted from the original dataset proposed by AR-Bench (Zhou et al., 2025)
which the player must crack a 4-digit secret (digits are unique in 0-9), our newly constructed GN(a, b)
is a series of reasoning tasks that involve the LLM agent’s interactive deduction with external sources:
the target is a a-digit number, where each digit is sampled from a set of b unique symbols without
repetition. This yields P (b, a) = b!/(b− a)! possible targets.

At each step, the LLM agent makes a guess and receives structured feedback in the form of xAyB,
where x denotes the number of digits that are both correct in value and position (denoted as “A”), and
y denotes the number of digits that are correct in value but placed in the wrong position (denoted as
“B”). The agent is expected to actively perform reasoning based on accumulated observations and
interact with an external source to efficiently reduce uncertainty and locate the correct answer.

To control for randomness in the first move, which plays a minor role in evaluating the LLM agent’s
ability to understand and update based on observations, we fix the first guess to a deterministic number
that is guaranteed to differ from the answer. This means we need (a, b, g0, x0, y0) to specify a question
for the LLM player, where g0 denotes the initial guess, and (x0, y0) denotes the corresponding initial
feedback of the form x0Ay0B.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

We group data items by their tuple (a, b, x0, y0), since items sharing the same (a, b, x0, y0) corre-
spond to tasks with similar uncertainty reduction dynamics and reasoning logic patterns. Specifically,
our constructed dataset covers all data items of the following sub-groups: (3, 4, 0, 3), (3, 4, 2, 0),
(3, 4, 1, 2), (3, 5, 1, 2), (3, 5, 0, 3), (3, 5, 1, 0), (3, 5, 2, 0), (4, 4, 0, 4), and (4, 5, 3, 0). These configu-
rations are carefully selected to ensure diversity in task complexity: varying (a, b) controls the size of
the hypothesis space, while varying (x0, y0) shapes the initial reasoning landscape by introducing
distinct patterns of partial evidence. Finally, we perform a randomized train-test split to the obtained
set for training and evaluation.

The prompt template for the GuessNumbers dataset can be seen in Fig. 12. For GuessNumbers,
we need to first specify {num digits} and {num uniques}, corresponding to (a, b) mentioned
above, and then specify the initial guess in {initial guess}, and the resulting initial feedback in
{initial feedback same pos} and {initial feedback diff pos}.
CircuitDecoding (CD). Adapted from Badola et al. (2025), in this dataset, each instance presents a
collection of unknown Boolean circuits, each taking a fixed number of binary inputs and producing
a binary output. There are several ground-truth circuits which are drawn from a finite candidate
set of logical structures, and the player must identify which candidates correspond to the hidden
circuits. To achieve this, the solver engages in a multi-turn interaction protocol: at each turn, the
player must query one circuit with a binary input configuration of their choice, and receives the
corresponding output. These queries serve as informative probes, allowing the player to iteratively
eliminate inconsistent candidates and refine their hypotheses. The task requires strategic planning
to maximize information gain under limited query budgets, and finally the solver must output the
candidate indices of all underlying circuits. In our experiments, we adopt the prompt template shown
in Fig. 10, where the LLM solver aims to figure out {num circuits} hidden ground-truth circuits
from {num candidates} candidates specified as: {candidate list str}.
PreferenceEstimation (PE). Adapted from Badola et al. (2025), this dataset targets the problem of
interactive preference elicitation, where the agent must infer a latent user preference vector governing
utility over movies. Specifically, each movie is associated with a list of attribute scores (s1, · · · , sn),
where n is the total dimensions of attributes. In this task, the user evaluates a movie as a weighted
sum of its attribute scores

∑n
i=1 wisi, with the weights (w1, · · · , wn) forming the hidden preference

vector to be discovered. At the beginning of an interaction episode, the agent is presented with a set of
reference movies annotated by their attribute values. At each round, the agent outputs both its current
vector guess and a pairwise comparison query between two reference movies. The user provides
feedback (“Yes”, “No”, or “Equal”) according to the weighted sum scores of the two mentioned
movies. Through multiple turns, the agent iteratively updates its estimate of the preference vector by
reasoning over past user feedback.

The prompt template for the PreferenceEstimation dataset is illustrated in Fig. 14. The LLM player is
given {len seen} reference movies for raising pairwise questions, to iteratively refine its guess on
the {len attributes}-dimensional hidden user preference vector.

MovieRecommendation (MR). Building upon the preference estimation setup, this dataset further
evaluates the generalization ability of an agent’s inferred user model. After completing several rounds
of interaction as mentioned in the PE task, the agent is tasked with recommending from a set of
unseen movies. Each unseen movie is described by the same attribute dimensions, but the agent has
not encountered them during training or interaction. In the final turn, the agent applies its preference
vector guess to score each candidate unseen movie, and is required to select the movie that the
user is most likely to prefer as its recommendation. This task thus demands transferring preference
inference to out-of-distribution recommendation, and evaluates reasoning consistency, robustness,
and generalization in interactive recommender systems.

The prompt template for this task is shown in Fig. 15. The agent is expected to leverage its estimated
preference vector to make a personalized recommendation from {unseen movie list}.

F.2 BASELINE DETAILS

Here we introduce RL algorithms used in our experiments. Formally, given an actor model πθ, the like-
lihood of a response y to a query x under the policy πθ is modeled as πθ(y|x) =

∏|y|
t=1 πθ(yt|x, y<t).

Given a query-response pair (x, y), a verifier r generates its reward r(x, y) ∈ [0, 1].

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 9: Dataset Statistics in this work.

Train Test

SituationPuzzles (SP) 400 100
GuessNumbers (GN) 1526 382

CircuitDecoding (CD) 1000 300
PreferenceEstimation (PE) 700 300

MovieRecommendation (MR) 700 300

Proximal Policy Optimization (PPO) (Schulman et al., 2017) employs the following objective for
policy optimization:

JPPO(θ) = Ex∼D, y∼πθold (·|x)

 1

|y|

|y|∑
t=1

min
(
wt(θ)Ât, clip (wt(θ), 1− ε, 1 + ε) Ât

) , (63)

where the importance ratio of the token yt is defined as wt(θ) =
πθ(yt|x,y<t)
πθold (yt|x,y<t)

, the advantage Ât of
yt is typically computed via Generalized Advantage Estimation (GAE) (Schulman et al., 2015) with
temporal-difference errors, and ε is the clipping range of importance ratios.

Group Relative Policy Optimization (GRPO) (Shao et al., 2024) proposes computing the relative
advantage of each response within a group of responses of the same query using the following
objective (omitting the KL regularization term):

JGRPO(θ) = Ex, {yi}G
i=1

 1

G

G∑
i=1

1

|yi|

|yi|∑
t=1

min
(
wi,t(θ)Âi,t, clip (wi,t(θ), 1− ε, 1 + ε) Âi,t

) ,
(64)

where {yi}Gi=1 ∼ πθold(·|x) and G is the group size. The importance ratio wi,t(θ) and advantage Âi,t

of token yi,t are defined as:

wi,t(θ) =
πθ(yi,t|x, yi,<t)

πθold(yi,t|x, yi,<t)
, Âi,t =

r(x, yi)−mean
(
{r(x, yi)}Gi=1

)
std
(
{r(x, yi)}Gi=1

) , (65)

respectively, where all the tokens in yi share the same advantage.

Group Sequence Policy Optimization (GSPO) (Zheng et al., 2025) extends GRPO by defining
the importance ratio at the sequence level with length normalization, with sequence-level clipping,
rewarding, and optimization. The objective is:

JGSPO(θ) = Ex,{yi}G
i=1

[
1

G

G∑
i=1

min
(
si(θ)Âi, clip(si(θ), 1− ϵ, 1 + ϵ)Âi

)]
, (66)

where

si(θ) =

(
πθ(yi|x)
πθold(yi|x)

)1/|yi|

= exp

 1

|yi|

|yi|∑
t=1

log
πθ(yi,t|x, yi,<t)

πθold(yi,t|x, yi,<t)

 .

F.3 SUPPLEMENTARY IMPLEMENTATION DETAILS

Here we provide additional implementation details. The maximum number of interaction turns is set at
10 for GuessNumbers, 15 for SituationPuzzles, 10 for CircuitDecoding, 10 for PreferenceEstimation,
and 5 for MovieRecommendation. For RL training, we define task-specific rewards aligned with their
evaluation metrics: for GuessNumbers, the reward is Exact Match (binary {0, 1}, given only at the
final step); for SituationPuzzles, the reward is the F1-word / character score (continuous in [0, 1],
computed against the ground-truth answer); for CircuitDecoding and MovieRecommendation, the
reward is also Exact Match; and for PreferenceEstimation, the reward is Binary Similarity between

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Input Prompts for the CircuitDecoding dataset

Welcome to the Circuit Deduction Challenge!

The Setup:
- There are {num circuits} circuits, labeled {circuit labels}.
- Each circuit accepts {num inputs} binary inputs (0 or 1) and produces a single binary output (0 or 1).
- Each circuit is drawn from a fixed candidate list of {num candidates} possible logical structures, each associated with an index:
{candidate list str}

Your Goal:
Identify which circuits from the candidate list correspond exactly to circuits {circuit labels}.

How to Play:
You can interact with me for several turns to determine the true underlying circuits:
1. At each turn, query one circuit with any binary input of your choice.
2. Use the specified format for your query. For example, to query circuit A with inputs x0=1, x1=0, x2=1, ask:
<interact>A(1, 0, 1)</interact>.
3. You must make only one query at each turn. I will return the binary output for that circuit on the given input.
4. Ask strategic queries that maximize information gain. Your goal is to minimize the number of turns by leveraging the feedback at
each step to narrow down the candidate possibilities.

Final Submission:
Once you are confident, submit your final answer by providing the indices of the identified circuits from the candidate list inside
<answer> and </answer>. For example, if A corresponds to candidate 13 and B corresponds to 6, your answer must be:
<answer>13, 6</answer>.
Please start with your first query.

Figure 10: Prompt Template for CircuitDecoding.

Input Prompts for the SituationPuzzles dataset

Let’s play a situation puzzle game. I’ll give you a puzzle. You can interact with me for several turns during the question phase to
reach the final answer. For each turn, you will:
- Review all previous questions and feedback.
- Ask me a yes-or-no question inside <interact> and </interact>.
- I will answer your latest question with “Yes”, “No”, or “Unknown”.
- Repeat the process until you are confident in the answer.
If you believe you have confidently determined the correct solution, present your answer inside <answer> and </answer>.

Now, here’s the puzzle:
Puzzle: {puzzle}

Figure 11: Prompt Template for SituationPuzzles.

the predicted and ground-truth preference vectors. All rewards are provided only at the terminal step
of each trajectory, consistent with the outcome-based RL setting.

Training for GuessNumbers and SituationPuzzles is conducted on a single node equipped with 8
H100 GPUs, while CircuitDecoding and PreferenceEstimation/MovieRecommendation are trained
on a single node with 8 B200 GPUs, based on the implementations of Verl (Sheng et al., 2025). All
training tasks are conducted for 200 steps with the actor model optimized using a learning rate of
1.0×10−6. For distributed training, we adopt Fully Sharded Data Parallelism (FSDP), using BFloat16
precision throughout both training and evaluation. For efficient LLM rollouts, we adopt vLLM 2 with
a tensor parallel size of 1. The rollout sampling uses a temperature of 1.0 for SituationPuzzles and
0.6 for GuessNumbers, and a top-p value of 0.95 for both datasets.

For the PPO baseline, we use Generalized Advantage Estimation (GAE) with parameters λ = 1
and γ = 1. The KL divergence regularization coefficient β and clip ratio ε are set to 0.001 and 0.2.
For GRPO training, we sample 5 responses per prompt, and the rollout parameters, KL divergence
coefficient, and the clip ratio are consistent with the PPO setting. For the GSPO algorithm, we do
not use the KL divergence constraint, and the clip ratio εlow and εhigh are set to 0.0003 and 0.0004,
respectively, while others keep consistent with GRPO training.

2https://docs.vllm.ai/en/latest/

31

https://docs.vllm.ai/en/latest/

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Input Prompts for the GuessNumbers dataset

Let’s play a number guessing game. The rules are as follows: I have a secret {num digits}-digit number in mind, composed
of digits from 1 to {num uniques}, with no repeated digits. You will take turns guessing the number, using feedback after each
guess to progressively narrow down the possibilities.
For each turn, you will:
- Review all previous guesses and feedback.
- Think through your reasoning process inside <think> and </think>. The reasoning should show how your belief about the
secret number evolves based on the accumulated evidence.
- Make a strategic guess inside <interact> and </interact>, based on your current belief.
- Receive feedback of your latest guess describing: how many digits are present in the answer and in the correct positions, and how
many digits are present in the answer but in the different positions.
- Repeat the process until you are confident in the answer. If you believe you have confidently found the correct number, present your
answer inside <answer> and </answer>.
Game start. Now it is your turn:

<think>No prior knowledge. Start with a random guess that covers diverse digits to gather information.</think>
<interact>{initial guess}</interact>

The feedback of your latest guess: {initial feedback same pos} digits are present in the answer and in the correct positions,
{initial feedback diff pos} digits are present in the answer but in the different positions.
Now it is your turn:

Figure 12: Prompt Template for GuessNumbers.

Input Prompts for the Judge LLM in the SituationPuzzles dataset

You are the referee of a game where players are shown a <Surface> and you are given the <Bottom>. You need to understand
the entire story based on both the <Surface> and <Bottom>. Players will ask questions based on the <Surface>, and you
need to judge whether their guesses are correct. Please strictly adhere to answering with only three specified responses: Yes, No, or
Unknown, without any explanation.

Judging Rules
- If the player’s question matches the given <Surface> and <Bottom>: Please only answer ”Yes” without any explanation.
- If the player’s question contradicts the given story: Please only answer ”No” without any explanation.
- If the answer to the player’s question cannot be found in the <Surface> and <Bottom>, and cannot be deduced through
reasoning: Please only answer ”Unknown” without any explanation.
- If the player directly ask for the answer, please only answer ”This is not a question, please propose your next question.”
- If the player does not propose a question or question that not for solve the puzzle, please only answer ”This is not a question, please
propose your next question.”

Important Notes
1. Fully understand the cause, process, and outcome of the entire story, and make logical inferences.
2. If a conclusion cannot be drawn from the provided story or through reasonable inference, answer ”Unknown”.
3. Strictly adhere to answering with only the three specified responses: Yes, No, or Unknown. Do not provide additional explanations.
4. Carefully check whether the player ask for the answer, if a player do so, please only answer ”This is not a question, please propose
your next question.”

Examples
Example 1: The Hiccuping Man
<Surface>
A man walks into a bar and asks the bartender for a glass of water. The bartender suddenly pulls out a gun and points it at him. The
man smiles and says, ”Thank you!” then calmly leaves. What happened?
<Bottom>
The man had hiccups and wanted a glass of water to cure them. The bartender realized this and chose to scare him with a gun. The
man’s hiccups disappeared due to the sudden shock, so he sincerely thanked the bartender before leaving.
Possible questions and corresponding answers:
Q: Does the man have a chronic illness? A: Unknown
Q: Was the man scared away? A: No
Q: Did the bartender want to kill the man? A: No
Q: Did the bartender intend to scare the man? A: Yes
Q: Did the man sincerely thank the bartender? A: Yes

Question Content
<Surface>
{surface}
<Bottom>
{bottom}
Now, please judge the following player question:
{question}
Answer with only one of the three specified responses: Yes, No, or Unknown, without any explanation.

Figure 13: Prompt Template for the Judge LLM in SituationPuzzles.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Input Prompts for the PreferenceEstimation task

You are a movie recommendation agent. Your goal is to infer the hidden user preference vector (w1,...,w{len attributes})
through interaction.

Setup:
- You are given {len seen} movies with scores on {len attributes} attributes (indexed 1...{len attributes}):
{seen movie sample}
- User satisfaction = w1*attr1 + ... + w{len attributes}*attr{len attributes}, where each wi in [0, 1]. The user always
answers consistently.

Interaction Rules (per round):
1. Reflect on all past feedback and reason about how it changes your estimate of the preference vector.

- Think about which attributes gained or lost importance.
- Adjust your estimate strategically.

2. Output both your updated guess and a new pairwise query in the exact format:
<interact>
Guess: w1,w2,...
Question: Would you prefer option 1 over option 2?
</interact>

- Guess must be comma-separated numbers in [0,1].
- option 1 and option 2 must be movie names only.

The user replies with one of: ”Yes” (prefer option 1), ”No” (prefer option 2), or ”Equal”.

Final Stage:
Once you are confident about the user preference after several turns, output your final preference vector as:
<answer>w1,w2,...,w{len attributes}</answer>
Please Start with your first <interact> block.

Figure 14: Prompt Template for PreferenceEstimation.

Input Prompts for the MovieRecommendation task

Final Turn: Now you have reached the last turn. Instead of asking a new question, use your most recent preference guess to score the
following unseen movies and recommend the best one.
{unseen movie list}

Here is an example of how to proceed:
Preference vector (guess): 0.2,0.7,0.5
Example Unseen movies:
Movie A: [0.6,1.0,0.8]
Movie B: [1.2,0.3,0.4]
Movie C: [0.5,0.8,0.9]
Scoring:
Movie A = 0.2*0.6 + 0.7*1.0 + 0.5*0.8 = 1.22
Movie B = 0.2*1.2 + 0.7*0.3 + 0.5*0.4 = 0.65
Movie C = 0.2*0.5 + 0.7*0.8 + 0.5*0.9 = 1.11
Best = Movie A
<answer>Movie A</answer>

Your goal:
Now do the same with your own latest preference vector and the given unseen movies. After scoring, return the final answer enclosed
within <answer> and </answer>. The answer must be exactly one of the unseen movie names.

Figure 15: Prompt Template for MovieRecommendation.

33

	Introduction
	Reinforcement Learning for Active Reasoning
	Theoretical Formulations
	From Theory to Practice: Proxy Signals

	Experiments
	Dataset-Specific Proxy Truncation Conditions
	Experimental Setup
	Experimental Results and Analyses
	Overall Performance
	Out-of-Distribution Analysis
	Ablation Study on Truncation Conditions
	Impact of LLM Architecture

	Related Work
	Conclusion
	Notation Summary
	More Details on the Theory
	Detailed Theoretical Setup
	Dynamics of Belief Trapping of LLM Agents in Active Reasoning
	Detailed Statement of Theorem 1
	Detailed Statement of Theorem 2
	Important Lemmas
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Theorem 3
	Proof of Proposition 1
	Proof of Lemma 1
	Proof of Lemma 2

	Empirical Verification of the Theory
	Empirical Verification of Assumption 1
	Verification of Theorem 2 and Corollary 1
	Complementary Analysis of False-Positive Truncation and Its Impact

	Complementary Empirical Analysis
	Rationale of selecting Binary Similarity Threshold in PE
	Effect of reference-set size on redundancy-induced stalling
	T3 on PE-like tasks without access to the ground truth
	Exploration of adaptive T3 truncation rule

	Potential Future Work
	More general-purpose proxy design.

	Setup Details
	Dataset Details and Prompt Templates
	Baseline Details
	Supplementary Implementation Details

