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Abstract

It follows from the known relationships among the di2erent classes of graphical Markov
models for conditional independence that the intersection of the classes of moral acyclic directed
graph Markov models (or decomposable ≡ DEC Markov models), and transitive acyclic directed
graph ≡ TDAG Markov models (or lattice conditional independence ≡ LCI Markov models) is
non-empty. This paper shows that the conditional independence models in the intersection can be
characterized as labeled trees. This fact leads to the de8nition of a speci8c Markov property for
labeled trees and therefore to the introduction of labeled trees as part of the family of graphical
Markov models. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Graphical Markov models are a powerful tool for the representation and analysis
of conditional independence among variables of a multivariate distribution. There are
di2erent classes of graphical Markov models. Each class is associated with a dif-
ferent type of graph, which embodies the structural (qualitative) information on the
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DAG DEC UG

LCI≡TDAG (DEC ⊃       LCI)≡TCI

Fig. 1. Relation among the classes DAG, UG, DEC and LCI models.

relationships among the variables involved. More precisely, every vertex of the asso-
ciated graph corresponds to a random variable of the multivariate distribution.

One of the most fascinating aspects is the algebraic structure that underlies the broad
spectrum of di2erent classes of graphical Markov models. This underlying algebraic
structure is the foundation on which the present paper develops a particular charac-
terization of the intersection of certain classes of graphical Markov models (and for
which positivity or existence of joint densities is not required). The reader may 8nd
a guide to some di2erent types of graphical Markov models in the books of Pearl
(1988); Whittaker (1990); Cox and Wermuth (1996) and Lauritzen (1996).

In this paper we will deal with graphical Markov models de8ned by undirected
graphs (UG models), acyclic directed graphs (DAG 1 models), chordal graphs (de-
composable or DEC models), transitive directed acyclic graphs (TDAG models), and
8nite distributive lattices (lattice conditional independence or LCI models). In the next
section the reader will 8nd precise graph-theoretical de8nitions of these graphs.

LCI models were introduced by Andersson and Perlman (1993) in the context of
the analysis of non-nested multivariate missing data patterns and non-nested dependent
linear regression models. Later, Andersson et al. (1997b), Theorem 4.1 showed that
the class of LCI models coincides with the class of TDAG models. Either of these
terms, TDAG or LCI, will be used here depending on the algebraic context used at
the moment.

Fig. 1 shows a picture that Andersson et al. (1995) devised in order to describe
the location of LCI models within the scope of models represented by undirected and
directed graphs. Although the class of LCI models appears on the picture as an isolated
subclass, Andersson et al. (1995, p. 38) show that they are in fact interlaced through
the class of DAG models. An important characterization also depicted in this 8gure
corresponds to the de8nition of those DAG models that are equivalent to some UG
model (Wermuth, 1980; Kiiveri et al., 1984). Thus, undirected and directed graphs in
this intersecting class describe the same model of conditional independence. They are
graphically determined by chordal (≡ decomposable) graphs and are known as DEC
models. More concretely, one characterizes those DAG models equivalent to some
UG models, as those determined by a DAG that does not contain immoralities, i.e. a

1 Sometimes also referred as ADG.
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moral DAG. In the graph-theoretic context, moral DAGs are known as subtree acyclic
digraphs and were introduced by Harary et al. (1992).

With the exception of LCI models, graphical Markov models are usually determined
by a graph (e.g. UG, DAG and DEC models) which is interpreted in terms of separa-
tion. Separation (see Lauritzen et al., 1990; Lauritzen, 1996) is a graphical notion that
allows one to split the vertex set of the graph into a triplet that maps to the ternary re-
lationship of conditional independence. The LCI models introduced by Andersson and
Perlman (1993) are not graphical, thus they do not have a graph-separation interpre-
tation, but another one that manipulates directly the lattice that determines the model.
Andersson et al. (1997b) showed that in fact the LCI representation is equivalent to a
graphical representation via TDAGs that does have a graph-separation interpretation.

In this paper we consider another special class of graphical Markov models, namely
DEC∩LCI. Andersson et al. (1995) proved that DEC∩LCI �= ∅ and for this particular
class, we introduce an alternative graphical representation which is not interpreted in
graph-separation terms. The new representation is more economical, in the sense that
it a2ords an easier interpretation of the model of conditional independence, in contrast
to its equivalent graphical counterpart in terms of either TDAGs or chordal graphs, or
its equivalent non-graphical counterpart in terms of 8nite distributive lattices.

This new representation is based on a characterization of moral TDAGs as labeled
trees, which will be presented 8rst. Afterwards, a Markov property for labeled trees
will be introduced. Finally, the relationship between this new Markov property and the
rest of the existing Markov properties is investigated. From this study follows the new
formalization of the graphical Markov models in DEC ∩ LCI. Because of the relation
between trees and models for conditional independence, we will refer to DEC ∩ LCI
models as tree conditional independence ≡ TCI models.

The direct consequence of such a formalization is that it provides a di2erent way
to read the structural information (≡ the conditional independencies) contained in the
model, by using the new associated Markov property.

The layout of the paper is as follows. In the next section we introduce the background
concepts, terminology and notation, used throughout the paper, regarding graphs and
lattices. Afterwards, in Section 3, we will obtain the characterization of moral TDAGs
as labeled trees. In Section 4 we will introduce the new speci8c Markov property
for labeled trees, and its relationship with respect to other Markov properties will
be investigated. In Section 5, the notion of Markov equivalence in this setting is
introduced and 8nally, in Section 6, the main issues of the paper are summarized.
We have included an appendix that reviews the most relevant notions about graphical
Markov models.

2. Background concepts, terminology and notation

The graphical terminology and notation has been mainly borrowed from Lauritzen
(1996) and Andersson et al. (1995), whereas the concepts regarding 8nite distributive
lattices have been taken from GrKatzer (1978) and Davey and Priestley (1990). For
more details, the reader is referred to these sources.
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A graph G is a pair (V; E) where V is the set of vertices and E the set of edges.
The set of vertices V indexes a vector of random variables XV = {X1; : : : ; Xn} that
form a multivariate distribution member of a family P. This family P of multivariate
distributions is de8ned on some product space X = ×(Xi|i∈V ). For simplicity, we
will refer to a random variable, or a set of them, by their indexes, i.e. Xi as i and XA

as A.
The set of edges E is a subset of the set of ordered pairs {V×V} such that it does not

contain loops, i.e. (a; a) �∈ E. An undirected edge a−b in E implies that (a; b)∈E and
(b; a)∈E, whereas the directed version a → b implies that (a; b)∈E and (b; a) �∈ E.
We use the standard terminology of Lauritzen (1996) regarding: subgraph, adjacency,
boundary ≡ bd(v), closure ≡ cl(v), complete graph, clique, 2 parent vertex, child
vertex, parent set ≡ pa(v), immorality, moral graph, moralized graph ≡ Gm, path,
undirected cycle, undirected graph ≡ UG, directed cycle, acyclic digraph ≡ DAG or
ADG, ancestor set ≡ an(v), descendant set ≡ de(v), non-descendant set ≡ nd(v).

An undirected cycle is a path where a = b. A tree is a connected undirected graph
without undirected cycles. In this case there is always a unique path between any two
di2erent vertices. A rooted tree is a tree in which a hierarchy among the vertices is
created. One of the vertices of a rooted tree is the root and it is placed at the bottom
of the hierarchy. The leaves of a rooted tree are those vertices connected to just one
other vertex; they are placed at the top of the hierarchy. Under this convention we
will say that the root is below the leaves, and the leaves are above the root. Given a
tree T = (V; E) and a vertex u∈V , a subtree rooted at u, denoted as Tu, is the pair
Tu = (U; EU ), where the vertex set U ⊆ V contains all vertices involved in every path
from u to the leaves above, and the edge set EU = E ∩ (U × U ).

A DAG is said to be transitive ≡ TDAG if for every vertex v; pa(v) = an(v). A
TDAG is moral if it contains no immoralities. For any moral TDAG and every vertex
v, the induced subgraph {v} ∪ pa(v) ({v} ∪ an(v)) is complete.

An undirected graph is chordal, or decomposable (DEC), i2 it does not contain
undirected cycles on more than three vertices without a chord. They are also known as
triangulated graphs or rigid circuit graphs. In the introduction we already mentioned
that DEC models correspond to the intersection of the classes of DAG and UG models,
and therefore they characterize those UG models that are equivalent to some DAG
model.

An important concept regarding directed graphs is ancestral set. Let G = (V; E)
be a DAG. Given a subset A ⊆ V; A is said to be ancestral i2 for every vertex
v∈A; an(v) ⊆ A. Since the union and intersection of ancestral sets is again ancestral,
all the di2erent ancestral sets contained in a DAG G = (V; E) form a ring of subsets
of V , which is denoted as A(G). Further, given a subset of vertices A ⊂ V , the subset
An(A) ⊆ V will denote the smallest ancestral set that contains A. To avoid confusion,
note that an(v) refers to the set of vertices that are ancestors of the vertex v, while
An(A) refers to the smallest subset An(A) ⊆ V that contains a given subset A ⊂ V
such that An(A) is ancestral in G.

2 In the literature of graphical Markov models one 8nds the concept of clique referred to as maximal
clique in the graph-theoretic literature.
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A partially ordered set (≡ poset) (S;6) is a set S equipped with an order relation 3

6. If the poset is totally ordered, i.e. ∀a; b∈ S a6 b or b6 a, then it is a chain. A
chain C in a poset S is called maximal i2, for any chain D∈ S; C ⊆ D implies that
C = D. Let S be a poset and let x; y∈ S. We say x is covered by y, and write x ≺ y
if x¡y and x6 z¡y ⇒ z = x.

GrKatzer (1978, p. 10) shows that this covering relation determines the partial ordering
in a given poset in the following way. Let S be a 8nite poset. Then a6 b i2 a= b or
there exists a 8nite sequence of elements x0; : : : ; xn−1, such that x0 = a; xn−1 = b, and
xi ≺ xi+1, for 06 i¡n− 1.

A poset (S;6) has an associated undirected graph (V; E) in which (x; y)∈E if x ≺ y
(y covers x). This associated undirected graph is called the covering graph of the poset
S. A Hasse diagram of a poset S is a representation of the covering graph of S in the
plane such that if x¡y, then x is below y in the plane.

An envelope 4 E of a poset (S;6) is a subset E ⊆ S such that for every s∈ S, there
exists e∈E such that s6 e. A minimal envelope (see footnote 4) E∗ of a poset (S;6)
is an envelope of (S;6) such that there is no subset E ⊆ E∗, that is an envelope of
(S;6) too.

Given a poset S, a subset H ⊆ S and an element a∈ S, it is said that a is an upper
bound (lower bound) of H i2 for every h∈H; h6 a (h¿ a). An upper bound (lower
bound) a of H is the least upper bound (greatest lower bound) of H or supremum
(in:mum) of H i2, for any upper bound (lower bound) b of H , we have a6 b (a¿ b),
and denote it by a = supH (a = inf H).

It is possible to de8ne a lattice in di2erent ways. We will introduce here just one
of them, as follows. A poset L is a lattice i2 supH and inf H exist in L for any
8nite non-void subset H of L. GrKatzer (1978) shows that the concept of a lattice
as a poset is equivalent to the concept of a lattice as an algebra K ≡ K(∧;∨),
where ∧ and ∨ are binary operations on pairs of elements a; b∈K, corresponding to
inf{a; b} and sup{a; b}, respectively. The operations ∧;∨ are idempotent, commutative
and associative, and satisfy two absorption identities. It has been already mentioned
that LCI models are determined by 8nite distributive lattices. Birkho2 (GrKatzer, 1978,
p. 62) characterized 8nite distributive lattices as those isomorphic to a ring of sets.

A 8nite distributive lattice K has a unique irredundant representation in terms of a
8nite poset (J (K);6), where J (K) ⊆ K is the subset of join-irreducible elements
(see GrKatzer, 1978, p. 62). This poset is often substantially smaller than K, and its
elements are de8ned in the following way:

J (K) = {a∈K | a �= ∅; a = b ∨ c⇒ a = b or a = c}:
In this context, the lattice K can be constructed by unions (∨) and intersections (∧) of
the elements of the set of join-irreducible elements J (K). Davey and Priestley (1990)
characterize a join-irreducible element of a 8nite distributive lattice as an element
which has exactly one lower cover, i.e. it covers exactly one other element. Note

3 ReLexive, antisymmetric and transitive.
4 Note that envelope and minimal envelope are concepts analogous to those of cover and minimal cover

as de8ned in Hearne and Wagner (1973).
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Fig. 2. From left to right, trees constructed from an empty moral TDAG, a complete moral TDAG and a
moral TDAG where one vertex renders the two other non-adjacent vertices conditionally independent.

that the partial order 6 of the 8nite poset (J (K);6) is inherited from K: a6 b i2
a ∧ b = a.

Analogous to the concept of an ancestral set in a DAG, one may de8ne an ancestral
poset. Let (S;6) be a poset, a subset (which is again a poset) A ⊆ S is ancestral in
(S;6) i2 ∀a∈A it follows that b∈ S and b¡a⇒ b∈A.

It is possible to establish a one-to-one correspondence between 8nite posets and
TDAGs. Given the 8nite poset (S;6) we can build a TDAG G = (S; E¡), where

E¡ = {(a; b)∈ S × S | a¡b}:
Given a TDAG G=(V; E), for every pair of vertices a; b∈V; a∈ an(b)⇔ a¡b. Note
that all ancestral subsets of a poset (S;6) form a ring A((S;6)) which is identical
to the ancestral ring A((S; E¡)) of the TDAG G = (S; E¡) de8ned before.

This correspondence between TDAGs and 8nite distributive lattices is used by
Andersson et al. (1997b) to prove that TDAG models and LCI models coincide.

3. Moral TDAGs as labeled trees

In this section we build an isomorphism between moral TDAGs and labeled trees,
which will allow us to represent any given moral TDAG with a unique correspond-
ing labeled tree. In order to get a 8rst intuition of such mapping, we may see in
Fig. 2 an example of three simple moral TDAGs with their corresponding labeled tree
representation.

In this section we do not yet discuss the Markov models, only purely graph-
theoretic issues. The results in this section will be used later to introduce the new
class of graphical Markov models based on labeled trees.

Lemma 3.1. Let G=(V; E) be a moral TDAG corresponding to the :nite distributive
lattice K; which has set of join-irreducible elements J (K). Let A(G) be the ring
of ancestral subsets of V in G; which is identical to the ring of ancestral posets of
J (K); A((J (K);6)). The set of join-irreducible elements J (K) is the collection of
maximal chains:

J (K) = (Hi |Hi ⊆A(G) ∧ Hi maximal chain): (1)
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Proof. A poset (S;6) is a tree poset i2 for x; y; z ∈ (S;6); x; y¡ z ⇒ x¡y or
y¡x.

Recall from Section 2 that the relation between G = (V; E) and its corresponding
poset (J (K);6) is such that for every a; b∈V; a∈ an(b) ⇔ a¡b in (J (K);6).
The fact that G is a moral TDAG implies that for a; b; c∈V such that a; b∈ an(c),
either a∈ an(b) or b∈ an(a). Therefore, the poset (J (K);6) is a tree poset.

Consider a decomposition of a poset (S;6) as a collection of smaller posets
H1; H2; : : : ; Hk ; Hi ⊆ (S;6); 16 i6 k, as follows. For every element xi of the minimal
envelope of (S;6), create Hi = {y∈ S: y¡xi in (S;6)} ∪ {xi}.

Applying the previous decomposition to the poset (J (K);6) we will obtain a
collection of k posets Hi = {y1; : : : ; yq; xi}; 16 i6 k. The tree poset condition of
(J (K);6) and the fact that yj ¡xi; 16 j6 q, implies that each Hi is a maximal
chain.

Let K be a 8nite distributive lattice isomorphic to some moral TDAG G. Then the
set of join-irreducible elements J (K) is of form (1) and forms a poset (J (K);6).
Let L denote the class of such 8nite distributive lattices. Consider a correspondence
' between the set of such posets P(L) = {(J (K);6)|K∈L} and the set of labeled
trees T (L) = {(J (K) ∪ {∅}; E≺)|K∈L}, de8ned as follows:

': P(L) ←→ T (L);

(J (K);6) ←→ (J (K) ∪ {∅}; E≺);
(2)

where for every labeled tree t(K) ≡ (J (K)∪{∅}; E≺)∈T (L) the vertex set is formed
by the elements in J (K) plus an extra vertex labeled ∅, which acts as the root. Note
that there is a one-to-one correspondence between J (K) and the set of vertices from
the equivalent moral TDAG. The set of edges of the labeled tree t(K) is de8ned as
follows:

E≺ = {(a; b)∈ J (K)× J (K)|a ≺ b} ∪ {(∅; a)∈{∅} × J (K)|@b∈ J (K)b ≺ a};
where ≺ is the covering relation on the poset of join-irreducible elements J (K). From
the next three propositions it will follow that the correspondence ' is a bijection
between moral TDAGs and labeled trees.

Proposition 3.1. Let K be a :nite distributive lattice that coincides with some moral
TDAG. The graph '(K) is a labeled tree.

Proof. From Lemma 3.1 we can decompose J (K) into its maximal chains HC. Every
'(HC) is a path in '(K) from the root to a leaf and vice versa. For any two such
chains HC1 and HC2 ; '(HC1) ∩ '(HC2) is a unique path from the root to a vertex. It
follows directly that '(K) has no cycles and therefore is a labeled tree.

Proposition 3.2. The correspondence (2) is injective.

Proof. Let K1;K2 be two 8nite distributive lattices that coincide with two moral
TDAGs. If '(K1)='(K2); then for every path h∈ '(K1); for which we can create a
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maximal chain H; there exists a path d∈ '(K2); for which we can create a maximal
chain D; such that h=d and H =D. Since then the collection of all H will be the same
as the collection of all D; it follows that J (K1) = J (K2); and the correspondence (2)
is injective.

Proposition 3.3. Correspondence (2) is surjective.

Proof. For convenience; consider labeled trees T where the root is labeled as ∅ and the
rest of the vertices using natural numbers {1; : : : ; n}. From the fact that T is a labeled
tree; there is always a unique path from the root to each of its leaves. For every path
p of the tree T ; such that p= {∅; x1; : : : ; xn}; take out the root ∅; and from the rest of
the path {x1; : : : ; xn} construct a chain HC such that HC ={x1; {x1; x2}; : : : ; {x1; : : : ; xn}}.
From Lemma 3.1 we know that the collection of these chains HC produces a set of
join-irreducible elements J (K) corresponding to a lattice K that coincides with a
moral TDAG.

Finally, we can establish the following result.

Theorem 3.1. The class of moral TDAGs is isomorphic to the class of labeled trees.

Proof. This follows directly from the fact that mapping (2) is a bijection between
moral TDAGs and labeled trees.

4. Moral TDAG models as tree conditional independence ≡ TCI models

This section introduces a new class of graphical Markov models called TCI models,
based on labeled trees. Moreover, it is shown that TCI coincides with the class of
DEC ∩ LCI graphical Markov models.

A graphical Markov model member of the class DEC∩LCI is determined by a TDAG
with no immoralities (Andersson et al., 1995). By Theorem 3.1 we can represent a
moral TDAG using a labeled tree.

One of the features that distinguishes tree structures from other types of graph, used
in the context of graphical Markov models, is that they are connected. In this sense,
they are quite similar to the Hasse diagrams used to represent lattices in LCI models.
Thus, we may observe in Fig. 2a how a complete disconnected graph turns into a
connected structure, a labeled tree, by using this new, arti8cially introduced, vertex
labeled ∅.

The intuition behind the root node ∅ will become clear from the Markov property
for labeled trees. To de8ne this formally, we need two new concepts regarding labeled
trees and the following proposition.

Proposition 4.1. Let T = (V ∪ {∅}; E) be a tree rooted at ∅. Given any two vertices
u; v∈V there is always at least one common vertex (the root ∅) in the two unique
paths that lead from u and v to the root ∅.
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Proof. It follows directly from the fact that every vertex in a tree is reachable from
the root by a unique path.

Given the existence of at least one common element for every two paths from two
given vertices to the root, consider the next two de8nitions.

De&nition 4.1 (Meet). Let T = (V ∪ {∅}; E) be a tree rooted at ∅. Let Tu; Tw be two
subtrees of T ; rooted at vertices u and w; respectively; such that neither is a subtree
of the other. The meet is the 8rst common vertex in the two unique paths from u; w
to the root ∅. It will be denoted as ’u;w.

De&nition 4.2 (Meet path). Let T =(V ∪{∅}; E) be a tree rooted at ∅. Let u; w∈V be
two vertices inducing subtrees Tu; Tw; such that neither is a subtree of the other. Let
’u;w be their meet. The meet path is the set of vertices that forms the common path
from the meet to the root; and denoted as mp(’u;w) = {’u;w; : : : ; ∅}.

As we can see, meet and meet path are intuitive concepts that follow naturally from
the de8nition of a tree. It is straightforward to identify the meet in a tree for two given
vertices, even if this tree is large. Finally, the new Markov property can be introduced.

De&nition 4.3 (Tree conditional independence Markov property (TCIMP)). Let
T = (V ∪ {∅}; E) be a tree rooted at ∅. A probability distribution P on X is said
to satisfy the tree conditional independence Markov property (TCIMP) if; for every
pair of vertices u; w∈V inducing two subtrees Tu = (U; EU ) and Tw = (W;EW ) with
meet ’u;w and meet path mp(’u;w); P satis8es

U�W |mp(’u;w):

This Markov property leads to the following new type of graphical Markov model.

De&nition 4.4 (TCI model). Let G be a labeled tree rooted at ∅. The set TX(G) of all
probability distributions on X that satisfy the TCIMP relative to G is called the TCI
model determined by G.

To illustrate, consider the three TCI models determined by the trees in Fig. 2. By the
TCIMP, the tree in (a) renders the three vertices marginally independent: 1� 2� 3.
From the tree in (b) it is not possible to read o2 any conditional independencies,
thus the set of restrictions of the model is empty. In (c) we may see that the vertex
2 is the meet of vertices 1 and 3, thus 1� 3|2. These restrictions may be read from
their corresponding moral TDAGs using the directed global Markov property (DGMP).
Further examples are provided by Figs. 3 and 4.

In Fig. 3 we see the di2erent graphical representations for three simple models
of conditional independence, with the independencies as speci8ed. In Fig. 4 we 8nd
a larger model which may help to understand the TCIMP. For instance, if we pick
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Fig. 4. Example of a TCI model for 24 variables.

the vertices 15 and 21, and apply the TCIMP, we see that the set {15; 18; 19} is
conditionally independent of {21; 22; 23; 24} given {2; 3; 14}. While if we pick the
vertices 12 and 13, the TCIMP renders the singletons {12} and {13} conditionally
independent given {1; 7; 11}.

To show that DEC ∩ LCI coincides with TCI, we 8rst have to investigate the rela-
tionship between TCIMP and the well-known Markov properties. To do this, we need
some de8nitions.

De&nition 4.5 (Moral ancestral set). Let G = (V; E) be a DAG. Given a subset A ⊆
V; A is said to be moral ancestral i2 for every vertex v∈A; an(v) ⊆ A and an(v)∪{v}
is complete in G.

Proposition 4.2. Let G= (V; E) be a DAG. Given two moral ancestral subsets A; B ⊆
V ; the union A ∪ B is again moral ancestral in G.

Proof. It is already known that the union of ancestral sets is ancestral. Thus; it is only
necessary to determine whether the union of moral ancestral sets is moral.
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Let a; b; c∈A ∪ B be such that a → c ← b where a and b are non-adjacent. Since
a; b∈ an(c), either a; b; c∈A or a; b; c∈B, which would contradict the initial assumption
that A and B are moral ancestral.

Proposition 4.3. Let G= (V; E) be a DAG. Given two moral ancestral subsets A; B ⊆
V ; the intersection A ∩ B is again moral ancestral in G.

Proof. This follows 8rstly from the fact that the intersection of ancestral sets is again
ancestral. And secondly; since A ∩ B ⊆ A and A ∩ B ⊆ B; A ∩ B should be moral.
Otherwise it would contradict the assumption of A; B being moral ancestral.

From the previous propositions it follows that the moral ancestral sets contained in a
DAG G=(V; E) form a ring of subsets of V , which will be called the moral ancestral
ring of G, and denoted as Am(G). The moral ancestral ring allow us to de8ne the
TCIMP in terms of DAGs.

De&nition 4.6 (Directed tree conditional independence Markov property (DTCIMP)).
Let G = (V; E) be a DAG. A probability distribution P on X is said to satisfy the
directed tree conditional independence Markov property (DTCIMP) if; for every pair
of moral ancestral subsets A; B∈Am(G); P satis8es

A�B|A ∩ B:

Theorem 4.1. Let DX(G) be a DAG model. For any probability distribution P on X;

DGMP⇒ LCIMP⇒ DTCIMP⇒ TCIMP:

Proof. The 8rst implication follows from Theorem A.1. For the second; let A; B∈
Am(G). The LCIMP implies the DTCIMP if A; B∈A(G); and this follows because
Am(G) ⊆A(G).

The third implication is proved as follows. For any pair A; B∈Am(G), the set A∪B
induces a moral TDAG GA∪B from G, such that it coincides with a tree TA∪B by
Theorem 3.1. The DTCIMP will imply the TCIMP if for each pair of vertices a∈A\B
and b∈B \ A; mp(’a;b) = A ∩ B in TA∪B. This equality follows from the fact that the
meet path in TA∪B, for any pair of vertices a∈A \B and b∈B \A, is formed by those
vertices that are common to A and B, therefore A ∩ B.

Theorem 4.2. Let G be a moral TDAG. For any probability distribution P on X;
TCIMP⇒ DGMP. Thus; for a moral TDAG;

TCIMP⇔ DGMP⇔ DLMP⇔ LCIMP⇔ DTCIMP

and DX(G) = TX(T ); for some tree T that coincides with the moral TDAG G.

Proof. By Theorem 3.1; there is a unique labeled tree T = (V; E) that coincides with
the moral TDAG G. For any two vertices u; w∈V ; that induce subtrees Tu = (U; EU );
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Tw = (W;EW ); the TCIMP in T implies the DGMP in G if U and W are separated by
mp(’u;w) in

(GAn(U∪W∪mp(’u;w)))m = GAn(U∪W∪mp(’u;w)):

This equality follows since G is assumed to be moral. Now, we should 8nd out
which set separates U and W in the graph speci8ed on the right hand of this equality.
Consider a path between any two vertices a∈U and b∈W . Since U;W were induced
by vertices u; w, this path will intersect the sets pa(u) and pa(w), because of transitivity.
More concretely, this path will always intersect those vertices x∈ pa(u) ∩ pa(w). The
set pa(u)∩ pa(w) in a moral TDAG is equivalent to the de8nition of meet path, hence
mp(’u;w) separates U;W in GAn(U∪W∪mp(’u;w)). The second part of the theorem follows
from Theorems A.2 and 4.1.

Finally, we can establish the following theorem that determines the location of TCI
models, within the family of graphical Markov models.

Theorem 4.3. The class of TCI models coincides with the class of DEC ∩ LCI
models.

Proof. It follows from the fact that DX(G) = TX(T ); for some moral TDAG G and
some labeled tree T ; which is proved in Theorem 4.2.

5. Markov equivalence among TCI models

DAG models are organized in classes of equivalence, such that two DAG models
DX(G1) and DX(G2) determined by two di2erent DAGs G1 and G2 may actually
determine the same model of conditional independence, hence DX(G1)=DX(G2). This
situation can also occur in the case of TCI models: two di2erent trees T1; T2 may
determine the same TCI model TX(T1) = TX(T2). We will investigate now the notion
of Markov equivalence among TCI models. First, we review the notion of Markov
equivalence for DAG models, which was given independently by Frydenberg (1990),
and Verma and Pearl (1991).

Theorem 5.1. Two DAG models are Markov equivalent if and only if they have the
same skeleton and the same immoralities.

It is possible to decide Markov equivalence for TCI models by simply creating the
corresponding moral TDAG using Theorem 3.1 and applying the previous theorem.
The notion speci8cally for TCI models is as follows.

De&nition 5.1. Let T = (V ∪ {∅}; E) be a labeled tree rooted at vertex ∅. Let l∈V be
a leaf in T . We de8ne a branch ending at l as the set of vertices .(l) = {x1; : : : ; xn};
where x1 = ∅ and xn = l; present in the unique path between the root ∅ and the leaf l.
The set of all branches of T will be denoted as /(T ).
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Fig. 5. Markov equivalence between TCI models. The two pairs on (a) are Markov equivalent, while the
pair on (b) is not.

Theorem 5.2. Two TCI models TX(T ) and TX(T ′) are Markov equivalent; i.e.
TX(T )=TX(T ′); if and only if they have the same sets of branches; i.e. /(T )=/(T ′).

In order to illustrate the notion of Markov equivalence among trees, look at Fig. 5.
The pairs of trees on part (a) are Markov equivalent because although two vertices are
swapped between the trees, the paths from the leaves to the root remain the same. The
two trees on part (b) are not Markov equivalent because given the swap of vertices 2
and 4, although it does not change the paths from vertices 5 and 6 to the root ∅, it
does it from vertex 3 to the root ∅.

Proof of Theorem 5.2 (Necessity):
Assume that TX(T ) = TX(T ′). Then, any TCIMP read from T , holds also in T ′. A

TCIMP involves the vertex sets of two subtrees and the vertex set of their meet path.
If a TCIMP holds in T and in T ′, then the two vertex sets of the two subtrees and
the vertex set of their meet path in T , should be derived also from T ′.

Let u; w be two vertices of the tree T = (V; E), with meet ’u;w, inducing subtrees
Tu =(U ∪{∅}; EW ); Tw =(W ∪{∅}; EW ) such that none of them is subtree of the other.
In order to 8nd the same meet path mp(’u;w) for u; w in both trees T and T ′, the
paths from u; w to the root must intersect in the same vertices in T and T ′. Because
this must happen for every pair of vertices in T and T ′, it follows that the only way
that the intersections of all the paths are the same in T and T ′, is when /(T ) = /(T ′).

(Su?ciency). Assume that /(T ) = /(T ′). This implies that every possible meet path
from any given two subtrees in T must exist in T ′. Because, if there were a meet path
that di2ers in at least one vertex in T and T ′, there would exist some .(l)∈ /(T ) and
.′(l)∈ /(T ′) such that .(l) �= .′(l). Therefore, if for every two given subtrees in T ,
their meet path is the same in T ′, it follows from the TCIMP that the collection of
Markov properties of T hold also in T ′, and vice versa.

5.1. How many di@erent Markov models?

The notion of Markov equivalence reveals the fact that two graphical Markov mod-
els determined by two di2erent graphs may represent the same model of conditional



248 R. Castelo, A. Siebes / Journal of Statistical Planning and Inference 115 (2003) 235–259

independence. Very often, model selection on graphical Markov models is carried out
over the space of graphs that determine the type of graphical Markov model we are
selecting. While the number of di2erent graphs that determine a given class of Markov
models provides an estimation of the hardness of selecting a good set of models, the
expressive power of a given class of graphical Markov models may be quanti8ed by
the number of di2erent models of conditional independence that we can represent using
this class. When the equivalence class of a given type of graphical Markov models has
a precise graphical de8nition, one may try to use standard tools of graph theory and
graphical enumeration to count how many models of conditional independence may be
represented.

The most straightforward case is that of UG models, which are represented by undi-
rected graphs, since there is a one-to-one correspondence between undirected graphs
and models of conditional independence. Two UG models UX(G1);UX(G2) are Markov
equivalent, UX(G1)=UX(G2), i2 G1 =G2. Thus, there is the same number of di2erent
models of conditional independence, as di2erent undirected graphs, i.e. 2( n2 ) for labeled
graphs with n vertices.

The case of DEC models is also straightforward, since chordal graphs also have
a one-to-one correspondence with Markov equivalence classes. Connected and dis-
connected chordal graphs were counted by Wormald (1985). The sum of these two
quantities provides the number of all chordal graphs, i.e. the number of all di2erent
DEC models. We will treat in this section the derivation of the expression that al-
lows us to compute the number of all chordal graphs from the numbers of connected
chordal graphs. As we shall see, this expression is related to the computation of Markov
equivalence classes of TCI models.

The case of DAG models is a diMcult one. Markov equivalence classes of DAG
models are represented by essential graphs (Andersson et al., 1997a), which are acyclic
partially directed graphs with additional characterizing properties. An eMcient way of
enumerating such graphs is not yet known. In Andersson et al. (1997a) they were
counted up to 5 vertices. Recently, Gillispie and Perlman (2001) developed a com-
puter program which has calculated the number of essential graphs up to 10 vertices,
by enumerating DAGs and taking into account the equivalence class to which each
DAG belongs. We have taken the liberty to extrapolate these numbers up to 12 ver-
tices, such that we can compare cardinalities of di2erent Markov equivalence classes
in Table 2.

The enumeration of Markov equivalence classes of TCI models provides insight into
their nature such that, afterwards, it is easy to devise a canonical representation for a
given equivalence class of TCI models (see Section 5.2).

The basic mathematical tool used in enumeration of graphs is that of generating
functions. A generating function is a power series. The coeMcients of the polynomial
that forms these power series store the counts of the object we intend to enumerate.
The exponents of this polynomial describe some structural feature associated to its
attached coeMcient, as for instance, the number of vertices of a graph. In the case
of labeled enumeration, one uses an exponential generating function of the form
g(x) =

∑
n=1 an(xn=n!). For full insight into this subject the reader may consult the

book of Harary and Palmer (1973).
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Let g(x) be the generating function for connected labeled chordal graphs. Then
an corresponds to the number of such graphs with n vertices. Consider now another
exponential generating function to count not only connected labeled chordal graphs,
but all of them:

G(x) =
∑
n=0

An
xn

n!
: (3)

In this generating function, the coeMcient An is the number of all chordal graphs with
n vertices, which corresponds to the number of Markov equivalence classes of DEC
models. These two exponential generating functions are related through the following
theorem.

Theorem 5.3 (Harary and Palmer, 1973, p. 8). The exponential generating functions
G(x) and g(x) for labeled graphs and labeled connected graphs satisfy the following
relation:

1 + G(x) = eg(x):

Here the constant 1 refers to the null graph, i.e. the graph with no vertices. In the
way we have expressed the generating function G(x), the constant 1 is included in G(x)
since n starts on 0 vertices. Therefore we may discard the constant 1 in the previous
expression. As we shall see now, by di2erentiating the previous equation and equating
coeMcients, it is possible to 8nd a recurrence for both the number of all labeled chordal
graphs An and labeled connected chordal graphs an. First, g(x) is isolated, by taking
logarithms on both sides, and afterwards we can di2erentiate the equation, which leads
to the following relation:∑∞

n=0 n(An=n!) xn−1∑∞
n=0 (An=n!) xn

=
∞∑
n=1

n
an
n!

xn−1:

Now multiply both sides by the polynomial at the bottom-left of the equation, to obtain
∞∑
n=0

n
An

n!
xn−1 =

∞∑
n=0

( ∞∑
k=0

(k + 1)
ak+1

(k + 1)!
An−k

(n− k)!

)
xn:

In order to equate coeMcients, the exponents of both polynomials should match.
Therefore we are going to move the running indexes on the right-hand side of the
equation. First, move the index k of the inner sum, and then move the index n. Further,
the 8rst term of the sum on the left-hand side may be discarded since it cancels for
n = 0. Thus we obtain

∞∑
n=0

n
An

n!
xn−1 =

∞∑
n=0

(
n+1∑
k=1

k
ak
k!

An+1−k

(n + 1− k)!

)
xn;

∞∑
n=1

n
An

n!
xn−1 =

∞∑
n=1

(
n∑

k=1

k
ak
k!

An−k

(n− k)!

)
xn−1:
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Table 1
Number of Markov equivalence classes of DEC models

An n

1 1
2 2
8 3

61 4
822 5

18,154 6
617,675 7

30,888,596 8
2,192,816,760 9

215,488,096,587 10
28,791,414,081,916 11

5,165,908,492,061,926 12

We can now equate coeMcients, and for our purposes, we will isolate from the sum
the term for k = n. In this term, we can substitute afterwards A0 = 1, since the null
graph is unique, to obtain

n
An

n!
= n

an
n!

A0

0!
+

n−1∑
k=1

k
ak
k!

An−k

(n− k)!
:

Finally, by multiplying the whole expression by n! and dividing it by n, we obtain
the recurrence for all chordal graphs for n vertices:

An = an +
1
n

(
n−1∑
k=1

k

(
n

k

)
akAn−k

)
: (4)

Wormald (1985) provides the numbers an for labeled connected chordal graphs; thus
by using these and formula (4), we obtain the numbers of all labeled chordal graphs;
which equals the number of Markov equivalence classes of DEC models, given in
Table 1.

Next we count the Markov equivalence classes of TCI models. Andersson et al.
(1997b) characterized these models as those DEC models UX(G) determined by a
chordal graph G such that G does not contain the following induced undirected
subgraph:

◦—–—– ◦—–—– ◦—–—–◦
which is a path on four vertices and denoted as P4. The term P4-free is used in this
context to denote the absence of such induced subgraph. In the graph theory literature
Wolk (1962) gave a 8rst characterization of these graphs, although it was Golumbic
(1978) who described them later in the terms of forbidden subgraphs as above, hence
the name “P4-free chordal”. From this characterization, Castelo and Wormald (2003)
derived the following proposition.
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Table 2
Numbers of Markov equivalence classes of DAGs, UGs, DECs and TCIs with n vertices

DAG (essential) UDG (undirected) DEC (chordal) TCI n
(P4-free chordal)

1 1 1 1 1
2 2 2 2 2

11 8 8 8 3
185 64 61 49 4

8,782 1,024 822 402 5
1,067,825 32,768 18,154 4,144 6

312,510,571 2,097,152 617,675 51,515 7
21,213,3402,500 268,435,456 30,888,596 750,348 8

326,266,056,291,213 68,719,476,736 2,192,816,760 12,537,204 9
1,118,902,054,495,975,141 35,184,372,088,832 215,488,096,587 236,424,087 10
≈ 8:53e + 21 36,028,797,018,963,968 28,791,414,081,916 4,967,735,896 11
≈ 1:40e + 26 73,786,976,294,838,206,464 5,165,908,492,061,926 115,102,258,660 12

Proposition 5.1 (Castelo and Wormald, 2003). Let G = (V; E) be a connected undi-
rected graph. Let D be the set of vertices of degree |V | − 1. Then G is P4-free and
chordal if and only if it is complete or G−D is a disconnected P4-free chordal graph.

This proposition implicitly suggests the following two lemmas, where the 8rst cor-
responds to the diagonal property of Wolk (1962), and the second corresponds to the
concept of central point in Wolk (1965, p. 18) and implies the existence of the set of
vertices D �= ∅ of degree |V | − 1 in Proposition 5.1.

Lemma 5.1 (Wolk, 1962, Lemma 1). Let G be a connected P4-free chordal graph.
Let G have more than one clique. For every clique C of G; the intersections of all
other cliques with C are nested.

Lemma 5.2 (Wolk, 1965, Lemma in p. 18). Let G be a connected P4-free chordal
graph. Let G have more than one clique. The intersection of all the cliques of G is
non-empty.

These properties allowed the authors in Castelo and Wormald (2003) to enumerate
P4-free chordal graphs, which in our context, correspond to Markov equivalence classes
of TCI models. In particular, Castelo and Wormald (2003) provide the following re-
currence for connected P4-free chordal graphs:

an = 1 +
n−2∑
k=1

(
n

k

)
(An−k − an−k): (5)

In this recurrence, the term An−k refers to the number of all P4-free chordal graphs with
n−k vertices. As shown in Castelo and Wormald (2003), since the generating functions
for P4-free chordal graphs are the same as for chordal graphs, An−k can be computed
using the recurrence in (4). We may see in Table 2 the numbers for all P4-free chordal
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Fig. 6. Cardinalities of the types of graphs that determine di2erent subclasses of Markov models.

graphs, which have a one-to-one correspondence with Markov equivalence classes of
TCI models. They have been computed using the previously derived recurrences (4)
and (5).

As noted above, TCI models may be de8ned as those graphical Markov models de-
termined by P4-free chordal graphs. From the characterization presented in the previous
section of moral TDAGs as trees, it follows as well that there are (n+ 1)n−1 di2erent
moral TDAGs on n vertices. As it has been already said, these quantities on di2erent
graphs may serve to quantify, roughly, diMculty of model selection and expressiveness
of the graphical Markov model. Thus, it may be interesting to look at the plot of the
cardinalities of the di2erent graphs that determine in several forms di2erent types of
graphical Markov models, that we may 8nd in Fig. 6.

5.2. A canonical representation of an equivalence class of TCI models

The P4-free chordal graph characterization of TCI models suggests a canonical rep-
resentation of Markov equivalence classes of TCI models. This representation will have
again the form of a tree, but its nodes will contain, possibly, more than one single
vertex (i.e. more than one single random variable). First we show how the cliques
of a connected P4-free chordal graph lead to a tree organization of their intersections.
This allows a representation for the canonical element of an equivalence class of TCI
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Fig. 7. (a) A TCI model. (b) Its corresponding P4-free chordal graph. In (c) and (d) the two steps to obtain
the canonical form of the equivalence class are shown.

models. Finally, it will be shown how to extract all the members of the equivalence
class from this canonical representation.

By Lemma 5.2 a connected P4-free chordal graph containing more than one clique
has a non-empty subset of vertices D which correspond to the intersection of all cliques
of the graph. By Proposition 5.1 the resulting graph, after the removal of D, will
consist of k ¿ 1 disconnected components that are again P4-free chordal graphs. Now
repeat the previous operation recursively until no disconnected component contains
more than one clique. At each step of this operation, we will keep track of the di2erent
intersecting sets, and we will draw undirected edges from a given intersecting set, to
those intersecting sets derived from the disconnected components that were created. It
follows that such an undirected structure cannot have undirected cycles, thus has the
form of a tree. In Fig. 7b we may see the P4-free chordal graph corresponding to the
TCI model of Fig. 7a, which corresponds to one of the subtrees of the TCI model of
Fig. 4. In Fig. 7c we may see a 8rst step of the procedure we just described, and in
Fig. 7d we may see the second and last step, from which we have already obtained
the canonical representation.

In graph-theoretic terms, the canonical representation of a TCI model, as for instance
the one in Fig. 7d, corresponds to homeomorphically irreducible trees (Harary and
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Palmer, 1973). Homeomorphically irreducible trees are those trees in which no vertex
has degree of adjacency equal to two.

In order to 8nd the members of the equivalence class, one only needs to perform all
possible permutations on those nodes of the canonical element that contain more than
one vertex. Then build a path for a given permutation, on which the vertices on the
extremes of the path will connect to the adjacent nodes in the canonical element. For a
given TCI model with more than one branch growing from the root ∅ one just applies
this process to each of the branches separately, and plants the bottom roots (the 8rst
intersection set removed) on the root ∅. For a given canonical element with s1; : : : ; sk
nodes that contain more than one vertex, the number of trees on that equivalence
class will amount to |s1|! · · · |sk |!. The reason is obvious since it just corresponds to
the number of possible permutations of those nodes that may be exchangeable on
the tree.

6. Discussion

In this paper a new class of graphical Markov models, called TCI models, deter-
mined by labeled trees has been introduced. It is shown that the class of TCI models
coincides with the intersection class of DEC∩LCI. Moreover, a new Markov property,
speci8c for trees, is introduced, and its relationship with the other Markov properties,
is investigated.

We have also studied the notion of Markov equivalence among TCI models, which
is based on a new concept also introduced in this paper: the concept of a meet of
two subtrees, and their meet path. The one-to-one correspondence between Markov
equivalence classes of TCI models and P4-free chordal graphs allows the computation
of the number of di2erent Markov models contained in DEC ∩ LCI. In this way, we
can compare the cardinalities of several interesting classes of graphical Markov models.
Particular properties of P4-free chordal graphs allow us to devise a canonical represen-
tation of an equivalence class of TCI models. This canonical representation also shows
the correspondence between P4-free chordal graphs and homeomorphically irreducible
trees. Moreover, from Theorem 3.1 and from the number of labeled trees on n ver-
tices, which is nn−2, it follows that there are (n+1)n−1 moral TDAGs on n vertices. In
graph-theoretic terms one may say that there are (n + 1)n−1 transitive subtree acyclic
digraphs. From the number of rooted labeled trees, which is nn−1, it also follows di-
rectly that there are nn−1 connected moral TDAGs (or connected transitive subtree
acyclic digraphs). These last few facts are interesting graph-theoretic results in their
own right, and possibly have some consequence, in our context, from a model selection
perspective.

TCI models expand the scope of possible formalisms for conditional inde-
pendence within the superclass of graphical Markov models. Their expressiveness
is smaller than any other subclass of graphical Markov models yet studied, but in
turn, they provide much more clarity of representation. In contrast to most
graphical Markov models, TCI models use a non-separation criterion to read o2
conditional independencies. This non-separation criterion, de8ned in terms of
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subtrees and meet path, provides a very easy identi8cation of the conditioning
sets.

Andersson et al. (1995, p. 38) claimed that since every conditional independence
statement A�B|C is equivalent to a simple LCI model, any DAG model is the in-
tersection of all LCI models that contain it. We can see further that every conditional
independence statement A�B|C is equivalent to a simple TCI model, therefore any
DAG model is the intersection of all TCI models that contain it. A remaining question
is how TCI models can be combined graphically to determine the DAG structure of
the intersection of TCI models.
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Appendix. Graphical Markov models

This section gives an overview of graphical Markov models. We will survey very
brieLy UG, DAG, DEC, TDAG, and LCI models. The glue that binds the structural
information of a graph, with the structural information of family of multivariate distri-
butions P is its Markov properties. They make it possible to read conditional indepen-
dencies from the graph. Moreover, there are relationships among the Markov properties
that determine which ones are equivalent or which one is sharper than the other. For
more insight into this discussion and the rest of the section, the reader may consult
Lauritzen et al. (1990); Frydenberg (1990); Lauritzen (1996) and Andersson et al.
(1997b).

De&nition A.1 (Undirected global Markov property (UGMP)). Let G=(V; E) be a UG;
a probability distribution P on X is said to satisfy the undirected global Markov prop-
erty (UGMP) if; for any triple of disjoint subsets of V such that S separates A from
B in G; P satis8es

A�B|S:
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There are other two Markov properties 5 for undirected graphs, but the UGMP is the
sharpest possible rule to read o2 conditional independencies from such graphs. The
UGMP is used to de8ne the UG Markov model in the following way.

De&nition A.2 (UG Markov model). Let G be a UG. The set UX(G) of all probability
distributions on X that satisfy the UGMP relative to G is called the UG Markov model
determined by G.

Again, since all chordal graphs are undirected graphs, DEC models are de8ned in
the same way as the set of all probability distributions that satisfy UGMP relative to
G. We consider now DAG Markov models, which have a pairwise (DPMP), a local
(DLMP) and a global (DGMP) Markov property. We provide here only the de8nition
of the DGMP and refer the interested reader to the sources given at the beginning of
this appendix.

De&nition A.3 (Directed global Markov property (DGMP)). Let G=(V; E) be a DAG;
a probability distribution P on X is said to satisfy the directed global Markov property
(DGMP) if; for any triple (A; B; S) of disjoint subsets of V such that S separates A from
B in the moralized version of the smallest ancestral set of A∪B∪S; (GAn(A∪B∪S))m ; P
satis8es

A�B|S:

Lauritzen et al. (1990) show that the latter Markov property, the DGMP, is equivalent
to the d-separation criterion from Pearl and Verma (1987). As in the undirected case,
let us introduce now the formal de8nition of DAG Markov model.

De&nition A.4 (DAG Markov model). Let G be a DAG. The set DX(G) of all prob-
ability distributions on X that satisfy the DGMP relative to G is called the DAG
Markov model determined by G.

We discuss now brieLy the relation between TDAG and LCI Markov models (cf.
Andersson et al., 1997b).

De&nition A.5 (Lattice conditional independence Markov property (LCIMP)). Let
G = (V; E) be a TDAG; a probability distribution P on X is said to satisfy the lattice
conditional independence Markov property (LCIMP) if; for every pair of ancestral
subsets A; B∈A(G); P satis8es

A�B|A ∩ B:

Andersson et al. (1997b) de8ned the LCIMP for the ancestral sets of a DAG. In
this more general case, they prove:

5 Pairwise (≡ UPMP) and local (≡ ULMP).
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Fig. 8. Comparison between DAG models and LCI models.

Theorem A.1 (Andersson et al., 1997b, Theorem 2.2, p. 32). Let G be a DAG. For
any probability distribution P on X; DGMP⇒ LCIMP.

The previous theorem is sharpened for TDAG Markov models as follows.

Theorem A.2 (Andersson et al., 1997b, Theorem 3.1, p. 33). Let G be a TDAG. For
any probability distribution P on X;

DGMP⇔ DLMP⇔ LCIMP:

The de8nition of an LCI model is the following.

De&nition A.6 (LCI Markov model). Let G be a TDAG. The set LX(G) of all proba-
bility distributions on X that satisfy the LCIMP relative to G is called the LCI Markov
model determined by G.

The fact that there is a one-to-one correspondence between TDAGs and 8nite dis-
tributive lattices, and the latter are isomorphic to a ring of sets, leads to an alternative
reformulation of LCI Markov model in terms of posets. Consider a ring K of subsets
of V , such that for every pair of subsets L;M ∈K, a probability distribution P satis8es

L�M |L ∩M;

as in the LCIMP. The subsets L;M refer to subsets of random variables XL;XM ⊆ XV

that take values from a larger product space X = ×(Xi|i∈V ) and L;M ⊆ V . Over
this product space, a family of probability distributions P underlies the LCIMP we
rewrote before, and gives rise to an LCI model LX(K) that, as the notation suggests,
is determined by a ring K. For more details about LCI models determined by rings
of subsets, the reader may consult Andersson and Perlman (1993) and Andersson
et al. (1997b).

In Fig. 8a we may see an empty DAG, which represents the fully restricted DAG
model, on the left, and its representation by a Hasse diagram on its right as the fully
restricted LCI model. In Fig. 8b we may see a complete DAG, which represents the
unrestricted or saturated DAG model, and its representation by a Hasse diagram on its
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Fig. 9. On the left-hand side of (a) and (b), two DAGs representing 1� 3|∅ and 1� 3|2, respectively, and
on the right-hand side of (a) and (b) their corresponding Hasse diagrams.

right as the unrestricted LCI model. Let us note that for the LCI model in Fig. 8a,
J (Ka) = {1; 2; 3} and for the LCI model on Fig. 8b, J (Kb) = {1; 12; 123}.

While for the graphical Markov model in Fig. 8a the restrictions are characterized by
all three vertices being marginally independent: 1� 2� 3, the set of restrictions of the
model in Fig. 8b is empty. In order to read conditional independencies from the Hasse
diagram, we have to take into account that any two elements from this diagram are
conditionally independent given their intersection (LCIMP). For instance, two trivial
cases are those from Fig. 8.

In the next 8gure, we may see two more sophisticated models. The one in Fig. 9a
corresponds to the immorality that induces the two non-adjacent vertices marginally
independent, and the one in Fig. 9b makes the two non-adjacent vertices conditionally
independent given the middle one. On the LCI model of Fig. 9a, J (Ka) = {1; 3; 123}
and on LCI model of Fig. 9b, J (Kb) = {2; 12; 23} (recall that an element belongs to
J (K) i2 it covers only one other element).
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