

000 001 002 003 004 005 T³: REDUCING BELIEF DEVIATION IN REINFORCE- 006 MENT LEARNING FOR ACTIVE REASONING 007 008 009

010 **Anonymous authors**
011

012 Paper under double-blind review
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Active reasoning requires large language models (LLMs) to interact with external sources and strategically gather information to solve problems. Central to this process is *belief tracking*: maintaining a coherent understanding of the problem state and the missing information toward the solution. However, due to limited reasoning capabilities, LLM-based agents often suffer from *belief deviation*: they struggle to correctly model beliefs, lose track of problem states, and fall into uninformative or repetitive actions. Once this happens, errors compound and reinforcement learning (RL) training fails to properly credit the crucial exploratory steps. To address this issue, we propose to track the deviation of model beliefs and develop **T³**, a simple yet effective method that detects excessive belief deviation and *truncates trajectories during training* to remove uninformative tails. By preserving credit for informative prefixes, **T³** systematically improves policy optimization. Across 5 challenging tasks, **T³** consistently enhances training stability, token efficiency, and final performance, achieving up to 30% gains while cutting rollout tokens by roughly 34%. These results highlight *belief control* as a key principle for developing robust and generalizable LLM-based active reasoners.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable reasoning capabilities across diverse domains (Huang & Chang, 2022; Plaat et al., 2024; Li et al., 2025b), further advanced by reinforcement learning (RL) with outcome rewards (Wang et al., 2024; Srivastava & Aggarwal, 2025; Xu et al., 2025; Guo et al., 2025; OpenAI, 2025; Team et al., 2025). Recently, along with the increasing agentic applications of LLMs (Zhang et al., 2025a; Plaat et al., 2025), the community seeks to extend the success of RL to long-horizon and multi-turn reasoning (Wu et al., 2025; Laban et al., 2025; Li et al., 2025a). In particular, *active reasoning* is one of the most important multi-turn reasoning settings, which requires the LLM agent to *strategically* raise questions and actively acquire missing knowledge to complete the reasoning task (Zhou et al., 2025; Badola et al., 2025).

However, LLM agents are shown to be struggling in multi-turn or active reasoning: along with the unfolding of interactions, they often generate redundant, irrelevant, or uninformative actions (Yuan et al., 2025; Fu et al., 2025; Zhang et al., 2025b), or even collapse into unproductive loops (Zhou et al., 2025). Furthermore, even with RL training, LLM agents still suffer from suboptimal policies. For example, it can produce globally suboptimal outcomes (Wang et al., 2025) or undermine the robustness to unseen tasks (Zhang et al., 2025b). Hence, it raises an intriguing research question:

Why do LLM agents get trapped in active reasoning, and how can we mitigate it?

To answer the question, we start by modeling active reasoning as a Partially Observable Markov Decision Process (POMDP). Traditional POMDP literature assumes *perfect belief estimate* (e.g., Bayesian filtering) given the past observations (Kaelbling et al., 1998). When implementing POMDP using LLMs, it requires LLMs to track and model the belief state, which is *inherently imperfect* due to the limited reasoning capabilities of LLMs. Under mild assumptions, we show that: under the imperfect belief updates of LLM agents, trajectories are driven into a *Belief-Trap Region* (BTR, Def. 1), where actions cease to be informative, errors accumulate, and reasoning stagnates (Thm. 1). Furthermore, we demonstrate that the vanilla policy optimization paradigm is fundamentally undermined by such belief-trap dynamics: once trapped, the uninformative tail of the trajectory can contaminate the credit

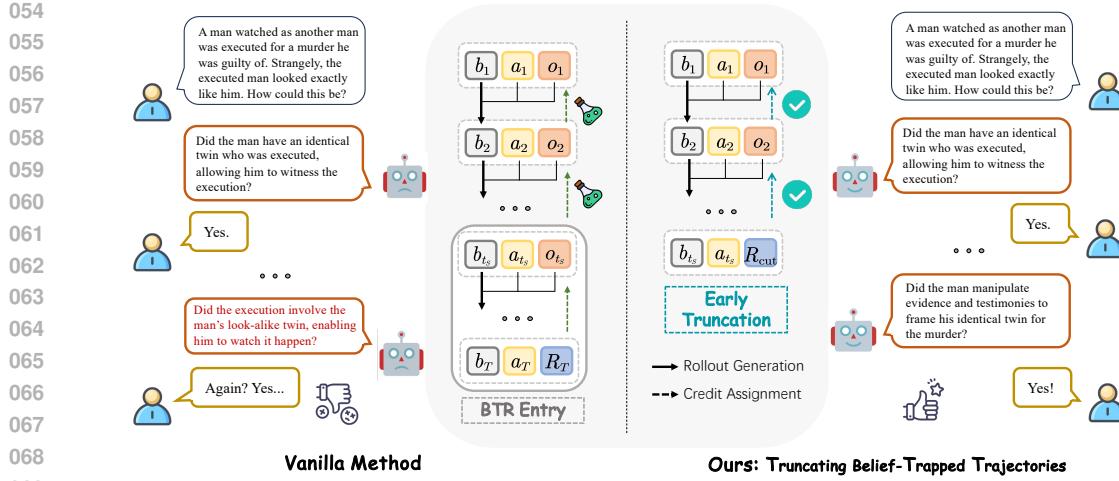


Figure 1: Overall framework of \mathbf{T}^3 , where (b_t, a_t, o_t) denote the agent’s internal belief, its chosen action, and the resulting environmental feedback at turn t . By truncating belief-trapped trajectories, we prevent the agent from entering the belief-trap region (BTR) where credit assignment is contaminated and becomes misleading, allowing learning signals to concentrate on genuinely informative actions. As a result, policy optimization becomes more stable and effective under complex active reasoning.

assigned to crucial early-stage actions, and even *invert their estimated gradients* (Thm. 2), thereby hindering effective exploration and leading to sub-optimality of the policy optimization.

To mitigate the issue, we propose \mathbf{T}^3 (Truncating Belief-Trapped Trajectories), a simple yet effective method that halts trajectories upon detecting entry into the BTR. By truncating the uninformative tail, \mathbf{T}^3 preserves the credit assigned to the informative prefix, yielding lower-variance and less-biased gradient estimates (Cor. 1). As it is intractable to probe the exact entry to BTR for LLMs, we develop the \mathbf{T}^3 condition (Def. 2) that seeks detectable proxies in the reasoning trace of LLMs. We find that it is relatively easy to find highly effective proxy signals for \mathbf{T}^3 condition, such as detecting repetitive queries, as verified in experiments. The simplicity of \mathbf{T}^3 enables it to be seamlessly integrated into standard policy optimization frameworks (e.g., PPO, GPRO, and GSPO) without altering the underlying algorithm, offering a practical drop-in solution to the credit assignment problem.

We evaluate \mathbf{T}^3 on 4 datasets and 5 tasks from recent challenging active reasoning benchmarks, including AR-Bench (Zhou et al., 2025) and Multi-Turn Puzzles (Badola et al., 2025). Across all settings, \mathbf{T}^3 consistently improves training stability, token efficiency, and final performance, achieving gains of up to 30% while cutting rollout tokens by roughly 34%. It further shows robust benefits across LLM sizes, architectures, and even under out-of-distribution scenarios. These results demonstrate that controlling belief traps not only systematically improves policy optimization but also provides a principled path toward building reliable active reasoning agents.

2 REINFORCEMENT LEARNING FOR ACTIVE REASONING

2.1 THEORETICAL FORMULATIONS

Due to space limits, in this section, we will state the necessary setup to derive our theoretical results and leave the details to Appendix B. To strengthen the connection between our theoretical analysis and the practical behavior of LLM-based agents, we conduct empirical studies that directly examine the key theoretical components and summarize the findings in Appendix C (an overview in Fig. 2).

We model the problem of *active reasoning* as a Partially Observable Markov Decision Process (POMDP) $(\mathcal{S}, \mathcal{A}, \mathcal{O}, T, O, R, \gamma)$ (Kaelbling et al., 1998). The agent tries to raise strategic questions $a \in \mathcal{A}$ to obtain reward R and update its belief $b \in \Delta(\mathcal{S})$ given an underlying state $s \in \mathcal{S}$, and the environment returns a new piece of information $o \in \mathcal{O}$ to the agent. For simplicity, we assume the underlying ground-truth latent state s^* is fixed during an episode.

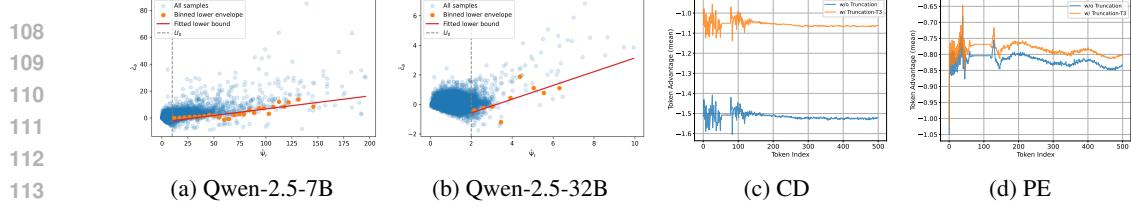


Figure 2: **Overview of the empirical verification on Asp. 1, Thm. 2, and Cor. 1.** (a)(b) We visualize the fitted empirical lower bound (the red line) $\hat{c}_\theta \approx \hat{m}_\theta \hat{\Psi} - \hat{c}_0$ on the region $\hat{\Psi} \geq \hat{U}_0$ (the dashed vertical line) for the PE task (c.f., Sec. 3.1) across Qwen-2.5-7B and 32B models. Both models exhibit a clear positive lower-bound slope required in Asp. 1. (c)(d) We report token-wise mean GAE values on failed rollouts for the CD and PE tasks (Qwen-2.5-7B), comparing *without* vs. *with* our T^3 truncation. Both exhibit a clear negative drift of early-token advantages (Thm.2) and the drift mitigation when applying T^3 (Cor. 1). See the complete experimental details in Appendix C.

Belief Updates. We mainly compare the dynamics of an *oracle* reasoner and an *imperfect* LLM reasoner. The oracle reasoner will maintain an *oracle belief* distribution b_t^* ,¹ i.e., a posterior over latent states given the full history of interactions, and update beliefs via the Bayes' rule B^* :

$$b_{t+1}^*(s) := B^*(b_t^*, a_t, o_t) = \frac{O(o_t \mid s, a_t) b_t^*(s)}{p_b(o_t \mid a_t)}, \quad (1)$$

where $p_b(o_t \mid a_t) := \sum_{s' \in \mathcal{S}} O(o_t \mid s', a_t) b_t^*(s')$ is the Bayes-normalizer. In contrast, an LLM agent maintains an *agent belief* b_t that represents its internal understanding of the problem and what information remains missing, and updates itself through B_θ with θ as the parameters of the LLM.

Task Progress. We are interested in the discrepancies introduced to the task progress by the LLM agent during the interactions. To measure the task progress, we introduce a truth-anchored potential function $\Psi(b) := -\log b(s^*)$ that captures how concentrated the belief is given the underlying state s^* , where $\Psi(b) \in [0, \infty)$, with $\Psi(b) = 0$ iff $b(s^*) = 1$ (task completion). Lower values of $\Psi(b)$ indicate higher confidence in the true state. We then establish the following discrepancy:

$$c_\theta(b_t) := \mathbb{E}_{a_t} \mathbb{E}_{o_t} \left[\Psi(B_\theta(b_t, a_t, o_t)) - \Psi(B^*(b_t, a_t, o_t)) \right]. \quad (2)$$

Perfectly modeling the belief states in active reasoning requires the LLM agent to perfectly understand the problem and what information might be missing, which is challenging. We introduce the following assumption to instantiate the imperfect belief state modeling capabilities of LLMs.

Assumption 1 (Update-Error Growth). *There exist constants $m_\theta > 0$, $c_0 \geq 0$, and a threshold $U_0 \geq 0$ such that for all b with $\Psi(b) \geq U_0$, $c_\theta(b) \geq m_\theta \Psi(b) - c_0$.*

Intuitively, Assumption 1 assumes that the errors of belief update are amplified as the belief deviates. In high-uncertainty regimes, the agent's update error grows at least linearly with Ψ . Then, we have

Theorem 1 (Informal). *Under the POMDP setup, assuming (i) the oracle reasoner converges to Ψ_0 , (ii) non-degenerate observations, and (iii) an L_π -Lipschitz policy, there exists a threshold $U = \max\{U_0, (\Psi_0 + \bar{B} + c_0)/m_\theta\}$, where $\bar{B} = 2(-\log \eta L_\pi + 1/\eta)$, such that (a) If $\Psi(b_{t_S}) \geq U$ for some t_S , then for all $t \geq t_S$, $\mathbb{E}_{a_t, o_t} [\Psi(b_{t+1}) \mid b_t] \geq \Psi(b_t)$; (b) if $U_0 = 0$ and $\Psi(b_1^*) \geq \mu$, then $t_S \leq 1 + \left\lceil \log_{1+m_\theta} \frac{m_\theta U + \delta}{m_\theta (\Psi(b_1) - \Psi(b_1^*)) + \delta} \right\rceil$, for $\delta = m_\theta \mu - (c_0 + \bar{B}) > 0$.*

A formal statement and proof of Theorem 1 is given in Appendix B.3. Intuitively, Thm. 1 implies that the progress of the LLM agent stops after some time t_S if the LLM agent can not model the belief states properly, which we term Belief Trap Region as follows:

Definition 1 (Belief Trap Region, BTR). *A set $\mathcal{R}_\theta \subseteq \Delta(\mathcal{S})$ is called a belief trap region for an agent parameterized by θ if it is absorbing and induces non-positive progress: for any belief $b \in \mathcal{R}_\theta$ and all subsequent times t once entered, $\mathbb{E}[\Psi(b_{t+1}) \mid b_t = b] \geq \Psi(b)$.*

¹For the ease of notation, we will only add t when the context is about dynamics.

162 **Misguided credit assignment.** Inside BTR, $\{\Psi_t\}$ is supermartingale-like under the agent’s evolution:
 163 the process does not trend down in expectation. In other words, once trajectories enter BTR,
 164 additional steps are uninformative and tend to reinforce the stall, which substantially reduces the
 165 sample efficiency of policy optimization, as long stretches of uninformative interactions provide
 166 little useful learning signal. More critically, we demonstrate that entering the BTR corrupts *credit
 167 assignment*: the uninformative tail can contaminate the credit of early-stage exploratory actions, or
 168 even invert their signs, thereby discouraging exploration and leading to suboptimal behaviors.

169 We formalize this by analyzing the generalized advantage estimator (GAE) (Schulman et al., 2015),
 170 $\hat{A}_t = \sum_{j=0}^{T-t-1} (\gamma\lambda)^j \delta_{t+j}$, where $\gamma \in (0, 1)$ is the discount factor, $\lambda \in [0, 1]$ is the GAE parameter,
 171 and the TD-error is defined as $\delta_t = r_t + \gamma V_{t+1} - V_t$ with r_t the intermediate reward and V_t the value
 172 function at step t . Here r_t follows the outcome-based RL setting, where only the terminal step yields
 173 an outcome reward. The following theorem shows how the BTR can drive the expected advantage of
 174 early actions negative, thereby inverting the gradient direction.

175 **Theorem 2 (Informal).** *Under the same setup as Thm. 1, assuming (i) the value in policy optimization
 176 is calibrated $V_t = g(b_t(s^*))$ for an increasing, differentiable g with $\inf_x g'(x) \geq \kappa_V > 0$, and (ii) the
 177 belief drifts downward on average by at least $\rho_b > 0$: $\mathbb{E}[b_{k+1}(s^*) - b_k(s^*) \mid \mathcal{F}_k] \leq -\rho_b$ for $k \geq t_S$,
 178 then, then, for any $t < t_S$, the expected advantage is bounded: $\mathbb{E}[\hat{A}_t] \leq \gamma (S_{\text{pre}}(t) - \kappa_V \rho_b S_{\text{tail}}^\ominus(t))$,
 179 where $S_{\text{pre}}(t) = \sum_{j=0}^{t_S-t-1} (\gamma\lambda)^j$ and $S_{\text{tail}}^\ominus(t) = \sum_{j=t_S-t}^{T-t-2} (\gamma\lambda)^j$. Therefore, a sufficient condition for
 180 $\mathbb{E}[\hat{A}_t] < 0$ is: $\kappa_V \rho_b > S_{\text{pre}}(t)/S_{\text{tail}}^\ominus(t)$. In particular, when $\gamma\lambda \rightarrow 1$ (a common setting for sparse
 181 reward tasks), the condition simplifies to $\kappa_V \rho_b > \Delta/L$, where $\Delta = t_S - t$ and $L = T - 1 - t_S$ are
 182 the prefix and tail lengths, respectively.*

184 A formal statement of Thm. 2 is given in Appendix B.4. Thm. 2 quantifies the credit assignment
 185 failure: the negative drift from a long uninformative tail (L large) can overwrite the positive credit
 186 from the informative prefix, causing the overall gradient to point in the wrong direction and penalize
 187 earlier exploratory actions. Therefore, Thm. 2 naturally motivates \mathbf{T}^3 : terminating a rollout upon
 188 entering the BTR preserves the credit assigned to informative prefix actions and eliminates the
 189 detrimental effect of the uninformative tail.

190 **Corollary 1 (Value of Truncation).** *Let \hat{A}_t^{pre} be the advantage estimator truncated at t_S . Under
 191 the assumptions of Thm. 2, early truncation yields a less biased gradient estimate: $\mathbb{E}[\hat{A}_t^{\text{pre}}] \geq$
 192 $\mathbb{E}[\hat{A}_t] + \gamma \kappa_V \rho_b S_{\text{tail}}^\ominus(t)$.*

194 Corollary 1 implies that truncating the trajectory at t_S removes the uninformative tail and yields a
 195 less biased policy optimization. Yet it is not directly implementable in practice for two-fold reasons.
 196 1) *Belief modeling complexity*: the belief state b is defined over the latent state space \mathcal{S} , which is
 197 often vast and intricate. In LLMs, belief is only implicitly expressed through its chain-of-thought
 198 traces or internal activation status, both of which are difficult to model precisely. 2) *Unobservable
 199 thresholds*: even with sufficient conditions for BTR entry (Thm. 1), the critical threshold U and its
 200 related parameters (e.g., m_θ , c_0 , \bar{B}) are agent-specific and cannot be directly measured.

2.2 FROM THEORY TO PRACTICE: PROXY SIGNALS

203 **From Theory to Practice: Proxy Signals.** We introduce practical yet theory-aligned proxy signals.
 204 The key insight is that although the exact BTR entry point is unobservable, the *stalling of epistemic
 205 progress* — the core characteristic of the BTR — can be captured through observable surrogates.
 206 Accordingly, we formulate a general proxy condition for truncation based on detecting such stalls:

207 **Definition 2 (\mathbf{T}^3 Condition).** *Let \mathcal{H}_t denote the hypothesis space at step t . The \mathbf{T}^3 condition for
 208 trajectory truncation at step t is defined as follows: there exists a minimum progress threshold
 209 $\Delta_{\min} \geq 0$ such that for all steps τ in the window $[t - k, t]$, $d(\mathcal{H}_\tau, \mathcal{H}_{\tau+1}) \leq \Delta_{\min}$, where k is the
 210 window size and $d(\cdot, \cdot)$ is a metric quantifying the change between consecutive hypothesis spaces.*

212 \mathbf{T}^3 will truncate at step t if the condition is detected and satisfied. Here, \mathcal{H}_t represents the set of
 213 solutions consistent with all information gathered so far; it may be either finite or infinite depending
 214 on the task. In particular, for tasks with a finite and enumerable hypothesis space \mathcal{H}_t , modeling
 215 the agent’s belief as uniform over \mathcal{H}_t (and assuming $s^* \in \mathcal{H}_t$) yields an exact correspondence
 $\Psi(b_t) = \log |\mathcal{H}_t|$, which constructs a provably exact observable surrogate for dynamics of potential.

216 **Relation to the BTR formalism.** Conceptually, this proxy principle is directly aligned with our
 217 BTR formalism: BTRs are characterized by stalled progress in the truth-anchored potential (i.e.,
 218 $\mathbb{E}[\Delta\Psi_t] \geq 0$), and in goal-directed reasoning tasks, such stalls manifest as a failure to further
 219 constrain the hypothesis space. **Def. 2 formalizes this insight by introducing 1) a task-agnostic metric**
 220 **$d(\mathcal{H}_t, \mathcal{H}_{t+1})$ to quantify incremental refinement of the hypothesis space, 2) the threshold Δ_{\min} to**
 221 **capture the notion of a minimum informative update, and 3) the window of length k to reflect the**
 222 **temporal persistence of BTRs, which arise from sustained non-positive refinement rather than from a**
 223 **single noisy step. This abstraction naturally covers a wide range of task structures.**

224 To further quantify this relation, the following proposition provides a guarantee under a standard
 225 *biased noisy* model, linking \mathbf{T}^3 ingredients to an upper bound on false-truncation probability.

226 **Proposition 1 (Informal).** *Define the true single-step potential progress* $g_t := \Psi(b_t) - \Psi(b_{t+1})$
 227 *and the observable refinement proxy* $d_t := d(\mathcal{H}_t, \mathcal{H}_{t+1})$. *Assume that (i) outside the BTR, single-*
 228 *step potential progress is uniformly informative: $g_t \geq \rho > 0$, and (ii) the proxy admits a biased*
 229 *Gaussian-noise model: $d_t = g_t + \beta_t + \xi_t$, where $|\beta_t| \leq M_d$, $\xi_t \sim \mathcal{N}(0, \sigma^2)$ independently across t .*
 230 *If $\Delta_{\min} < \rho - M_d$, then a sufficient condition for the \mathbf{T}^3 rule to keep the false-truncation probability*
 231 *on any k -step non-BTR segment below $\delta \in (0, 1)$ is $k(\rho - M_d - \Delta_{\min})^2 \geq 2\sigma^2 \log(1/\delta)$.*

232 A proof is given in Appendix B.9. This result shows that, even in the presence of both systematic
 233 bias and stochastic noise in the proxy, the \mathbf{T}^3 rule remains statistically robust. In particular, the
 234 construction of \mathcal{H} and metric $d(\cdot, \cdot)$ directly determines the bias bound M_d . Choosing a metric with
 235 smaller induced bias, increasing k , or decreasing Δ_{\min} reduces the probability of false truncation at an
 236 exponential rate. We additionally present an analysis on the effect of false-truncation in Appendix C.3.

237 **Practical instantiation and toward general-purpose detectors.** In practice, since the structure of
 238 hypothesis spaces and notions of progress differ across tasks, obtaining these components naturally
 239 relies on *task-level meta-knowledge* for observable signals which best reflect these ingredients. We
 240 show how to instantiate it for practical tasks in Sec. 3.1. Moreover, guided by the \mathbf{T}^3 principle,
 241 we can further reduce the reliance on task-specific knowledge on hypothesis spaces by utilizing
 242 *general-purpose* truncation detectors. We conduct preliminary explorations, and results show that
 243 these surrogates can be directly plugged into the \mathbf{T}^3 criterion and still yield consistent improvements
 244 across multiple tasks. We present these findings and discuss their implications in Appendix E.1.

245 **Key advantages.** This principle *serves as a meta-wrapper*, providing clear guidance for designing
 246 effective proxy signals without resorting to complex heuristics or heavy engineering, relying instead
 247 on progress-based criteria that capture the essence of belief-trap dynamics. The resulting truncation
 248 rules integrate seamlessly into standard policy optimization frameworks (e.g., PPO, GRPO, GSPO)
 249 without altering their algorithms, making \mathbf{T}^3 a practical drop-in solution to the long-standing credit
 250 assignment challenge in active reasoning.

251

252 3 EXPERIMENTS

253

254 3.1 DATASET-SPECIFIC PROXY TRUNCATION CONDITIONS

255

256 We evaluate \mathbf{T}^3 on five interactive reasoning tasks from AR-Bench (Zhou et al., 2025) and Multi-
 257 Turn Puzzles (Badola et al., 2025). Our general truncation principle (Def. 2) is instantiated with
 258 task-specific proxies. See ablation studies of the truncation conditions in Sec. 3.3.3. Note that we do
 259 adaptations to some of these datasets for RL training. See mode details in Appendix F.1.

260 **GuessNumbers (GN).** The agent deduces a hidden number through guesses and structured feedback
 261 indicating the count of digits in the correct position or misplaced. The hypothesis space \mathcal{H}_t is the set
 262 of numbers consistent with all previous interactions $\{a_{\leq t}, o_{\leq t}\}$ so far, and the progress measure is
 263 naturally defined as $d(\mathcal{H}_t, \mathcal{H}_{t+1}) := |\mathcal{H}_t| - |\mathcal{H}_{t+1}|$. *Early truncation:* a trajectory is cut at the step
 264 t if the agent’s guess a_t lies outside \mathcal{H}_{t-1} , corresponding to $k = 1$ with $d(\mathcal{H}_{t-1}, \mathcal{H}_t) \leq 0$, indicating
 265 a failure to refine the feasible set with logically consistent guesses.

266 **SituationPuzzles (SP).** The agent is expected to unravel a paradoxical puzzle by posing yes/no
 267 questions to a judge model. Here \mathcal{H}_t denotes the set of plausible explanations consistent with the
 268 dialogue history. Since \mathcal{H}_t can be complex or even unbounded, we approximate the stalling of
 269 informativeness $d(\mathcal{H}_t, \mathcal{H}_{t+1}) < \Delta_{\min}$ by the judge’s feedback: each step is uninformative if the
 feedback of the judge is “unknown”. *Early truncation:* if this occurs for $k = 5$ consecutive steps, we

270 Table 1: Main results across five active reasoning tasks. We report Exact Match (EM), F1 (word,
 271 char), and Binary Similarity depending on the task. We also report the average rank across all metrics.
 272

	CD		SP		GN		PE		MR		Avg. Rank
	EM	F1-word	F1-char	EM	Binary Sim	EM	Rank				
Direct Inference											
o3-mini	92.67	20.64	39.35	95.28	44.67	83.33	4.67				
Gemini-2.5-Pro	92.23	24.12	49.28	90.84	16.67	83.00	5.67				
Qwen-2.5-7B-Inst.	12.50	19.46	41.62	20.94	23.67	27.67	8.17				
Reinforcement Learning											
PPO	61.67	28.77	74.56	91.62	42.00	24.33	6.50				
PPO w. \mathbf{T}^3	77.83 $\uparrow 16.2\%$	36.85 $\uparrow 8.1\%$	81.50 $\uparrow 6.9\%$	93.98 $\uparrow 2.4\%$	49.00 $\uparrow 7.0\%$	38.00 $\uparrow 13.6\%$	4.50				
GRPO	79.33	36.46	83.73	61.26	51.67	12.00	5.50				
GRPO w. \mathbf{T}^3	81.33 $\uparrow 2.0\%$	39.45 $\uparrow 3.0\%$	84.58 $\uparrow 0.8\%$	91.36 $\uparrow 30.1\%$	52.33 $\uparrow 0.7\%$	32.67 $\uparrow 20.7\%$	3.17				
GSPO	77.67	36.63	82.17	96.07	59	14.67	4.33				
GSPO w. \mathbf{T}^3	81.00 $\uparrow 3.3\%$	36.96 $\uparrow 0.3\%$	82.08 $\downarrow 0.1\%$	99.74 $\uparrow 3.7\%$	62.00 $\uparrow 3.0\%$	55.67 $\uparrow 41.0\%$	2.50				

286 truncate the trajectory, signaling entrapment in an unproductive line of questioning. [Here we leverage](#)
 287 [a LLM-judge-based proxy](#). [We also evaluate a judge-free proxy in Sec. 3.3.3](#).

289 **CircuitDecoding (CD).** The agent identifies hidden Boolean circuits from a large candidate pool. At
 290 each step, the agent queries a circuit with a binary input and eliminates inconsistent candidates through
 291 feedbacks. The hypothesis space \mathcal{H}_t is the surviving candidate set consistent with all observations,
 292 and progress is defined as the reduced space size $d(\mathcal{H}_\tau, \mathcal{H}_{\tau+1}) := |\mathcal{H}_\tau| - |\mathcal{H}_{\tau+1}|$, analogous to GN.
 293 *Early truncation*: we monitor $|\mathcal{H}_t|$ and truncate if it fails to decrease ($d(\mathcal{H}_\tau, \mathcal{H}_{\tau+1}) \leq 0$) for $k = 3$
 294 turns, indicating that queries no longer reduce uncertainty.

295 **PreferenceEstimation (PE) / MovieRecommendation (MR).** In PE, the agent aims to infer a hidden
 296 vector v^* about user preference on movies by iteratively raising pairwise comparisons of the given
 297 reference movies. In MR, the agent is required to recommend unseen movies to the user based on
 298 the learned preference vector, requiring generalization beyond the training distribution. Here \mathcal{H}_t
 299 is the subspace of plausible preference vectors consistent with past feedback. As \mathcal{H}_t is continuous
 300 and cannot be enumerated, we approximate its epistemic progress via the LLM’s explicit estimate
 301 v_t . *Early truncation*: we approximate $d(\mathcal{H}_\tau, \mathcal{H}_{\tau+1})$ by the gain in similarity between the agent’s
 302 estimate and the oracle preference, i.e., $\text{Sim}(v_{\tau+1}, v^*) - \text{Sim}(v_\tau, v^*)$. If similarity decreases for
 303 $k = 2$ consecutive steps, the trajectory is truncated, preventing further training on diverging beliefs.
 304 [As the proxy depends on the ground-truth preference \$v^*\$, which may not always be available in](#)
 305 [practice, we also explore alternative proxy without access to the ground-truth and demonstrate the](#)
 306 [promise of \$\mathbf{T}^3\$ in Appendix D.3](#).

307 3.2 EXPERIMENTAL SETUP

309 **Baselines.** To evaluate the effectiveness of \mathbf{T}^3 , we compare it against the following baselines: 1)
 310 Direct Inference without Training, where we evaluate representative proprietary reasoning LLMs,
 311 including o3-mini and Gemini-2.5-Pro; 2) PPO ([Schulman et al., 2017](#)), 3) GRPO ([Shao et al., 2024](#)),
 312 and 4) GSPO ([Zheng et al., 2025](#)). PPO and GRPO are widely adopted RL methods for enhancing
 313 the reasoning capabilities of LLMs. GSPO is a recently proposed method by the Qwen team that has
 314 drawn attention. See more details in Appendix F.2.

315 **Implementation Details.** The main experiments of RL training are conducted on Qwen2.5-7B-
 316 Instruct ([Yang et al., 2024](#)). Analyses on other architecture scales and types can be seen in Sec. 3.3.4.
 317 For the GN, CD, PE, and MR tasks, the interactive feedback is rule-based; for the SP dataset, a
 318 Qwen2.5-14B-Instruct model simulates the “user” and provides the interactive feedback. See more
 319 implementation details in Appendix F.3.

320 **Evaluation Metrics.** For the GN, CD, and MR tasks, we report *Exact Match* (EM), which measures
 321 whether the final prediction made by the LLM exactly matches the hidden number, ground-truth
 322 circuit, or the correct movie recommendation. For the SP task, we use the *F1* score (both word-level
 323 and character-level) to assess the similarity between the ground-truth explanation and the solution
 324 produced by the LLM. For PE, we report *Binary Similarity*, which compares the LLM-estimated

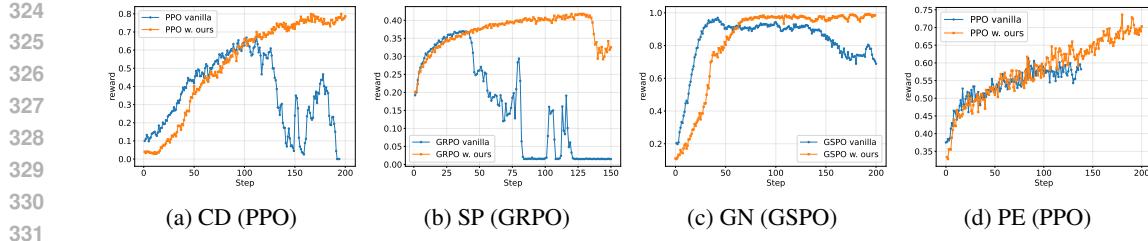


Figure 3: Training dynamics of rewards.

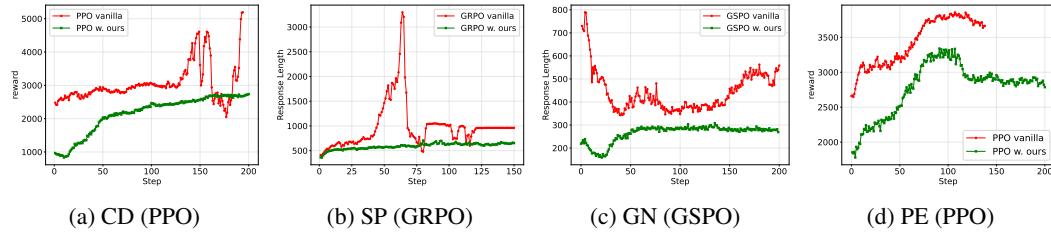


Figure 4: Training dynamics of response length.

vector against the ground-truth preference vector using cosine similarity. Specifically, we threshold the cosine score at 0.88: values above the threshold are labeled as 1, and values below as 0. In Appendix D.1, we also explore the sensitivity with other thresholds.

3.3 EXPERIMENTAL RESULTS AND ANALYSES

In this part, we first present overall performance, followed by analyses of \mathbf{T}^3 on out-of-distribution generalization, ablation studies of truncation conditions, and the impact of LLM architectures.

3.3.1 OVERALL PERFORMANCE

Overall Performance. The main experimental results are summarized in Table 1. It can be found that all RL-trained agents, both with and without \mathbf{T}^3 , substantially outperform the zero-shot baseline, confirming the necessity of RL in incentivizing active-reasoning capabilities. Compared to vanilla RL methods, incorporating \mathbf{T}^3 consistently improves final performance across datasets and algorithms, with non-marginal gains observed in 14 out of 18 reported metrics. On CD, PPO+ \mathbf{T}^3 boosts EM by 16.2% and GRPO+ \mathbf{T}^3 yields further gains, while on SP, GRPO+ \mathbf{T}^3 achieves the best F1-word and F1-char scores. On GN, \mathbf{T}^3 delivers striking improvements, raising GRPO by 30.1% and helping GSPO reach a near-perfect 99.74% EM. In PE and MR, \mathbf{T}^3 also brings steady gains, with GSPO+ \mathbf{T}^3 improving movie recommendation accuracy by 41.0%. Overall, these results demonstrate that \mathbf{T}^3 provides consistent and significant benefits across diverse active reasoning tasks.

Comparing to frontier reasoning models. We can also find that advanced reasoning LLMs perform strongly on active reasoning tasks where the latent state space \mathcal{S} is finite and enumerable (e.g., GN and CD), but show limitations when \mathcal{S} is infinite and unenumerable. In SP and PE, their metrics lag behind those of RL-trained Qwen-7B models, indicating that effective reasoning over unbounded state spaces is not achievable by large-scale RL with outcome reward training alone, but requires principled mechanisms such as \mathbf{T}^3 to strengthen credit assignment.

Better Stability and Optimality of Training. Beyond final performance, \mathbf{T}^3 substantially improves training dynamics. As shown in Fig. 3, vanilla RL methods for active reasoning exhibit higher variance and instability, with rewards prone to collapsing after partial convergence. By contrast, \mathbf{T}^3 enables them to maintain monotonic or near-monotonic reward improvement without catastrophic drops (or at much later steps). Therefore, agents not only converge more reliably but also reach higher optima. These results highlight the dual benefit of \mathbf{T}^3 : stabilizing reinforcement learning while guiding policies toward more informative and effective active-reasoning behaviors.

Higher Token Efficiency of Training. While the reward dynamics wrt. step (Fig. 3) seem to indicate that RL with \mathbf{T}^3 achieves slightly slower reward growth in the early stage, early truncation ensures

378 that each rollout consumes fewer tokens on average (*c.f.*, Fig. 4), and therefore, our method actually
 379 exhibits higher token efficiency overall. For example, under PPO on CD, to reach a reward level of
 380 0.65, our method consumes 66.4% of the total tokens compared to vanilla on average; under GSPO
 381 on GN, to reach 0.96, it requires 76.3% of the tokens. More importantly, while vanilla methods
 382 stagnate and fail to improve further, our method continues to enhance rewards, achieving up to 0.8 on
 383 CD and 0.99 on GN.

384

385

3.3.2 OUT-OF-DISTRIBUTION ANALYSIS

386

387 To better understand whether the
 388 agents learn the generalizable policies
 389 for active reasoning, we further evaluate
 390 \mathbf{T}^3 under distribution shifts in two
 391 representative tasks: CircuitDecoding
 392 (CD) and Preference Estimation (PE).
 393 In CD, we vary two key factors rel-
 394 ative to training: the number of hid-
 395 den circuits (training uses 2, we test
 396 up to 4) and the candidate pool size
 397 (training uses 10, we test up to 30). In
 398 PE, we vary the number of reference
 399 movies (training uses 10, we test 5-30)
 400 and the sampling distribution of their
 401 scores (training uses uniform, we test
 skewed side distributions).

402 The results are given in Table 2. Across all OOD settings, \mathbf{T}^3 consistently improves over vanilla
 403 PPO. In CD, although accuracy drops as the task becomes harder with larger candidate pools or more
 404 hidden circuits, the relative gains from \mathbf{T}^3 remain pronounced, reaching +10.8% with 25 candidates
 405 and +15.0% with 3 circuits. In PE, performance varies non-monotonically with reference size, where
 406 moderate contexts (e.g., $S = 20$) achieve the best results (+12.7%). Too few references increase the
 407 ambiguity of preference estimation, while too many introduce noise and redundancy, making the
 408 agent more prone to entering the BTR (see Appendix D.2 for an empirical verification). Similarly, for
 409 reference sampling, \mathbf{T}^3 delivers improvements across all conditions, with the largest margin under
 410 max-skewed sampling (+10.7%). Overall, these results show that \mathbf{T}^3 consistently enhances OOD
 411 robustness across diverse settings, even in more challenging regimes where the distribution deviates
 412 largely from the training.

413

414

3.3.3 ABLATION STUDY ON TRUNCATION CONDITIONS

415 The effectiveness of \mathbf{T}^3
 416 hinges on the design of the
 417 proxy signal for truncating
 418 the BTR tail. We hence
 419 ablate different truncation
 420 conditions to analyze their
 421 robustness and trade-offs.
 422 First, we vary the window
 423 size k . Furthermore, we
 424 consider alternative truncation
 425 strategies beyond our
 426 main design. For the SP
 427 task, we consider *Question*

428 *Semantic Similarity (Sim- α)*: a trajectory is truncated if the cosine similarity between the embed-
 429 ding of the current query and any previous one exceeds a threshold α , where we leverage the
 430 E5-large-v2 model (Wang et al., 2022) to calculate embeddings. This proxy detects redundant or
 431 circular questioning, and we evaluate $\alpha \in \{0.9, 0.93, 0.96\}$. For the CD and PE tasks, we consider a
 432 *random truncation (Rand- β)* strategy, where each step is truncated independently with probability of
 433 β . We test $\beta \in \{0.1, 0.2, 0.5\}$ for CD and $\{0.2, 0.5, 0.8\}$ for PE.

Table 2: Evaluations of \mathbf{T}^3 on out-of-distribution (OOD) scenarios of PE (under Qwen-2.5-7B-Inst.) and CD (Qwen-2.5-14B-Inst., *c.f.*, Sec. 3.3.4) tasks under the PPO method.

	PE (PPO)		CD (PPO)	
	Vanilla	w. \mathbf{T}^3	Vanilla	w. \mathbf{T}^3
Reference Size (S)			Candidate Size (S)	
$S = 5$	40.0	44.3 $\uparrow 4.3\%$	$S = 10$	67.8 86.3 $\uparrow 18.5\%$
$S = 10$	42.0	49.0 $\uparrow 7.0\%$	$S = 15$	61.7 74.7 $\uparrow 13.0\%$
$S = 15$	39.3	47.0 $\uparrow 7.7\%$	$S = 20$	48.2 55.8 $\uparrow 7.7\%$
$S = 20$	41.0	53.7 $\uparrow 12.7\%$	$S = 25$	35.2 46.0 $\uparrow 10.8\%$
$S = 30$	42.3	46.3 $\uparrow 4.0\%$	$S = 30$	31.5 35.7 $\uparrow 4.2\%$
Reference Sampling			Hidden Circuit Size (C)	
min-max	45.7	56.0 $\uparrow 10.3\%$	$C = 2$	67.8 86.3 $\uparrow 18.5\%$
uniform	42.0	49.0 $\uparrow 7.0\%$	$C = 3$	60.3 75.3 $\uparrow 15.0\%$
max	50.7	61.3 $\uparrow 10.7\%$	$C = 4$	42.7 49.3 $\uparrow 6.6\%$

Table 3: Ablation Study of Truncation Conditions on the SP, CD, and PE tasks. Beyond the window size k as seen in Def. 2, we consider alternative truncation methods, described in α and β .

SP (GRPO)		CD (PPO)		PE (PPO)	
Method	F1-word	Method	EM	Method	Binary Sim
Vanilla	36.46	Vanilla	61.67	Vanilla	42.00
$k = 3$	38.62 $\uparrow 2.16\%$	$k = 2$	69.17 $\uparrow 7.50\%$	$k = 2$	49.00 $\uparrow 7.00\%$
$k = 5$	39.45 $\uparrow 2.99\%$	$k = 3$	77.83 $\uparrow 16.2\%$	$k = 4$	44.33 $\uparrow 2.33\%$
$k = 9$	36.96 $\downarrow 0.50\%$	$k = 4$	79.33 $\uparrow 17.6\%$	$k = 7$	42.00 $\uparrow 0.00\%$
$\alpha = 0.9$	39.44 $\uparrow 2.98\%$	$\beta = 0.1$	69.00 $\uparrow 7.33\%$	$\beta = 0.2$	43.33 $\uparrow 1.33\%$
$\alpha = 0.93$	38.81 $\uparrow 2.35\%$	$\beta = 0.2$	57.50 $\downarrow 4.17\%$	$\beta = 0.5$	44.67 $\uparrow 2.67\%$
$\alpha = 0.96$	37.93 $\uparrow 1.47\%$	$\beta = 0.5$	13.17 $\downarrow 48.5\%$	$\beta = 0.8$	39.00 $\downarrow 3.00\%$

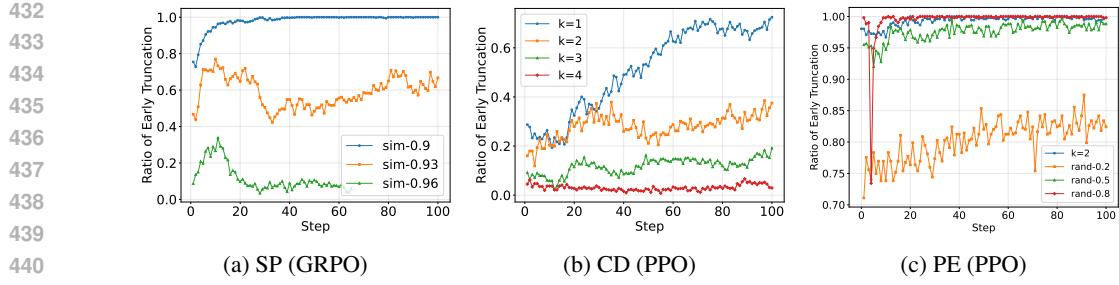


Figure 5: Training dynamics of the ratio of early truncation *w.r.t.* steps under different truncation conditions for the SP (a), CD (b), and PE (c) tasks.

The results are reported in Table 3. For SP, increasing k improves performance up to around $k = 5$, after which the gains diminish. The similarity-based proxy also provides consistent improvements over vanilla GRPO, demonstrating that \mathbf{T}^3 is robust to various forms of the proxy as long as it can detect the BTR entry reasonably. For CD, varying k shows stable improvements, and especially $k = 3, 4$ yield large gains over vanilla PPO. We also observe that even random truncation can still have a mild improvement if the ratio β gets properly assigned, indicating the significance of the BTR issue that even a simple truncation condition can stabilize the training. For PE, $k = 2$ achieves the best performance, while the gains diminish as the condition becomes looser. Importantly, these results reveal that the proxy condition must be set at a moderate level: if it is too loose (e.g., $k = 9$ for SP), truncation has little effect, causing accumulations of belief tracking error; if it is too strict (e.g., $\beta = 0.2, 0.5$ for CD), it terminates trajectories prematurely, suppresses early-stage exploratory actions and leaves insufficient learning signals for effective training.

Training Dynamics of Early Truncation. Furthermore, we examine the temporal evolution of the early-truncation frequency during training, as shown in Fig. 5. For clarity, the truncation ratio at training step t is defined as $\text{ratio}_t = \frac{\# \text{ rollouts truncated at step } t}{\# \text{ total rollouts at step } t}$. This quantity tracks how often the policy enters the truncation region throughout optimization. Combining these dynamics with the final performance (Table 3) yields a clear pattern: For tasks where the latent state space \mathcal{S} is *unbounded* (SP and PE), the most beneficial regime is a *high and stable* truncation ratio from early steps: in SP, the similarity proxy with $\alpha = 0.9$ quickly saturates near 1.0 and delivers the best F1; in PE, $k = 2$ likewise achieves the highest performance. This indicates that when \mathcal{S} is infinite, promptly removing BTR tails protects the learning signal. Notably, in PE, the random truncations ($\beta = 0.5, 0.8$) produce *similar ratios* to $k = 2$ yet only worse final performance, underscoring the necessity of truncation conditions which *detect BTR entry* rather than cut indiscriminately.

By contrast, for tasks with *finite and enumerable* spaces (the CD task), a *low-to-moderate* truncation ratio is sufficient and preferable: $k = 3, 4$ maintain a small ratio throughout training and yield the largest EM gains, whereas aggressive settings ($k = 1, 2$) drive the ratio up and hurt exploration, leading to weaker results. In summary, the most effective dynamics are: *high/early truncation* for unbounded \mathcal{S} to prevent BTR-tail contamination, and *moderate truncation* for finite \mathcal{S} to preserve productive exploration, which precisely aligns with our theory-guided proxy design.

3.3.4 IMPACT OF LLM ARCHITECTURE

We further extend \mathbf{T}^3 to different LLMs, including Qwen-2.5 in different scales, as well as different variants of Llama-3.1-8B. As shown in Fig. 6a and 6b, across Qwen-2.5 3B, 7B, and 14B, we observe that the 3B model shows only limited improvements, whereas the 7B and 14B variants achieve clear gains under RL. More importantly, the performance of larger LLMs is further boosted by substantially larger margins under \mathbf{T}^3 compared to the 3B. This aligns with our formulation in Sec. 2: weaker belief-tracking ability corresponds to a larger m_θ , making smaller models more prone to quickly falling into BTR, where even truncation cannot provide sufficient informative training signals.

A similar pattern holds across architecture types. As shown in Fig. 6c, we compare the effectiveness of \mathbf{T}^3 across LLaMA-3.1-8B-Instruct, Qwen-2.5-7B-Instruct, and DeepSeek-R1-Distill-LLaMA-8B. We observe that LLaMA-8B-Instruct improves only marginally under \mathbf{T}^3 , while its DeepSeek-distilled variant and Qwen-7B benefit substantially. This echoes recent findings that Qwen exhibits stronger reasoning behaviors than LLaMA (Gandhi et al., 2025), which we believe include belief-tracking abilities under partial observability. Notably, the distilled LLaMA variant with \mathbf{T}^3 -equipped RL

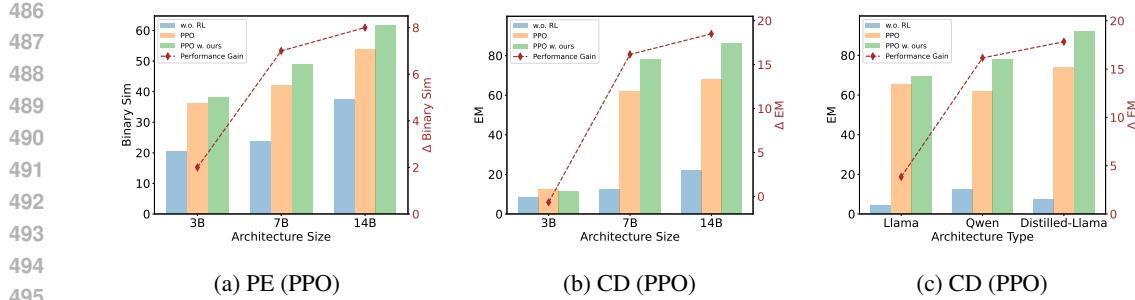


Figure 6: Effectiveness of \mathbf{T}^3 on different sizes (a, b) and types (c) of LLM architectures. The “Performance Gain” denotes the improvement of \mathbf{T}^3 compared to the vanilla RL method.

achieves the best overall performance, exhibiting the largest performance gains. We conjecture that distillation *may* effectively boost the belief-tracking capability under finite state spaces, thereby enhancing the utility of \mathbf{T}^3 in preserving credit assignment. In our formulation, both size- and type-dependent differences can be attributed to varying belief-tracking abilities and the associated m_θ , which governs how easily trajectories get trapped in the BTR.

4 RELATED WORK

Active Reasoning requires LLMs to interact with external sources and actively acquire missing information to solve complex tasks. Prior work has improved LLMs’ ability to handle ambiguity and incompleteness through making clarification and information-seeking actions. For example, Proactive CoT (Deng et al., 2023) prompts LLMs to identify ambiguous problems and generate clarification questions, while UoT (Hu et al., 2024) quantifies the contribution of each question in reducing uncertainty. However, challenges remain when transitioning from LLMs’ single-turn success to multi-turn active reasoning (Kwan et al., 2024; Liang et al., 2024; Badola et al., 2025), even with several advanced strategies such as tree-based searching or post-training approaches, as highlighted in existing works (Zhou et al., 2025). In contrast, we leverage RL to incentivize active reasoning capabilities, and propose \mathbf{T}^3 to address key issues when applying RL in this setting.

Credit Assignment and Multi-turn RL. Credit assignment is crucial to long-horizon or multi-turn RL. Existing methods have extensively explored rule-based approaches (Yu et al., 2024; Dou et al., 2024; Zhang et al., 2025b) to shape intermediate rewards. Several recent works also proposed to measure the progress of stepwise actions toward overall task completion as intermediate rewards. Specifically, CURIO (Wan et al., 2025) constructs a potential function over an ideal belief state to assign intermediate rewards, assuming that the latent state space is finite and enumerable. Sotopia-RL (Yu et al., 2025) relies on reward labeling with proprietary LLMs. SPA-RL (Wang et al., 2025) trains reward models for intermediate rewards by enforcing a summation constraint with respect to the final outcome reward. In our studied active reasoning scenario, belief deviation under partial observability makes it difficult for outcome-based rewards to properly assign credit to key reasoning steps. Our proposed \mathbf{T}^3 mitigates this by halting the trajectory before the reasoning process becomes trapped in excessive belief deviation and the error accumulation overwhelms credit assignment.

5 CONCLUSION

In this work, we identified belief deviation and the entry to the belief-trap region as a key failure mode that drives instability and sub-optimality in RL for LLM-based active reasoning. To counter its harmful accumulation, we proposed \mathbf{T}^3 , a simple yet effective early-truncation mechanism that halts belief-trapped trajectories. Empirical results on five active-reasoning tasks demonstrate that \mathbf{T}^3 consistently improves both stability and performance across diverse RL algorithms. Our findings establish belief deviation as a central bottleneck and show that controlling it is a principled pathway toward building robust and generalizable active reasoning agents.

540 REFERENCES
541

542 Kartikeya Badola, Jonathan Simon, Arian Hosseini, Sara Marie Mc Carthy, Tsendsuren Munkhdalai,
543 Abhimanyu Goyal, Tomáš Kočiský, Shyam Upadhyay, Bahare Fatemi, and Mehran Kazemi. Multi-
544 turn puzzles: Evaluating interactive reasoning and strategic dialogue in llms. *arXiv preprint*
545 *arXiv:2508.10142*, 2025.

546 Yang Deng, Lizi Liao, Liang Chen, Hongru Wang, Wenqiang Lei, and Tat-Seng Chua. Prompting
547 and evaluating large language models for proactive dialogues: Clarification, target-guided, and
548 non-collaboration. *arXiv preprint arXiv:2305.13626*, 2023.

549 Shihao Dou, Yan Liu, Haoxiang Jia, Limao Xiong, Enyu Zhou, Wei Shen, Junjie Shan, Caishuang
550 Huang, Xiao Wang, Xiaoran Fan, et al. Stepcode: Improve code generation with reinforcement
551 learning from compiler feedback. *arXiv preprint arXiv:2402.01391*, 2024.

552 Dayuan Fu, Keqing He, Yejie Wang, Wentao Hong, Zhuoma Gongque, Weihao Zeng, Wei Wang,
553 Jingang Wang, Xunliang Cai, and Weiran Xu. Agentrefine: Enhancing agent generalization through
554 refinement tuning. *arXiv preprint arXiv:2501.01702*, 2025.

555 Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D Goodman. Cognitive
556 behaviors that enable self-improving reasoners, or, four habits of highly effective stars. *arXiv*
557 *preprint arXiv:2503.01307*, 2025.

558 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
559 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
560 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

561 Zhiyuan Hu, Chumin Liu, Xidong Feng, Yilun Zhao, See-Kiong Ng, Anh Tuan Luu, Junxian He,
562 Pang Wei W Koh, and Bryan Hooi. Uncertainty of thoughts: Uncertainty-aware planning enhances
563 information seeking in llms. *Advances in Neural Information Processing Systems*, 37:24181–24215,
564 2024.

565 Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey.
566 *arXiv preprint arXiv:2212.10403*, 2022.

567 Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in partially
568 observable stochastic domains. *Artificial intelligence*, 101(1-2):99–134, 1998.

569 Wai-Chung Kwan, Xingshan Zeng, Yuxin Jiang, Yufei Wang, Liangyou Li, Lifeng Shang, Xin Jiang,
570 Qun Liu, and Kam-Fai Wong. Mt-eval: A multi-turn capabilities evaluation benchmark for large
571 language models. *arXiv preprint arXiv:2401.16745*, 2024.

572 Philippe Laban, Hiroaki Hayashi, Yingbo Zhou, and Jennifer Neville. Llms get lost in multi-turn
573 conversations. *arXiv preprint arXiv:2505.06120*, 2025.

574 Yubo Li, Xiaobin Shen, Xinyu Yao, Xueying Ding, Yidi Miao, Ramayya Krishnan, and Rema
575 Padman. Beyond single-turn: A survey on multi-turn interactions with large language models.
576 *arXiv preprint arXiv:2504.04717*, 2025a.

577 Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian
578 Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, et al. From system 1 to system 2: A survey of
579 reasoning large language models. *arXiv preprint arXiv:2502.17419*, 2025b.

580 Zhenwen Liang, Dian Yu, Wenhao Yu, Wenlin Yao, Zhihan Zhang, Xiangliang Zhang, and Dong
581 Yu. Mathchat: Benchmarking mathematical reasoning and instruction following in multi-turn
582 interactions. *arXiv preprint arXiv:2405.19444*, 2024.

583 Wenquan Lu, Yuechuan Yang, Kyle Lee, Yanshu Li, and Enqi Liu. Latent chain-of-thought? decoding
584 the depth-recurrent transformer. *arXiv preprint arXiv:2507.02199*, 2025.

585 OpenAI. Openai o3-mini. <https://openai.com/index/openai-o3-mini/>, January
586 2025.

594 Aske Plaat, Annie Wong, Suzan Verberne, Joost Broekens, Niki van Stein, and Thomas Bäck.
 595 Reasoning with large language models, a survey. *CoRR*, 2024.
 596

597 Aske Plaat, Max van Duijn, Niki van Stein, Mike Preuss, Peter van der Putten, and Kees Joost
 598 Batenburg. Agentic large language models, a survey. *arXiv preprint arXiv:2503.23037*, 2025.

599 John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
 600 continuous control using generalized advantage estimation. *arXiv preprint arXiv:1506.02438*,
 601 2015.

602 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 603 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

604 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 605 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical
 606 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

607 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 608 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In *Proceedings
 609 of the Twentieth European Conference on Computer Systems*, pp. 1279–1297, 2025.

610 Saksham Sahai Srivastava and Vaneet Aggarwal. A technical survey of reinforcement learning
 611 techniques for large language models. *arXiv preprint arXiv:2507.04136*, 2025.

612 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
 613 Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1.5: Scaling reinforcement learning with
 614 llms. *arXiv preprint arXiv:2501.12599*, 2025.

615 Yanming Wan, Jiaxing Wu, Marwa Abdulhai, Lior Shani, and Natasha Jaques. Enhancing personal-
 616 ized multi-turn dialogue with curiosity reward. *arXiv preprint arXiv:2504.03206*, 2025.

617 Hanlin Wang, Chak Tou Leong, Jiashuo Wang, Jian Wang, and Wenjie Li. Spa-rl: Reinforcing llm
 618 agents via stepwise progress attribution. *arXiv preprint arXiv:2505.20732*, 2025.

619 Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Dixin Jiang, Rangan Majumder,
 620 and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. *arXiv preprint
 621 arXiv:2212.03533*, 2022.

622 Shuhe Wang, Shengyu Zhang, Jie Zhang, Runyi Hu, Xiaoya Li, Tianwei Zhang, Jiwei Li, Fei Wu,
 623 Guoyin Wang, and Eduard Hovy. Reinforcement learning enhanced llms: A survey. *arXiv preprint
 624 arXiv:2412.10400*, 2024.

625 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 626 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 627 neural information processing systems*, 35:24824–24837, 2022.

628 Shirley Wu, Michel Galley, Baolin Peng, Hao Cheng, Gavin Li, Yao Dou, Weixin Cai, James Zou,
 629 Jure Leskovec, and Jianfeng Gao. Collabllm: From passive responders to active collaborators.
 630 *arXiv preprint arXiv:2502.00640*, 2025.

631 Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong Lan,
 632 Jiahui Gong, Tianjian Ouyang, Fanjin Meng, et al. Towards large reasoning models: A survey of
 633 reinforced reasoning with large language models. *arXiv preprint arXiv:2501.09686*, 2025.

634 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 635 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint
 636 arXiv:2412.15115*, 2024.

637 Haofei Yu, Zhengyang Qi, Yining Zhao, Kolby Nottingham, Keyang Xuan, Bodhisattwa Prasad
 638 Majumder, Hao Zhu, Paul Pu Liang, and Jiaxuan You. Sotopia-rl: Reward design for social
 639 intelligence. *arXiv preprint arXiv:2508.03905*, 2025.

640 Yuanqing Yu, Zhefan Wang, Weizhi Ma, Zhicheng Guo, Jingtao Zhan, Shuai Wang, Chuhan Wu,
 641 Zhiqiang Guo, and Min Zhang. Steptool: A step-grained reinforcement learning framework for
 642 tool learning in llms. 2024.

648 Siyu Yuan, Zehui Chen, Zhiheng Xi, Junjie Ye, Zhengyin Du, and Jiecao Chen. Agent-r: Training
649 language model agents to reflect via iterative self-training. *arXiv preprint arXiv:2501.11425*, 2025.
650

651 Guibin Zhang, Hejia Geng, Xiaohang Yu, Zhenfei Yin, Zaibin Zhang, Zelin Tan, Heng Zhou,
652 Zhongzhi Li, Xiangyuan Xue, Yijiang Li, et al. The landscape of agentic reinforcement learning
653 for llms: A survey. *arXiv preprint arXiv:2509.02547*, 2025a.

654 Zijing Zhang, Ziyang Chen, Mingxiao Li, Zhaopeng Tu, and Xiaolong Li. Rlvmr: Reinforcement
655 learning with verifiable meta-reasoning rewards for robust long-horizon agents. *arXiv preprint*
656 *arXiv:2507.22844*, 2025b.

657

658 Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
659 Yuqiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. *arXiv preprint*
660 *arXiv:2507.18071*, 2025.

661 Zhanke Zhou, Xiao Feng, Zhaocheng Zhu, Jiangchao Yao, Sanmi Koyejo, and Bo Han. From
662 passive to active reasoning: Can large language models ask the right questions under incomplete
663 information? *arXiv preprint arXiv:2506.08295*, 2025.

664 Zhenhong Zhou, Haiyang Yu, Xinghua Zhang, Rongwu Xu, Fei Huang, and Yongbin Li. How
665 alignment and jailbreak work: Explain llm safety through intermediate hidden states. *arXiv*
666 *preprint arXiv:2406.05644*, 2024.

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **LLM USAGE DISCLOSURE**
703704 In our work, we mainly use GPT-5 for writing enhancements, primarily to improve grammar and text
705 clarity.
706707 **REPRODUCIBILITY STATEMENT**
708709 We describe our dataset details in Appendix F.1. For additional training details, see Sec. 3.2 and
710 Appendix F.3. For prompt templates, see Figures 10 to 15. With the chairs’ approval, we will also
711 provide an anonymous code link during the rebuttal period.
712713 **A NOTATION SUMMARY**
714

716 Symbol	717 Meaning	718 Domain / Notes
Spaces, states, dynamics		
$\mathcal{S}, \mathcal{A}, \mathcal{O}$	Latent state space, action space, observation space	Sets
s^*	Episode-wise fixed, unknown true latent state	$s^* \in \mathcal{S}$
$T(s' s, a)$	Transition function	Degenerate in our work (s^* fixed)
$O(o s, a)$	Observation model	Assump. 3; $O \geq \eta$ on reachable tuples
R, γ	Reward function; discount factor	$\gamma \in (0, 1]$
Beliefs, policies, and updates		
$\Delta(\mathcal{S})$	Probability simplex over \mathcal{S}	Set
b_t^*, b_t	Oracle (Bayesian) belief; agent (LLM) belief at time t	$\in \Delta(\mathcal{S})$
$B^*(b, a, o)$	Oracle Bayes update	Posterior under O
$B_\theta(b, a, o)$	Agent belief update with parameters θ	
$\pi(\cdot b)$	Belief-conditioned policy	Distribution on \mathcal{A}
Distances and potentials		
$d(b, b') = \sum_s b(s) - b'(s) $	ℓ_1 distance on beliefs	$\in [0, 2]$
$\text{TV}(P, Q) = \sup_A P(A) - Q(A) $	Total variation distance	Probability measures
$\Psi(b) = -\log b(s^*)$	Truth-anchored potential	$\in [0, \infty)$; $= 0$ iff $b(s^*) = 1$
Ψ_t, Ψ_t^*	$\Psi(b_t); \Psi(b_t^*)$	Scalars
Progress / informativeness		
$\mathcal{I}(b, a)$	One-step informativeness under oracle update	See Def. 4
$\mathcal{P}_\theta(b)$	Agent’s expected one-step progress	See Def. 5
$c_\theta(b)$	Agent–Bayes update error	See Def. 6
Belief Trap Region (BTR)		
\mathcal{R}_θ	Belief trap region (absorbing; non-positive progress)	If $b \in \mathcal{R}_\theta$: $\mathcal{P}_\theta(b) \leq 0$ and $\mathbb{E}[\Psi(b_{t+1}) b_t = b] \geq \Psi(b)$
t_S	Hitting time into \mathcal{R}_θ	First entry time
RL / GAE quantities		
$V_t := V(b_t)$	Value function; calibration	g increasing, $\inf_x g'(x) \geq \kappa_V > 0$
$V_t = g(b_t(s^*))$		

(continued on next page)

756	Symbol	Meaning	Domain / Notes
757	$\delta_t := r_t + \gamma V_{t+1} - V_t$	TD-error	Scalar
759	λ	GAE parameter	$\in (0, 1]$
760	$\widehat{A}_t = \sum_{j=0}^{T-t-1} (\gamma \lambda)^j \delta_{t+j}$	GAE advantage estimator	Scalar
Assumptions / constants			
762	η	Non-degeneracy lower bound for O	$(0, 1]$
763	L_π	Policy sensitivity constant	$\text{TV}(\pi(\cdot \mid b), \pi(\cdot \mid b')) \leq L_\pi d(b, b')$
764	m_θ, c_0, U_0	Update-error growth parameters	$c_\theta(b) \geq m_\theta \Psi(b) - c_0$ if $\Psi(b) \geq U_0$
765	$\bar{B} = 2(-\log \eta \cdot L_\pi + \frac{1}{\eta})$	Technical constant	From Prop. 2
766	$U = \max\{U_0, (\Psi_0 + \bar{B} + c_0)/m_\theta\}$	BTR threshold in Ψ (sufficient condition)	$\Psi_0 := \Psi(b_1^*)$
767	$\Delta_1 := \Psi(b_1) - \Psi(b_1^*)$	Initial gap (agent vs. oracle)	Used in hitting-time bound
768	u_t	Oracle potential upper bound sequence	Non-increasing, $u_1 = \Psi_0$, $u_t \searrow 0$
769	μ	Pre-entry lower bound on Ψ_t^*	$\Psi_t^* \geq \mu$ for $t < t_S$
770	$\delta := m_\theta \mu - (c_0 + \bar{B})$	Trap margin (not TD-error)	Positive in Prop. 3
Others			
771	$S_{\text{pre}}(t) = \sum_{j=0}^{t_S-t-1} (\gamma \lambda)^j$	Geometric prefix weight	
772	$S_{\text{tail}}^\ominus(t) = \sum_{j=t_S-t}^{T-t-2} (\gamma \lambda)^j$	Geometric tail weight	

B MORE DETAILS ON THE THEORY

B.1 DETAILED THEORETICAL SETUP

Problem Formulation We consider the *active reasoning* where an LLM agent interacts with an external environment to acquire missing information and infer the solution via a sequence of actions and observations (Zhou et al., 2025). This can be modeled as a Partially Observable Markov Decision Process (POMDP), defined by the tuple $(\mathcal{S}, \mathcal{A}, \mathcal{O}, T, O, R, \gamma)$, where \mathcal{S} is the space of unobservable latent states, \mathcal{A} the action space, \mathcal{O} the observation space, $T(s' \mid s, a)$ the transition dynamics, $O(o \mid s, a)$ the observation model, R the reward function, and γ the discount factor. In our work, we assume that the underlying latent state is fixed during an episode, and denote it as s^* .

An ideal Bayesian reasoner would maintain an *oracle belief* distribution $b_t^* \in \Delta(\mathcal{S})$, i.e., a posterior over latent states given the full history of interactions. Specifically, the oracle belief b^* is recursively updated via Bayes' rule B^* upon taking action a and observing o :

$$b_{t+1}^*(s) := B^*(b_t^*, a, o) = \frac{O(o \mid s, a) b_t^*(s)}{p_b(o \mid a)}, \quad (3)$$

where $p_b(o \mid a) := \sum_{s' \in \mathcal{S}} O(o \mid s', a) b_t^*(s')$ is the Bayes-normalizer.

In contrast, an LLM agent does not perform exact Bayesian filtering. Instead, it maintains an *agent belief* b_t , which represents its internal understanding of the latent state and what information remains missing. This belief may be implicit in the LLM's hidden state or explicit in the trajectory (e.g., via Chain-of-Thought (Wei et al., 2022)). Given the action-observation pair (a, o) , the agent belief evolves by $b_{t+1}(s) := B_\theta(b_t, a, o)$, where θ denotes agent model parameters.

We compare the agent's trajectory $(b_t, a_t, o_t)_{t \geq 1}$ with that of the oracle reasoner $(b_t^*, a_t^*, o_t^*)_{t \geq 1}$. Specifically, the oracle samples actions from $\pi(\cdot \mid b_t^*)$ and observations from $O(\cdot \mid s^*, a_t^*)$, updating its belief via B^* (Eq. 3). The agent follows its own update rule B_θ , sampling actions and observations by $\pi(\cdot \mid b_t)$ and $O(\cdot \mid s^*, a_t)$. To quantify the discrepancy between beliefs, we use the ℓ_1 -distance: $d(b, b') := \sum_{s \in \mathcal{S}} |b(s) - b'(s)| \leq 2$, and denote $d_t := d(b_t, b_t^*)$.

810 B.2 DYNAMICS OF BELIEF TRAPPING OF LLM AGENTS IN ACTIVE REASONING
811812 We begin by modeling *task progress* of active reasoning. Specifically, we introduce a truth-anchored
813 potential function $\Psi : \Delta(\mathcal{S}) \mapsto \mathbb{R}^{\geq 0}$ that captures how concentrated the belief is on the true state s^* .
814815 **Definition 3** (Truth-anchored potential). *For belief $b \in \Delta(\mathcal{S})$ and ground-truth state s^* , define*
816

817
$$\Psi(b) := -\log b(s^*).$$

818

819 It holds that $\Psi(b) \in [0, \infty)$, with $\Psi(b) = 0$ iff $b(s^*) = 1$ (task completion). Lower values of $\Psi(b)$
820 indicate higher confidence in the true state.
821822 Based on this, we assume that the oracle's belief $(b_t^*)_{t \geq 1}$ is well-behaved and guaranteed to eventually
823 converge to the truth.
824825 **Assumption 2** (Oracle Potential Convergence). *Along the oracle trajectory $(b_t^*, a_t^*, o_t^*)_{t \geq 1}$, the
826 potential $\Psi_t^* := \Psi(b_t^*)$ is bounded and convergent to zero. Specifically, there exists a deterministic
827 nonincreasing sequence $(u_t)_{t \geq 1}$ with $u_1 = \Psi(b_1^*) =: \Psi_0$ and $u_t \searrow 0$ such that*
828

829
$$\Psi_t^* \leq u_t \quad \text{for all } t \geq 1.$$

830

831 In particular, $\Psi_t^* \leq \Psi_0$ for all t and $\lim_{t \rightarrow \infty} \Psi_t^* = 0$.
832833 To analyze the agent's behavior, we define several key quantities. Through the following definitions,
834 we measure the expected information gain of an action under the *ideal* Bayesian update (Def. 4), and
835 the *actual* one-step progress when updating belief via the agent LLM (Def. 5). We further quantify
836 the discrepancy between the agent's update and the Bayesian update (Def. 6).
837838 **Definition 4** (One-Step Informativeness). *For belief b and action a , define*
839

840
$$\mathcal{I}(b, a) := \Psi(b) - \mathbb{E}_{o \sim O(\cdot | s^*, a)} [\Psi(B^*(b, a, o))].$$

841

842 This captures the expected improvement of Ψ -progress when taking action a from belief b .
843844 **Definition 5** (One-step Agent Progress). *The agent's expected Ψ -progress given the current belief b :*
845

846
$$\mathcal{P}_\theta(b) := \Psi(b) - \mathbb{E}_{a \sim \pi(\cdot | b)} \mathbb{E}_{o \sim O(\cdot | s^*, a)} [\Psi(B_\theta(b, a, o))].$$

847

848 **Definition 6** (Agent-Bayes update error). *For a belief b , define the conditional update error*
849

850
$$c_\theta(b) := \mathbb{E}_{a \sim \pi(\cdot | b)} \mathbb{E}_{o \sim O(\cdot | s^*, a)} [\Psi(B_\theta(b, a, o)) - \Psi(B^*(b, a, o))].$$

851

852 We now state several technical assumptions required for our analysis.
853854 **Assumption 3.** *There exists $\eta \in (0, 1]$ such that $O(o | s, a) \geq \eta$ for all reachable (o, s, a) .*
855856 **Assumption 4** (Policy Sensitivity). *There exist $L_\pi \geq 0$ such that for any beliefs b, b' ,*
857

858
$$\text{TV}(\pi(\cdot | b), \pi(\cdot | b')) \leq L_\pi d(b, b'),$$

859

860 where $\text{TV}(P, Q) := \sup_{A \subseteq \mathcal{A}} |P(A) - Q(A)|$ denotes the total variation distance between probability
861 distributions.
862863 **Assumption 5** (Update-Error Growth). *There exist constants $m_\theta > 0$, $c_0 \geq 0$, and a threshold
864 $U_0 \geq 0$ such that for all b with $\Psi(b) \geq U_0$,*
865

866
$$c_\theta(b) \geq m_\theta \Psi(b) - c_0.$$

867

868 That is, in high-uncertainty regimes, the agent's update error grows at least linearly with Ψ .
869870 Assumption 5 intuitively describes that the errors of belief update are amplified with the belief
871 diffusing. We next formalize the regime in which such misspecification dominates the oracle's
872 informativeness:
873874 **Definition 7** (Belief Trap Region, BTR). *A set $\mathcal{R}_\theta \subseteq \Delta(\mathcal{S})$ is called a belief trap region for an agent
875 parameterized by θ if it is absorbing and induces non-positive progress: for any belief $b \in \mathcal{R}_\theta$ and all
876 subsequent times t once entered,*
877

878
$$\mathcal{P}_\pi(b) \leq 0 \quad \text{and equivalently} \quad \mathbb{E}[\Psi(b_{t+1}) | b_t = b] \geq \Psi(b).$$

879

880 Inside BTR, $\{\Psi_t\}$ is supermartingale-like under the agent's evolution: the process does not trend
881 down in expectation. Practically, once trajectories enter this set, additional steps are uninformative
882 and tend to reinforce the stall.
883

864 B.3 DETAILED STATEMENT OF THEOREM 1
865

866 Next, we investigate the characteristics of the BTR as follows:

867 **Proposition 2** (Sufficient Condition of entering BTR). *Under Assumptions 3–5, define the constant*
868 $\bar{B} := 2(-\log \eta L_\pi + 1/\eta)$. *Then there exists a threshold $U := \max\{U_0, (\Psi_0 + \bar{B} + c_0)/m_\theta\}$ such that the following holds: if $\Psi(b_{t_S}) \geq U$ for some t_S , then for all $t \geq t_S$,*

870
$$\mathcal{P}_\theta(b_t) \leq 0 \quad \text{and} \quad \mathbb{E}_{a_t, o_t} [\Psi(b_{t+1}) | b_t] \geq \Psi(b_t).$$

871

872 This result formalizes the *absorbing nature* of the belief-trap region: once the potential Ψ exceeds
873 the threshold U , the trajectory is locked into a regime where exploration is ineffective and the task
874 progress no longer proceeds. Now we delve into the properties of the BTR entry time t_S :875 **Proposition 3.** *Strengthen Assumption 1 to global. Assume there exists $\mu > 0$ such that $\Psi_t^* \geq \mu$ for*
876 *all $t < t_S$. Assume $\delta := m_\theta \mu - (c_0 + \bar{B}) > 0$. Then the (expected) hitting time into \mathcal{R}_θ obeys*
877 *the explicit upper bound*

878
$$t_S \leq 1 + \left\lceil \log_{1+m_\theta} \frac{m_\theta U + \delta}{m_\theta \Delta_1 + \delta} \right\rceil.$$

879

880 The proofs for Proposition 2 and Proposition 3 are given in Appendix B.6 and Appendix B.7,
881 respectively. This gives an explicit upper bound on the time to enter the trap: without checking belief
882 errors accumulate, hitting BTR occurs inevitably and fairly quickly once belief updates deteriorate.
883884 B.4 DETAILED STATEMENT OF THEOREM 2
885886 **Theorem 3** (BTR Induces Advantage Inversion). *Under the following assumptions:*887 (i) **Calibration:** $V_t = g(b_t(s^*))$ for an increasing, differentiable g with $\inf_x g'(x) \geq \kappa_V > 0$.888 (ii) **Belief Drop in BTR:** $\mathbb{E}[b_{k+1}(s^*) - b_k(s^*) | \mathcal{F}_k] \leq -\rho_b$ for $k \geq t_S$.889 then, for any $t < t_S$, the expected advantage is bounded:

890
$$\mathbb{E}[\hat{A}_t] \leq \gamma (S_{\text{pre}}(t) - \kappa_V \rho_b S_{\text{tail}}^\ominus(t)), \quad (4)$$

891

892 where $S_{\text{pre}}(t) = \sum_{j=0}^{t_S-t-1} (\gamma \lambda)^j$ and $S_{\text{tail}}^\ominus(t) = \sum_{j=t_S-t}^{T-t-2} (\gamma \lambda)^j$. Therefore, a sufficient condition for
893 $\mathbb{E}[\hat{A}_t] < 0$ is:

894
$$\kappa_V \rho_b > \frac{S_{\text{pre}}(t)}{S_{\text{tail}}^\ominus(t)}. \quad (5)$$

895

896 In particular, when $\gamma \lambda \rightarrow 1$ (a common setting for sparse reward tasks), the condition simplifies to
897 $\kappa_V \rho_b > \Delta/L$, where $\Delta = t_S - t$ and $L = T - 1 - t_S$ are the prefix and tail lengths, respectively.
898901 The proof for Theorem 3 is given in Appendix B.8. This proposition quantifies the credit assignment
902 failure: the negative drift from a long uninformative tail (L large) can overwrite the positive credit
903 from the informative prefix, causing the overall gradient to point in the wrong direction and penalize
904 earlier exploratory actions. This analytical result motivates the need for a mechanism to *cut* the
905 trajectory upon entering the BTR, thereby isolating the prefix and preserving the correct credit
906 assignment.907 B.5 IMPORTANT LEMMAS
908909 Before proving the propositions, we start by providing two important lemmas, and their proofs in
910 Appendix B.10 and B.11.911 **Lemma 1** (Belief-Lipschitz Continuity of Informativeness). *Under Assumption 3, for any fixed*
912 *action $a \in \mathcal{A}$ and any beliefs $b, b' \in \Delta(\mathcal{S})$, we have*

913
$$|\mathcal{I}(b, a) - \mathcal{I}(b', a)| \leq \frac{1}{\eta} \|b - b'\|_1. \quad (6)$$

914

915 Consequently, for any action distribution q ,

916
$$|\mathbb{E}_{a \sim q} \mathcal{I}(b, a) - \mathbb{E}_{a \sim q} \mathcal{I}(b', a)| \leq \frac{1}{\eta} \|b - b'\|_1. \quad (7)$$

917

918 **Lemma 2** (Policy-Lipschitz Continuity of Informativeness). *Under Assumption 3, for any fixed belief*
 919 *$b \in \Delta(\mathcal{S})$ and any two action distributions q, q' on \mathcal{A} , we have*
 920

$$921 \quad |\mathbb{E}_{a \sim q} \mathcal{I}(b, a) - \mathbb{E}_{a \sim q'} \mathcal{I}(b, a)| \leq \Lambda \cdot \|q - q'\|_{\text{TV}},$$

922 *where $\Lambda := -\log \eta$ and $\|q - q'\|_{\text{TV}} := \sup_{A \subseteq \mathcal{A}} |q(A) - q'(A)|$ denotes the total variation norm.*
 923

924 B.6 PROOF OF PROPOSITION 2

926 *Proof.* From Definitions 4, 5, and 6, we have:

$$927 \quad \mathcal{P}_\theta(b_t) = \mathbb{E}_{a_t \sim \pi(\cdot | b_t)} [\mathcal{I}(b_t, a_t)] - c_\theta(b_t). \quad (8)$$

929 Let $a_t \sim \pi(\cdot | b_t)$ and $a_t^* \sim \pi(\cdot | b_t^*)$. Leveraging the results in Lemma 1 and 2, we bound the
 930 difference in expected informativeness:
 931

$$932 \quad \left| \mathbb{E}_{a_t^*} [\mathcal{I}(b_t^*, a_t^*)] - \mathbb{E}_{a_t} [\mathcal{I}(b_t, a_t)] \right| \quad (9)$$

$$934 \quad \leq \left| \mathbb{E}_{a_t^*} [\mathcal{I}(b_t^*, a_t^*)] - \mathbb{E}_{a_t} [\mathcal{I}(b_t^*, a_t)] \right| + \left| \mathbb{E}_{a_t} [\mathcal{I}(b_t^*, a_t)] - \mathbb{E}_{a_t} [\mathcal{I}(b_t, a_t)] \right| \quad (10)$$

$$935 \quad \leq \Lambda \text{TV}(\pi(\cdot | b_t^*), \pi(\cdot | b_t)) + L_b d(b_t^*, b_t) \quad (11)$$

$$937 \quad \leq (\Lambda L_\pi + L_b) d_t. \quad (12)$$

938 From Assumption 2, we have:

$$940 \quad \mathbb{E}_{a_t^*} [\mathcal{I}(b_t^*, a_t^*)] = \Psi(b_t^*) - \mathbb{E}[\Psi(b_{t+1}^*)] \leq \Psi_0. \quad (13)$$

942 Combining with Eq. 12 yields:

$$943 \quad \mathbb{E}_{a_t} [\mathcal{I}(b_t, a_t)] \leq \Psi_0 + (\Lambda L_\pi + L_b) d_t. \quad (14)$$

945 Since $d_t \leq 2$, we obtain:

$$946 \quad \mathbb{E}_{a_t} [\mathcal{I}(b_t, a_t)] \leq \Psi_0 + 2(\Lambda L_\pi + L_b) = K. \quad (15)$$

948 Now, from Assumption 1, if $\Psi(b_t) \geq U_0$, then:

$$950 \quad c_\theta(b_t) \geq m_\theta \Psi(b_t) - c_0. \quad (16)$$

951 Substituting into Eq. 8 gives:

$$953 \quad \mathcal{P}_\theta(b_t) \leq K - (m_\theta \Psi(b_t) - c_0). \quad (17)$$

954 Thus, if $\Psi(b_t) \geq (K + c_0)/m_\theta$ and $\Psi(b_t) \geq U_0$ (i.e., $\Psi(b_t) \geq U$), then $\mathcal{P}_\theta(b_t) \leq 0$, meaning:

$$956 \quad \mathbb{E}[\Psi(b_{t+1}) | b_t] \geq \Psi(b_t). \quad (18)$$

957 Since $c_\theta(\cdot)$ is lower-bounded by a function that is nondecreasing in Ψ (Assumption 1), this argument
 958 applies inductively for all $t \geq t_0$, confirming the supermartingale property and the stalling behavior.
 959 \square

961 B.7 PROOF OF PROPOSITION 3

963 *Proof.* For simplicity, let $\Psi_t := \Psi(b_t)$ and $\Psi_t^* := \Psi(b_t^*)$. From the definitions of agent progress
 964 $\mathcal{P}_\pi(b)$ and update error $c_\theta(b)$, we have the one-step expectation:

$$965 \quad \mathbb{E}[\Psi_{t+1} | \mathcal{F}_t] = \Psi_t - \mathbb{E}_{a_t \sim \pi(\cdot | b_t)} [\mathcal{I}(b_t, a_t)] + c_\theta(b_t). \quad (19)$$

967 For the oracle, it holds that:

$$968 \quad \mathbb{E}[\Psi_{t+1}^* | \mathcal{F}_t] = \Psi_t^* - \mathbb{E}_{a_t^* \sim \pi(\cdot | b_t^*)} [\mathcal{I}(b_t^*, a_t^*)]. \quad (20)$$

970 Subtracting these two equations yields the fundamental drift identity for the gap $\Delta_t = \Psi_t - \Psi_t^*$:

$$971 \quad \mathbb{E}[\Delta_{t+1} - \Delta_t | \mathcal{F}_t] = (\mathbb{E}_{a_t^*} [\mathcal{I}(b_t^*, a_t^*)] - \mathbb{E}_{a_t} [\mathcal{I}(b_t, a_t)]) + c_\theta(b_t). \quad (21)$$

972 From what have been shown in Eq. 12, we have,
 973

$$974 |\mathbb{E}_{a_t^*}[\mathcal{I}(b_t^*, a_t^*)] - \mathbb{E}_{a_t}[\mathcal{I}(b_t, a_t)]| \leq (\Lambda L_\pi + L_b) d_t \leq 2(\Lambda L_\pi + L_b) =: \bar{B}. \quad (22)$$

975 Substituting into 21 gives:
 976

$$977 \mathbb{E}[\Delta_{t+1} - \Delta_t \mid \mathcal{F}_t] \geq -\bar{B} + c_\theta(b_t). \quad (23)$$

978 The strengthened Assumption 1 implies:
 979

$$980 c_\theta(b_t) \geq m_\theta \Psi_t - c_0 = m_\theta(\Delta_t + \Psi_t^*) - c_0. \quad (24)$$

981 Substituting into 23 yields:
 982

$$983 \mathbb{E}[\Delta_{t+1} - \Delta_t \mid \mathcal{F}_t] \geq m_\theta \Delta_t + (m_\theta \Psi_t^* - (c_0 + \bar{B})). \quad (25)$$

984 Rearranging terms:
 985

$$986 \mathbb{E}[\Delta_{t+1} \mid \mathcal{F}_t] \geq (1 + m_\theta) \Delta_t + (m_\theta \Psi_t^* - (c_0 + \bar{B})). \quad (26)$$

987 By the law of total expectation, we have,
 988

$$989 \mathbb{E}[\mathbb{E}[\Delta_{t+1} \mid \mathcal{F}_t]] \geq \mathbb{E}[(1 + m_\theta) \Delta_t + (m_\theta \Psi_t^* - (c_0 + \bar{B}))] \quad (27)$$

$$991 \mathbb{E}[\Delta_{t+1}] \geq (1 + m_\theta) \mathbb{E}[\Delta_t] + m_\theta \mathbb{E}[\Psi_t^*] - (c_0 + \bar{B}). \quad (28)$$

992 Iterating this inequality gives:
 993

$$994 \mathbb{E}[\Delta_T] \geq (1 + m_\theta)^{T-1} \Delta_1 + \sum_{k=1}^{T-1} (1 + m_\theta)^{T-1-k} \mathbb{E}[m_\theta \Psi_k^* - (c_0 + \bar{B})]. \quad (29)$$

997 As assumed in the proposition, there exists $\mu > 0$ such that for all $k \geq 1$, $\Psi_k^* \geq \mu$ almost surely. This
 998 implies $\mathbb{E}[\Psi_k^*] \geq \mu$. Then:

$$1000 \mathbb{E}[m_\theta \Psi_k^* - (c_0 + \bar{B})] \geq m_\theta \mu - (c_0 + \bar{B}) =: \delta. \quad (30)$$

1001 Substituting into Eq. 29:

$$1003 \mathbb{E}[\Delta_T] \geq (1 + m_\theta)^{T-1} \Delta_1 + \delta \sum_{k=1}^{T-1} (1 + m_\theta)^{T-1-k} \quad (31)$$

$$1006 = (1 + m_\theta)^{T-1} \Delta_1 + \delta \frac{(1 + m_\theta)^{T-1} - 1}{m_\theta}. \quad (32)$$

1008 We now show that $\mathbb{E}[\Psi_T]$ exceeds U in finite time. Recall:
 1009

$$1010 \mathbb{E}[\Psi_T] = \mathbb{E}[\Delta_T] + \mathbb{E}[\Psi_T^*] \geq \mathbb{E}[\Delta_T]. \quad (33)$$

1012 A sufficient condition is therefore:

$$1013 (1 + m_\theta)^{T-1} \Delta_1 + \delta \frac{(1 + m_\theta)^{T-1} - 1}{m_\theta} \geq U. \quad (34)$$

1015 Since $\delta > 0$ and $1 + m_\theta > 1$, the left-hand side grows exponentially with T . Thus, for any $U > 0$,
 1016 there exists a finite T such that Eq. 34 holds. Specifically, we have:
 1017

$$1018 (1 + m_\theta)^{T-1} \geq \frac{m_\theta U + \delta}{m_\theta \Delta_1 + \delta}. \quad (35)$$

1020 Taking logarithms yields the explicit bound:
 1021

$$1022 T \geq 1 + \left\lceil \frac{1}{\log(1 + m_\theta)} \log \left(\frac{m_\theta U + \delta}{m_\theta \Delta_1 + \delta} \right) \right\rceil. \quad (36)$$

1024 This completes the proof.
 1025

□

1026 B.8 PROOF OF THEOREM 3
10271028 *Proof.* We decompose the advantage estimator: $\hat{A}_t = \text{Pre}(t) + \text{Tail}(t)$, where
1029

1030
$$\text{Pre}(t) = \sum_{j=0}^{t_S-t-1} q^j \delta_{t+j}, \quad \text{Tail}(t) = \sum_{j=t_S-t}^{T-t-1} q^j \delta_{t+j}, \quad \text{and } q = \gamma \lambda.$$

1031
1032

1033 For any $k < t_S$, the TD-error $\delta_k = \gamma V_{k+1} - V_k$ (since $r_k = 0$). Because $V_k \in [0, 1]$,
1034

1035
$$\mathbb{E}[\delta_k | \mathcal{F}_k] = \gamma \mathbb{E}[V_{k+1} | \mathcal{F}_k] - V_k \leq \gamma \cdot 1 - 0 = \gamma.$$

1036 Taking full expectation and summing over the prefix yields:
1037

1038
$$\mathbb{E}[\text{Pre}(t)] \leq \gamma S_{\text{pre}}(t). \quad (37)$$

1039 We split the tail into the main part and the terminal step:
1040

1041
$$\text{Tail}(t) = \underbrace{\sum_{j=t_S-t}^{T-t-2} q^j \delta_{t+j}}_{\text{Tail}^-(t)} + q^{T-t-1} \delta_{T-1}.$$

1042
1043
1044

1045 For the terminal step, $\delta_{T-1} = R_T - V_{T-1}$, so $\mathbb{E}[\delta_{T-1} | \mathcal{F}_{T-1}] = 0$, and thus $\mathbb{E}[q^{T-t-1} \delta_{T-1}] = 0$.
10461047 Now, fix $k \in \{t_S, \dots, T-2\}$. We analyze $\mathbb{E}[\delta_k | \mathcal{F}_k]$:

1048
$$\mathbb{E}[\delta_k | \mathcal{F}_k] = \gamma \mathbb{E}[V_{k+1} - V_k | \mathcal{F}_k] + (\gamma - 1) V_k \quad (38)$$

1049
$$\leq \gamma \mathbb{E}[V_{k+1} - V_k | \mathcal{F}_k] \quad (\text{since } V_k \geq 0 \text{ and } \gamma - 1 \leq 0). \quad (39)$$

1050 By the calibration assumption, $V_{k+1} - V_k = g(b_{k+1}(s^*)) - g(b_k(s^*))$. Since g is differentiable with
1051 $g' \geq \kappa_V > 0$, and since $\mathbb{E}[b_{k+1}(s^*) - b_k(s^*) | \mathcal{F}_k] \leq -\rho_b$ by assumption, we have:
1052

1053
$$\mathbb{E}[V_{k+1} - V_k | \mathcal{F}_k] = \mathbb{E}[g'(\xi_k)(b_{k+1}(s^*) - b_k(s^*)) | \mathcal{F}_k] \quad (40)$$

1054
$$\leq \kappa_V \mathbb{E}[b_{k+1}(s^*) - b_k(s^*) | \mathcal{F}_k] \quad (\text{since } g'(\xi_k) \geq \kappa_V) \quad (41)$$

1055
$$\leq -\kappa_V \rho_b. \quad (42)$$

1056 Therefore, $\mathbb{E}[\delta_k | \mathcal{F}_k] \leq -\gamma \kappa_V \rho_b$. Taking full expectation and summing over the tail gives:
1057

1058
$$\mathbb{E}[\text{Tail}^-(t)] \leq -\gamma \kappa_V \rho_b S_{\text{tail}}^\ominus(t). \quad (43)$$

1059 Combining Eq. 37 and Eq. 43 proves the main bound Eq. 4. The inversion condition Eq. 5 follows
1060 directly by requiring the right-hand side of Eq. 4 to be negative.
10611062 From what have been proved above, we have:
1063

1064
$$\mathbb{E}[\hat{A}_t] = \mathbb{E}[\text{Pre}(t)] + \mathbb{E}[\text{Tail}(t)] \leq \mathbb{E}[\hat{A}_t^{\text{pre}}] - \gamma \kappa_V \rho_b S_{\text{tail}}^\ominus(t).$$

1065

1066 Rearranging terms yields: $\mathbb{E}[\hat{A}_t^{\text{pre}}] \geq \mathbb{E}[\hat{A}_t] + \gamma \kappa_V \rho_b S_{\text{tail}}^\ominus(t).$
1067 \square
10681069 B.9 PROOF OF PROPOSITION 1
10701071 *Proof.* Fix any k -step segment $(t+1, \dots, t+k)$ that lies entirely outside the BTR, so that $g_s \geq \rho > 0$ for all $s \in \{t+1, \dots, t+k\}$. By definition of the biased Gaussian-noise model, we have
1072 $d_s = g_s + \beta_s + \xi_s$, where $|\beta_s| \leq M$, $\xi_s \sim \mathcal{N}(0, \sigma^2)$ independently across s . On a step s outside
1073 the BTR, a local false truncation event occurs when the proxy falls below the threshold Δ_{\min} (c.f.,
1074 Def. 2) despite $g_s \geq \rho$:
1075

1076
$$\mathcal{E}_s := \{d_s < \Delta_{\min}\} = \{g_s + \beta_s + \xi_s < \Delta_{\min}\}.$$

1077 Using $g_s \geq \rho$ and $|\beta_s| \leq M$, we obtain $g_s + \beta_s \geq \rho - M$. Hence
1078

1079
$$\Pr(\mathcal{E}_s) = \Pr(g_s + \beta_s + \xi_s < \Delta_{\min}) \leq \Pr(\rho - M + \xi_s < \Delta_{\min}) = \Pr(\xi_s < \Delta_{\min} - (\rho - M)).$$

1080 Define the margin $a := \rho - M - \Delta_{\min}$. By the assumption $\Delta_{\min} < \rho - M$, we have $a > 0$ and
 1081 therefore,

$$1082 \Pr(\mathcal{E}_s) \leq \Pr(\xi_s < -a).$$

1083 Since $\xi_s \sim \mathcal{N}(0, \sigma^2)$, the standard concentration inequality gives, for any $a > 0$, we have
 1084

$$1085 \Pr(\xi_s \leq -a) \leq \exp\left(-\frac{a^2}{2\sigma^2}\right).$$

1086 Applying this with $a = \rho - M - \Delta_{\min} > 0$ yields
 1087

$$1088 \Pr(\mathcal{E}_s) \leq \exp\left(-\frac{(\rho-M-\Delta_{\min})^2}{2\sigma^2}\right). \quad (44)$$

1090 Recall that the \mathbf{T}^3 rule with window size k triggers at the end of a k -step segment only if all k steps in
 1091 the window are classified as ‘‘non-informative’’. For a non-BTR segment $(t+1, \dots, t+k)$, activating
 1092 \mathbf{T}^3 therefore corresponds to the intersection of the k single-step events $\mathcal{E}_{t+1}, \dots, \mathcal{E}_{t+k}$:

$$1093 \mathcal{E}_{t+1, \dots, t+k} := \bigcap_{s=t+1}^{t+k} \mathcal{E}_s.$$

1094 By independence of the noises $\{\xi_s\}$ across s and because each \mathcal{E}_s is determined by ξ_s , we have
 1095

$$1096 \Pr(\mathcal{E}_{t+1, \dots, t+k}) = \prod_{s=t+1}^{t+k} \Pr(\mathcal{E}_s).$$

1097 Applying the single-step bound (Eq. 44) uniformly yields
 1098

$$1099 \Pr(\mathcal{E}_{t+1, \dots, t+k}) \leq \exp\left(-\frac{k(\rho-M-\Delta_{\min})^2}{2\sigma^2}\right).$$

1100 To ensure that the false-truncation probability on any k -step non-BTR segment is at most $\delta \in (0, 1)$,
 1101 it suffices to require
 1102

$$\exp\left(-\frac{k(\rho-M-\Delta_{\min})^2}{2\sigma^2}\right) \leq \delta,$$

1103 which is equivalent to
 1104

$$1105 k(\rho - M - \Delta_{\min})^2 \geq 2\sigma^2 \log(1/\delta).$$

□

1114 B.10 PROOF OF LEMMA 1

1115 *Proof.* We begin by showing the closed form of one-step informativeness $\mathcal{I}(b, a)$. Combing Definitions 3, 4 and Eq. 3, we have,

$$1116 \mathcal{I}(b, a) = \Psi(b) - \mathbb{E}_{o \sim O(\cdot | s^*, a)} [\Psi(B^*(b, a, o))] \quad (45)$$

$$1117 = -\log b(s^*) - \mathbb{E}_{o \sim O(\cdot | s^*, a)} \left[-\log \left(\frac{O(o | s^*, a) b(s^*)}{p_b(o | a)} \right) \right] \quad (46)$$

$$1118 = \mathbb{E}_{o \sim O(\cdot | s^*, a)} \left[\log \frac{O(o | s^*, a)}{p_b(o | a)} \right]. \quad (47)$$

1119 For fixed a , Let $P(o) := O(o | s^*, a)$, and $Q_b(o) := p_b(o | a) = \sum_s b(s) O(o | s, a)$. Then we have:
 1120

$$1121 \mathcal{I}(b, a) = \mathbb{E}_{o \sim P} \left[\log \frac{P(o)}{Q_b(o)} \right] = \underbrace{\mathbb{E}_P [\log P(o)]}_{\text{constant in } b} - \mathbb{E}_P [\log Q_b(o)]. \quad (48)$$

1122 By the non-degeneracy assumption (Assumption 3), $O(o | s, a) \geq \eta$ for all reachable o, s . Consequently, for any belief b and any observation o ,

$$1123 Q_b(o) = \sum_{s \in \mathcal{S}} b(s) O(o | s, a) \geq \sum_{s \in \mathcal{S}} b(s) \cdot \eta = \eta. \quad (49)$$

1134 Thus, $Q_b(o) \geq \eta$ and $Q_{b'}(o) \geq \eta$ hold for all o .

1135 For any $x, y \geq \eta > 0$, we have the elementary bound

$$1137 \quad |\log x - \log y| = \left| \int_y^x \frac{1}{t} dt \right| \leq \frac{|x - y|}{\min\{x, y\}} \leq \frac{|x - y|}{\eta}. \quad (50)$$

1139 Applying this with $Q_b(o)$ and $Q_{b'}(o)$ yields:

$$1141 \quad |\log Q_b(o) - \log Q_{b'}(o)| \leq \frac{|Q_b(o) - Q_{b'}(o)|}{\eta} \quad \text{for all } o. \quad (51)$$

1142 Taking expectation under P and properties of expectation, we get:

$$1144 \quad |\mathbb{E}_P[\log Q_b(o)] - \mathbb{E}_P[\log Q_{b'}(o)]| \leq \mathbb{E}_P[|\log Q_b(o) - \log Q_{b'}(o)|] \quad (52)$$

$$1145 \quad \leq \mathbb{E}_P \left[\frac{|Q_b(o) - Q_{b'}(o)|}{\eta} \right] \quad (53)$$

$$1147 \quad \leq \frac{1}{\eta} \|Q_b - Q_{b'}\|_1. \quad (54)$$

1149 Since $\mathcal{I}(b, a) = \text{const} - \mathbb{E}_P[\log Q_b(o)]$, it follows that

$$1151 \quad |\mathcal{I}(b, a) - \mathcal{I}(b', a)| \leq \frac{1}{\eta} \|Q_b - Q_{b'}\|_1. \quad (55)$$

1153 We have

$$1155 \quad |Q_b(o) - Q_{b'}(o)| = \left| \sum_{s \in \mathcal{S}} (b(s) - b'(s)) O(o | s, a) \right| \leq \sum_{s \in \mathcal{S}} |b(s) - b'(s)| O(o | s, a). \quad (56)$$

1157 Summing over o gives:

$$1158 \quad \|Q_b - Q_{b'}\|_1 = \sum_{o \in \mathcal{O}} |Q_b(o) - Q_{b'}(o)| \leq \sum_{o \in \mathcal{O}} \sum_{s \in \mathcal{S}} |b(s) - b'(s)| O(o | s, a) \quad (57)$$

$$1161 \quad = \sum_{s \in \mathcal{S}} |b(s) - b'(s)| \sum_{o \in \mathcal{O}} O(o | s, a) \quad (58)$$

$$1163 \quad = \|b - b'\|_1. \quad (59)$$

1164 Combining this with Eq. 55 yields the pointwise bound:

$$1165 \quad |\mathcal{I}(b, a) - \mathcal{I}(b', a)| \leq \frac{1}{\eta} \|b - b'\|_1. \quad (60)$$

1167 For any action distribution q , by the linearity of expectation:

$$1169 \quad |\mathbb{E}_{a \sim q} \mathcal{I}(b, a) - \mathbb{E}_{a \sim q} \mathcal{I}(b', a)| \leq \mathbb{E}_{a \sim q} |\mathcal{I}(b, a) - \mathcal{I}(b', a)| \leq \mathbb{E}_{a \sim q} \left[\frac{1}{\eta} \|b - b'\|_1 \right] = \frac{1}{\eta} \|b - b'\|_1. \quad (61)$$

1171 \square

1173 B.11 PROOF OF LEMMA 2

1175 *Proof.* For fixed b , define $f(a) := \mathcal{I}(b, a)$. We first show that f is bounded. By non-degeneracy,
1176 $O(o | s, a) \geq \eta$ for all o, s, a . Consequently, for any a ,

$$1177 \quad p_b(o | a) = \sum_{s \in \mathcal{S}} b(s) O(o | s, a) \geq \eta \quad \text{and} \quad O(o | s^*, a) \geq \eta.$$

1179 By Eq. 47, we have

$$1181 \quad 0 \leq \mathcal{I}(b, a) = \mathbb{E}_{o \sim O(\cdot | s^*, a)} \left[\log \frac{O(o | s^*, a)}{p_b(o | a)} \right] \leq \mathbb{E}_{o \sim O(\cdot | s^*, a)} [\log(1/\eta)] = -\log \eta.$$

1183 Hence, $\|f\|_\infty \leq -\log \eta$, where $\|\cdot\|_\infty$ denotes the supremum norm $\|f\|_\infty := \sup_{a \in \mathcal{A}} |f(a)|$.

1184 The result now follows from a standard property of the total variation norm: for any bounded function
1185 f ,

$$1186 \quad |\mathbb{E}_{a \sim q} f(a) - \mathbb{E}_{a \sim q'} f(a)| \leq \|f\|_\infty \cdot \|q - q'\|_{\text{TV}} \leq (-\log \eta) \cdot \|q - q'\|_{\text{TV}}. \quad \square$$

1188
1189

C EMPIRICAL VERIFICATION OF THE THEORY

1190
1191

C.1 EMPIRICAL VERIFICATION OF ASSUMPTION 1

1192
1193
1194
1195

A direct empirical validation of Assumption 1 is inherently challenging, as neither the oracle Bayesian update B^* nor the LLM agent’s internal belief state b_t is directly observable. To address this, we design a controlled study on the PE task that enables practical and theoretically aligned approximations of all relevant quantities.

1196
1197
1198
1199

(i) Approximating the potential Ψ . Each interaction round in PE provides the model’s explicit estimate of the latent user-preference vector, denoted by w_t . Since the ground-truth preference w^* is available, we define

1200
1201
1202

$d(w_t) := \|w_t - w^*\|_2^2$,

and use $d(w_t)$ as an observable proxy of the potential, i.e.,

$$\hat{\Psi}_t := d(w_t) \approx \Psi(b_t).$$

1203
1204

This proxy preserves the essential properties of the theoretical potential: it is non-negative and equals zero if and only if the task is solved.

1205
1206
1207
1208
1209

(ii) Approximating the oracle Bayesian update B^* . Although the true Bayesian posterior is inaccessible, we construct a principled surrogate update rule \hat{B} following a standard update manner based on traditional machine learning. Specifically, given the model’s query $a_t := (A, B)$ where A, B denote the movie pair to compare and the observed feedback o_t , we define

1210
1211

$$w'_{t+1} := \hat{B}(w_t, a_t, o_t) = w_t + K_t m_t (o_t - m_t^\top w_t), \quad K_t = \frac{\sigma_0^2}{\sigma_0^2 \|m_t\|_2^2 + \sigma^2}.$$

1212
1213
1214
1215
1216

Here, $m_t \in \mathbb{R}^d$ is the movie-attribute *difference vector* for the pair of movies selected by the LLM’s query, i.e., $m_t = \text{attr}(A) - \text{attr}(B)$. The binary observation $o_t \in \{-1, +1\}$ corresponds to the user’s response and is given by $o_t = \text{sign}(m_t^\top w^*)$. The terms σ_0^2 and σ^2 denote prior and observation noise variances; following standard practice, we set both to 1.0. In contrast, the LLM agent updates its estimate via

1217
1218
1219

$$w_{t+1} := B_\theta(w_t, a_t, o_t),$$

which reflects the internal belief dynamics induced by its parameters θ .

1220
1221

(iii) Constructing observable samples of the update-error term. Using the above approximations, we instantiate the update-error quantity via

1222
1223
1224
1225

$$\hat{c}_\theta(b_t) := d(w_{t+1}) - d(w'_{t+1}) \approx c_\theta(b_t).$$

We toally collect over **150k** samples of pairs $\{(\hat{\Psi}_t, \hat{c}_\theta(b_t))\}$ using rollouts from the Qwen-2.5 series models, which provide a sufficiently rich empirical basis for inspecting the assumption.

1226
1227
1228

(iv) Estimating m_θ , U_0 , c_0 via lower-envelope fitting. Since Assumption 1 concerns only a *lower bound* relationship, we estimate the empirical lower envelope using a principled two-step procedure:

1229
1230
1231
1232

(a) Lower-envelope extraction via binning. According to Asp. 1, belief deviation of the LLM agent will be further amplified once it progresses into an uncertain region. Hence we empirically select a proper value of \hat{U}_0 such that large belief deviations are observed. We then partition the range $[\hat{U}_0, \Psi_{\max}]$ into B equal-width bins $[\psi_{b-1}, \psi_b]$. For each bin b , we compute:

1233
1234
1235

$$x_b := \mathbb{E}[\hat{\Psi}_t \mid \hat{\Psi}_t \in \text{bin } b], \quad y_b := \text{Quantile}_{0.1}(\hat{c}_\theta(b_t) \mid \hat{\Psi}_t \in \text{bin } b),$$

where y_b captures the empirical 10th-percentile lower envelope within the bin.

1236
1237

(b) Linear estimation on the active region. Restricting to the active region $\hat{\Psi}_t \geq \hat{U}_0$, we fit a linear model to the extracted lower-envelope points:

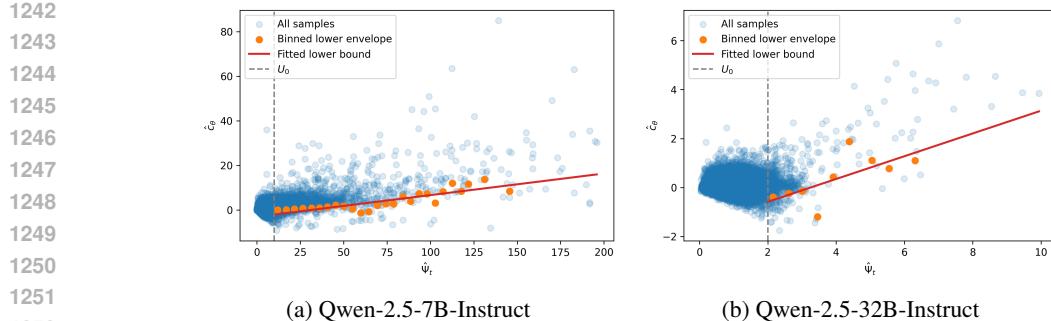
1238
1239
1240

$$y_b \approx \hat{m}_\theta x_b - \hat{c}_0.$$

The resulting $(\hat{m}_\theta, \hat{c}_0)$ provide empirical estimates of the coefficients in Assumption 1.

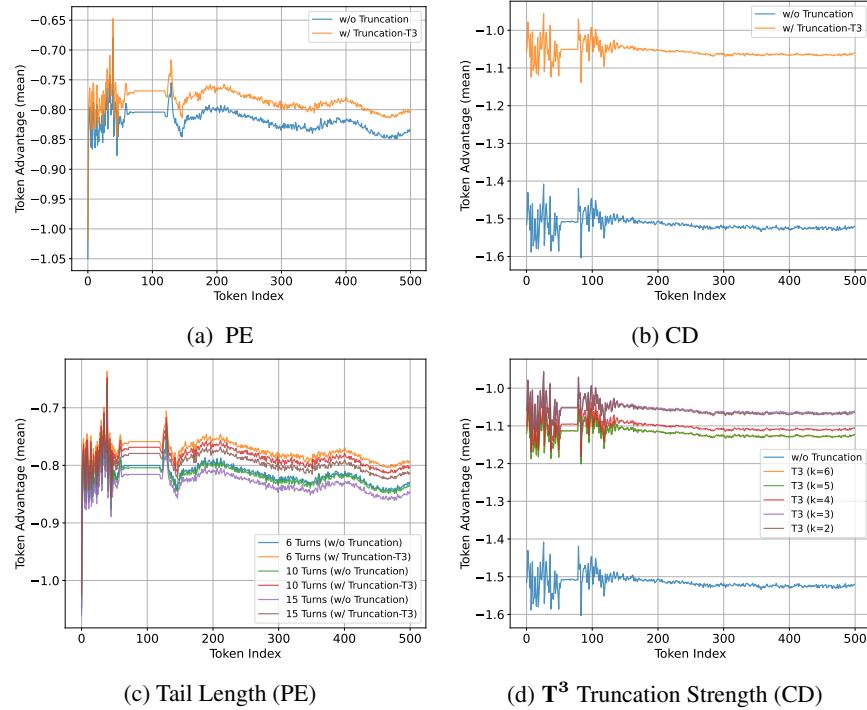
1241

We visualize the whole procedure and the fitted linear model in Fig. 7. The above procedure yields an interpretable empirical characterization of the lower-bound growth pattern required by Assumption 1.



1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Figure 7: Empirical visualization of Assumption 1 on the PE task. The dashed vertical line marks the empirically determined threshold \hat{U}_0 . Blue points show all samples, while orange points represent the binned lower envelope, obtained by partitioning the range of $\{\hat{\Psi}_t \geq \hat{U}_0\}$ into equal-width bins and taking the 10th percentile of \hat{c}_θ within each bin. The red line is a linear fit to these lower-envelope points. For (a), we empirically select $\hat{U}_0 = 10$, and obtain the linear fit: $\hat{c}_\theta = 0.0969 \times \hat{\Psi} - 3.0478$. For (b), similarly, we select $\hat{U}_0 = 2$ and obtain $\hat{c}_\theta = 0.4655 \times \hat{\Psi} - 1.5158$.



1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
222210
222211
222212
222213
222214
222215
222216
222217
222218
222219
222220
222221
222222
222223
222224
222225
222226
222227
222228
222229
2222210
2222211
2222212
2222213
2222214
2222215
2222216
2222217
2222218
2222219
2222220
2222221
2222222
2222223
2222224
2222225
2222226
2222227
2222228
2222229
22222210
22222211
22222212
22222213
22222214
22222215
22222216
22222217
22222218
22222219
22222220
22222221
22222222
22222223
22222224
22222225
22222226
22222227
22222228
22222229
222222210
222222211
222222212
222222213
222222214
222222215
222222216
222222217
222222218
222222219
222222220
222222221
222222222
222222223
222222224
222222225
222222226
222222227
222222228
222222229
2222222210
2222222211
2222222212
2222222213
2222222214
2222222215
2222222216
2222222217
2222222218
2222222219
2222222220
2222222221
2222222222
2222222223
2222222224
2222222225
2222222226
2222222227
2222222228
2222222229
22222222210
22222222211
22222222212
22222222213
22222222214
22222222215
22222222216
22222222217
22222222218
22222222219
22222222220
22222222221
22222222222
22222222223
22222222224
22222222225
22222222226
22222222227
22222222228
22222222229
222222222210
222222222211
222222222212
222222222213
222222222214
222222222215
222222222216
222222222217
222222222218
222222222219
222222222220
222222222221
222222222222
222222222223
222222222224
222222222225
222222222226
222222222227
222222222228
222222222229
2222222222210
2222222222211
2222222222212
2222222222213
2222222222214
2222222222215
2222222222216
2222222222217
2222222222218
2222222222219
2222222222220
2222222222221
2222222222222
2222222222223
2222222222224
2222222222225
2222222222226
2222222222227
2222222222228
2222222222229
22222222222210
22222222222211
22222222222212
22222222222213
22222222222214
22222222222215
22222222222216
22222222222217
22222222222218
22222222222219
22222222222220
22222222222221
22222222222222
22222222222223
22222222222224
22222222222225
22222222222226
22222222222227
22222222222228
22222222222229
222222222222210
222222222222211
222222222222212
222222222222213
222222222222214
222222222222215
222222222222216
222222222222217
222222222222218
222222222222219
222222222222220
222222222222221
222222222222222
222222222222223
222222222222224
222222222222225
222222222222226
222222222222227
222222222222228
222222222222229
2222222222222210
2222222222222211
2222222222222212
2222222222222213
2222222222222214
2222222222222215
2222222222222216
2222222222222217
2222222222222218
2222222222222219
2222222222222220
2222222222222221
2222222222222222
2222222222222223
2222222222222224
2222222222222225
2222222222222226
2222222222222227
2222222222222228
2222222222222229
22222222222222210
22222222222222211
22222222222222212
22222222222222213
22222222222222214
22222222222222215
22222222222222216
22222222222222217
22222222222222218
22222222222222219
22222222222222220
22222222222222221
22222222222222222
22222222222222223
22222222222222224
22222222222222225
22222222222222226
22222222222222227
22222222222222228
22222222222222229
222222222222222210
222222222222222211
222222222222222212
222222222222222213
222222222222222214
222222222222222215
222222222222222216
222222222222222217
222222222222222218
222222222222222219
222222222222222220
222222222222222221
222222222222222222
222222222222222223
222222222222222224
222222222222222225
222222222222222226
222222222222222227
222222222222222228
222222222222222229
2222222222222222210
2222222222222222211
2222222222222222212
2222222222222222213
2222222222222222214
2222222222222222215
2222222222222222216
2222222222222222217
2222222222222222218
2222222222222222219
2222222222222222220
2222222222222222221
2222222222222222222
2222222222222222223
2222222222222222224
2222222222222222225
2222222222222222226
2222222222222222227
2222222222222222228
2222222222222222229
22222222222222222210
22222222222222222211
22222222222222222212
22222222222222222213
22222222222222222214
22222222222222222215
22222222222222222216
22222222222222222217
22222222222222222218
22222222222222222219
22222222222222222220
22222222222222222221
22222222222222222222
22222222222222222223
22222222222222222224
22222222222222222225
22222222222222222226
22222222222222222227
22222222222222222228

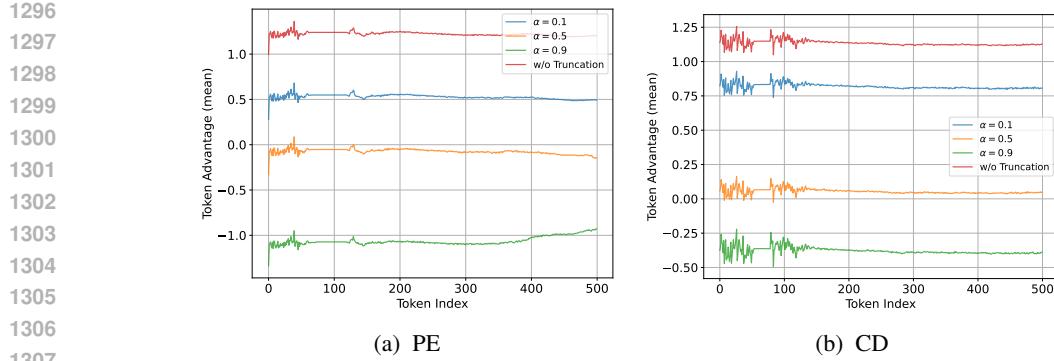


Figure 9: Empirical verification of the effect of false positive on (a) PE and (b) CD tasks. More aggressive false-positive truncation (larger α) systematically reduces the advantages of early exploratory actions, reflecting the removal of positive future return contributions.

confounding factor of successful outcomes, we filtered and exclusively analyzed rollouts that resulted in a *failure* (i.e., a final reward of 0). We then computed the Generalized Advantage Estimation (GAE) for each token in the first 500 tokens of these failed trajectories. Finally, we calculated the mean advantage at each token index across all rollouts within each condition.

Main Results. The results across the CD and MR datasets are presented in Fig. 8a and 8b. In the *w/o Truncation* condition, the mean advantage of early tokens is suppressed, while applying the \mathbf{T}^3 truncation rule (*w/ Truncation*) consistently elevates the mean advantage of the early tokens. This demonstrates that the uninformative tail inside the BTR introduces a negative drift that systematically corrupts the advantage estimates of the preceding exploratory actions, and shows that the \mathbf{T}^3 early-truncation mechanism effectively alleviates this issue, preserving the integrity of the gradient signal during policy optimization.

Effect of Tail Length and Truncation Strength: We further vary the effective tail length and truncation strength. As shown in Fig. 8c, longer uninformative tails in the *w/o Truncation* setup led to a more severe suppression of early-token advantages. Fig. 8d exhibits that stronger (more aggressive) truncation in the *w/ Truncation* setup resulted in higher and less corrupted advantage estimates for the preserved trajectory prefix. This is consistent with the theoretical outcome of this work.

C.3 COMPLEMENTARY ANALYSIS OF FALSE-POSITIVE TRUNCATION AND ITS IMPACT

Since \mathbf{T}^3 relies on observable surrogates of the BTR to construct the truncation condition, the frequency of false positives is empirically limited. However, premature (*false-positive*) truncation can, in principle, remove useful exploratory steps and harms optimization. We provide both an analytical discussion and a diagnostic experiment.

Analytical perspective. Under the standard GAE decomposition, the advantage of an early token t aggregates future TD-errors: $A_t = \sum_{u=t}^T (\gamma \lambda)^{u-t} \delta_u$. Theorem 2 characterizes the “uninformative tail” regime in which the expected TD-errors δ_u are negative; failing to truncate such tails induces a downward drift on A_t . A premature truncation corresponds to the opposite scenario: the trajectory has not yet entered the belief-trap region, and truncating at this point may discard future steps whose TD-errors δ_u would have been positive. Consequently, A_t may be reduced due to the loss of these potentially informative and reward-contributing steps.

Diagnostic experiment. To make this effect concrete, we conducted a controlled diagnostic experiment. We fixed a trained vanilla-PPO policy and generated a set of full rollouts. To focus our study on the effect of false positives, we filtered the rollouts to those with a final reward of 1, ensuring that the retained trajectories contain genuinely informative future signals and do not enter the BTR. On these trajectories, we simulated false-positive truncation as follows: With probability α , the trajectory is forcibly truncated at turn 3 (the maximum allowed turn is 10). With probability $1 - \alpha$, the trajectory proceeds normally to completion. This creates a clean setting in which any degradation can be attributed *solely* to premature truncation. For each early-stage token position $t = 1:500$, we computed the mean GAE advantage across rollouts for different α values.

1350
 1351 **Results.** We present the results for the CD and PE datasets at Fig. 9. As expected, more aggres-
 1352 sive false-positive truncation systematically reduces the advantages of early exploratory actions,
 1353 confirming that premature (false-positive) truncation negatively impacts credit assignment.
 1354

1355 D COMPLEMENTARY EMPIRICAL ANALYSIS

1356 In this section, we present complementary experimental results to provide further insights.
 1357

1359 D.1 RATIONALE OF SELECTING BINARY SIMILARITY THRESHOLD IN PE

1360 In the PE task, the reward is derived from the cosine similarity between the model-predicted preference
 1361 vector and the ground-truth preference. We convert the similarity into a binary reward by activating it
 1362 only when the similarity exceeds a prescribed threshold. To understand the effect of this threshold,
 1363 we evaluate several settings $\{0.85, 0.88, 0.90, 0.95\}$ using Qwen-2.5-7B-Instruct trained with PPO.
 1364

1365 Table 5 summarizes the results. Lower thresholds (e.g., below 0.80) cause the reward to activate almost
 1366 continuously, which diminishes the discriminative value of high-quality predictions. Conversely, very
 1367 high thresholds (e.g., above 0.95) make activations extremely rare, preventing PPO from learning
 1368 effectively. Mid-range thresholds between 0.85 and 0.90 consistently yield stable training dynamics
 1369 and strong downstream performance. We use 0.88, which lies within this empirically robust region,
 1370 in the main experiments of the PE task.

1371 Table 5: Effect of the binary-similarity threshold on PE performance (BinarySim accuracy). All
 1372 results use Qwen-7B-Instruct trained with PPO.
 1373

Threshold	0.85	0.88	0.90	0.95
PPO (vanilla)	55.33	42.00	33.67	4.33
PPO + \mathbf{T}^3	63.00	49.00	37.67	3.67

1379 D.2 EFFECT OF REFERENCE-SET SIZE ON REDUNDANCY-INDUCED STALLING

1381 **Empirical Verification.** To further examine the role of redundancy in inducing belief-trap regions
 1382 (BTR) in the PE task as mentioned in Sec. 3.3.2, we investigate how the frequency of truncation
 1383 varies with the size of the reference set S . We evaluate truncation ratios across different reference-set
 1384 sizes $S \in \{10, 15, 20, 25, 30\}$ for the Qwen-2.5-Instruct model family. Table 6 reports the results.
 1385

1386 Table 6: Truncation ratio (%) under different reference-set sizes S for Qwen-2.5-Instruct models.
 1387 Larger S corresponds to more potentially redundant comparisons.

S	10	15	20	25	30
3B	41.67	39.67	46.67	44.33	50.00
7B	50.67	53.67	54.00	56.67	56.67
14B	23.33	30.33	27.00	33.00	33.33
32B	38.00	39.67	39.33	50.33	46.33

1395 Across all model scales, the truncation ratio exhibits a general upward trend as S increases from 10 to
 1396 30. This pattern indicates that larger reference sets introduce additional noisy or redundant pairwise
 1397 comparisons, which in turn make epistemic progress harder to achieve and increase the likelihood of
 1398 entering a redundancy-induced BTR.

1400 D.3 T3 ON PE-LIKE TASKS WITHOUT ACCESS TO THE GROUND TRUTH

1402 The proxy rule for the PE/MR task described in Sec. 3.1 relies on the ground-truth preference vector v^* .
 1403 However, the truncation mechanism does *not* require access to the ground-truth. Instead, we employ
 a fully belief-driven truncation rule that relies solely on the agent’s internal preference estimates. Let

\hat{v}_t denote the model’s predicted preference vector at round t . We define an epistemic-stalling signal via a k -step moving average of update magnitudes:

$$\text{stall}_t = \left(\frac{1}{k} \sum_{j=t-k+1}^t \|\hat{v}_{j+1} - \hat{v}_j\|_2 \right) < \varepsilon, \quad (62)$$

where k is the sliding-window length and ε is a truncation threshold. The threshold is obtained from the empirical distribution of the k -step moving-average updates $\bar{\Delta}_t^{(k)}$ computed from offline rollouts. Specifically, ε is set to a chosen quantile (e.g., 60%, 75%, 85%) of this distribution, ensuring that the criterion is *entirely ground-truth-free*. A trajectory is truncated once Eq. 62 is triggered, *i.e.*, the agent’s belief updates become small for consecutive steps, indicating epistemic stalling.

Table 7 summarizes the results on the PE dataset. Despite the absence of oracle information, the belief-based truncation retains strong performance, closely matching or surpassing the oracle-based \mathbf{T}^3 reported in the main paper.

Table 7: Performance of \mathbf{T}^3 on the PE task without access to v^* . Thresholds ε correspond to quantiles of offline $\bar{\Delta}_t^{(k)}$ statistics. BinarySim accuracy is reported for Qwen-2.5-7B-Instruct trained with PPO. `vanilla` and `T3-gt` represent vanilla-PPO and \mathbf{T}^3 in the main text (with access to the ground-truth v^*), respectively.

Quantile	60%	75%	85%	vanilla	T3-gt
ε	0.18	0.28	0.36	—	—
BinarySim	44.33	50.67	49.00	42.00	49.00

D.4 EXPLORATION OF ADAPTIVE \mathbf{T}^3 TRUNCATION RULE

Adaptive \mathbf{T}^3 via online threshold selection. Motivated by extending \mathbf{T}^3 beyond fixed, offline-chosen thresholds, we further investigate an adaptive variant in which the truncation threshold evolves alongside the policy. For the PE task, the belief-based stalling criterion is employed the same as Appendix D.3 and Eq. 62 with $k = 4$. To obtain ε adaptively, every 6 training steps we collect a batch of fully untruncated rollouts under the current policy and compute the empirical distribution of the k -step moving-average update magnitudes $\bar{\Delta}_t^{(k)}$. The threshold is then updated according to a fixed quantile α of this distribution:

$$\varepsilon \leftarrow \text{Quantile}_\alpha \left(\{\bar{\Delta}_t^{(k)}\}_{\text{online}} \right).$$

This mechanism yields a dynamically adjusted truncation threshold that tracks the scale of the model’s ongoing belief updates.

Table 8 reports the performance across quantiles α . The results exhibit non-monotonic dependence on α . Notably, at $\alpha = 0.6$, the adaptive variant achieves a substantial improvement, outperforming both the PPO baseline and the oracle-based \mathbf{T}^3 result reported in the main text. These results highlight the potential for extending the \mathbf{T}^3 principle to adaptive thresholding, and we leave a more in-depth exploration to future work.

Table 8: Adaptive \mathbf{T}^3 on the PE dataset. The threshold ε is updated online from the α -quantile of the current $\bar{\Delta}_t^{(k)}$ distribution.

α	20%	40%	60%	80%	90%	vanilla	T3-gt
BinarySim	43.67	44.33	60.33	43.67	39.67	42.00	49.00

E POTENTIAL FUTURE WORK

E.1 MORE GENERAL-PURPOSE PROXY DESIGN.

Task-agnostic surrogate signals for epistemic stalling. In main experiments, since the structure of hypothesis spaces and notions of progress differ across tasks, instantiating \mathbf{T}^3 naturally relies

1458 on *task-level meta-knowledge* for observable signals. However, guided by the T^3 principle, we
 1459 can further reduce the reliance on task-specific knowledge via utilizing ***general-purpose*** truncation
 1460 detectors. We explore two broad, task-agnostic families of surrogate signals as follows.

1461 **(i) Semantic redundancy signals.** In multi-turn LLM-agent settings, epistemic stalling frequently
 1462 manifests as semantic redundancy, where the model repeatedly issues circular queries or revisits
 1463 previously resolved informational subgoals, as shown in prior studies (Zhou et al., 2025; Yuan et al.,
 1464 2025). Such redundancy is often detectable via embedding similarity, clustering, *etc.*

1465 Building on this intuition, we have several successful explorations this direction: *i*) In the SP task, the
 1466 truncation based on question-semantic similarity (*c.f.*, Sec. 3.3.3) yields consistent performance gains.
 1467 *ii*) Moreover, for tasks with continuous latent spaces, such as the PE task, tracking the convergence of
 1468 the model’s internal preference vector estimate provides an effective proxy for redundancy: truncation
 1469 is triggered when the estimate ceases to change meaningfully (*c.f.*, Appendix D.3 and D.4). This
 1470 convergence reflects an epistemic “stall” analogous to query redundancy in dialog scenarios such as
 1471 the SP. Our experiments show the effectiveness of the manner.

1472 **(ii) Internal state signals.** Recent empirical analyses suggest that hidden representations of Trans-
 1473 former and LLM models could encode intermediate judgment or reasoning states (Lu et al., 2025;
 1474 Zhou et al., 2024). Although the precise hidden-state signatures corresponding to epistemic stalling re-
 1475 main an open question, characterizing such patterns (*e.g.*, consecutive high similarity of hidden states)
 1476 is a promising direction for future work. Such signals may be especially valuable in open-domain
 1477 tasks where a structured hypothesis space is not readily defined.

1480 F SETUP DETAILS

1482 F.1 DATASET DETAILS AND PROMPT TEMPLATES

1484 In this section, we present more details for the datasets and tasks evaluated in this work. See dataset
 1485 statistics in Table 9.

1487 **SituationPuzzles (SP).** This task introduces a challenging active reasoning task where the LLM
 1488 player must uncover a coherent narrative from an initially puzzling scenario. Each puzzle begins
 1489 with a brief, paradoxical statement. The solver interacts iteratively with a judge by asking binary
 1490 yes-no questions, gathering feedback from the judge to constrain the solution space. The goal is
 1491 to formulate a complete and plausible explanation that resolves the apparent contradiction. We
 1492 directly use this dataset from the AR-Bench (Zhou et al., 2025). In our experiments, we utilize a
 1493 Qwen2.5-14B-Instruct model to provide the interactive feedback.

1494 The prompt template for the SituationPuzzles dataset can be seen in Fig. 11. For SituationPuzzles,
 1495 put a specific puzzle to solve into `{puzzle}` of the prompt. The prompt template for the judge LLM
 1496 is shown in Fig. 13. The judge will receive `{surface}` and `{bottom}` to understand the whole
 1497 puzzle, and give yes-no feedback according to the player LLM’s question.

1498 **GuessNumbers (GN).** Adapted from the original dataset proposed by AR-Bench (Zhou et al., 2025)
 1499 which the player must crack a 4-digit secret (digits are unique in 0-9), our newly constructed $GN(a, b)$
 1500 is a series of reasoning tasks that involve the LLM agent’s interactive deduction with external sources:
 1501 the target is a a -digit number, where each digit is sampled from a set of b unique symbols without
 1502 repetition. This yields $P(b, a) = b!/(b - a)!$ possible targets.

1503 At each step, the LLM agent makes a guess and receives structured feedback in the form of $xAyB$,
 1504 where x denotes the number of digits that are both correct in value and position (denoted as “A”), and
 1505 y denotes the number of digits that are correct in value but placed in the wrong position (denoted as
 1506 “B”). The agent is expected to actively perform reasoning based on accumulated observations and
 1507 interact with an external source to efficiently reduce uncertainty and locate the correct answer.

1508 To control for randomness in the first move, which plays a minor role in evaluating the LLM agent’s
 1509 ability to understand and update based on observations, we fix the first guess to a deterministic number
 1510 that is guaranteed to differ from the answer. This means we need (a, b, g_0, x_0, y_0) to specify a question
 1511 for the LLM player, where g_0 denotes the initial guess, and (x_0, y_0) denotes the corresponding initial
 1512 feedback of the form x_0Ay_0B .

1512 We group data items by their tuple (a, b, x_0, y_0) , since items sharing the same (a, b, x_0, y_0) corre-
 1513 spond to tasks with similar uncertainty reduction dynamics and reasoning logic patterns. Specifically,
 1514 our constructed dataset covers all data items of the following sub-groups: $(3, 4, 0, 3)$, $(3, 4, 2, 0)$,
 1515 $(3, 4, 1, 2)$, $(3, 5, 1, 2)$, $(3, 5, 0, 3)$, $(3, 5, 1, 0)$, $(3, 5, 2, 0)$, $(4, 4, 0, 4)$, and $(4, 5, 3, 0)$. These configu-
 1516 rations are carefully selected to ensure diversity in task complexity: varying (a, b) controls the size of
 1517 the hypothesis space, while varying (x_0, y_0) shapes the initial reasoning landscape by introducing
 1518 distinct patterns of partial evidence. Finally, we perform a randomized train-test split to the obtained
 1519 set for training and evaluation.

1520 The prompt template for the GuessNumbers dataset can be seen in Fig. 12. For GuessNumbers,
 1521 we need to first specify `{num_digits}` and `{num_uniques}`, corresponding to (a, b) mentioned
 1522 above, and then specify the initial guess in `{initial_guess}`, and the resulting initial feedback in
 1523 `{initial_feedback_same_pos}` and `{initial_feedback_diff_pos}`.

1524 **CircuitDecoding (CD).** Adapted from [Badola et al. \(2025\)](#), in this dataset, each instance presents a
 1525 collection of unknown Boolean circuits, each taking a fixed number of binary inputs and producing
 1526 a binary output. There are several ground-truth circuits which are drawn from a finite candidate
 1527 set of logical structures, and the player must identify which candidates correspond to the hidden
 1528 circuits. To achieve this, the solver engages in a multi-turn interaction protocol: at each turn, the
 1529 player must query one circuit with a binary input configuration of their choice, and receives the
 1530 corresponding output. These queries serve as informative probes, allowing the player to iteratively
 1531 eliminate inconsistent candidates and refine their hypotheses. The task requires strategic planning
 1532 to maximize information gain under limited query budgets, and finally the solver must output the
 1533 candidate indices of all underlying circuits. In our experiments, we adopt the prompt template shown
 1534 in Fig. 10, where the LLM solver aims to figure out `{num_circuits}` hidden ground-truth circuits
 1535 from `{num_candidates}` candidates specified as: `{candidate_list_str}`.

1536 **PreferenceEstimation (PE).** Adapted from [Badola et al. \(2025\)](#), this dataset targets the problem of
 1537 interactive preference elicitation, where the agent must infer a latent user preference vector governing
 1538 utility over movies. Specifically, each movie is associated with a list of attribute scores (s_1, \dots, s_n) ,
 1539 where n is the total dimensions of attributes. In this task, the user evaluates a movie as a weighted
 1540 sum of its attribute scores $\sum_{i=1}^n w_i s_i$, with the weights (w_1, \dots, w_n) forming the hidden preference
 1541 vector to be discovered. At the beginning of an interaction episode, the agent is presented with a set of
 1542 reference movies annotated by their attribute values. At each round, the agent outputs both its current
 1543 vector guess and a pairwise comparison query between two reference movies. The user provides
 1544 feedback (“Yes”, “No”, or “Equal”) according to the weighted sum scores of the two mentioned
 1545 movies. Through multiple turns, the agent iteratively updates its estimate of the preference vector by
 1546 reasoning over past user feedback.

1547 The prompt template for the PreferenceEstimation dataset is illustrated in Fig. 14. The LLM player is
 1548 given `{len_seen}` reference movies for raising pairwise questions, to iteratively refine its guess on
 1549 the `{len_attributes}`-dimensional hidden user preference vector.

1550 **MovieRecommendation (MR).** Building upon the preference estimation setup, this dataset further
 1551 evaluates the generalization ability of an agent’s inferred user model. After completing several rounds
 1552 of interaction as mentioned in the PE task, the agent is tasked with recommending from a set of
 1553 unseen movies. Each unseen movie is described by the same attribute dimensions, but the agent has
 1554 not encountered them during training or interaction. In the final turn, the agent applies its preference
 1555 vector guess to score each candidate unseen movie, and is required to select the movie that the
 1556 user is most likely to prefer as its recommendation. This task thus demands transferring preference
 1557 inference to out-of-distribution recommendation, and evaluates reasoning consistency, robustness,
 1558 and generalization in interactive recommender systems.

1559 The prompt template for this task is shown in Fig. 15. The agent is expected to leverage its estimated
 1560 preference vector to make a personalized recommendation from `{unseen_movie_list}`.

1561 F.2 BASELINE DETAILS

1563 Here we introduce RL algorithms used in our experiments. Formally, given an actor model π_θ , the like-
 1564 lihood of a response y to a query x under the policy π_θ is modeled as $\pi_\theta(y|x) = \prod_{t=1}^{|y|} \pi_\theta(y_t|x, y_{<t})$.
 1565 Given a query-response pair (x, y) , a verifier r generates its reward $r(x, y) \in [0, 1]$.

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
Table 9: Dataset Statistics in this work.

	Train	Test
SituationPuzzles (SP)	400	100
GuessNumbers (GN)	1526	382
CircuitDecoding (CD)	1000	300
PreferenceEstimation (PE)	700	300
MovieRecommendation (MR)	700	300

1575
1576
1577 **Proximal Policy Optimization (PPO)** (Schulman et al., 2017) employs the following objective for
1578 policy optimization:

$$1579 \quad \mathcal{J}_{\text{PPO}}(\theta) = \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_{\theta_{\text{old}}}(\cdot|x)} \left[\frac{1}{|y|} \sum_{t=1}^{|y|} \min \left(w_t(\theta) \hat{A}_t, \text{clip}(w_t(\theta), 1 - \varepsilon, 1 + \varepsilon) \hat{A}_t \right) \right], \quad (63)$$

1582
1583 where the importance ratio of the token y_t is defined as $w_t(\theta) = \frac{\pi_\theta(y_t|x, y_{<t})}{\pi_{\theta_{\text{old}}}(y_t|x, y_{<t})}$, the advantage \hat{A}_t of
1584 y_t is typically computed via Generalized Advantage Estimation (GAE) (Schulman et al., 2015) with
1585 temporal-difference errors, and ε is the clipping range of importance ratios.

1586
1587 **Group Relative Policy Optimization (GRPO)** (Shao et al., 2024) proposes computing the relative
1588 advantage of each response within a group of responses of the same query using the following
1589 objective (omitting the KL regularization term):

$$1590 \quad \mathcal{J}_{\text{GRPO}}(\theta) = \mathbb{E}_{x, \{y_i\}_{i=1}^G} \left[\frac{1}{G} \sum_{i=1}^G \frac{1}{|y_i|} \sum_{t=1}^{|y_i|} \min \left(w_{i,t}(\theta) \hat{A}_{i,t}, \text{clip}(w_{i,t}(\theta), 1 - \varepsilon, 1 + \varepsilon) \hat{A}_{i,t} \right) \right], \quad (64)$$

1594
1595 where $\{y_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot|x)$ and G is the group size. The importance ratio $w_{i,t}(\theta)$ and advantage $\hat{A}_{i,t}$
1596 of token $y_{i,t}$ are defined as:

$$1597 \quad w_{i,t}(\theta) = \frac{\pi_\theta(y_{i,t}|x, y_{i,<t})}{\pi_{\theta_{\text{old}}}(y_{i,t}|x, y_{i,<t})}, \quad \hat{A}_{i,t} = \frac{r(x, y_i) - \text{mean}(\{r(x, y_i)\}_{i=1}^G)}{\text{std}(\{r(x, y_i)\}_{i=1}^G)}, \quad (65)$$

1600 respectively, where all the tokens in y_i share the same advantage.

1601
1602 **Group Sequence Policy Optimization (GSPO)** (Zheng et al., 2025) extends GRPO by defining
1603 the importance ratio at the sequence level with length normalization, with sequence-level clipping,
rewarding, and optimization. The objective is:

$$1604 \quad \mathcal{J}_{\text{GSPO}}(\theta) = \mathbb{E}_{x, \{y_i\}_{i=1}^G} \left[\frac{1}{G} \sum_{i=1}^G \min \left(s_i(\theta) \hat{A}_i, \text{clip}(s_i(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_i \right) \right], \quad (66)$$

1607 where

$$1609 \quad s_i(\theta) = \left(\frac{\pi_\theta(y_i|x)}{\pi_{\theta_{\text{old}}}(y_i|x)} \right)^{1/|y_i|} = \exp \left(\frac{1}{|y_i|} \sum_{t=1}^{|y_i|} \log \frac{\pi_\theta(y_{i,t}|x, y_{i,<t})}{\pi_{\theta_{\text{old}}}(y_{i,t}|x, y_{i,<t})} \right).$$

1612 F.3 SUPPLEMENTARY IMPLEMENTATION DETAILS

1614
1615 Here we provide additional implementation details. The maximum number of interaction turns is set at
1616 10 for GuessNumbers, 15 for SituationPuzzles, 10 for CircuitDecoding, 10 for PreferenceEstimation,
1617 and 5 for MovieRecommendation. For RL training, we define task-specific rewards aligned with their
1618 evaluation metrics: for GuessNumbers, the reward is *Exact Match* (binary $\{0, 1\}$, given only at the
1619 final step); for SituationPuzzles, the reward is the *F1-word / character* score (continuous in $[0, 1]$,
computed against the ground-truth answer); for CircuitDecoding and MovieRecommendation, the
reward is also *Exact Match*; and for PreferenceEstimation, the reward is *Binary Similarity* between

```

1620
1621 Input Prompts for the CircuitDecoding dataset
1622
1623 Welcome to the Circuit Deduction Challenge!
1624
1625 ## The Setup:
1626 - There are {num_circuits} circuits, labeled {circuit_labels}.
1627 - Each circuit accepts {num_inputs} binary inputs (0 or 1) and produces a single binary output (0 or 1).
1628 - Each circuit is drawn from a fixed candidate list of {num_candidates} possible logical structures, each associated with an index:
1629 {candidate_list_str}
1630
1631 ## Your Goal:
1632 Identify which circuits from the candidate list correspond exactly to circuits {circuit_labels}.
1633
1634 ## How to Play:
1635 You can interact with me for several turns to determine the true underlying circuits:
1636 1. At each turn, query one circuit with any binary input of your choice.
1637 2. Use the specified format for your query. For example, to query circuit A with inputs x0=1, x1=0, x2=1, ask:
1638 <interact>A(1, 0, 1)</interact>.
1639 3. You must make only one query at each turn. I will return the binary output for that circuit on the given input.
1640 4. Ask strategic queries that maximize information gain. Your goal is to minimize the number of turns by leveraging the feedback at
1641 each step to narrow down the candidate possibilities.
1642
1643 ## Final Submission:
1644 Once you are confident, submit your final answer by providing the indices of the identified circuits from the candidate list inside
1645 <answer> and </answer>. For example, if A corresponds to candidate 13 and B corresponds to 6, your answer must be:
1646 <answer>13, 6</answer>.
1647 Please start with your first query.
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

```

Figure 10: Prompt Template for CircuitDecoding.

```

1640
1641
1642 Input Prompts for the SituationPuzzles dataset
1643
1644 Let's play a situation puzzle game. I'll give you a puzzle. You can interact with me for several turns during the question phase to
1645 reach the final answer. For each turn, you will:
1646 - Review all previous questions and feedback.
1647 - Ask me a yes-or-no question inside <interact> and </interact>.
1648 - I will answer your latest question with "Yes", "No", or "Unknown".
1649 - Repeat the process until you are confident in the answer.
1650 If you believe you have confidently determined the correct solution, present your answer inside <answer> and </answer>.
1651
1652 Now, here's the puzzle:
1653 Puzzle: {puzzle}
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

```

Figure 11: Prompt Template for SituationPuzzles.

the predicted and ground-truth preference vectors. All rewards are provided only at the terminal step of each trajectory, consistent with the outcome-based RL setting.

Training for GuessNumbers and SituationPuzzles is conducted on a single node equipped with 8 H100 GPUs, while CircuitDecoding and PreferenceEstimation/MovieRecommendation are trained on a single node with 8 B200 GPUs, based on the implementations of Verl (Sheng et al., 2025). All training tasks are conducted for 200 steps with the actor model optimized using a learning rate of 1.0×10^{-6} . For distributed training, we adopt Fully Sharded Data Parallelism (FSDP), using BFloat16 precision throughout both training and evaluation. For efficient LLM rollouts, we adopt vLLM ² with a tensor parallel size of 1. The rollout sampling uses a temperature of 1.0 for SituationPuzzles and 0.6 for GuessNumbers, and a top-p value of 0.95 for both datasets.

For the PPO baseline, we use Generalized Advantage Estimation (GAE) with parameters $\lambda = 1$ and $\gamma = 1$. The KL divergence regularization coefficient β and clip ratio ε are set to 0.001 and 0.2. For GRPO training, we sample 5 responses per prompt, and the rollout parameters, KL divergence coefficient, and the clip ratio are consistent with the PPO setting. For the GSPO algorithm, we do not use the KL divergence constraint, and the clip ratio ε_{low} and ε_{high} are set to 0.0003 and 0.0004, respectively, while others keep consistent with GRPO training.

²<https://docs.vllm.ai/en/latest/>

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

Input Prompts for the GuessNumbers dataset

Let's play a number guessing game. The rules are as follows: I have a secret `{num_digits}`-digit number in mind, composed of digits from 1 to `{num_unique}`, with no repeated digits. You will take turns guessing the number, using feedback after each guess to progressively narrow down the possibilities.

For each turn, you will:

- Review all previous guesses and feedback.
- Think through your reasoning process inside `<think>` and `</think>`. The reasoning should show how your belief about the secret number evolves based on the accumulated evidence.
- Make a strategic guess inside `<interact>` and `</interact>`, based on your current belief.
- Receive feedback of your latest guess describing: how many digits are present in the answer and in the correct positions, and how many digits are present in the answer but in the different positions.
- Repeat the process until you are confident in the answer. If you believe you have confidently found the correct number, present your answer inside `<answer>` and `</answer>`.

Game start. Now it is your turn:

```
<think>No prior knowledge. Start with a random guess that covers diverse digits to gather information.</think>
<interact>{initial_guess}</interact>
```

The feedback of your latest guess: `{initial_feedback_same_pos}` digits are present in the answer and in the correct positions, `{initial_feedback_diff_pos}` digits are present in the answer but in the different positions.

Now it is your turn:

Figure 12: Prompt Template for GuessNumbers.

Input Prompts for the Judge LLM in the SituationPuzzles dataset

You are the referee of a game where players are shown a `<Surface>` and you are given the `<Bottom>`. You need to understand the entire story based on both the `<Surface>` and `<Bottom>`. Players will ask questions based on the `<Surface>`, and you need to judge whether their guesses are correct. Please strictly adhere to answering with only three specified responses: Yes, No, or Unknown, without any explanation.

Judging Rules

- If the player's question matches the given `<Surface>` and `<Bottom>`: Please only answer "Yes" without any explanation.
- If the player's question contradicts the given story: Please only answer "No" without any explanation.
- If the answer to the player's question cannot be found in the `<Surface>` and `<Bottom>`, and cannot be deduced through reasoning: Please only answer "Unknown" without any explanation.
- If the player directly ask for the answer, please only answer "This is not a question, please propose your next question."
- If the player does not propose a question or question that not for solve the puzzle, please only answer "This is not a question, please propose your next question."

Important Notes

1. Fully understand the cause, process, and outcome of the entire story, and make logical inferences.
2. If a conclusion cannot be drawn from the provided story or through reasonable inference, answer "Unknown".
3. Strictly adhere to answering with only the three specified responses: Yes, No, or Unknown. Do not provide additional explanations.
4. Carefully check whether the player ask for the answer, if a player do so, please only answer "This is not a question, please propose your next question."

Examples

Example 1: The Hiccuping Man

`<Surface>`

A man walks into a bar and asks the bartender for a glass of water. The bartender suddenly pulls out a gun and points it at him. The man smiles and says, "Thank you!" then calmly leaves. What happened?

`<Bottom>`

The man had hiccups and wanted a glass of water to cure them. The bartender realized this and chose to scare him with a gun. The man's hiccups disappeared due to the sudden shock, so he sincerely thanked the bartender before leaving.

Possible questions and corresponding answers:

Q: Does the man have a chronic illness? A: Unknown
 Q: Was the man scared away? A: No
 Q: Did the bartender want to kill the man? A: No
 Q: Did the bartender intend to scare the man? A: Yes
 Q: Did the man sincerely thank the bartender? A: Yes

Question Content

`<Surface>`

`{surface}`

`<Bottom>`

`{bottom}`

Now, please judge the following player question:

`{question}`

Answer with only one of the three specified responses: Yes, No, or Unknown, without any explanation.

Figure 13: Prompt Template for the Judge LLM in SituationPuzzles.

1728
1729
1730
1731

1732 Input Prompts for the PreferenceEstimation task

1733
1734 You are a movie recommendation agent. Your goal is to infer the hidden user preference vector ($w_1, \dots, w_{\{len_attributes\}}$)
1735 through interaction.
1736
1737 **## Setup:**
1738 - You are given $\{len_seen\}$ movies with scores on $\{len_attributes\}$ attributes (indexed 1... $\{len_attributes\}$):
1739 $\{seen_movie_sample\}$
1740 - User satisfaction = $w_1*attr_1 + \dots + w_{\{len_attributes\}}*attr_{\{len_attributes\}}$, where each w_i in [0, 1]. The user always
1741 answers consistently.
1742
1743 **## Interaction Rules (per round):**
1744 1. Reflect on all past feedback and reason about how it changes your estimate of the preference vector.
1745 - Think about which attributes gained or lost importance.
1746 - Adjust your estimate strategically.
1747 2. Output both your updated guess and a new pairwise query in the exact format:
1748 <interact>
1749 Guess: w_1, w_2, \dots
1750 Question: Would you prefer option_1 over option_2?
1751 </interact>
1752 - Guess must be comma-separated numbers in [0,1].
1753 - option_1 and option_2 must be movie names only.
1754 The user replies with one of: "Yes" (prefer option_1), "No" (prefer option_2), or "Equal".
1755
1756 **## Final Stage:**
1757 Once you are confident about the user preference after several turns, output your final preference vector as:
1758 <answer> $w_1, w_2, \dots, w_{\{len_attributes\}}$ </answer>
1759 Please Start with your first <interact> block.
1760

1752 Figure 14: Prompt Template for PreferenceEstimation.
1753
1754
1755
1756
1757
1758
1759
1760

1761 Input Prompts for the MovieRecommendation task

1762
1763 Final Turn: Now you have reached the last turn. Instead of asking a new question, use your most recent preference guess to score the
1764 following unseen movies and recommend the best one.
1765 $\{unseen_movie_list\}$
1766
1767 Here is an example of how to proceed:
1768 Preference vector (guess): 0.2,0.7,0.5
1769 Example Unseen movies:
1770 Movie_A: [0.6,1.0,0.8]
1771 Movie_B: [1.2,0.3,0.4]
1772 Movie_C: [0.5,0.8,0.9]
1773 Scoring:
1774 Movie_A = 0.2*0.6 + 0.7*1.0 + 0.5*0.8 = 1.22
1775 Movie_B = 0.2*1.2 + 0.7*0.3 + 0.5*0.4 = 0.65
1776 Movie_C = 0.2*0.5 + 0.7*0.8 + 0.5*0.9 = 1.11
1777 Best = Movie_A
1778 <answer>Movie_A</answer>
1779
1780 Your goal:
1781 Now do the same with your own latest preference vector and the given unseen movies. After scoring, return the final answer enclosed
within <answer> and </answer>. The answer must be exactly one of the unseen movie names.

1778 Figure 15: Prompt Template for MovieRecommendation.
1779
1780
1781