Under review as a conference paper at ICLR 2026

T3: REDUCING BELIEF DEVIATION IN REINFORCE-
MENT LEARNING FOR ACTIVE REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Active reasoning requires large language models (LLMs) to interact with external
sources and strategically gather information to solve problems. Central to this
process is belief tracking: maintaining a coherent understanding of the problem
state and the missing information toward the solution. However, due to limited
reasoning capabilities, LLM-based agents often suffer from belief deviation: they
struggle to correctly model beliefs, lose track of problem states, and fall into
uninformative or repetitive actions. Once this happens, errors compound and
reinforcement learning (RL) training fails to properly credit the crucial exploratory
steps. To address this issue, we propose to track the deviation of model beliefs and
develop T3, a simple yet effective method that detects excessive belief deviation and
truncates trajectories during training to remove uninformative tails. By preserving
credit for informative prefixes, T2 systematically improves policy optimization.
Across 5 challenging tasks, T2 consistently enhances training stability, token
efficiency, and final performance, achieving up to 30% gains while cutting rollout
tokens by roughly 34%. These results highlight belief control as a key principle for
developing robust and generalizable LLM-based active reasoners.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable reasoning capabilities across diverse
domains (Huang & Chang, 2022; Plaat et al., 2024; Li et al., 2025b), further advanced by reinforce-
ment learning (RL) with outcome rewards (Wang et al., 2024; Srivastava & Aggarwal, 2025; Xu
et al., 2025; Guo et al., 2025; OpenAl, 2025; Team et al., 2025). Recently, along with the increasing
agentic applications of LLMs (Zhang et al., 2025a; Plaat et al., 2025), the community seeks to extend
the success of RL to long-horizon and multi-turn reasoning (Wu et al., 2025; Laban et al., 2025;
Li et al., 2025a). In particular, active reasoning is one of the most important multi-turn reasoning
settings, which requires the LLM agent to strategically raise questions and actively acquire missing
knowledge to complete the reasoning task (Zhou et al., 2025; Badola et al., 2025).

However, LLM agents are shown to be struggling in multi-turn or active reasoning: along with the
unfolding of interactions, they often generate redundant, irrelevant, or uninformative actions (Yuan
et al., 2025; Fu et al., 2025; Zhang et al., 2025b), or even collapse into unproductive loops (Zhou
et al., 2025). Furthermore, even with RL training, LLM agents still suffer from suboptimal policies.
For example, it can produce globally suboptimal outcomes (Wang et al., 2025) or undermine the
robustness to unseen tasks (Zhang et al., 2025b). Hence, it raises an intriguing research question:

Why do LLM agents get trapped in active reasoning, and how can we mitigate it?

To answer the question, we start by modeling active reasoning as a Partially Observable Markov Deci-
sion Process (POMDP). Traditional POMDP literature assumes perfect belief estimate (e.g., Bayesian
filtering) given the past observations (Kaelbling et al., 1998). When implementing POMDP using
LLMs, it requires LLMs to track and model the belief state, which is inherently imperfect due to the
limited reasoning capabilities of LLMs. Under mild assumptions, we show that: under the imperfect
belief updates of LLM agents, trajectories are driven into a Belief-Trap Region (BTR, Def. 1), where
actions cease to be informative, errors accumulate, and reasoning stagnates (Thm. 1). Furthermore,
we demonstrate that the vanilla policy optimization paradigm is fundamentally undermined by such
belief-trap dynamics: once trapped, the uninformative tail of the trajectory can contaminate the credit
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Figure 1: Overall framework of T3, where (b, a;, 0;) denote the agent’s internal belief, its chosen
action, and the resulting environmental feedback at turn ¢. By truncating belief-trapped trajectories, we
prevent the agent from entering the belief-trap region (BTR) where credit assignment is contaminated
and becomes misleading, allowing learning signals to concentrate on genuinely informative actions.
As a result, policy optimization becomes more stable and effective under complex active reasoning.

assigned to crucial early-stage actions, and even invert their estimated gradients (Thm. 2), thereby
hindering effective exploration and leading to sub-optimality of the policy optimization.

To mitigate the issue, we propose T3 (Truncating Belief-Trapped Trajectories), a simple yet effective
method that halts trajectories upon detecting entry into the BTR. By truncating the uninformative tail,
T3 preserves the credit assigned to the informative prefix, yielding lower-variance and less-biased
gradient estimates (Cor. 1). As it is intractable to probe the exact entry to BTR for LLMs, we develop
the T2 condition (Def. 2) that seeks detectable proxies in the reasoning trace of LLMs. We find that it
is relatively easy to find highly effective proxy signals for T3 condition, such as detecting repetitive
queries, as verified in experiments. The simplicity of T3 enables it to be seamlessly integrated
into standard policy optimization frameworks (e.g., PPO, GPRO, and GSPO) without altering the
underlying algorithm, offering a practical drop-in solution to the credit assignment problem.

We evaluate T2 on 4 datasets and 5 tasks from recent challenging active reasoning benchmarks,
including AR-Bench (Zhou et al., 2025) and Multi-Turn Puzzles (Badola et al., 2025). Across
all settings, T3 consistently improves training stability, token efficiency, and final performance,
achieving gains of up to 30% while cutting rollout tokens by roughly 34%. It further shows robust
benefits across LLM sizes, architectures, and even under out-of-distribution scenarios. These results
demonstrate that controlling belief traps not only systematically improves policy optimization but
also provides a principled path toward building reliable active reasoning agents.

2 REINFORCEMENT LEARNING FOR ACTIVE REASONING

2.1 THEORETICAL FORMULATIONS

Due to space limits, in this section, we will state the necessary setup to derive our theoretical results
and leave the details to Appendix B. To strengthen the connection between our theoretical analysis
and the practical behavior of LLM-based agents, we conduct empirical studies that directly examine
the key theoretical components and summarize the findings in Appendix C (an overview in Fig. 2).

We model the problem of active reasoning as a Partially Observable Markov Decision Process
(POMDP) (S, A, O, T, 0, R,~) (Kaelbling et al., 1998). The agent tries to raise strategic questions
a € A to obtain reward R and update its belief b € A(S) given an underlying state s € S, and the
environment returns a new piece of information o € O to the agent. For simplicity, we assume the
underlying ground-truth latent state s* is fixed during an episode.
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Figure 2: Overview of the empirical verification on Asp. 1, Thm. 2, and Cor. 1. (a)(b) We visualize
the fitted empirical lower bound (the red line) ¢y ~ mg\i' — Co on the region v > Uo (the dashed
vertical line) for the PE task (c.f., Sec. 3.1) across Qwen-2.5-7B and 32B models. Both models
exhibit a clear positive lower-bound slope required in Asp. 1. (c)(d) We report token-wise mean GAE
values on failed rollouts for the CD and PE tasks (Qwen-2.5-7B), comparing without vs. with our
T3 truncation. Both exhibit a clear negative drift of early-token advantages (Thm.2) and the drift
mitigation when applying T3 (Cor. 1). See the complete experimental details in Appendix C.

Belief Updates. We mainly compare the dynamics of an oracle reasoner and an imperfect LLM
reasoner. The oracle reasoner will maintain an oracle belief distribution b},' i.e., a posterior over
latent states given the full history of interactions, and update beliefs via the Bayes’ rule B* :

O(o¢ | s,a1)b;(s)

by (s) := B*(b},as,01) = )
b (s) (b2, a,00) po(ot | at)
where py(0; | as) = Y, c5O0(0s | ',a:)b(s") is the Bayes-normalizer. In contrast, an LLM

agent maintains an agent belief b, that represents its internal understanding of the problem and what
information remains missing, and updates itself through By with 6 as the parameters of the LLM.

Task Progress. We are interested in the discrepancies introduced to the task progress by the LLM
agent during the interactions. To measure the task progress, we introduce a truth-anchored potential
function ¥(b) := — log b(s*) that captures how concentrated the belief is given the underlying state
s*, where U(b) € [0,00), with ¥(b) = 0 iff b(s*) = 1 (task completion). Lower values of ¥ (b)
indicate higher confidence in the true state. We then establish the following discrepancy:

Ce(bt) = Eq, Eo, [‘I/(Be(bt,at’ot)) - ‘IJ(B*(bt,at,Ot))]- 2)

Perfectly modeling the belief states in active reasoning requires the LLM agent to perfectly understand
the problem and what information might be missing, which is challenging. We introduce the following
assumption to instantiate the imperfect belief state modeling capabilities of LLMs.

Assumption 1 (Update-Error Growth). There exist constants mg > 0, cg > 0, and a threshold
Uy > 0 such that for all b with U (b) > Uy, cp(b) > mg ¥(b) — cq.

Intuitively, Assumption 1 assumes that the errors of belief update are amplified as the belief deviates.
In high-uncertainty regimes, the agent’s update error grows at least linearly with W. Then, we have

Theorem 1 (Informal). Under the POMDP setup, assuming (i) the oracle reasoner converges
to Wy, (ii) non-degenerate observations, and (iii) an Lr-Lipschitz policy, there exists a threshold
U:max{Uo, (To+ B+ Co)/mg}, where B = 2 (—logn L, + 1/n), such that (a) If ¥ (bsy) > U
for some tg, then forallt > tg, Eat,ot[\ll(btﬂ) | bt] > U(b); (b) if Uy = 0.and V(by) > p, then

ts <1+ [bg 1+mep me(q,(’gjg(jgfb;)m —‘ ,for§ =mg pu— (co+ B) > 0.

A formal statement and proof of Theorem 1 is given in Appendix B.3. Intuitively, Thm. 1 implies that
the progress of the LLM agent stops after some time g if the LLM agent can not model the belief
states properly, which we term Belief Trap Region as follows:

Definition 1 (Belief Trap Region, BTR). A set Rg C A(S) is called a belief trap region for an agent
parameterized by 0 if it is absorbing and induces non-positive progress: for any belief b € Ry and all
subsequent times t once entered, E[U(by11) | by = b] > U(b).

"For the ease of notation, we will only add ¢ when the context is about dynamics.
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Misguided credit assignment. Inside BTR, {U;} is supermartingale-like under the agent’s evolu-
tion: the process does not trend down in expectation. In other words, once trajectories enter BTR,
additional steps are uninformative and tend to reinforce the stall, which substantially reduces the
sample efficiency of policy optimization, as long stretches of uninformative interactions provide
little useful learning signal. More critically, we demonstrate that entering the BTR corrupts credit
assignment: the uninformative tail can contaminate the credit of early-stage exploratory actions, or
even invert their signs, thereby discouraging exploration and leading to suboptimal behaviors.

We formalize this by analyzing the generalized advantage estimator (GAE) (Schulman et al., 2015),
A = Z?;J_l(vk)j5t+j, where v € (0, 1) is the discount factor, A € [0, 1] is the GAE parameter,
and the TD-error is defined as §; = r; +yV;+1 — V4 with r; the intermediate reward and V; the value
function at step ¢. Here r; follows the outcome-based RL setting, where only the terminal step yields
an outcome reward. The following theorem shows how the BTR can drive the expected advantage of
early actions negative, thereby inverting the gradient direction.

Theorem 2 (Informal). Under the same setup as Thm. 1, assuming (i) the value in policy optimization
is calibrated Vi, = g(by(s*)) for an increasing, differentiable g withinf,, ¢'(x) > kv > 0, and (ii) the
belief drifts downward on average by at least py, > 0: E[bgy1(s*) — bi(s*) | Fi] < —pp for k > tg,
then, then, for any t < tg, the expected advantage is bounded: E[A;] < v (Spr(t) — kv Sy (t))

where Spr.(t) = Z;*:Ot*l(v)\)j and S2,(t) = Z?:t':_zt(v)\)j. Therefore, a sufficient condition for

E[gt] < 0is: Kvpo > Spre(t)/SS(t). In particular, when Y\ — 1 (a common setting for sparse
reward tasks), the condition simplifies to kv pp > AJL, where A =tg —tand L=T — 1 —tg are
the prefix and tail lengths, respectively.

A formal statement of Thm. 2 is given in Appendix B.4. Thm. 2 quantifies the credit assignment
failure: the negative drift from a long uninformative tail (L large) can overwrite the positive credit
from the informative prefix, causing the overall gradient to point in the wrong direction and penalize
earlier exploratory actions. Therefore, Thm. 2 naturally motivates T3: terminating a rollout upon
entering the BTR preserves the credit assigned to informative prefix actions and eliminates the
detrimental effect of the uninformative tail.

Corollary 1 (Value of Truncation). Let //1\';” be the advantage estimator truncated at tg. Under
the assumptions of Thm. 2, early truncation yields a less biased gradient estimate: E[A}™] >
E[A{] + vev ppSey(t).

Corollary 1 implies that truncating the trajectory at tg removes the uninformative tail and yields a
less biased policy optimization. Yet it is not directly implementable in practice for two-fold reasons.
1) Belief modeling complexity: the belief state b is defined over the latent state space S, which is
often vast and intricate. In LLMs, belief is only implicitly expressed through its chain-of-thought
traces or internal activation status, both of which are difficult to model precisely. 2) Unobservable
thresholds: even with sufficient conditions for BTR entry (Thm. 1), the critical threshold U and its
related parameters (e.g., myg, co, B) are agent-specific and cannot be directly measured.

2.2  FROM THEORY TO PRACTICE: PROXY SIGNALS

From Theory to Practice: Proxy Signals. We introduce practical yet theory-aligned proxy signals.
The key insight is that although the exact BTR entry point is unobservable, the stalling of epistemic
progress — the core characteristic of the BTR — can be captured through observable surrogates.
Accordingly, we formulate a general proxy condition for truncation based on detecting such stalls:

Definition 2 (T3 Condition). Let H; denote the hypothesis space at step t. The T3 condition for
trajectory truncation at step t is defined as follows: there exists a minimum progress threshold
Amin > 0 such that for all steps T in the window [t — k,t), d(H,, Hr+1) < Amnin, where k is the
window size and d(-, -) is a metric quantifying the change between consecutive hypothesis spaces.

T3 will truncate at step ¢ if the condition is detected and satisfied. Here, H; represents the set of
solutions consistent with all information gathered so far; it may be either finite or infinite depending
on the task. In particular, for tasks with a finite and enumerable hypothesis space 7, modeling
the agent’s belief as uniform over #H; (and assuming s* € ;) yields an exact correspondence
U (b;) = log |H¢|, which constructs a provably exact observable surrogate for dynamics of potential.
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Relation to the BTR formalism. Conceptually, this proxy principle is directly aligned with our
BTR formalism: BTRs are characterized by stalled progress in the truth-anchored potential (i.e.,
E[AW,;] > 0), and in goal-directed reasoning tasks, such stalls manifest as a failure to further
constrain the hypothesis space. Def. 2 formalizes this insight by introducing /) a task-agnostic metric
d(H¢, Hiy1) to quantify incremental refinement of the hypothesis space, 2) the threshold A, to
capture the notion of a minimum informative update, and 3) the window of length £ to reflect the
temporal persistence of BTRs, which arise from sustained non-positive refinement rather than from a
single noisy step. This abstraction naturally covers a wide range of task structures.

To further quantify this relation, the following proposition provides a guarantee under a standard
biased noisy model, linking T2 ingredients to an upper bound on false-truncation probability.

Proposition 1 (Informal). Define the true single-step potential progress g¢ := V(b)) — W(by41)
and the observable refinement proxy d; := d(H¢, Hir1). Assume that (i) outside the BTR, single-
step potential progress is uniformly informative: g, > p > 0, and (ii) the proxy admits a biased
Gaussian-noise model: d; = g; + B¢ + &, where |Bi| < My, & ~ N(0,0?) independently across t.
If Apmin < p — My, then a sufficient condition for the T2 rule to keep the false-truncation probability
on any k-step non-BTR segment below 6 € (0,1) is k (p — My — Apin)? > 20%1og(1/9).

A proof is given in Appendix B.9. This result shows that, even in the presence of both systematic
bias and stochastic noise in the proxy, the T2 rule remains statistically robust. In particular, the
construction of H and metric d(-, ) directly determines the bias bound M. Choosing a metric with
smaller induced bias, increasing k, or decreasing A ,;;, reduces the probability of false truncation at an
exponential rate. We additionally present an analysis on the effect of false-truncation in Appendix C.3.

Practical instantiation and toward general-purpose detectors. In practice, since the structure of
hypothesis spaces and notions of progress differ across tasks, obtaining these components naturally
relies on task-level meta-knowledge for observable signals which best reflect these ingredients. We
show how to instantiate it for practical tasks in Sec. 3.1. Moreover, guided by the T3 principle,
we can further reduce the reliance on task-specific knowledge on hypothesis spaces by utilizing
general-purpose truncation detectors. We conduct preliminary explorations, and results show that
these surrogates can be directly plugged into the T2 criterion and still yield consistent improvements
across multiple tasks. We present these findings and discuss their implications in Appendix E.1.

Key advantages. This principle serves as a meta-wrapper, providing clear guidance for designing
effective proxy signals without resorting to complex heuristics or heavy engineering, relying instead
on progress-based criteria that capture the essence of belief-trap dynamics. The resulting truncation
rules integrate seamlessly into standard policy optimization frameworks (e.g., PPO, GRPO, GSPO)
without altering their algorithms, making T2 a practical drop-in solution to the long-standing credit
assignment challenge in active reasoning.

3 EXPERIMENTS

3.1 DATASET-SPECIFIC PROXY TRUNCATION CONDITIONS

We evaluate T2 on five interactive reasoning tasks from AR-Bench (Zhou et al., 2025) and Multi-
Turn Puzzles (Badola et al., 2025). Our general truncation principle (Def. 2) is instantiated with
task-specific proxies. See ablation studies of the truncation conditions in Sec. 3.3.3. Note that we do
adaptations to some of these datasets for RL training. See mode details in Appendix F.1.

GuessNumbers (GN). The agent deduces a hidden number through guesses and structured feedback
indicating the count of digits in the correct position or misplaced. The hypothesis space H; is the set
of numbers consistent with all previous interactions {a<¢, o<, } so far, and the progress measure is
naturally defined as d(H,, Hr41) := |H,| — |Hr+1|- Early truncation: a trajectory is cut at the step
t if the agent’s guess a; lies outside H;_1, corresponding to k& = 1 with d(H:—1,H:) < 0, indicating
a failure to refine the feasible set with logically consistent guesses.

SituationPuzzles (SP). The agent is expected to unravel a paradoxical puzzle by posing yes/no
questions to a judge model. Here H; denotes the set of plausible explanations consistent with the
dialogue history. Since H; can be complex or even unbounded, we approximate the stalling of
informativeness d(H,, Hr+1) < Amin by the judge’s feedback: each step is uninformative if the
feedback of the judge is “unknown”. Early truncation: if this occurs for k = 5 consecutive steps, we
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Table 1: Main results across five active reasoning tasks. We report Exact Match (EM), F1 (word,
char), and Binary Similarity depending on the task. We also report the average rank across all metrics.

CD SP GN PE MR Avg.

EM Fl-word Fl-char EM Binary Sim EM Rank
Direct Inference
03-mini 92.67 20.64 39.35 95.28 44.67 83.33 4.67
Gemini-2.5-Pro 92.23 24.12 49.28 90.84 16.67 83.00 5.67
Qwen-2.5-7B-Inst. 12.50 19.46 41.62 20.94 23.67 27.67 8.17
Reinforcement Learning
PPO 61.67 28.77 74.56 91.62 42.00 24.33 6.50
PPO w. T3 77.83 t162% 36.851s81% 81.50 169% 9398 124%  49.00 17.0% 38.00 +13.6%  4.50
GRPO 79.33 36.46 83.73 61.26 51.67 12.00 5.50
GRPO w. T3 81.33 120%  39.45+130% 8458 t0s% 91.36 1301% 5233 107% 32.67 1207% 3.17
GSPO 77.67 36.63 82.17 96.07 59 14.67 4.33
GSPO w. T3 81.00 13.3% 36.96 +03% 82.08 L0.1%  99.74 + 374 62.00 13.0%  55.67 1 41.0% 2.50

truncate the trajectory, signaling entrapment in an unproductive line of questioning. Here we leverage
a LLM-judge-based proxy. We also evaluate a judge-free proxy in Sec. 3.3.3.

CircuitDecoding (CD). The agent identifies hidden Boolean circuits from a large candidate pool. At
each step, the agent queries a circuit with a binary input and eliminates inconsistent candidates through
feedbacks. The hypothesis space H; is the surviving candidate set consistent with all observations,
and progress is defined as the reduced space size d(H,, H,4+1) := |H-| — |H++1]|, analogous to GN.
Early truncation: we monitor |H,| and truncate if it fails to decrease (d(H., Hr+1) < 0) for k =3
turns, indicating that queries no longer reduce uncertainty.

PreferenceEstimation (PE) / MovieRecommendation (MR). In PE, the agent aims to infer a hidden
vector v* about user preference on movies by iteratively raising pairwise comparisons of the given
reference movies. In MR, the agent is required to recommend unseen movies to the user based on
the learned preference vector, requiring generalization beyond the training distribution. Here
is the subspace of plausible preference vectors consistent with past feedback. As H; is continuous
and cannot be enumerated, we approximate its epistemic progress via the LLM’s explicit estimate
ve. Early truncation: we approximate d(#H., H1) by the gain in similarity between the agent’s
estimate and the oracle preference, i.e., Sim(v,41,v*) — Sim(v,, v*). If similarity decreases for
k = 2 consecutive steps, the trajectory is truncated, preventing further training on diverging beliefs.
As the proxy depends on the ground-truth preference v*, which may not always be available in
practice, we also explore alterative proxy without access to the ground-truth and demonstrate the
promise of T3 in Appendix D.3.

3.2 EXPERIMENTAL SETUP

Baselines. To evaluate the effectiveness of T3, we compare it against the following baselines: 1)
Direct Inference without Training, where we evaluate representative proprietary reasoning LLMs,
including 03-mini and Gemini-2.5-Pro; 2) PPO (Schulman et al., 2017), 3) GRPO (Shao et al., 2024),
and 4) GSPO (Zheng et al., 2025). PPO and GRPO are widely adopted RL methods for enhancing
the reasoning capabilities of LLMs. GSPO is a recently proposed method by the Qwen team that has
drawn attention. See more details in Appendix F.2.

Implementation Details. The main experiments of RL training are conducted on Qwen2.5-7B-
Instruct (Yang et al., 2024). Analyses on other architecture scales and types can be seen in Sec. 3.3.4.
For the GN, CD, PE, and MR tasks, the interactive feedback is rule-based; for the SP dataset, a
Qwen2.5-14B-Instruct model simulates the “user” and provides the interactive feedback. See more
implementation details in Appendix F.3.

Evaluation Metrics. For the GN, CD, and MR tasks, we report Exact Match (EM), which measures
whether the final prediction made by the LLM exactly matches the hidden number, ground-truth
circuit, or the correct movie recommendation. For the SP task, we use the F1 score (both word-level
and character-level) to assess the similarity between the ground-truth explanation and the solution
produced by the LLM. For PE, we report Binary Similarity, which compares the LLM-estimated
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Figure 4: Training dynamics of response length.

vector against the ground-truth preference vector using cosine similarity. Specifically, we threshold
the cosine score at 0.88: values above the threshold are labeled as 1, and values below as 0. In
Appendix D.1, we also explore the sensitivity with other thresholds.

3.3 EXPERIMENTAL RESULTS AND ANALYSES

In this part, we first present overall performance, followed by analyses of T3 on out-of-distribution
generalization, ablation studies of truncation conditions, and the impact of LLM architectures.

3.3.1 OVERALL PERFORMANCE

Overall Performance. The main experimental results are summarized in Table 1. It can be found
that all RL-trained agents, both with and without T3, substantially outperform the zero-shot baseline,
confirming the necessity of RL in incentivizing active-reasoning capabilities. Compared to vanilla RL
methods, incorporating T3 consistently improves final performance across datasets and algorithms,
with non-marginal gains observed in 14 out of 18 reported metrics. On CD, PPO+T? boosts EM by
16.2% and GRPO+T3 yields further gains, while on SP, GRPO+T? achieves the best F1-word and
F1-char scores. On GN, T? delivers striking improvements, raising GRPO by 30.1% and helping
GSPO reach a near-perfect 99.74% EM. In PE and MR, T2 also brings steady gains, with GSPO+T3
improving movie recommendation accuracy by 41.0%. Overall, these results demonstrate that T3
provides consistent and significant benefits across diverse active reasoning tasks.

Comparing to frontier reasoning models. We can also find that advanced reasoning LLMs perform
strongly on active reasoning tasks where the latent state space S is finite and enumerable (e.g., GN
and CD), but show limitations when S is infinite and unenumerable. In SP and PE, their metrics lag
behind those of RL-trained Qwen-7B models, indicating that effective reasoning over unbounded
state spaces is not achievable by large-scale RL with outcome reward training alone, but requires
principled mechanisms such as T2 to strengthen credit assignment.

Better Stability and Optimality of Training. Beyond final performance, T3 substantially improves
training dynamics. As shown in Fig. 3, vanilla RL methods for active reasoning exhibit higher
variance and instability, with rewards prone to collapsing after partial convergence. By contrast, T3
enables them to maintain monotonic or near-monotonic reward improvement without catastrophic
drops (or at much later steps). Therefore, agents not only converge more reliably but also reach
higher optima. These results highlight the dual benefit of T3: stabilizing reinforcement learning
while guiding policies toward more informative and effective active-reasoning behaviors.

Higher Token Efficiency of Training. While the reward dynamics wrt. step (Fig. 3) seem to indicate
that RL with T2 achieves slightly slower reward growth in the early stage, early truncation ensures
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that each rollout consumes fewer tokens on average (c.f., Fig. 4), and therefore, our method actually
exhibits higher token efficiency overall. For example, under PPO on CD, to reach a reward level of
0.65, our method consumes 66.4% of the total tokens compared to vanilla on average; under GSPO
on GN, to reach 0.96, it requires 76.3% of the tokens. More importantly, while vanilla methods
stagnate and fail to improve further, our method continues to enhance rewards, achieving up to 0.8 on
CD and 0.99 on GN.

3.3.2 OUT-OF-DISTRIBUTION ANALYSIS

To better understand whether the Typle 2: Evaluations of T3 on out-of-distribution (OOD)
agents learn the generalizable policies  gcenarios of PE (under Qwen-2.5-7B-Inst.) and CD (Qwen-

for active reasoning, we further evalu- 5 5 14B Inst., ¢.f, Sec. 3.3.4) tasks under the PPO method.
ate T2 under distribution shifts in two

representative tasks: CircuitDecoding PE (PPO) | CD (PPO)
(CD) and Preference Estimation (PE).

H 3 H 3

In CD, we vary two key factors rel- Vanilla,__ w. T2 | Vanilla.  w. T
ative to training: the number of hid- ~ Reference Size (5) Candidate Size ()
den circuits (training uses 2, we test 2 — ° 400 4437000 ) =10 678 8631153

4) and the candidate pool size 5=10 420 4901700 ) S=15 617 74711507
up to p S=15 393 470177 | S=20 482 558+ 77
(training uses 10, we testup t030). In. g —20 410 5371170 | S=25 352  46.0 0%
PE, we vary the number of reference S =30 423 4631400 | S=30 315 357140
movies (tramlr.lg uses 1_0’ we test 5'3(_)) Reference Sampling Hidden Circuit Size (C)
and the sampling distribution of their  min-max 457  56.0 1 103% | C =2 678  86.3 1 185%
scores (training uses uniform, we test ~ uniform  42.0  49.0170% | C=3 603 753 11504
skewed side distributions). max 507 613t | C=4 427 493 60u

The results are given in Table 2. Across all OOD settings, T2 consistently improves over vanilla
PPO. In CD, although accuracy drops as the task becomes harder with larger candidate pools or more
hidden circuits, the relative gains from T3 remain pronounced, reaching +10.8% with 25 candidates
and +15.0% with 3 circuits. In PE, performance varies non-monotonically with reference size, where
moderate contexts (e.g., S = 20) achieve the best results (+12.7%). Too few references increase the
ambiguity of preference estimation, while too many introduce noise and redundancy, making the
agent more prone to entering the BTR (see Appendix D.2 for an empirical verification). Similarly, for
reference sampling, T2 delivers improvements across all conditions, with the largest margin under
max-skewed sampling (+10.7%). Overall, these results show that T2 consistently enhances OOD
robustness across diverse settings, even in more challenging regimes where the distribution deviates
largely from the training.

3.3.3 ABLATION STUDY ON TRUNCATION CONDITIONS

The effectivenes's of T* Table 3: Ablation Study of Truncation Conditions on the SP, CD, and
hinges on the design of the  pE tagks. Beyond the window size k as seen in Def. 2, we consider

proxy signali for truncating  alternative truncation methods, described in « and S.
the BTR tail. We hence

ablate different truncation SP (GRPO) | CD (PPO) \ PE (PPO)
conditions to analyze their =~ Method Fl-word | Method EM | Method ~ Binary Sim
robustness and trade-offs.  vanilla 3646 | Vanilla 61.67 | Vanilla 42.00
First, we vary the window k=3 38.62 12169 | k=2 6917 7750% | k=2 49.00 +7.00%
size k. Furthermore, we k=25 39.45 1299% | k=3 77.83 11609 | k=14 44.33 1233
Consider alternative trunca- k=9 36.96 1 0.50% k=4 79.33 1 17.6% k=T 42.00 1 0.00%
tion strategies b d a=09 3944200 | B=0.1 69.001733% | 3=02 43.3311339%
ton Séa egles Feyogl Osu; a=093 3881 12350 | B=02 5750 4% | B=05 4467 >0
Mmain design. ~ ror the a=096 379311479 | B=05 13.17 Lsss% | B=0.8 39.00 | 300%

task, we consider Question
Semantic Similarity (Sim-o): a trajectory is truncated if the cosine similarity between the embed-
ding of the current query and any previous one exceeds a threshold «, where we leverage the
E5-large-v2 model (Wang et al., 2022) to calculate embeddings. This proxy detects redundant or
circular questioning, and we evaluate o € {0.9,0.93,0.96}. For the CD and PE tasks, we consider a
random truncation (Rand-[3) strategy, where each step is truncated independently with probability of
B. We test 5 € {0.1,0.2,0.5} for CD and {0.2,0.5, 0.8} for PE.
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Figure 5: Training dynamics of the ratio of early truncation w.r.¢. steps under different truncation
conditions for the SP (a), CD (b), and PE (c) tasks.

The results are reported in Table 3. For SP, increasing k improves performance up to around k = 5,
after which the gains diminish. The similarity-based proxy also provides consistent improvements
over vanilla GRPO, demonstrating that T2 is robust to various forms of the proxy as long as it can
detect the BTR entry reasonably. For CD, varying k shows stable improvements, and especially
k = 3,4 yield large gains over vanilla PPO. We also observe that even random truncation can still
have a mild improvement if the ratio 5 gets properly assigned, indicating the significance of the
BTR issue that even a simple truncation condition can stabilize the training. For PE, & = 2 achieves
the best performance, while the gains diminish as the condition becomes looser. Importantly, these
results reveal that the proxy condition must be set at a moderate level: if it is too loose (e.g., k = 9
for SP), truncation has little effect, causing accumulations of belief tracking error; if it is too strict
(e.g., B =0.2,0.5 for CD), it terminate trajectories prematurely, suppresses early-stage exploratory
actions and leaves insufficient learning signals for effective training.

Training Dynamics of Early Truncation. Furthermore, we examine the temporal evolution of
the early-truncation frequency during training, as shown in Fig. 5. For clarity, the truncation ratio

.. . . __ # rollouts truncated at step ¢ : :
at training step ¢ is defined as ratio, = ZFtowl rollouts alsep ¢ * This quantity tracks how often the

policy enters the truncation region throughout optimization. Combining these dynamics with the final
performance (Table 3) yields a clear pattern: For tasks where the latent state space S is unbounded
(SP and PE), the most beneficial regime is a high and stable truncation ratio from early steps: in SP,
the similarity proxy with a = 0.9 quickly saturates near 1.0 and delivers the best F1; in PE, k = 2
likewise achieves the highest performance. This indicates that when S is infinite, promptly removing
BTR tails protects the learning signal. Notably, in PE, the random truncations (5 = 0.5, 0.8) produce
similar ratios to k = 2 yet only worse final performance, underscoring the necessity of truncation
conditions which detect BTR entry rather than cut indiscriminately.

By contrast, for tasks with finite and enumerable spaces (the CD task), a low-to-moderate truncation
ratio is sufficient and preferable: k£ = 3,4 maintain a small ratio throughout training and yield the
largest EM gains, whereas aggressive settings (kK = 1,2) drive the ratio up and hurt exploration,
leading to weaker results. In summary, the most effective dynamics are: high/early truncation for
unbounded S to prevent BTR-tail contamination, and moderate truncation for finite S to preserve
productive exploration, which precisely aligns with our theory-guided proxy design.

3.3.4 IMPACT OF LLM ARCHITECTURE

We further extend T3 to different LLMs, including Qwen-2.5 in different scales, as well as different
variants of Llama-3.1-8B. As shown in Fig. 6a and 6b, across Qwen-2.5 3B, 7B, and 14B, we observe
that the 3B model shows only limited improvements, whereas the 7B and 14B variants achieve clear
gains under RL. More importantly, the performance of larger LLMs is further boosted by substantially
larger margins under T2 compared to the 3B. This aligns with our formulation in Sec. 2: weaker
belief-tracking ability corresponds to a larger my, making smaller models more prone to quickly
falling into BTR, where even truncation cannot provide sufficient informative training signals.

A similar pattern holds across architecture types. As shown in Fig. 6¢, we compare the effectiveness of
T3 across LLaMA-3.1-8B-Instruct, Qwen-2.5-7B-Instruct, and DeepSeek-R1-Distill-LLaMA-8B. We
observe that LLaMA-8B-Instruct improves only marginally under T3, while its DeepSeek-distilled
variant and Qwen-7B benefit substantially. This echoes recent findings that Qwen exhibits stronger
reasoning behaviors than LLaMA (Gandhi et al., 2025), which we believe include belief-tracking
abilities under partial observability. Notably, the distilled LLaMA variant with T3-equipped RL
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Figure 6: Effectiveness of T3 on different sizes (a, b) and types (c) of LLM architectures. The
“Performance Gain” denotes the improvement of T3 compared to the vanilla RL method.

achieves the best overall performance, exhibiting the largest performance gains. We conjecture that
distillation may effectively boost the belief-tracking capability under finite state spaces, thereby
enhancing the utility of T3 in preserving credit assignment. In our formulation, both size- and
type-dependent differences can be attributed to varying belief-tracking abilities and the associated
mg, which governs how easily trajectories get trapped in the BTR.

4 RELATED WORK

Active Reasoning requires LLMs to interact with external sources and actively acquire missing
information to solve complex tasks. Prior work has improved LLMs’ ability to handle ambiguity
and incompleteness through making clarification and information-seeking actions. For example,
Proactive CoT (Deng et al., 2023) prompts LLMs to identify ambiguous problems and generate
clarification questions, while UoT (Hu et al., 2024) quantifies the contribution of each question
in reducing uncertainty. However, challenges remain when transitioning from LLMs’ single-turn
success to multi-turn active reasoning (Kwan et al., 2024; Liang et al., 2024; Badola et al., 2025),
even with several advanced strategies such as tree-based searching or post-training approaches, as
highlighted in existing works (Zhou et al., 2025). In contrast, we leverage RL to incentivize active
reasoning capabilities, and propose T? to address key issues when applying RL in this setting.

Credit Assignment and Multi-turn RL. Credit assignment is crucial to long-horizon or multi-turn
RL. Existing methods have extensively explored rule-based approaches (Yu et al., 2024; Dou et al.,
2024; Zhang et al., 2025b) to shape intermediate rewards. Several recent works also proposed to
measure the progress of stepwise actions toward overall task completion as intermediate rewards.
Specifically, CURIO (Wan et al., 2025) constructs a potential function over an ideal belief state to
assign intermediate rewards, assuming that the latent state space is finite and enumerable. Sotopia-
RL (Yu et al., 2025) relies on reward labeling with proprietary LLMs. SPA-RL (Wang et al., 2025)
trains reward models for intermediate rewards by enforcing a summation constraint with respect to
the final outcome reward. In our studied active reasoning scenario, belief deviation under partial
observability makes it difficult for outcome-based rewards to properly assign credit to key reasoning
steps. Our proposed T3 mitigates this by halting the trajectory before the reasoning process becomes
trapped in excessive belief deviation and the error accumulation overwhelms credit assignment.

5 CONCLUSION

In this work, we identified belief deviation and the entry to the belief-trap region as a key failure
mode that drives instability and sub-optimality in RL for LLM-based active reasoning. To counter
its harmful accumulation, we proposed T3, a simple yet effective early-truncation mechanism that
halts belief-trapped trajectories. Empirical results on five active-reasoning tasks demonstrate that T3
consistently improves both stability and performance across diverse RL algorithms. Our findings
establish belief deviation as a central bottleneck and show that controlling it is a principled pathway
toward building robust and generalizable active reasoning agents.

10
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LLM USAGE DISCLOSURE

In our work, we mainly use GPT-5 for writing enhancements, primarily to improve grammar and text

clarity.

REPRODUCIBILITY STATEMENT

We describe our dataset details in Appendix F.1. For additional training details, see Sec. 3.2 and
Appendix F.3. For prompt templates, see Figures 10 to 15. With the chairs’ approval, we will also
provide an anonymous code link during the rebuttal period.

A  NOTATION SUMMARY

Symbol Meaning Domain / Notes
Spaces, states, dynamics
S,A O Latent state space, action Sets
space, observation space
s* Episode-wise fixed, unknown s* €S
true latent state
T(s' | s,a) Transition function Degenerate in our work (s*
fixed)
O(o| s,a) Observation model Assump. 3; O > 7 on reach-
able tuples
R, v Reward function; discount fac- ~ € (0, 1]
tor
Beliefs, policies, and updates
A(S) Probability simplex over S Set
by, by Oracle (Bayesian) belief; < A(S)
agent (LLM) belief at time ¢
B*(b,a,0) Oracle Bayes update Posterior under O
By(b,a,0) Agent belief update with pa-
rameters ¢
w(-|b) Belief-conditioned policy Distribution on A

Distances and potentials

d(b,b') = >, [b(s) — ¥/ (s)]
TV(P,Q) = sup, |P(A) — Q(A)]
U(h) = —logb(s*)

v, Uy

/1 distance on beliefs
Total variation distance
Truth-anchored potential
W(b); ¥ (by)

€[0,2]

Probability measures
€10,00); =0iffb(s*) =1
Scalars

Progress / informativeness

Z(b,a) One-step informativeness un- See Def. 4
der oracle update
Po(b) Agent’s expected one-step See Def. 5
progress
co(b) Agent-Bayes update error See Def. 6
Belief Trap Region (BTR)
Ry Belief trap region (absorbing; If b € Ry: Pp(b) < 0 and
non-positive progress) E[U(bty1) | by =] > U(D)
ts Hitting time into Ry First entry time
RL / GAE quantities
Vi =V (by) Value function; calibration ¢ increasing, inf,¢'(z) >

Vi = g(be(s))

ky >0

(continued on next page)
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Symbol Meaning Domain / Notes

op =1t + Vi1 — Vi TD-error Scalar

A GAE parameter € (0,1]

A, = ZJT;J )i Ot4j GAE advantage estimator Scalar

Assumptions / constants

n Non-degeneracy lower bound (0, 1]
for O

L, Policy sensitivity constant TV(r(- | b),n(- | V) <

L. d(b,b)

mg, co, Ugy Update-error growth parame- cg(b) > moW¥(b) — ¢y if
ters U(b) > Uy

B=2(~logn- L+ ) Technical constant From Prop. 2

U = max{Uy, (Vo + B+ co)/mg} BTR threshold in ¥ (sufficient W := ¥ (b7)

Ay = V(by) — V(b7)

condition)
Initial gap (agent vs. oracle)

Used in hitting-time bound

Uy Oracle potential upper bound Non-increasing, u; = WYy,
sequence ur N0

I - Pre-entry lower bound on U7 U} > pfort < tg

0 :=mep — (co + B) Trap margin (not TD-error) Positive in Prop. 3

Others

Spre(t) = Z;S;Ot*l(v)\)j Geometric prefix weight

SSt) =2 j;ttsizt (YA Geometric tail weight

B MORE DETAILS ON THE THEORY

B.1 DETAILED THEORETICAL SETUP

Problem Formulation We consider the active reasoning where an LLM agent interacts with an
external environment to acquire missing information and infer the solution via a sequence of actions
and observations (Zhou et al., 2025). This can be modeled as a Partially Observable Markov Decision
Process (POMDP), defined by the tuple (S, A, O, T, O, R, ), where S is the space of unobservable
latent states, A the action space, O the observation space, T'(s’ | s,a) the transition dynamics,
O(o | s, a) the observation model, R the reward function, and ~ the discount factor. In our work, we
assume that the underlying latent state is fixed during an episode, and denote it as s*.

An ideal Bayesian reasoner would maintain an oracle belief distribution b} € A(S), i.e., a posterior
over latent states given the full history of interactions. Specifically, the oracle belief b* is recursively
updated via Bayes’ rule B* upon taking action a and observing o:

O(o ] s,a)bi(s)

3
(o a) ©

t+1(s) = B*(bf, a,0) =

where py(0 | a) := >, .5 O(0| s',a)b;(s") is the Bayes-normalizer.

In contrast, an LLM agent does not perform exact Bayesian filtering. Instead, it maintains an agent
belief by, which represents its internal understanding of the latent state and what information remains
missing. This belief may be implicit in the LLM’s hidden state or explicit in the trajectory (e.g.,
via Chain-of-Thought (Wei et al., 2022)). Given the action-observation pair (a, 0), the agent belief
evolves by b+ 1(s) := By(bt, a,0), where 6 denotes agent model parameters.

We compare the agent’s trajectory (b, at, 0¢);>1 with that of the oracle reasoner (b}, a;,0;)i>1.
Specifically, the oracle samples actions from 7 (- | b}) and observations from O(- | s*, a}), updating
its belief via B* (Eq. 3). The agent follows its own update rule By, sampling actions and observations
by 7 (- | bt) and O(- | s*,a). To quantify the discrepancy between beliefs, we use the ¢;-distance:
d(b,b') == cs|b(s) —V'(s)| <2,and denote d; := d(by, b}).
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B.2 DYNAMICS OF BELIEF TRAPPING OF LLM AGENTS IN ACTIVE REASONING

We begin by modeling task progress of active reasoning. Specifically, we introduce a truth-anchored
potential function ¥ : A(S) ~ R=Y that captures how concentrated the belief is on the true state s*.

Definition 3 (Truth-anchored potential). For belief b € A(S) and ground-truth state s*, define
U(b) := —logb(s™).

It holds that U(b) € [0, 00), with ¥(b) = 0 iff b(s*) = 1 (task completion). Lower values of U(b)
indicate higher confidence in the true state.

Based on this, we assume that the oracle’s belief (b );>1 is well-behaved and guaranteed to eventually
converge to the truth.

Assumption 2 (Oracle Potential Convergence). Along the oracle trajectory (b}, a},0})i>1, the
potential U} := U(b}) is bounded and convergent to zero. Specifically, there exists a deterministic
nonincreasing sequence (ug)y>1 with uy = U(by) =: ¥ and uy \, 0 such that

Uy <y forallt > 1.
In particular, ¥ < U for all t and lim;_, ¥} = 0.

To analyze the agent’s behavior, we define several key quantities. Through the following definitions,
we measure the expected information gain of an action under the ideal Bayesian update (Def. 4), and
the actual one-step progress when updating belief via the agent LLM (Def. 5). We further quantify
the discrepancy between the agent’s update and the Bayesian update (Def. 6).

Definition 4 (One-Step Informativeness). For belief b and action a, define
Z(b,a) = U(b) — Ego(.fs a) [\P(B*(b, a, o))]

This captures the expected improvement of V-progress when taking action a from belief b.
Definition 5 (One-step Agent Progress). The agent’s expected V-progress given the current belief b:

Py(b) := ¥(b) — an(-|b)Eo~0(-\s*,a){‘I’(Be(b, a, 0))} ,
Definition 6 (Agent-Bayes update error). For a belief b, define the conditional update error

co(b) = Eanr(|p) Bono(|s*,a) [‘I/(Be(b,a,O)) - ‘I’(B*(bva,O))]

We now state several technical assumptions required for our analysis.
Assumption 3. There exists ) € (0, 1] such that O(o | s,a) > n for all reachable (o, s, a).
Assumption 4 (Policy Sensitivity). There exist L, > 0 such that for any beliefs b, V',

TV(r(- | b),7(- | b)) < L d(b,b'),
where TV (P, Q) := sup 4 4 | P(A) —Q(A)| denotes the total variation distance between probability
distributions.
Assumption 5 (Update-Error Growth). There exist constants mg > 0, cg > 0, and a threshold
Uy > 0 such that for all b with U (b) > Uy,

co(b) > mg ¥(b) — co.

That is, in high-uncertainty regimes, the agent’s update error grows at least linearly with V.

Assumption 5 intuitively describes that the errors of belief update are amplified with the belief
diffusing. We next formalize the regime in which such misspecification dominates the oracle’s
informativeness:

Definition 7 (Belief Trap Region, BTR). A set Ry C A(S) is called a belief trap region for an agent
parameterized by 0 if it is absorbing and induces non-positive progress: for any belief b € Ry and all
subsequent times t once entered,

Pr(b) <0 and equivalently E[U(bi11) | by = b] > W(b).
Inside BTR, {¥,} is supermartingale-like under the agent’s evolution: the process does not trend

down in expectation. Practically, once trajectories enter this set, additional steps are uninformative
and tend to reinforce the stall.
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B.3 DETAILED STATEMENT OF THEOREM 1

Next, we investigate the characteristics of the BTR as follows:

Proposition 2 (Sufficient Condition of entering BTR). Under Assumptions 3-5, define the constant
B := 2(—logn L, + 1/n). Then there exists a threshold U := maX{UO, (o + B+ Co)/mg}
such that the following holds: if U(b,) > U for some tg, then for all t > tg,

Po(by) <0 and Ea, o0 [V(big1) | b] = U(by).

This result formalizes the absorbing nature of the belief-trap region: once the potential ¥ exceeds
the threshold U, the trajectory is locked into a regime where exploration is ineffective and the task
progress no longer proceeds. Now we delve into the properties of the BTR entry time ¢g:

Proposition 3. Strengthen Assumption I to global. Assume there exists (1 > 0 such that ¥y > p for
allt < tg. Assume 6 := mgu — (co+ B) > 0. Then the (expected) hitting time into Ry obeys
the explicit upper bound

meU + 6 -‘

o= 1H h’gHmameAms

The proofs for Proposition 2 and Proposition 3 are given in Appendix B.6 and Appendix B.7,
respectively. This gives an explicit upper bound on the time to enter the trap: without checking belief
errors accumulate, hitting BTR occurs inevitably and fairly quickly once belief updates deteriorate.

B.4 DETAILED STATEMENT OF THEOREM 2

Theorem 3 (BTR Induces Advantage Inversion). Under the following assumptions:
(i) Calibration: V; = g(b.(s*)) for an increasing, differentiable g with inf, ¢'(x) > Ky > 0.
(ii) Belief Drop in BTR: E[bj11(s*) — bp(s*) | Fr] < —pp for k > tg.

then, for any t < tg, the expected advantage is bounded:

E[A/] <7 (Spe(t) = kvonSi(t)) “)
where Sy, (t) = Z;S:?Jt_l(’y)\)j and S5, (t) = Z}:tts_ft(’y)\)j. Therefore, a sufficient condition for
E[A;] < 0 is:

Spre(t)
Kv pp > . 5
Sai(t)

In particular, when y\ — 1 (a common setting for sparse reward tasks), the condition simplifies to
Kkypy > AJL, where A =tg —tand L =T — 1 — tg are the prefix and tail lengths, respectively.

The proof for Theorem 3 is given in Appendix B.8. This proposition quantifies the credit assignment
failure: the negative drift from a long uninformative tail (L large) can overwrite the positive credit
from the informative prefix, causing the overall gradient to point in the wrong direction and penalize
earlier exploratory actions. This analytical result motivates the need for a mechanism to cut the
trajectory upon entering the BTR, thereby isolating the prefix and preserving the correct credit
assignment.

B.5 IMPORTANT LEMMAS

Before proving the propositions, we start by providing two important lemmas, and their proofs in
Appendix B.10 and B.11.

Lemma 1 (Belief-Lipschitz Continuity of Informativeness). Under Assumption 3, for any fixed
action a € A and any beliefs b,b' € A(S), we have

1
|Z0.0) = ¢/ a)| < o=V ©)
Consequently, for any action distribution q,

1
’EaNqI(b,a)—EaNqI(b’,a)‘ < 5||b—b'||1. )
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Lemma 2 (Policy-Lipschitz Continuity of Informativeness). Under Assumption 3, for any fixed belief
b € A(S) and any two action distributions q,q' on A, we have

[EangZ(b,a) = EangZ(b,a)| < A-llg — q'llTv,
where A := —logn and ||q — ¢'||Tv := sup sc 4 |q(A) — ¢'(A)| denotes the total variation norm.
B.6 PROOF OF PROPOSITION 2
Proof. From Definitions 4, 5, and 6, we have:

Po(bi) = Eq, (o) [Z(bt, as)] — co(be). ®

Let a; ~ (- | b;) and af ~ 7(- | b}). Leveraging the results in Lemma 1 and 2, we bound the
difference in expected informativeness:

Ea; [Z(07 7)) — Ea, [Z(b0, )] ©)
< |Ea; [Z(b7, a7)] — Eq, [I(bi,at)]’ + |Eq, [Z(07, a1)] — Ea, [Z(bi, ar)] (10)
<ATV(mw(- | b7),7(- | b)) + Ly d(b}, by) (11)
< (AL, + Ly) d;. (12)
From Assumption 2, we have:
Eq; [Z(b7, af)] = W(b7) — E[W (b711)] < Yo (13)
Combining with Eq. 12 yields:
Eq, [Z(bs,ar)] < Wo + (ALx + Lp)ds. (14)
Since d; < 2, we obtain:
Eo, [Z(b,ar)] < ¥o+ 2(AL; + L) = K. (15)
Now, from Assumption 1, if ¥(b;) > Uy, then:
co(by) > meW(by) — co. (16)
Substituting into Eq. 8 gives:
Po(be) < K — (me¥(be) — co)- (a7
Thus, if ¥(b;) > (K + co)/me and ¥ (b;) > Uy (i.e., ¥(b;) > U), then Py(b;) < 0, meaning:
E[W(bet1) | be] = ¥(be). (18)

Since ¢y(+) is lower-bounded by a function that is nondecreasing in ¥ (Assumption 1), this argument
applies inductively for all ¢ > ¢(, confirming the supermartingale property and the stalling behavior.
O

B.7 PROOF OF PROPOSITION 3

Proof. For simplicity, let U; := ¥(b;) and ¥} := ¥(b}). From the definitions of agent progress
P, (b) and update error ¢y (b), we have the one-step expectation:

E[Wiy1 | Fi] = Vs — Eq,on( o) [Z(0t; ar)] + co(be). (19)
For the oracle, it holds that:
E[W7 1 | Fil = V7 = Eoror( o) [Z(0F, a)]- (20
Subtracting these two equations yields the fundamental drift identity for the gap A, = ¥, — U}
E[Avy1 — Ay | Fe] = (Bar [Z(0}, a7)] — Eaq, [Z(be, ar)]) + co(by). (1)
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From what have been shown in Eq. 12, we have,

|Eo: [Z(b7,a})] — Eq, [Z(be,ar)]| < (ALx + Ly)dy < 2(ALr + Ly) =: B. (22)
Substituting into 21 gives:
E[Ai1 — Ay | Fi] > —B + co(by)- (23)
The strengthened Assumption 1 implies:
co(b) = mpUy — co = mg(Ar + U7) — cp. (24)
Substituting into 23 yields:
E[Aip1 — Ay | Fi] > mplAs + (mQ\I': — (o + B)) . (25)
Rearranging terms:
E[Ai1 | Fe] = (14 mg)Ay + (me¥} — (co + B)) . (26)

By the law of total expectation, we have,

E[E[Am | ]-'t]} > E[(l +me)Ar + (me¥F — (co + B) )} 27)
E[Ai1] > (1 + me)E[A] + meE[¥}] — (co + B). (28)
Iterating this inequality gives:
T—1
E[A7] > (1+mp)" AL+ > (1+mg)" " E [mp W — (co + B)] - (29)
k=1

As assumed in the proposition, there exists 1 > 0 such that for all £ > 1, ¥} > 1 almost surely. This
implies E[U}] > p. Then:

E [mglllz — (o + B)} > mop — (co + B) =: 4. (30)
Substituting into Eq. 29:
T-1
E[A7] > (14mg)" AL+ (14 mg) 1 F 31)
k=1
1 -1
(L4 mg)T 1Ay 4 g0 . (32)
mg
We now show that E[Ur] exceeds U in finite time. Recall:
E[¥r] = E[Ar] + E[V7] = E[A7]. (33)
A sufficient condition is therefore:
1 T=1_1
(1+mg)" 1Ay +5( + mo) >U. (34

meg

Since 6 > 0 and 1 + myp > 1, the left-hand side grows exponentially with 7. Thus, for any U > 0,
there exists a finite 7" such that Eq. 34 holds. Specifically, we have:

moU + 6

1 =1 77 -
( +M(9) ~ meA; + 0

(35)

Taking logarithms yields the explicit bound:

1 meU + 6
> .
T=1+ [1og(1 + my) log <m9A1 + (5)-‘ (36)

This completes the proof.
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B.8 PROOF OF THEOREM 3

Proof. We decompose the advantage estimator: A; = Pre(t) + Tail(t), where

ts—t—1 T—t—1
Pre(t) = Z ¢’ 44, Tail(t) = Z ¢’ 0t+j, andg=yA.
=0 j=ts—t

For any k < tg, the TD-error 8, = yVj+1 — Vi (since 7, = 0). Because Vj, € [0,1],
E[ok | Fi] = VE[Vitr [ Fa] = Ve <v-1-0=1.
Taking full expectation and summing over the prefix yields:
E[Pre(t)] < vSpre(t). 37)

We split the tail into the main part and the terminal step:

T—t—2
Tail(t) = Z qj(SH_j +qT_t_1(5T_1.
j=tg—t
J=tls
Tail = (t)
For the terminal step, 67—1 = Ry — Vp_1,s0 E[d7_1 | Fr_1] = 0, and thus E[g” ~'~167_;] = 0.
Now, fix k € {tg,...,T — 2}. We analyze E[J, | Fi]:
Eldk | Fx] = VE[Vitr = Vi [ Fe] + (v = DV (38)
<AE[Viy1 — Vi | Fix] (since Vi > 0and v — 1 <0). 39)

By the calibration assumption, Vi1 — Vi = g(br+1(s*)) — g(br(s*)). Since g is differentiable with
g > ky >0, and since E[by11(s*) — bi(s*) | Fi] < —pp by assumption, we have:

E[Vii1 — Vi | Fi] = Elg"(§x) (br41(5™) — bi(s™)) | Fi (40)
< kvE[bry1(s™) = be(s™) | Fi] (since ¢'(&k) > ky) (41)
< —Kvpp- (42)

Therefore, E[0y, | Fr] < —yKv pp. Taking full expectation and summing over the tail gives:
E[Tail = (t)] < —vrvpeS5,(t). (43)

Combining Eq. 37 and Eq. 43 proves the main bound Eq. 4. The inversion condition Eq. 5 follows
directly by requiring the right-hand side of Eq. 4 to be negative.

From what have been proved above, we have:
E[A;] = E[Pre(t)] + E[Tail(t)] < E[AY] — yry ppSS, ().

Rearranging terms yields: E[A”] > E[A,] + vry ppSS, ().

B.9 PROOF OF PROPOSITION 1

Proof. Fix any k-step segment (¢ + 1,...,¢ + k) that lies entirely outside the BTR, so that g5 >
p>0foralls € {t+1,...,t+ k}. By definition of the biased Gaussian-noise model, we have
ds = gs + Bs + &5, where |Bs] < M, &, ~ N(0,02) independently across s. On a step s outside
the BTR, a local false truncation event occurs when the proxy falls below the threshold A i, (c.f,
Def. 2) despite g > p:

gs = {ds < Amin} = {gs + ﬂs + gs < Amin}~
Using g5 > p and |3s| < M, we obtain g, + 35 > p — M. Hence
Pr(&€) =Pr(gs + 8s + & < Amin) < Pr(p— M+ & < Apin) = Pr (fs < Apin — (p — M))
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Define the margin a := p — M — Aj,. By the assumption A;, < p — M, we have ¢ > 0 and
therefore,
Pr(&) < Pr(& < —a).
Since &, ~ N(0, 02), the standard concentration inequality gives, for any a > 0, we have
Pr(¢s < —a) < exp( — %)

Applying this witha = p — M — A, > 0 yields

_ _ 2
Pr(&,) < exp( - wgiA)) (44)

Recall that the T2 rule with window size k triggers at the end of a k-step segment only if all & steps in
the window are classified as “non-informative”. For a non-BTR segment (¢t + 1,. .., ¢+ k), activating
T3 therefore corresponds to the intersection of the k single-step events &1, .. ., Epik:

t+k

Eritprn = [ &
s=t+1

By independence of the noises {&,} across s and because each &; is determined by £, we have

t+k

Pr(&i,. t4k) = H Pr(&s).

s=t+1

Applying the single-step bound (Eq. 44) uniformly yields

LM A2
Pr(&t1,. t4k) < eXp( - W)
To ensure that the false-truncation probability on any k-step non-BTR segment is at most § € (0, 1),
it suffices to require
exp( _ k(p—]\é;ﬁmm) ) g 57
which is equivalent to
E(p—M— Anin)? > 20%log(1/6).

B.10 PROOF OF LEMMA 1

Proof. We begin by showing the closed form of one-step informativeness Z(b, a). Combing Defini-
tions 3, 4 and Eq. 3, we have,

I(bv (l) = \I](b) - EONO("S*,G) [\I/(B*(ba CL,O))] (45)
_ N O(o| s*,a)b(s*)
O(o] s*,a)]
= ]Eow |s*,a log ———=| . 47
o(| 7)[Og (o a) 47

For fixed a, Let P(0) := O(o | s*,a), and Qy(0) :==pyp(0 | a) =, b(s)O(0 | s,a). Then we have:

T(b,0) = Eoup [mg Z;(())} — Ep[log P(0)] ~Eplog Q4(0)]. (48)

constant in b

By the non-degeneracy assumption (Assumption 3), O(o | s,a) > 7 for all reachable o, s. Conse-
quently, for any belief b and any observation o,

Qp(0) = Z b(s)O(o | s,a) > Z b(s)-n=mn. (49)

seS SES
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Thus, Qp(0) > 1 and Q4 (0) > n hold for all o.

For any x,y > n > 0, we have the elementary bound

1
/fdtf
,

Applying this with Q(0) and Qp (o) yields:
0) — Qu (0
10§ Qu(0) ~ log Qo (o) < 22— 210
Taking expectation under P and properties of expectation, we get:
[Ep[log Qu(0)] — Epllog Qi (0)]| < Ep [|log Qs(0) — log Qv (0)]

<Ep [IQW);QMo)I}

1

< ;HQb = Qulfr-
Since Z(b, a) = const — Ep[log Q(0)], it follows that
1

IZ(b,a) = Z(V,a)| < EHQb = Qv 1.

e -yl _lz—yl
min{z, y} n

|logz —logy| =

for all o.

‘We have

|Qs(0) = Qu(0)] = [ _(b(s) = (5))0(0 | 5,a)

seS

seS
Summing over o gives:

Qb — Qulli =D 1Qu(0) = Qu(0)] < D> " |b(s) = ¥/()|0(0] 5, )

1@} 0€Q seS§
= " [b(s) =¥ (s)| > O(o] 5,a)
seS ocO
= 1o =¥

Combining this with Eq. 55 yields the pointwise bound:
1

Z(b,a) = Z(V', a)| < —[[b— V1.
n

For any action distribution ¢, by the linearity of expectation:

<Z|b ) —b'(s)|O(0| s,a).

(50)

(S

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)

1 1
[BangZ (b, a) = EangZ(V', )| < Bang |Z(b,a) = Z(V, a)| < Eang {nllb b'l} = Ellb* o'l

B.11 PROOF OF LEMMA 2

(61)
O

Proof. For fixed b, define f(a) := Z(b,a). We first show that f is bounded. By non-degeneracy,

O(o | 8,a) > n for all o, s, a. Consequently, for any a,

pp(o] a) = Zb O(o|s,a) >n and O(o|s*,a)>n.
s€S
By Eq. 47, we have
O(o| s*

0<Z(b,a) =E,wo(.s.a) |lO
< T000) = ot 08 20T

Hence, || f||o < —logn, where || - || denotes the supremum norm || f|| o := sup,c 4 | f(a)].

))} < Foro s+ llog(1/m)] = — log.

The result now follows from a standard property of the total variation norm: for any bounded function

)

[Bangf(a) = Bang f(@)] <[ fllo - lg = ¢'llrv < (—logn) - [lg — ¢'[lrv-
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C EMPIRICAL VERIFICATION OF THE THEORY

C.1 EMPIRICAL VERIFICATION OF ASSUMPTION |

A direct empirical validation of Assumption 1 is inherently challenging, as neither the oracle Bayesian
update B* nor the LLM agent’s internal belief state b; is directly observable. To address this, we
design a controlled study on the PE task that enables practical and theoretically aligned approximations
of all relevant quantities.

(i) Approximating the potential W. Each interaction round in PE provides the model’s explicit
estimate of the latent user-preference vector, denoted by w;. Since the ground-truth preference w* is
available, we define

d(we) = fwe —w*|l3,
and use d(w;) as an observable proxy of the potential, i.e.,

Uy = d(wy) ~ U(by).

This proxy preserves the essential properties of the theoretical potential: it is non-negative and equals
zero if and only if the task is solved.

(i) Approximating the oracle Bayesian update B*. Although the true Bayesian posterior is

inaccessible, we construct a principled surrogate update rule B following a standard update manner
based on traditional machine learning. Specifically, given the model’s query a; := (A, B) where
A, B denote the movie pair to compare and the observed feedback o;, we define
2
’ A T 90
wyyq = B(we, ag,00) = wy + Kemy (0 — my wy), Ki=——5——.
+ ( ) Tl T 7

Here, m; € R? is the movie-attribute difference vector for the pair of movies selected by the LLM’s

query, i.e., m; = attr(A) — attr(B). The binary observation o; € {—1,+1} corresponds to the

user’s response and is given by o; = sign(m,] w*). The terms o2 and o denote prior and observation

noise variances; following standard practice, we set both to 1.0. In contrast, the LLM agent updates
its estimate via

Wi41 = Be(wt7at70t)7
which reflects the internal belief dynamics induced by its parameters 6.

(iii) Constructing observable samples of the update-error term. Using the above approximations,
we instantiate the update-error quantity via

¢o(be) := d(wps1) — d(wyy) = cp(by).

We toally collect over 150k samples of pairs { (¥, ég(b;))} using rollouts from the Qwen-2.5 series
models, which provide a sufficiently rich empirical basis for inspecting the assumption.

(iv) Estimating mg, Uy, ¢ via lower-envelope fitting. Since Assumption 1 concerns only a lower
bound relationship, we estimate the empirical lower envelope using a principled two-step procedure:

(a) Lower-envelope extraction via binning. According to Asp. 1, belief deviation of the LLM agent
will be further amplified once it progresses into an uncertain region. Hence we empirically select

a proper value of Uy such that large belief deviations are observed. We then partition the range
[Uo, U max] into B equal-width bins [¢),—_1, 13 ). For each bin b, we compute:

Ty = E[\i/t | W, € bin b], Yp 1= Quantileo_l(ég(bt) | J, € bin b),
where y;, captures the empirical 10th-percentile lower envelope within the bin.

(b) Linear estimation on the active region. Restricting to the active region \i/t > [70, we fit a linear
model to the extracted lower-envelope points:

Yp A Mg Tp — Co.
The resulting (779, ¢o) provide empirical estimates of the coefficients in Assumption 1.

We visualize the whole procedure and the fitted linear model in Fig. 7. The above procedure yields an
interpretable empirical characterization of the lower-bound growth pattern required by Assumption 1.
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Figure 7: Empirical visualization of Assumption 1 on the PE task. The dashed vertical line marks the
empirically determined threshold Uy. Blue points show all samples, while orange points represent the
binned lower envelope, obtained by partitioning the range of { W, > UO} into equal-width bins and
taking the 10th percentile of ¢y within each bin. The red line is a linear fit to these lower—envelope
points. For (a), we emplrlcally select Uy = 10, and obtain the linear fit: ¢y = 0.0969 x ¥ — 3.0478.
For (b), similarly, we select UO — 2 and obtain ¢ = 0.4655 x ¥ — 1.5158.
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Figure 8: Empirical verification of Theorem 2 and Corollary 1. (a-b) Without truncation, early-token
advantages exhibit a clear negative drift, while T2 consistently elevates them across PE and CD
tasks. (c) Longer uninformative tails (higher maximum interaction turns, from 6 to 15) cause stronger
suppression of early advantages. (d) Stronger T3 truncation (smaller k) yields cleaner, less-biased
early advantages.

C.2 VERIFICATION OF THEOREM 2 AND COROLLARY 1

To empirically validate the credit assignment pathology formalized in Theorem 2 and the mitigating
effect of T? stated in Corollary 1, we designed a controlled experiment to isolate the impact of the
uninformative trajectory tail on the advantage estimates of preceding exploratory actions.

Experimental Setup. Given a fixed policy optimized via standard PPO paradigm, we generated two
sets of rollouts: one using the standard method (w/o Truncation) and one using the T2 truncation rule
(w/ Truncation). To precisely measure the contamination effect of the uninformative tail without the

24



Under review as a conference paper at ICLR 2026

— a=0.1
[«M“M—’\N‘\——— a=05 125 W’V—WM’*‘W
1.0 — a=09

—— wJo Truncation 1.00

05 Mfm 0.75 WWWM

0.50 — a=01
0.0

a=05
—— a=09
0.25 —— wi/o Truncation

-0.5 0.00

-10 W -0.25 WW(_MMW
~0.50

Token Advantage (mean)
Token Advantage (mean)

0 100 200 300 400 500 0 100 200 300 400 500
Token Index Token Index
(a) PE (b) CD

Figure 9: Empirical verification of the effect of false positive on (a) PE and (b) CD tasks. More
aggressive false-positive truncation (larger «v) systematically reduces the advantages of early ex-
ploratory actions, reflecting the removal of positive future return contributions.

confounding factor of successful outcomes, we filtered and exclusively analyzed rollouts that resulted
in a failure (i.e., a final reward of 0). We then computed the Generalized Advantage Estimation
(GAE) for each token in the first 500 tokens of these failed trajectories. Finally, we calculated the
mean advantage at each token index across all rollouts within each condition.

Main Results. The results across the CD and MR datasets are presented in Fig. 8a and 8b. In the
w/o Truncation condition, the mean advantage of early tokens is suppressed, while applying the
T3 truncation rule (w/ Truncation) consistently elevates the mean advantage of the early tokens. This
demonstrates that the uninformative tail inside the BTR introduces a negative drift that systematically
corrupts the advantage estimates of the preceding exploratory actions, and shows that the T3 early-
truncation mechanism effectively alleviates this issue, preserving the integrity of the gradient signal
during policy optimization.

Effect of Tail Length and Truncation Strength: We further vary the effective tail length and
truncation strength. As shown in Fig. 8c, longer uninformative tails in the w/o Truncation setup led to
a more severe suppression of early-token advantages. Fig. 8d exhibits that stronger (more aggressive)
truncation in the w/ Truncation setup resulted in higher and less corrupted advantage estimates for
the preserved trajectory prefix. This is consistent with the theoretical outcome of this work.

C.3 COMPLEMENTARY ANALYSIS OF FALSE-POSITIVE TRUNCATION AND ITS IMPACT

Since T3 relies on observable surrogates of the BTR to construct the truncation condition, the
frequency of false positives is empirically limited. However, premature (false-positive) truncation can,
in principle, remove useful exploratory steps and harms optimization. We provide both an analytical
discussion and a diagnostic experiment.

Analytical perspective. Under the standard GAE decomposition, the advantage of an early token ¢
aggregates future TD-errors: A; = Zfzt(*y)\) “=t§,,. Theorem 2 characterizes the “uninformative
tail” regime in which the expected TD-errors §,, are negative; failing to truncate such tails induces a
downward drift on A;. A premature truncation corresponds to the opposite scenario: the trajectory
has not yet entered the belief-trap region, and truncating at this point may discard future steps whose
TD-errors 6, would have been positive. Consequently, A; may be reduced due to the loss of these
potentially informative and reward-contributing steps.

Diagnostic experiment. To make this effect concrete, we conducted a controlled diagnostic experi-
ment. We fixed a trained vanilla-PPO policy and generated a set of full rollouts. To focus our study
on the effect of false positives, we filtered the rollouts to those with a final reward of 1, ensuring
that the retained trajectories contain genuinely informative future signals and do not enter the BTR.
On these trajectories, we simulated false-positive truncation as follows: With probability «, the
trajectory is forcibly truncated at turn 3 (the maximum allowed turn is 10). With probability 1 — «,
the trajectory proceeds normally to completion. This creates a clean setting in which any degradation
can be attributed solely to premature truncation. For each early-stage token position ¢t = 1:500, we
computed the mean GAE advantage across rollouts for different a values.
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Results. We present the results for the CD and PE datasets at Fig. 9. As expected, more aggres-
sive false-positive truncation systematically reduces the advantages of early exploratory actions,
confirming that premature (false-positive) truncation negatively impacts credit assignment.

D COMPLEMENTARY EMPIRICAL ANALYSIS

In this section, we present complementary experimental results to provide further insights.

D.1 RATIONALE OF SELECTING BINARY SIMILARITY THRESHOLD IN PE

In the PE task, the reward is derived from the cosine similarity between the model-predicted preference
vector and the ground-truth preference. We convert the similarity into a binary reward by activating it
only when the similarity exceeds a prescribed threshold. To understand the effect of this threshold,
we evaluate several settings {0.85, 0.88, 0.90, 0.95} using Qwen-2.5-7B-Instruct trained with PPO.

Table 5 summarizes the results. Lower thresholds (e.g., below 0.80) cause the reward to activate almost
continuously, which diminishes the discriminative value of high-quality predictions. Conversely, very
high thresholds (e.g., above 0.95) make activations extremely rare, preventing PPO from learning
effectively. Mid-range thresholds between 0.85 and 0.90 consistently yield stable training dynamics
and strong downstream performance. We use 0.88, which lies within this empirically robust region,
in the main experiments of the PE task.

Table 5: Effect of the binary-similarity threshold on PE performance (BinarySim accuracy). All
results use Qwen-7B-Instruct trained with PPO.

Threshold 0.85 088 090 0.95

PPO (vanilla) 5533 42.00 33.67 4.33
PPO + T3 63.00 49.00 37.67 3.67

D.2 EFFECT OF REFERENCE-SET SIZE ON REDUNDANCY-INDUCED STALLING

Empirical Verification. To further examine the role of redundancy in inducing belief-trap regions
(BTR) in the PE task as mentioned in Sec. 3.3.2, we investigate how the frequency of truncation
varies with the size of the reference set S. We evaluate truncation ratios across different reference-set
sizes S € {10, 15, 20, 25, 30} for the Qwen-2.5-Instruct model family. Table 6 reports the results.

Table 6: Truncation ratio (%) under different reference-set sizes S for Qwen-2.5-Instruct models.
Larger .S corresponds to more potentially redundant comparisons.

S 10 15 20 25 30

3B 41.67 39.67 46.67 44.33 50.00
7B 50.67 53.67 54.00 56.67 56.67
14B 2333 3033 27.00 33.00 33.33
32B  38.00 39.67 3933 50.33 4633

Across all model scales, the truncation ratio exhibits a general upward trend as .S increases from 10 to
30. This pattern indicates that larger reference sets introduce additional noisy or redundant pairwise
comparisons, which in turn make epistemic progress harder to achieve and increase the likelihood of
entering a redundancy-induced BTR.

D.3 T3 ON PE-LIKE TASKS WITHOUT ACCESS TO THE GROUND TRUTH
The proxy rule for the PE/MR task described in Sec. 3.1 relies on the ground-truth preference vector v*.

However, the truncation mechanism does not require access to the ground-truth. Instead, we employ
a fully belief-driven truncation rule that relies solely on the agent’s internal preference estimates. Let

26



Under review as a conference paper at ICLR 2026

0, denote the model’s predicted preference vector at round ¢. We define an epistemic-stalling signal
via a k-step moving average of update magnitudes:
t
1 . .
stall, = (k: ‘ Z 1941 —Uj||2> <e, (62)
j=t—k+1
where £ is the sliding-window length and ¢ is a truncation threshold. The threshold is obtained from
the empirical distribution of the k-step moving-average updates Aﬁ“ computed from offline rollouts.
Specifically, ¢ is set to a chosen quantile (e.g., 60%, 75%, 85%) of this distribution, ensuring that
the criterion is entirely ground-truth-free. A trajectory is truncated once Eq. 62 is triggered, i..e, the
agent’s belief updates become small for consecutive steps, indicating epistemic stalling.

Table 7 summarizes the results on the PE dataset. Despite the absence of oracle information, the
belief-based truncation retains strong performance, closely matching or surpassing the oracle-based
T3 reported in the main paper.

Table 7: Performance of T3 on the PE task without access to v*. Thresholds ¢ correspond to quantiles

of offline A§k> statistics. BinarySim accuracy is reported for Qwen-2.5-7B-Instruct trained with PPO.
vanilla and T3-gt represent vanilla-PPO and T3 in the main text (with access to the ground-truth
v*), respectively.

Quantile 60% 75% 85% vanilla T3-gt

€ 0.18 0.28 0.36 - -
BinarySim 44.33 50.67 49.00 42.00 49.00

D.4 EXPLORATION OF ADAPTIVE T3 TRUNCATION RULE

Adaptive T3 via online threshold selection. Motivated by extending T3 beyond fixed, offline-
chosen thresholds, we further investigate an adaptive variant in which the truncation threshold evolves
alongside the policy. For the PE task, the belief-based stalling criterion is employed the same as
Appendix D.3 and Eq. 62 with £ = 4. To obtain ¢ adaptively, every 6 training steps we collect a
batch of fully untruncated rollouts under the current policy and compute the empirical distribution of

the k-step moving-average update magnitudes Aik). The threshold is then updated according to a
fixed quantile « of this distribution:

e < Quantile,, ({Aik)}online)'

This mechanism yields a dynamically adjusted truncation threshold that tracks the scale of the model’s
ongoing belief updates.

Table 8 reports the performance across quantiles . The results exhibit non-monotonic dependence on
a. Notably, at o = 0.6, the adaptive variant achieves a substantial improvement, outperforming both
the PPO baseline and the oracle-based T? result reported in the main text. These results highlight
the potential for extending the T2 principle to adaptive thresholding, and we leave a more in-depth
exploration to future work.

Table 8: Adaptive T3 on the PE dataset. The threshold ¢ is updated online from the c--quantile of the
current Agk) distribution.

o 20% 40% 60% 80% 90% vanilla T3-gt
BinarySim 43.67 4433 60.33 43.67 39.67 42.00 49.00

E POTENTIAL FUTURE WORK

E.1 MORE GENERAL-PURPOSE PROXY DESIGN.

Task-agnostic surrogate signals for epistemic stalling. In main experiments, since the structure
of hypothesis spaces and notions of progress differ across tasks, instantiating T3 naturally relies
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on task-level meta-knowledge for observable signals. However, guided by the T# principle, we
can further reduce the reliance on task-specific knowledge via utilizing general-purpose truncation
detectors. We explore two broad, task-agnostic families of surrogate signals as follows.

(i) Semantic redundancy signals. In multi-turn LLM-agent settings, epistemic stalling frequently
manifests as semantic redundancy, where the model repeatedly issues circular queries or revisits
previously resolved informational subgoals, as shown in prior studies (Zhou et al., 2025; Yuan et al.,
2025). Such redundancy is often detectable via embedding similarity, clustering, efc.

Building on this intuition, we have several successful explorations this direction: i) In the SP task, the
truncation based on question-semantic similarity (c.f., Sec. 3.3.3) yields consistent performance gains.
ii) Moreover, for tasks with continuous latent spaces, such as the PE task, tracking the convergence of
the model’s internal preference vector estimate provides an effective proxy for redundancy: truncation
is triggered when the estimate ceases to change meaningfully (c.f,, Appendix D.3 and D.4). This
convergence reflects an epistemic “stall” analogous to query redundancy in dialog scenarios such as
the SP. Our experiments show the effectiveness of the manner.

(ii) Internal state signals. Recent empirical analyses suggest that hidden representations of Trans-
former and LLM models could encode intermediate judgment or reasoning states (Lu et al., 2025;
Zhou et al., 2024). Although the precise hidden-state signatures corresponding to epistemic stalling re-
main an open question, characterizing such patterns (e.g., consecutive high similarity of hidden states)
is a promising direction for future work. Such signals may be especially valuable in open-domain
tasks where a structured hypothesis space is not readily defined.

F SETUP DETAILS

F.1 DATASET DETAILS AND PROMPT TEMPLATES

In this section, we present more details for the datasets and tasks evaluated in this work. See dataset
statistics in Table 9.

SituationPuzzles (SP). This task introduces a challenging active reasoning task where the LLM
player must uncover a coherent narrative from an initially puzzling scenario. Each puzzle begins
with a brief, paradoxical statement. The solver interacts iteratively with a judge by asking binary
yes-no questions, gathering feedback from the judge to constrain the solution space. The goal is
to formulate a complete and plausible explanation that resolves the apparent contradiction. We
directly use this dataset from the AR-Bench (Zhou et al., 2025). In our experiments, we utilize a
Qwen2.5-14B-Instruct model to provide the interactive feedback.

The prompt template for the SituationPuzzles dataset can be seen in Fig. 11. For SituationPuzzles,
put a specific puzzle to solve into {puzzle} of the prompt. The prompt template for the judge LLM
is shown in Fig. 13. The judge will receive {surface} and {bottom} to understand the whole
puzzle, and give yes-no feedback according to the player LLM’s question.

GuessNumbers (GN). Adapted from the original dataset proposed by AR-Bench (Zhou et al., 2025)
which the player must crack a 4-digit secret (digits are unique in 0-9), our newly constructed GN(a, b)
is a series of reasoning tasks that involve the LLM agent’s interactive deduction with external sources:
the target is a a-digit number, where each digit is sampled from a set of b unique symbols without
repetition. This yields P(b,a) = b!/(b — a)! possible targets.

At each step, the LLM agent makes a guess and receives structured feedback in the form of xAyB,
where = denotes the number of digits that are both correct in value and position (denoted as “A”), and
y denotes the number of digits that are correct in value but placed in the wrong position (denoted as
“B”). The agent is expected to actively perform reasoning based on accumulated observations and
interact with an external source to efficiently reduce uncertainty and locate the correct answer.

To control for randomness in the first move, which plays a minor role in evaluating the LLM agent’s
ability to understand and update based on observations, we fix the first guess to a deterministic number
that is guaranteed to differ from the answer. This means we need (a, b, go, o, Yo ) to specify a question
for the LLM player, where gy denotes the initial guess, and (g, yo) denotes the corresponding initial
feedback of the form xgAy(B.
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We group data items by their tuple (a, b, xo, yo), since items sharing the same (a, b, z¢, yo) corre-
spond to tasks with similar uncertainty reduction dynamics and reasoning logic patterns. Specifically,
our constructed dataset covers all data items of the following sub-groups: (3,4,0,3), (3,4,2,0),
(3,4,1,2), (3,5,1,2), (3,5,0,3), (3,5,1,0), (3,5,2,0), (4,4,0,4), and (4,5, 3,0). These configu-
rations are carefully selected to ensure diversity in task complexity: varying (a, b) controls the size of
the hypothesis space, while varying (xq, yo) shapes the initial reasoning landscape by introducing
distinct patterns of partial evidence. Finally, we perform a randomized train-test split to the obtained
set for training and evaluation.

The prompt template for the GuessNumbers dataset can be seen in Fig. 12. For GuessNumbers,
we need to first specify {num_digits} and {num_uniques}, corresponding to (a,b) mentioned
above, and then specify the initial guess in {initial_guess}, and the resulting initial feedback in
{initial_feedback_same.pos}and {initial_feedback_diff pos}.

CircuitDecoding (CD). Adapted from Badola et al. (2025), in this dataset, each instance presents a
collection of unknown Boolean circuits, each taking a fixed number of binary inputs and producing
a binary output. There are several ground-truth circuits which are drawn from a finite candidate
set of logical structures, and the player must identify which candidates correspond to the hidden
circuits. To achieve this, the solver engages in a multi-turn interaction protocol: at each turn, the
player must query one circuit with a binary input configuration of their choice, and receives the
corresponding output. These queries serve as informative probes, allowing the player to iteratively
eliminate inconsistent candidates and refine their hypotheses. The task requires strategic planning
to maximize information gain under limited query budgets, and finally the solver must output the
candidate indices of all underlying circuits. In our experiments, we adopt the prompt template shown
in Fig. 10, where the LLM solver aims to figure out {num circuits} hidden ground-truth circuits
from {num candidates} candidates specified as: {candidate_list_str}.

PreferenceEstimation (PE). Adapted from Badola et al. (2025), this dataset targets the problem of
interactive preference elicitation, where the agent must infer a latent user preference vector governing
utility over movies. Specifically, each movie is associated with a list of attribute scores (s, - , $,),
where n is the total dimensions of attributes. In this task, the user evaluates a movie as a weighted
sum of its attribute scores Z?:l w; s;, with the weights (ws, - - - , w,, ) forming the hidden preference
vector to be discovered. At the beginning of an interaction episode, the agent is presented with a set of
reference movies annotated by their attribute values. At each round, the agent outputs both its current
vector guess and a pairwise comparison query between two reference movies. The user provides
feedback (“Yes”, “No”, or “Equal”) according to the weighted sum scores of the two mentioned
movies. Through multiple turns, the agent iteratively updates its estimate of the preference vector by
reasoning over past user feedback.

The prompt template for the PreferenceEstimation dataset is illustrated in Fig. 14. The LLM player is
given {len_seen} reference movies for raising pairwise questions, to iteratively refine its guess on
the {len_attributes}-dimensional hidden user preference vector.

MovieRecommendation (MR). Building upon the preference estimation setup, this dataset further
evaluates the generalization ability of an agent’s inferred user model. After completing several rounds
of interaction as mentioned in the PE task, the agent is tasked with recommending from a set of
unseen movies. Each unseen movie is described by the same attribute dimensions, but the agent has
not encountered them during training or interaction. In the final turn, the agent applies its preference
vector guess to score each candidate unseen movie, and is required to select the movie that the
user is most likely to prefer as its recommendation. This task thus demands transferring preference
inference to out-of-distribution recommendation, and evaluates reasoning consistency, robustness,
and generalization in interactive recommender systems.

The prompt template for this task is shown in Fig. 15. The agent is expected to leverage its estimated
preference vector to make a personalized recommendation from {unseen_movie_list}.

F.2 BASELINE DETAILS

Here we introduce RL algorithms used in our experiments. Formally, given an actor model 7, the like-

lihood of a response y to a query « under the policy 7y is modeled as 7y (y|x) = Hltyzll o (ye| 2, y<t)-
Given a query-response pair (z, y), a verifier r generates its reward r(z,y) € [0, 1].
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Table 9: Dataset Statistics in this work.

Train  Test
SituationPuzzles (SP) 400 100
GuessNumbers (GN) 1526 382
CircuitDecoding (CD) 1000 300

PreferenceEstimation (PE) 700 300
MovieRecommendation (MR) 700 300

Proximal Policy Optimization (PPO) (Schulman et al., 2017) employs the following objective for
policy optimization:

lyl
1 _— -
Toro(0) = Eewd,yrmoy (1) | 17 > win (wi(6) Ay, clip (wi(6),1~e,1+2) A) |, (63)
t=1

7o (ye|z,y<t)
Togq (Yt|T,y<t)’

vy 18 typically computed via Generalized Advantage Estimation (GAE) (Schulman et al., 2015) with
temporal-difference errors, and ¢ is the clipping range of importance ratios.

where the importance ratio of the token y; is defined as w(6) = the advantage gt of

Group Relative Policy Optimization (GRPO) (Shao et al., 2024) proposes computing the relative
advantage of each response within a group of responses of the same query using the following
objective (omitting the KL regularization term):

lyil

Jareo(9) = E; gy,36 | el Z |y Z min (w7 t(0)A; ¢, clip (w; 1(6),1 —¢,14¢) A\i,t) ,
(64)

where {y;}$ | ~ 7g,,(|z) and G is the group size. The importance ratio w; ;(f) and advantage gi,t
of token y; ; are defined as:

Mo (yielt,yi<t) 7 r(x, y;) — mean ({r(z,y:)},)
v i =

T o1 (yi,t ) ’ std ({r($> yz)}il) ’
respectively, where all the tokens in y; share the same advantage.

Group Sequence Policy Optimization (GSPO) (Zheng et al., 2025) extends GRPO by defining
the importance ratio at the sequence level with length normalization, with sequence-level clipping,
rewarding, and optimization. The objective is:

w; (0) = (65)

Jospo(0) = E, (e el me A;, clip(s;(6),1 —€,1 —1—6)//1\1-) ) (66)

where

) /1yl lyi|
52(0) _ ( We(yz|9€))> — exp ‘ | Z o yz t|$ Yi, <t)

T4 (yl|x 7T90]d (yt t|x Yi, <t)

F.3 SUPPLEMENTARY IMPLEMENTATION DETAILS

Here we provide additional implementation details. The maximum number of interaction turns is set at
10 for GuessNumbers, 15 for SituationPuzzles, 10 for CircuitDecoding, 10 for PreferenceEstimation,
and 5 for MovieRecommendation. For RL training, we define task-specific rewards aligned with their
evaluation metrics: for GuessNumbers, the reward is Exact Match (binary {0, 1}, given only at the
final step); for SituationPuzzles, the reward is the FI1-word / character score (continuous in [0, 1],
computed against the ground-truth answer); for CircuitDecoding and MovieRecommendation, the
reward is also Exact Match; and for PreferenceEstimation, the reward is Binary Similarity between
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Input Prompts for the CircuitDecoding dataset

Welcome to the Circuit Deduction Challenge!

## The Setup:

- There are {num_circuits} circuits, labeled {circuit_labels}.

- Each circuit accepts {num-inputs} binary inputs (0 or 1) and produces a single binary output (0 or 1).

- Each circuit is drawn from a fixed candidate list of {num_candidates} possible logical structures, each associated with an index:
{candidate_list.str}

## Your Goal:
Identify which circuits from the candidate list correspond exactly to circuits {circuit_labels}.

## How to Play:

You can interact with me for several turns to determine the true underlying circuits:

1. At each turn, query one circuit with any binary input of your choice.

2. Use the specified format for your query. For example, to query circuit A with inputs x0=1, x1=0, x2=1,ask:
<interact>A(1l, 0, 1)</interact>.

3. You must make only one query at each turn. I will return the binary output for that circuit on the given input.

4. Ask strategic queries that maximize information gain. Your goal is to minimize the number of turns by leveraging the feedback at
each step to narrow down the candidate possibilities.

## Final Submission:

Once you are confident, submit your final answer by providing the indices of the identified circuits from the candidate list inside
<answer> and </answer>. For example, if A corresponds to candidate 13 and B corresponds to 6, your answer must be:
<answer>13, 6</answer>.

Please start with your first query.

Figure 10: Prompt Template for CircuitDecoding.

Input Prompts for the SituationPuzzles dataset

Let’s play a situation puzzle game. I’ll give you a puzzle. You can interact with me for several turns during the question phase to
reach the final answer. For each turn, you will:

- Review all previous questions and feedback.

- Ask me a yes-or-no question inside <interact>and </interact>.

- I will answer your latest question with “Yes”, “No”, or “Unknown”.

- Repeat the process until you are confident in the answer.

If you believe you have confidently determined the correct solution, present your answer inside <answer> and </answer>.

Now, here’s the puzzle:
Puzzle: {puzzle}

Figure 11: Prompt Template for SituationPuzzles.

the predicted and ground-truth preference vectors. All rewards are provided only at the terminal step
of each trajectory, consistent with the outcome-based RL setting.

Training for GuessNumbers and SituationPuzzles is conducted on a single node equipped with 8
H100 GPUs, while CircuitDecoding and PreferenceEstimation/MovieRecommendation are trained
on a single node with 8 B200 GPUs, based on the implementations of Verl (Sheng et al., 2025). All
training tasks are conducted for 200 steps with the actor model optimized using a learning rate of
1.0 x 1075, For distributed training, we adopt Fully Sharded Data Parallelism (FSDP), using BFloat16
precision throughout both training and evaluation. For efficient LLM rollouts, we adopt vLLM ? with
a tensor parallel size of 1. The rollout sampling uses a temperature of 1.0 for SituationPuzzles and
0.6 for GuessNumbers, and a top-p value of 0.95 for both datasets.

For the PPO baseline, we use Generalized Advantage Estimation (GAE) with parameters A = 1
and v = 1. The KL divergence regularization coefficient 8 and clip ratio ¢ are set to 0.001 and 0.2.
For GRPO training, we sample 5 responses per prompt, and the rollout parameters, KL divergence
coefficient, and the clip ratio are consistent with the PPO setting. For the GSPO algorithm, we do
not use the KL divergence constraint, and the clip ratio £;,,, and €54y, are set to 0.0003 and 0.0004,
respectively, while others keep consistent with GRPO training.

Mttps://docs.vllm.ai/en/latest/
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Input Prompts for the GuessNumbers dataset

Let’s play a number guessing game. The rules are as follows: I have a secret {num-digit s }-digit number in mind, composed
of digits from 1 to {num_uniques}, with no repeated digits. You will take turns guessing the number, using feedback after each
guess to progressively narrow down the possibilities.

For each turn, you will:

- Review all previous guesses and feedback.

- Think through your reasoning process inside <think> and </think>. The reasoning should show how your belief about the
secret number evolves based on the accumulated evidence.

- Make a strategic guess inside <interact> and </interact>, based on your current belief.

- Receive feedback of your latest guess describing: how many digits are present in the answer and in the correct positions, and how
many digits are present in the answer but in the different positions.

- Repeat the process until you are confident in the answer. If you believe you have confidently found the correct number, present your
answer inside <answer> and </answer>.

Game start. Now it is your turn:

<think>No prior knowledge. Start with a random guess that covers diverse digits to gather information.</think>
<interact>{initial.guess}</interact>

The feedback of your latest guess: {initial_feedback_same_pos} digits are present in the answer and in the correct positions,
{initial_feedback-diff_pos} digits are present in the answer but in the different positions.
Now it is your turn:

Figure 12: Prompt Template for GuessNumbers.

Input Prompts for the Judge LLM in the SituationPuzzles dataset

You are the referee of a game where players are shown a <Surface> and you are given the <Bottom>. You need to understand
the entire story based on both the <Surface> and <Bottom>. Players will ask questions based on the <Surface>, and you
need to judge whether their guesses are correct. Please strictly adhere to answering with only three specified responses: Yes, No, or
Unknown, without any explanation.

## Judging Rules

- If the player’s question matches the given <Surface> and <Bottom>: Please only answer ”Yes” without any explanation.

- If the player’s question contradicts the given story: Please only answer "No” without any explanation.

- If the answer to the player’s question cannot be found in the <Surface> and <Bottom>, and cannot be deduced through
reasoning: Please only answer "Unknown” without any explanation.

- If the player directly ask for the answer, please only answer “This is not a question, please propose your next question.”

- If the player does not propose a question or question that not for solve the puzzle, please only answer "This is not a question, please
propose your next question.”

## Important Notes

1. Fully understand the cause, process, and outcome of the entire story, and make logical inferences.

2. If a conclusion cannot be drawn from the provided story or through reasonable inference, answer ”Unknown”.

3. Strictly adhere to answering with only the three specified responses: Yes, No, or Unknown. Do not provide additional explanations.
4. Carefully check whether the player ask for the answer, if a player do so, please only answer "This is not a question, please propose
your next question.”

## Examples

#i## Example 1: The Hiccuping Man

<Surface>

A man walks into a bar and asks the bartender for a glass of water. The bartender suddenly pulls out a gun and points it at him. The
man smiles and says, “Thank you!” then calmly leaves. What happened?

<Bottom>

The man had hiccups and wanted a glass of water to cure them. The bartender realized this and chose to scare him with a gun. The
man’s hiccups disappeared due to the sudden shock, so he sincerely thanked the bartender before leaving.

Possible questions and corresponding answers:

Q: Does the man have a chronic illness? A: Unknown

Q: Was the man scared away? A: No

Q: Did the bartender want to kill the man? A: No

Q: Did the bartender intend to scare the man? A: Yes

Q: Did the man sincerely thank the bartender? A: Yes

## Question Content

### <Surface>

{surface}

### <Bottom>

{bottom}

Now, please judge the following player question:

{question}

Answer with only one of the three specified responses: Yes, No, or Unknown, without any explanation.

Figure 13: Prompt Template for the Judge LLM in SituationPuzzles.
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Input Prompts for the PreferenceEstimation task

You are a movie recommendation agent. Your goal is to infer the hidden user preference vector (wl,.A.,w{ len_attributes })
through interaction.

## Setup:

- You are given {len_seen} movies with scores on {len_attributes} attributes (indexed 1...{len_attributes}):
{seenmovie_sample}

- User satisfaction = wl*attrl + ... + w{len_attributes}*attr{len_attributes}, where each wi in [0, 1]. The user always
answers consistently.

## Interaction Rules (per round):
1. Reflect on all past feedback and reason about how it changes your estimate of the preference vector.
- Think about which attributes gained or lost importance.
- Adjust your estimate strategically.
2. Output both your updated guess and a new pairwise query in the exact format:
<interact>
Guess: wl,w2,...
Question: Would you prefer opt ion_1 over option_2?
</interact>
- Guess must be comma-separated numbers in [0,1].
- option-1 and option-2 must be movie names only.
The user replies with one of: ”Yes” (prefer opt ion_1), "No” (prefer opt ion_2), or "Equal”.

## Final Stage:
Once you are confident about the user preference after several turns, output your final preference vector as:
<answer>wl, w2, ...,w{len.attributes}</answer>

Please Start with your first <interact> block.

Figure 14: Prompt Template for PreferenceEstimation.

Input Prompts for the MovieRecommendation task

Final Turn: Now you have reached the last turn. Instead of asking a new question, use your most recent preference guess to score the
following unseen movies and recommend the best one.
{unseenmovie_list}

Here is an example of how to proceed:
Preference vector (guess): 0.2,0.7,0.5
Example Unseen movies:

Movie_A: [0.6,1.0,0.8]

Movie_B: [1.2,0.3,0.4]

Movie_C: [0.5,0.8,0.9]

Scoring:

Movie A =0.2%0.6 + 0.7¥1.0 + 0.5%0.8 = 1.22
Movie B =0.2%1.2 + 0.7*0.3 + 0.5%0.4 = 0.65
Movie.C =0.2%0.5 + 0.7*%0.8 + 0.5¥0.9 = 1.11
Best = Movie_ A
<answer>Movie_A</answer>

Your goal:
Now do the same with your own latest preference vector and the given unseen movies. After scoring, return the final answer enclosed
within <answer> and </answer>. The answer must be exactly one of the unseen movie names.

Figure 15: Prompt Template for MovieRecommendation.
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