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1 Introduction
While deep neural networks have achieved impressive results in many domains, they are often brit-
tle to even small distribution shifts between the source and target domains [51, 19, 28]. While
many approaches to robustness attempt to directly generalize to the target distribution after train-
ing on source data [47, 3], an alternative approach is to fine-tune on a small amount of labeled
target datapoints. Collecting such small labeled datasets can improve downstream performance in
a cost-effective manner while substantially outperforming domain generalization and unsupervised
adaptation methods [54, 26]. We therefore focus on settings where we first train a model on a rel-
atively large source dataset and then fine-tune the pre-trained model on a small target dataset, as a
means of adapting to distribution shifts.

The motivation behind existing fine-tuning methods is to fit the new data while also preserving the
information obtained during the pre-training phase. Such information preservation is critical for
successful transfer learning, especially in scenarios where the source and target distributions share
a lot of information despite the distribution shift. To reduce overfitting during fine-tuning, existing
works have proposed using a smaller learning rate compared to initial pretraining [29, 36], freezing
the early backbone layers and gradually unfreezing [21, 44, 53], or using a different learning rate for
each layer [52, 62].

We present a result in which preserving information in a non-standard way results in better perfor-
mance. Contrary to conventional wisdom that one should fine-tune the last few layers to re-use the
learned features, we observe that fine-tuning only the early layers of the network results in better
performance on image corruption datasets such as CIFAR-10-C [19]. More specifically, as an ini-
tial finding, when transferring a model pretrained on CIFAR-10 to CIFAR-10-C by fine-tuning on a
small amount of labeled corrupted images, fine-tuning only the first block of layers and freezing the
others outperforms full fine-tuning on all parameters by almost 3% on average on unseen corrupted
images.

To better understand this counterintuitive result, we study a general class of fine-tuning algorithms
which we call surgical fine-tuning, defined as fine-tuning only a small contiguous subset of all layers
in the pre-trained neural network. Equivalently, we could define surgical fine-tuning as freezing all
but a few layers during fine-tuning. Parameter freezing can be beneficial because, depending on the
relationship between the source and target tasks, some layer parameters trained on the source task
may be close to a minima for the target distribution. Therefore, freezing these layers can facilitate
generalization to the target distribution. We evaluate the performance of surgical fine-tuning with
various layer choices on 7 different distribution shift scenarios, which we categorize into input-level,
feature-level, and output-level shifts. As shown in Figure 1, fine-tuning only the first block of layers,
the middle block, or the last layer can perform best in different distribution shift conditions, with the
best such subset consistently outperforming fine-tuning all parameters.

To support our empirical results, we theoretically analyze why different types of distribution shifts
require fine-tuning different layers. For two-layer neural networks, we show why fine-tuning the
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Figure 1: Surgical fine-tuning, where we tune only one block of parameters and freeze the remaining param-
eters, outperforms full fine-tuning on a range of distribution shifts. Moreover, we find that tuning different
blocks performs best for different types of distribution shifts. Fine-tuning the first block works best for input-
level shifts such as CIFAR-C (image corruption), later blocks work best for feature-level shifts such as Entity-30
(shift in entity subgroup), and tuning the last layer works best for output-level shifts such as CelebA (spurious
correlation between gender and hair color).

first layer is better for input perturbations but fine-tuning the last layer is better for label perturba-
tions. We then present a setting where surgical fine-tuning on the first layer provably outperforms
fine-tuning all parameters. If the target distribution contains only a few new “directions” (inputs
outside the span of the source distribution), we show that tuning only the first layer can learn these
new directions with very few target examples, while preserving all the information learned from the
source distribution. However, we show that full fine-tuning forgets information learned from the
source distribution—the last layer changes to accommodate the new target directions, but now per-
forms poorly on examples outside the span of the training data. Motivated by the theoretical insight
that freezing some layers can help generalization, we empirically analyze two criteria for automati-
cally selecting layers to tune based on loss gradients. Tuning the layers selected by such criteria can
also outperform full fine-tuning, though this procedure does not outperform manually choosing the
best layers to tune.

2 Surgical Fine-Tuning: Freezing Parameters During Adaptation
Our problem setting assumes two datasets from different distributions: a large dataset following
the source distribution Psrc, and a relatively smaller dataset following the target distribution Ptgt.
The objective is to achieve high accuracy on target data by leveraging the different but closely
related source distribution, a common scenario in real-world applications that require adaptation.
For example, the source dataset can be the 50, 000 training images in CIFAR-10 [30] while the
target dataset is a smaller set of 1000 corrupted CIFAR datapoints with the same image corruption
[19]; see Figure 1 for more examples of source-target dataset pairs that we consider. To achieve high
performance on the target distribution, a model should broadly fit the large source dataset and make
minor adjustments based on the smaller target dataset.

We empirically evaluate transfer learning performance with a two-stage training procedure con-
sisting of pre-training and fine-tuning. First, we pre-train a network to minimize the loss on
the source dataset to obtain fsrc, which has high accuracy in the source distribution. The fine-
tuning stage starts from pre-trained model parameters and minimizes the loss on the labeled tar-
get data, resulting in the model f tgt. We evaluate two fine-tuning settings in this section: su-
pervised fine-tuning (Section 2.1) and unsupervised adaptation (Appendix D). In all experiments,
we perform early stopping on held-out target data according to the fine-tuning loss. Finally, we
evaluate the performance of the fine-tuned model on held-out data from the target distribution, i.e.
Ltgt(f

tgt) = E(x,y)∼Ptgt
[ℓ(f tgt(x), y)].

Our main focus is analyzing surgical fine-tuning, in which we fine-tune only a subset of layers
of the pre-trained model while keeping the others frozen. Denote the pre-trained model as f =

fn◦. . .◦f1(x), where each layer fi has parameters θi, and the empirical target loss as L̂tgt. Formally,
surgical fine-tuning with respect to a subset S ⊆ {1, . . . , n} of layers is defined as solving the
optimization problem

arg min
θi ∀i∈S

L̂tgt(f(θ1, . . . , θn)), (1)
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where all non-surgery parameters (θi for i /∈ S) are fixed to their pre-trained values. Typical choices
of parameters to optimize are fine-tuning all (S = {1, . . . , n}), last (S = {n}), or the last few
layers (S = {n − k, · · · , n}). The main novelty of the surgical fine-tuning framework is that it
additionally considers tuning earlier layers while keeping later layers frozen. For example, surgical
fine-tuning on the first layer (S = {1}) updates only θ1, resulting in the fine-tuned model f tgt(x) =
f src
n ◦ . . . ◦ f src

2 ◦ f tgt
1 (x).

Intuitively, surgical fine-tuning can outperform full fine-tuning when some layers in f src are already
near-optimal for the target distribution. As a hypothetical example, consider a scenario where there
exist first-layer parameters θ∗1 such that changing only the first layer of fsrc to θ∗1 achieves zero target
loss. Here, first-layer fine-tuning (S = {1}) can find θ∗1 with a small amount of target data, while full
fine-tuning (S = {1, . . . , n}) may needlessly update the other layers and thus underperform on held-
out target data due to overfitting. We note that the efficacy of parameter freezing is a consequence
of having limited target data, and choosing a bigger S will be beneficial in settings where target data
is plentiful. Now that we have introduced the problem set-up, we will next empirically investigate
how surgical fine-tuning with different choices of S performs on real datasets.

2.1 Surgical Fine-Tuning: Experiments on Real Data
In this subsection, we aim to empirically answer the following question: how does surgical pa-
rameter fine-tuning compare to full fine-tuning in terms of sample efficiency and performance on
real-world datasets?

Datasets. We run experiments on seven real-world distribution shifts, categorized into input-level,
feature-level, and output-level shifts, with examples shown in Figure 1. For more details about these
datasets, see Appendix E.2.

• Input-level shift: (1) CIFAR-C [19], (2) ImageNet-C [24]. The source distributions correspond
to the original CIFAR-10 and ImageNet datasets [30, 9], respectively. The task is to classify
images from the target datasets, which consist of corrupted images.

• Feature-level shift: (3) Living-17 and (4) Entity-30 [58]: While the source and target distri-
butions consist of the same classes, they contain different subpopulations of those classes. For
example, in Entity-30, for the class “vegetables”, Psrc and Ptgt will contain different subclasses
of vegetables.

• Output-level shift: (5) CIFAR-Flip, (6) Waterbirds, and (7) CelebA [56]. CIFAR-Flip is a
synthetic task where the Psrc consists of the original CIFAR-10 dataset and the target distribution
is the same dataset where each label y has been flipped to be 9 − y, e.g. the label 0 is now label
9 and vice versa. For Waterbirds and CelebA, the task labels are spuriously correlated with an
attribute. The source distribution Psrc is the training set while the target distribution Ptgt is a
balanced subset with equal amounts of each of the four (label, spurious attribute) groups.

Model architectures and pre-training. For each task, before pre-training on Psrc, we initialize
with a model with ResNet-50 architecture pre-trained on ImageNet, except for experiments with
CIFAR-C and CIFAR-Flip, which both use a ResNet-26 trained from scratch. After initialization,
we pre-train on the source domain Psrc and then fine-tune on a small amount of data from the target
domain. We fine-tune with the Adam optimizer, sweeping over 3 learning rates. We choose the best
hyperpameters and early stop based on accuracy on held-out target data. We report results across 3
seeds for all experiments. See Appendix E.3 for more fine-tuning details.

Surgical fine-tuning. The models used consist of three (for ResNet-26) or four (for ResNet-50)
convolutional blocks followed by a final fully connected layer. We denote these blocks as "Block 1",
"Block 2", etc in the order that they process the input, and the fully connected layer as "Last Layer".
For each experimental setting, we report the relative target distribution accuracy and standard error
across three runs after surgical fine-tuning on each block of the network, fine-tuning only that block
while freezing all other parameters. We compare against full fine-tuning, i.e. tuning all parameters
to minimize target loss.

Experimental results. In Figure 2, we find that on every domain, surgically fine-tuning one block of
the network outperforms tuning all parameters on the target distribution. We note that even matching
full fine-tuning performance with surgical fine-tuning would indicate that ignoring some gradients is
harmless; these results show that ignoring some gradients has a positive effect. Furthermore, we find
that the best block to fine-tune is different across settings, depending on the nature of the distribution
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Figure 2: We present plots of relative accuracy, i.e. (surgical fine-tuning accuracy) - (full fine-tuning accuracy),
along with standard errors across three runs. Fine-tuning a single parameter block can outperform full fine-
tuning, and more importantly, different blocks are best for different distribution shifts. The location of the best
block reflects the nature of the shift: tuning earlier layers performs best for input-level shifts while tuning later
layers is best for output-level shifts.

shift between source and target data. Datasets with an input-level shift are best handled by tuning the
first network block, and similarly for feature-level shifts with a middle block and output-level shifts
with the last layer. In Figure 6, we find that on CIFAR-C, fine-tuning the first block matches and
even outperforms full fine-tuning as well as tuning with other individual blocks when given varying
amounts of data for tuning, although the gap between Block 1 and All decreases as the number of
training points increases.

Intuitively, why might surgical fine-tuning match or even outperform full fine-tuning on distribution
shifts? For each type of shift we consider (input-level, feature-level, and output-level), there is
a sense in which one aspect of the distribution changes while everything else is kept the same,
therefore requiring modification of only a small part of information learned during pre-training. For
example, in image corruptions (categorized as an input-level shift), pixel-wise local features are
shifted while the underlying structure of the data is the same in the source and target distributions.
On the other hand, in a label shift (categorized as an output-level shift), the pixel-wise features
remain the same in the source and target distributions while the mapping from final features to labels
is shifted. This intuition is also in line with the independent causal mechanisms (ICM) principle
[59, 48], which states that the causal generative process of a system’s variables is composed of
autonomous modules that do not inform or influence one another. From this viewpoint, distribution
shifts should correspond to local changes in the causal generative process. Because discriminative
models learn to invert the generative process from label to datapoint, it suffices to fine-tune only
the region of the network that corresponds to the change in the causal process. We formalize this
intuition more concretely in our theoretical analysis in Section 3.

3 Analysis of Surgical Fine-Tuning
We now present a theoretical and empirical analysis on idealized examples of distribution shifts,
to better understand the role of surgical parameter tuning in our previous experimental results. In
Section 3.1, we present a setting with two-layer neural networks where tuning only the first layer can
obtain zero loss on the target task while tuning only the last layer cannot and vice versa. Then, in
Section 3.2, we study a setting in which tuning only the first layer provably achieves zero loss while
full fine-tuning overfits and gets non-zero loss due to limited data. Finally, in Section 3.3, to support
this theoretical analysis, we construct distribution shifts where localized subsets of parameters are
substantially better suited for adaptation than tuning all or other parameters.

Theoretical setup. We focus on regression, where our goal is to map inputs x ∈ Rd to out-
puts y ∈ R, and l(y, ŷ) = (y − ŷ)2 is the squared loss. We consider two-layer networks
fv,B(x) = v⊤ϕ(Bx) where v ∈ Rk, B ∈ Rk×d, and ϕ is an elementwise activation function such
as ReLU. Let xsrc, ysrc ∼ Psrc and xtrg, ytrg ∼ Ptrg be the inputs and outputs in the source and target
distributions. We assume ysrc = fvsrc,Bsrc(xsrc) for some vsrc, Bsrc. Note that xsrc, ysrc, xtrg, ytrg
are all random variables, and expectations are taken over all random variables if not specified.
We define the population losses for source and target as Lsrc(v,B) = E

[
l(fv,B(xsrc), ysrc)

]
and

Ltrg(v,B) = E
[
l(fv,B(xtrg), ytrg)

]
.

3.1 Layer Choice and Expressivity: Why Fine-Tuning the Right Layer Matters
First note that for two-layer neural networks, we have two choices for surgical fine-tuning: the first
layer and the last layer. We show by construction that if the distribution shift is closer to the input
then first-layer tuning is better, but if the shift is closer to the output then last-layer tuning is better.
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In this section, we assume that ϕ is the elementwise ReLU function: ϕ(x)i = max(xi, 0). Recall
that we first train on lots of source data—suppose this gives us pretrained parameters v̂src, B̂src which
achieve minimum source loss: Lsrc(v̂src, B̂src) = 0.

Input perturbation. Suppose that the target input is a “perturbed” or “corrupted” version of the
source input: xtrg = Axsrc for some invertible matrix A ∈ Rn×n, where the corresponding label is
unchanged: ytrg = ysrc. We note that this simplified perturbation class includes some common image
corruptions as brightness shift and Gaussian blur as special cases, while others such as pixelation
are similarly linear projections but non-invertible. Proposition 1 shows that for this distribution shift,
tuning only the first layer can minimize the target loss but only changing the last layer may not.
Proposition 1. For all A,Psrc, Ptrg with xtrg = Axsrc for invertible A and ytrg = ysrc, there exists
a first-layer B that can minimize the target loss: minB Ltrg(v̂src, B) = 0. However, changing the
last layer may not be sufficient: there exists such A,Psrc, Ptrg such that the target loss is non-zero
for any choice of last layer v: for all i, minv Ltrg(v, B̂src) > 0.

Intuitively, the first-layer can learn to “undo” the perturbation by selecting B = A−1. However, if
we freeze the first-layer then the representations ϕ(B̂srcxtrg) may miss important input directions
in the target, so no last-layer v can produce the correct output. For a full statement and proof, see
Appendix E.

Label perturbation. Now suppose that the source and target inputs are the same xtrg = xsrc, but
the target output is perturbed from the source output: ytrg = tysrc for some t. Proposition 2 shows
that tuning only the first layer may not achieve non-zero target loss for this distribution shift while
tuning the last layer will do so.
Proposition 2. For all t, Psrc, Ptrg with xtrg = xsrc, and ytrg = tysrc, there exists a last-layer v that
can minimize the target loss: minv Ltrg(v, B̂src) = 0. However, changing the first layer may not be
sufficient—there exists such t, Psrc, Ptrg such that the target loss is non-zero for any choice of first
layer B: minB Ltrg(v̂src, B) = 0

Similarly to Proposition 1, the last layer can adapt to the label shift by “reversing” the multiplication
by t. In contrast, when the last layer is frozen and only the first layer is tuned, we may lack expres-
sivity due to the information destroyed by the ReLU activation ϕ(·). For a full statement and proof,
see Appendix E.

3.2 Can Surgical Fine-Tuning Outperform Full Fine-Tuning?
In this section, we show that first-layer fine-tuning can provably outperform full fine-tuning when
we have an insufficient amount of target data. We show that this can happen even in tuning two-
layer linear networks [31], where ϕ is the identity map: for all i, ϕ(x)i = xi. Our analysis suggests
perhaps a more general principle underlying the benefits of surgical fine-tuning over full fine-tuning:
by fine-tuning more parameters than necessary, the model can overfit to the small target dataset
while forgetting relevant information learned during pre-training.

Pretraining. We first start with v0, B0 which are initialized randomly: v0i ∼ N(0, σ2
v) and

B0ij ∼ N(0, σ2
B) for all i, j. We then run gradient descent on Lsrc(v,B) to obtain v̂src, B̂src, which

we assume minimizes the source loss: Lsrc(v̂src, B̂src) = 0.

Fine-tuning data. Suppose we have n target datapoints sampled from Ptrg: (x
(1)
trg , y

(1)
trg ) . . .,

(x
(n)
trg , y

(n)
trg ). The empirical fine-tuning loss is given by: L̂trg(v,B) =

∑n
i=1 l(fv,B(x

(i)
trg), y

(i)
trg).

Fine-tuning algorithms. We study two different gradient flows each corresponding to fine-tuning
methods: first-layer tuning (fl) and full fine-tuning (ft).

∂tBfl(t) = −∇BL̂trg (vfl(t), Bfl(t)) ∂tvfl(t) = 0

∂tBft(t) = −∇BL̂trg (vft(t), Bft(t)) ∂tvft(t) = −∇vL̂trg (vft(t), Bft(t)) ,

with initial conditions vfl(0) = vft(0) = v̂src and Bfl(0) = Bft(0) = B̂src. We denote the limit
points of these gradient flows as v∞fl = limt→∞ vft(t), etc.
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Figure 3: In this setting, we construct distribution shifts such that a particular block of parameters is substan-
tially more suited for adaptation. We find that tuning only the subset of parameters that is responsible for the
shift performs better than tuning any other block of parameters or all parameters. Darker blue indicates higher
accuracy while darker red indicates lower accuracy.

The following theorem shows that there exists a shift, where if we have a small target dataset, full
fine-tuning does worse than first-layer tuning.
Theorem 1. For any δ > 0, there exists d, k, Psrc, Ptrg, n such that with probability at least 1 − δ,
first-layer tuning gets 0 loss at convergence, but full fine-tuning gets higher (non-zero) loss through-
out the fine-tuning trajectory:

Ltrg(vft(t), Bft(t)) > Ltrg(v
∞
fl , B∞

fl ) = 0 ∀t. (2)

Intuitively, if Pood contains a few additional directions in the input that are not present in Pid, then
first layer-tuning can quickly learn those new directions. Full fine-tuning changes both the head v
and feature extractor B to fit these new directions—however, because the head v has changed it may
be incompatible with B in some directions not seen in the finite training set, thus “forgetting” some
knowledge present in the source data. The full proof is in Appendix E.1.

3.3 Surgical Fine-Tuning on Synthetic Distribution Shifts

To better illustrate how specific subsets of parameters are better suited depending on the distribution
shift, we model distribution shifts by adding noise to individual blocks of layers. More specifically,
we initialize with a ResNet-26 model pretrained on the CIFAR-10 [30] training dataset. We then
add noise to each of the three blocks or the last layer, simulating distribution shifts localized to
those parameters, and then tune each of the different blocks of the network while freezing all other
parameters on the CIFAR-10 test dataset.

In Figure 3, we find that only tuning the subset of parameters that is responsible for the shift performs
better than tuning any other subset of parameters and even outperforms tuning all layers, indicating
that when tuning the parameters responsible for the shift, tuning other parameters may actually hurt
performance.

4 Conclusion
In this paper, we empirically find that when fine-tuning on a new target distribution, it is often
best to perform surgical fine-tuning, i.e. to adapt only a small contiguous subset of parameters.
More importantly, which subset is more effective to tune depends on the type of distribution shift.
For example, on input-level shifts like image corruption, only tuning earlier layers can outperform
fine-tuning all or only later layers. These results support our intuition from the independent causal
mechanisms (ICM) principle: many distribution shifts can be explained by a shift in one module of
the prediction mechanism and can thus be adapted to by tuning only a small subset of the network.
Our empirical findings are supported by theoretical results, which show by construction that first-
layer tuning may outperform full fine-tuning in an idealized two-layer neural network setting.

Additionally, manually choosing which layers to freeze with the framework of surgical fine-tuning
requires more fine-tuning runs than fine-tuning all layers, so we analyze two criteria for automati-
cally selecting which layers to tune. While Auto-RGN consistently improves over full fine-tuning,
its performance does not match the best surgical fine-tuning approach. Future work may close this
gap by investigating more effective criteria for automatic selection. More generally, a potentially
fruitful direction for future work is in better understanding when a distribution shift would prefer a
certain layer, potentially shedding light on the nature of different distribution shifts.
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A Appendix
B Related Work
Parameter freezing. Freezing parameters to preserve previously learned information has been
shown to be an effective strategy in a diverse set of domains: domain adaptation [60, 40], early
stopping [41], generative models [43], and gradient-based meta-learning [78, 49, 65], A highly ef-
fective approach to fast adaptation of large language models is prompt tuning [37, 17, 35, 69], which
can similarly be seen as an extreme special case of freezing where we only fine-tune the inputs to
the neural network. Our surgical fine-tuning framework contains many such previous works as spe-
cial cases, and our experiments highlight the value of carefully choosing the subset of parameters to
freeze.

Transfer learning. Prior works in transfer learning have studied how fine-tuning may be used to
adapt pretrained features to a target distribution [46, 73, 61]. To preserve information obtained
during pre-training, many works propose methods of regularizing the fine-tuning process [75, 72,
32, 23, 36, 1, 15, 62, 25]. In particular, many works show that freezing some parameters in the pre-
trained model can reduce overfitting during fine-tuning [27, 33, 16, 50, 39, 55, 12, 13, 11, 6, 64], and
we build on such observations. Module criticality [74, 5, 45], which independently examines each
layers’ loss surface, is also closely related to our analysis. In contrast to existing works, we make the
counterintuitive observation that freezing the later layers, or equivalently performing surgical fine-
tuning on the early layers, can perform best in some settings. Furthermore, we study the relationship
between the best subset of layers to tune and the nature of the distribution shift between the source
and target distributions.

Distribution shifts. Many existing works have studied adaptation and robustness to various distri-
bution shifts [66, 4, 20, 3, 57, 38, 70, 2, 42, 7, 34, 31]. Such works typically frame robustness to
distribution shift as a zero-shot generalization problem, where the model is trained on source and
evaluated on target. We consider a different problem setting where the model is allowed to adapt to
some labeled target data available. Some recent works have proposed methods for model adaptation
at test time [63, 67, 22, 68, 76, 77, 14]. Recent works [54, 26] study a problem setting close to
ours, showing that fine-tuning the last layer is sufficient for adapting to datasets with a spuriously
correlated attribute. Our experiments in Section 2 confirm these results, and we further evaluate on
a broader set of distribution shifts including image corruptions and shifts at the level of intermediate
features. We find that fine-tuning different subsets of layers performs best for different types of dis-
tribution shifts, and also present theoretical analysis on the relationship between surgical fine-tuning
and the type of distribution shift.

C Automatically Selecting Which Layers to Tune
In this section, we investigate three criteria for automatically finding an adequate subset of layers to
perform surgical fine-tuning on. We evaluate their fine-tuning performance versus full fine-tuning
and another prior method on the 7 real-data domains introduced in Section 2.1. We also analyze
performance on the synthetic distribution shifts introduced in Section 3.3.

C.1 Criteria for Selecting Layers
We consider three metrics for automatically choosing which layers to freeze.

Cross-Val. After running surgical fine-tuning for all blocks, we select the best block based on a
held-out validation set from the target distribution. While quite effective, this method requires as
many fine-tuning runs as there are blocks inside the network.

Relative Gradient Norm (Auto-RGN). Within each layer, we measure the ratio of gradient norm
to parameter norm, and select layers that have relatively larger gradients. Intuitively, our hypothesis
is that layers with large gradient magnitudes may carry more information about the target task than
others and can therefore be more useful. Formally, denote gradients at layer i as gi. We define
the relative gradient norm of this layer as RGN(θi) = (gi)

||θi|| . Then to alter fine-tuning with this
criterion, at each epoch, we normalize the RGNs for each layer between 0 and 1 and then multiply
the learning rate for each layer by its RGN. Using this criterion for fine-tuning requires no additional
hyperparameters over tuning all layers and only one fine-tuning run.

Signal-to-Noise Ratio (Auto-SNR). For each layer i, this criterion is defined as SNR(gi) =
Avg(gi)

2

Var(gi)
, with average and variance computed across (target) datapoints. Intuitively, SNR mea-
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Method
Input-level Shifts Feature-level Shifts Output-level Shifts Avg

RankCIFAR-C IN-C Living-17 Entity-30 CIFAR-F Waterbirds CelebA

No Adaptation 52.6 (0) 18.2 (0) 80.7 (1.8) 58.6 (1.1) 0 (0) 31.7 (0.3) 27.8 (1.9) -

Cross-Val 82.8 (0.6) 51.6 (0.1) 93.2 (0.3) 81.2 (0.6) 93.8 (0.1) 89.9 (1.2) 86.2 (0.8) -

Full Fine-Tuning (All) 79.9 (0.7) 50.7 (0.1) 92.8 (0.7) 79.3 (0.6) 85.9 (0.4) 88.0 (1.2) 82.2 (1.3) 2.29
L1 Regularize [72] 81.7 (0.6) 48.8 (0.3) 93.4 (0.5) 78.4 (0.1) 84.2 (1.2) 87.6 (1.9) 82.6 (1.8) 2.57

Auto-SNR 80.9 (0.7) 49.9 (0.2) 93.5 (0.2) 77.3 (0.3) 17.3 (0.7) 86.3 (0.7) 78.5 (1.8) 3.14
Auto-RGN 81.4 (0.6) 51.2 (0.2) 93.5 (0.3) 80.6 (1.2) 87.7 (2.8) 88.0 (0.7) 82.2 (2.7) 1.29

Table 1: We report the average accuracy and standard error achieved on the target distribution on 7 real-data
tasks. Cross-Val, which requires as a surgical fine-tuning run for each block, performs the best, but we find
that Auto-RGN performs the best out of all methods that require only 1 fine-tuning run, outperforming Full
Fine-tuning, L1 Regularize, and Auto-SNR. The best overall method for each shift is underlined, and the best
among methods that use 1 fine-tuning run is bolded.

Tuned Layers Full Fine-Tuning Auto-RGN

Block 1 87.8 (1.2) 92.0 (0.4)
Block 2 91.9 (0.2) 92.7 (0.4)
Block 3 92.0 (0.1) 92.5 (0.4)

Last Layer 91.3 (0.3) 92.8 (0.3)

Table 2: Automatically choosing which
layers to tune using the relative gra-
dient norms (RGN) of each layer out-
performs full fine-tuning on distribution
shifts constructed by adding noise to dif-
ferent blocks of layers.
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Figure 4: Auto-RGN consistently gives higher weights for the
layers in the block responsible for the distribution shift than for
the other layers.

sures how noisy the gradient of each layer is and thus how much it may contribute to distorting the
function learned during pre-training. This gradient-based criterion has been shown to be useful for
early stopping [41]. During fine-tuning, we normalize the SNR for each layer between 0 and 1 and
then freeze all layers that have SNR under a threshold that is tuned as an additional hyperparameter.

As an additional point of comparison, we compare using the above criteria for selecting layers to
tune to regularizing the model towards the original parameters (L1 Regularize) [72]. This method is
similar in spirit to the goal of surgical fine-tuning in that it aims to minimize changes to parameters
already close to a minima for the target distribution. We report results regularizing using the L1

norm since we found that to perform better than L2 in our experiments.

C.2 Results on Real World Datasets
In Table 1, we compare Cross-Val with 4 methods (Full Fine-Tuning, L1 Regularize, Auto-SNR,
and Auto-RGN) that require only 1 fine-tuning run. We find that auto-tuning with relative grad
norm (Auto-RGN) matches or outperforms fine-tuning all parameters on all domains and is the
most competitive method that requires only 1 fine-tuning run although it does not quite match the
performance of Cross-Val. We find that Cross-Val corresponds in performance to the best surgical
fine-tuning result for each dataset, which is expected, as the validation and test sets are both held-out
subsets of the same target distribution. Auto-SNR struggles to extract the most effective layers for
tuning and hence does worse on most shifts than All and Auto-RGN. The comparison L1 Regularize
performs slightly better overall across datasets than fine-tuning all without the regularization, but
Auto-RGN outperforms L1 Regularize on all datasets except CIFAR-C. All methods outperform not
tuning on the target domain across the datasets (No Adaptation).

C.3 Automatic Selective Fine-Tuning in Synthetic Distribution Shifts
As Auto-RGN is the best performing method that requires only one fine-tuning run, and in particular
outperforms fine-tuning all layers, we further analyze what layers Auto-RGN chooses to fine-tune
and see to what extent they correlate with our experiments in Section 2. To do so, we evaluate Auto-
RGN on the synthetic distribution shifts introduced in Section 3.3, where we model distribution
shifts by adding noise to blocks of parameters, and plot the weights that Auto-RGN gives to the
layers.

We find that Auto-RGN is able to ascertain which parameters may be responsible for the shift and
weight the learning of those parameters to be higher than the others, resulting in an informative
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Figure 5: Surgical fine-tuning re-
sults on CIFAR-10-C with varying
amounts of target data. Fine-tuning
the early layers is beneficial even in
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Figure 6: Online unsupervised
adaptation with surgical fine-tuning
for the Gaussian corruption in the
CIFAR-C dataset. Adding data in
an online fashion to full or last-
layer tuning results in worse per-
formance, whereas more data helps
for first-layer adaptation. Error bars
indicate the standard error across
three runs.

Parameters Episodic Online

No adaptation 67.8 -

All 71.7 69.7

Layer 1 69.0 75.4
Layer 1-2 69.0 75.5
Block 1-2 69.0 75.3
Last 67.9 67.8

Table 3: Unsupervised adap-
tation accuracy on CIFAR-10-C,
averaged across 10 corruptions.

Parameters Episodic Online

No adaptation 46.5 -

All 47.8 1.8

Layer 1 46.6 46.4
Block 1 46.7 49.0
Last 46.5 46.5

Table 4: Unsupervised adapta-
tion accuracy on ImageNet-C, av-
eraged across 14 corruptions.

signal that matches the performance of tuning only the noisy subset of parameters and outperforms
full fine-tuning, as seen in Table 2. Figure 4 shows the accumulated weights given by Auto-RGN
over the course of training for each layer, colored by block. The weights for the layers responsible
for the distribution shifts are higher than the weights for the other layers.

D Unsupervised Adaptation With Parameter Freezing
In this subsection, we aim to validate whether the findings from Section 2.1 hold in the unsupervised
test-time adaptation setting, where we adapt a model trained on source data to the target distribution
using only unlabeled target data. We experiment with variants of a representative state-of-the-art
unsupervised adaptation method [76, MEMO], which minimizes marginal entropy of averaged pre-
dictions for a single image. We consider two settings: online, where the model retains updates from
past test images, and episodic, where we reset the model back to the pre-trained weights after every
test image.

Results in Table 3 and Table 4 show that the highest accuracy is achieved by adapting the first two
layers and first block in the online setting for CIFAR-10-C and ImageNet-C respectively, and doing
so outperforms fine-tuning all parameters. With full fine-tuning, online MEMO performance dete-
riorates as the test set size increases due to distortion of pre-trained features, as shown graphically
in Figure 6. In contrast, surgical fine-tuning mitigates this effect. These results are consistent with
the supervised learning experiments in Section 2.1, where adapting the early parameters was best
for image corruption datasets. We show detailed results in Appendix E.4. Table 3 records our sum-
mary results on CIFAR-10-C and shows that the best results are obtained in the online setting with
adapting only the first few layers. Adapting all parameters in the online setting does poorly which
is similar to the observed pre-trained feature distortion and under-performance of full fine-tuning
by (author?) [31]. Fine-tuning the last layer always does poorly which also matches our previous
observations since corruptions in CIFAR-10-C can be seen as an input-level shift.

E Proofs for Section 3.1
Proposition 1. For all A,Psrc, Ptrg with xtrg = Axsrc for invertible A and ytrg = ysrc, there exists
a first-layer B that can minimize the target loss: minB Ltrg(v̂src, B) = 0. However, changing the
last layer may not be sufficient: there exists such A,Psrc, Ptrg such that the target loss is non-zero
for any choice of last layer v: for all i, minv Ltrg(v, B̂src) > 0.

Proof. Let B̂src, v̂src be minimum loss solutions so that ysrc = v̂srcϕ(B̂srcxsrc) for all xsrc, ysrc. De-
noting B = B̂srcA

−1, we have for all xtrg

v̂srcϕ(Bxtrg) = v̂srcϕ(B̂srcA
−1Axsrc) = v̂srcϕ(B̂srcxsrc) = ysrc = ytrg. (3)
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Therefore, this pair of parameters v,B achieves Ltrg(v̂src, B) = 0.

We construct a counterexample showing the impossibility of last-layer tuning as follows. Recall
that ϕ(·) is the elementwise ReLU function. Let A = −I , an invertible diagonal matrix with all
entries −1. Let the source distribution be so that B̂srcxsrc has only positive entries for all xsrc in
its support. Then for any v, we have vϕ(B̂srcxtrg) = vϕ(−B̂srcxsrc) = 0, so the expected loss is
positive. Therefore, minv Ltrg(v, B̂src) > 0.

Proposition 2. For all t, Psrc, Ptrg with xtrg = xsrc, and ytrg = tysrc, there exists a last-layer v that
can minimize the target loss: minv Ltrg(v, B̂src) = 0. However, changing the first layer may not be
sufficient—there exists such t, Psrc, Ptrg such that the target loss is non-zero for any choice of first
layer B: minB Ltrg(v̂src, B) > 0

Proof. Let B̂src, v̂src be minimum loss solutions so that ysrc = v̂srcϕ(B̂srcxsrc) for all xsrc, ysrc. Let
v = tv̂src. Then for all xtrg,

vϕ(B̂srcxtrg) = tv̂srcϕ(B̂srcxsrc) = tysrc = ytrg. (4)

Therefore, this pair of parameters v, B̂src achieves Ltrg(v, B̂src) = 0.

We next construct a counterexample showing that tuning only the first layer may not be sufficient.
Recall that ϕ(·) is the elementwise ReLU function. Let t = −1. Let the source distribution be so
that both Bxsrc and v̂src consist only of positive entries for all xsrc in its support. For any B, both
v̂src and ϕ(Bxtrg) consist only of positive entries, so v̂srcϕ(Bxtrg) cannot express ytrg = −ysrc < 0.
so the expected loss is positive for any B. Therefore, minB Ltrg(v̂src, B) > 0.

E.1 Proof of Theorem 1 in Section 3.2

We introduce some additional setup, prove two key lemmas which bound the loss of first-layer tuning
and full fine-tuning respectively, and then this immediately implies Theorem 1.

Defining the label distribution. We assume that P (y | x) is the same in both the source and the
target. That is, we assume there exists some v∗, B∗ such that y = v⊤∗ B∗x for both Psrc and Ptrg.
Let w∗ = B⊤

∗ v∗.

Defining the covariate distributions. Now, we define the distribution over the inputs x. Let the
source distribution Psrc have density on a dsrc-dimensional subspace, where dsrc < d (recall that
the input dimension is d). Formally, this means that there exists some Ssrc ∈ Rd×dsrc with linearly
independent columns, and some distribution P

(z)
src with density on Rdsrc , such that Psrc has the

distribution Ssrcz where z ∼ P
(z)
src .

We assume a non-degeneracy condition—that the optimal model w∗ does not map (non-zero) source
examples to 0: for all source examples x ∈ colspace(Ssrc), if x ̸= 0, then w⊤

∗ x ̸= 0. If w∗ were
random or had some noise then this would hold with probability 1.

Suppose we have an orthogonal distribution Porth which has density on a dorth dimensional sub-
space. Formally, this means that there exists some Sorth ∈ Rd×dorth with linearly independent
columns, and some distribution P

(z)
orth with density on Rdorth , such that Porth has the distribution

Sorthz where z ∼ P
(z)
orth. We assume that the support of Porth and Psrc are orthogonal—that is, the

columns of Sorth and the columns of Ssrc are all orthogonal.

The target distribution Ptrg is an equal mixture of the source distribution Psrc and the orthogonal
distribution Porth:

Ptrg =
1

2
(Psrc + Porth) (5)

This means that to sample from Ptrg, with probability 0.5 we pick a sample from Psrc and with
probability 0.5 we pick a sample from Porth.
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First layer tuning gets 0 target loss. We first show that first-layer tuning gets 0 loss on the target
distribution:
Lemma 1. For any δ > 0, suppose n > 10dorth log

2
δ . Then with probability at least 1 − δ, first-

layer tuning gets 0 loss at convergence:

Ltrg(v
∞
fl , B∞

fl ) = 0 (6)

Proof. We first note that first-layer tuning does not update the head v, so we have v∞fl = v̂src.

Convex so converges. Note that the loss L̂trg is convex in B. To see this, note that we can write:

L̂trg(v,B) =

n∑
i=1

(v⊤Bx
(i)
trg − y

(i)
trg)

2 = (Tr(x
(i)
trgv

⊤B)− y
(i)
trg)

2. (7)

Tr(x
(i)
trgv

⊤B) is a linear function of B, so this is simply a least squares regression problem and is
convex. This means that gradient flow converges to a minimizer of the train loss:

L̂trg(v̂src, B
∞
fl ) ≤ L̂trg(v̂src, B) ∀B. (8)

However, since v̂src ̸= 0, there exists B such that L̂trg(v̂src, B) = 0, so since the loss is non-negative,
this implies that:

L̂trg(v̂src, B
∞
fl ) = 0. (9)

Define ID and orthogonal training examples. We note that every example x sampled from Ptrg

comes from exactly one of Porth or Psrc.1 We group examples based on which distribution they
come from. Let Xsrc and Xorth denote the source and orthogonal examples respectively, where Xi

denotes

Xsrc = {x(i)
trg : x

(i)
trg ∈ colspace(Ssrc)} Xorth = {x(i)

trg : x
(i)
trg ∈ colspace(Sorth)} (10)

Enough to get a basis correct. Since we are working with linear models, it suffices to get all
examples in a basis correct to get the entire subspace correct. Stated formally, if v⊤Bx = v⊤∗ B∗x
and v⊤Bx′ = v⊤∗ B∗x

′, then the equality holds for any linear combination as well: v⊤B(αx +
βx′) = v⊤∗ B∗(αx + βx′) for all α, β. So to show that Ltrg(v̂src, B

∞
fl ) = 0 is suffices to show that

v̂⊤srcB
∞
fl x = v⊤∗ B∗x for some set of x that spans the support of Psrc and Porth.

Xorth spans orthogonal subspace. A standard application of Hoeffding gives us that with proba-
bility ≥ 1− δ/2, we have at least dorth examples from the orthogonal distribution: |Xorth| ≥ dorth.
Since Porth has density on a dorth dimensional subspace, from e.g., Lemma 3 in (author?) [71]
these examples will span the orthogonal subspace almost surely: span(Xorth) = colspace(Sorth).
Intuitively, since Porth has density we will sample points in different directions.

Get all examples in orthogonal subspace correct. Since we have 0 training loss, and Xorth spans
the support of Porth, this means that we get all examples in the orthogonal subspace correct—that
is, for all x in the support of Porth, we have: v̂⊤srcB

∞
fl x = v⊤∗ B∗x.

Get all examples in source subspace correct. For the source subspace we will split into two
cases. First, we define the region of the source subspace colspace(Ssrc) that is orthogonal to all
source training examples Xsrc:

X⊥
src = {x ∈ colspace(Ssrc) : ∀x′ ∈ Xsrc. x ⊥ x′}. (11)

Since we have 0 training loss, we get all examples in the span of the source training examples correct:
for all x ∈ span(Xsrc) we have: v̂⊤srcB

∞
fl x = v⊤∗ B∗x.

For all x ∈ X⊥
src, from Lemma A.3 in [31] we have that B∞

fl x = Bft(0)x = B̂srcx. But this means
that v̂⊤srcB

∞
fl x = v̂⊤srcB̂srcx. Since we assumed that we pretrained to get 0 loss on the source we have:

v̂⊤srcB̂srcx = v⊤∗ B∗x.

Combining these two cases, we get all examples in the support of Psrc correct.
1Since the distributions have density on some subspace, x is almost surely non-zero.
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Ptrg is a mixture of Psrc and Porth. Since we get 0 loss on the support of Psrc and support of
Porth, and Ptrg is a mixture of the two, we get 0 loss on Ptrg as well:

Ltrg(v̂src, B
∞
fl ) = 0 (12)

Lemma 2. Suppose the representation dimension is 1-dimensional (k = 1) and dsrc > n. Then
with probability at least 1, full fine-tuning gets positive (non-zero) loss at all times t:

Ltrg(vft(t), Bft(t)) > 0 (13)

Proof. First, we note that since n < dsrc, and we only have n training examples, our training
examples do not span the source distribution. That is, there exists some source example xs ∈
colspace(Ssrc) which is in the support of Psrc, xs ̸= 0, which is orthogonal to all the training
examples: xs ⊥ x

(i)
trg for all 1 ≤ i ≤ n. Choose such an xs.

We note that since k = 1 (the representation dimension is 1), vft(t) ∈ R is a scalar, and Bft(t), B∗ ∈
R1×d are row vectors. For notational convenience, let b(t) = Bft(t)

⊤, b∗ = B⊤
∗ , and b̂src = B̂⊤

src,
so we have for example y

(i)
trg = v∗b

⊤
∗ x

(i)
trg.

vft(t) cannot change for zero loss. First, we show that if vft(t) ̸= v̂src then Ltrg(vft(t), Bft(t)) >
0. Since xs is orthogonal to the training examples, from Lemma A.3 in [31], we have b(t)⊤xs =

b̂⊤srcxs. Since pretraining gave us 0 loss on the source distribution, we have v̂srcb̂
⊤
srcxs = v∗b

⊤
∗ xs.

Recall that we assumed that w⊤
∗ xs ̸= 0 if xs ̸= 0, which implies that b̂⊤srcxs ̸= 0 since pretraining

gets all the source examples right, and the ground truth label for all non-zero source examples is
non-zero. But then if vft(t) ̸= v̂src, we have: vft(t)b(t)⊤xs ̸= v̂srcb̂

⊤
srcx = v∗b

⊤
∗ xs. Since Psrc has

density, we can construct a small ball B of non-zero probability around xs such that for all x ∈ B,
vft(t)b(t)

⊤x ̸= v∗b
⊤
∗ x. This implies that Ltrg(vft(t), Bft(t)) > 0.

vft(t) must change for zero loss. Next, suppose that Ltrg(vft(t), Bft(t)) = 0. We will show
vft(t) ̸= v̂src. Suppose for the sake of contradiction that vft(t) = v̂src.

From Lemma A.4 in (author?) [31] (also see Theorem 2.2 in (author?) [10]), we have:

v̂2src − b̂⊤srcb̂src = vft(t)
2 − b(t)⊤b(t). (14)

Since v̂src = vft(t), this gives us:
b̂⊤srcb̂src = b(t)⊤b(t). (15)

Let R = colspace(Ssrc) be the source subspace. Since Psrc is a subset of Ptrg, we have that
(vft(t), b(t)) also gets 0 loss on the source distribution, and we have:

ΠR(v∗b∗) = ΠR(v̂srcb̂src) = ΠR(vft(t)b(t)). (16)

Since v0 = vft(t), , we have:

ΠR(vft(t)b̂src) = ΠR(vft(t)b(t)). (17)

Since vft(t) ̸= 0 (otherwise we would get source examples wrong):

ΠR(b̂src) = ΠR(b(t)). (18)

Let T = colspace(Sorth) be the orthogonal subspace. From Equation 15 and Equation 18, we have:

∥ΠT (b̂src)∥22 = ∥ΠT (b(t))∥22 (19)

But to get 0 loss on T , we have: ΠT (vft(t)b(t)) = ΠT (v∗b∗). Which implies:

∥ΠT (b(t))∥22 =
v2∗

(vft(t))2
∥ΠT (b∗)∥22. (20)

From Equation 19 and since v̂src = vft(t), we have:

∥ΠT (b̂src)∥22 =
v2∗

(vft(t))2
∥ΠT (b∗)∥22. (21)
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Recall that the way we got b̂src was we initialized b0 = B⊤
0 ∼ N(0, σ2

BId). We then ran gradient
descent on the source distribution However, from Lemma A.3 in [31] this does not change the
projection onto components orthogonal to the source distribution. In other words, ∥ΠT (b̂src)∥22 =
∥ΠT (b0)∥22. However, this is a random variable with density, so the probability that this is exactly
equal to the RHS of Equation 21 which is a fixed number, is 0. This is a contradiction.

Wrap up. Either ways, if vft(t) = v̂src or vft(t) ̸= v̂src we have: Ltrg(vft(t), Bft(t)) > 0.

Proof of Theorem 1. The proof follows directly because Lemma 2 shows that full fine-tuning gets
positive (non-zero) loss but Lemma 1 gets zero loss.

E.2 Additional Dataset Details
Below, we provide additional information on the datasets used in our experiments.

• CIFAR-10 → CIFAR-10-C [30, 19]: The task is to classify images into 10 classes, where the
target distribution contains severely corrupted images. We run experiments over 14 of the corrup-
tions (frost, gaussian blur, gaussian noise, glass blur, impulse noise, jpeg compression, motion
blur, pixelate, saturate, shot noise, snow, spatter, speckle noise, and zoom blur). For the main
experiments, we tune on 1000 images from CIFAR-10-C and evaluate on corrupted images from
each of the corruptions. We use the data loading code from [8], which has 5 levels of severity,
and we evaluate with the most severe level. In our main experiments, we report the accuracies
averaged across all corruptions and the average std error for all corruptions.

• ImageNet → ImageNet-C [9, 19]: The task is to classify images into 1000 classes, where the
target distribution contains severely corrupted images. We run experiments over 15 of the corrup-
tions (brightness, contrast, defocus blur, elastic transform, fog, frost, Gaussian noise, glass blur,
impulse noise, jpeg compression, motion blur, pixelate, shot noise, snow, zoom blur). For the main
experiments, we tune on 5000 images from ImageNet-C, evenly split between classes, giving 5
corrupted images per class and evaluate on corrupted images from each of the corruptions. Similar
to CIFAR-10-C, we evaluate with the most severe level. We also report the accuracies averaged
across all corruptions and the average std error for all corruptions.

• Living-17 and Entity-30 [58]: The task is to classify images into one of 17 animal categories or
one of 30 entities. These datasets present subpopulation shifts, in that while the ID and OOD distri-
butions have the same overall classes, they contain different subpopulations of those classes. For
Living-17, we tune on 850 images from the target distribution, evenly split between the 17 classes,
giving 50 images per class. For Entity-30, we tune on 1500 images from the target distribution,
evenly split between the 30 classes, giving 50 images per class.

• Waterbirds [56]: The task is to classify images as being a “waterbird” or “landbird”. The la-
bel is spuriously correlated with the image background, which is either “land” or “water.” The
source distribution is the training set while the target distribution is a balanced subset with equal
amounts of each bird on each background. In the training data, 95 % of the waterbirds appear on
water backgrounds, and 95% of the landbirds appear on land backgrounds, so the minority groups
contain far fewer examples than the majority groups. We tune on 400 images from the target
distribution, evenly split between the 4 groups of (bird, background) pairs, giving 100 images per
group.

• CelebA [56]: The task is to classify the hair color in images as “blond” or “not blond”, and the
label is spuriously correlated with the Male attribute. The source distribution is the training set
while the target distribution is a balanced subset with equal amounts of each of the four (hair color,
gender) groups. We tune on 400 images from the target distribution, evenly split between the 4
groups of (hair color, gender) pairs, giving 100 images per group.

E.3 Additional Details for Supervised Transfer Learning Experiments
Below, we provide additional details for our experiments on real data, including tuning details. For
all datasets and experiments, we early stop according to the best accuracy on a held-out validation
subset of the labeled target data.

• CIFAR-10 → CIFAR-10-C [30, 19] and CIFAR-Flip: We use the Standard pre-trained model
from [8], which is trained on the source CIFAR-10 distribution. We fine-tune on the labeled target
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First Layers Block 1 Block 2 Block 3 Block 4 Last All No Tuning

74.6 (1.9) 75.3 (1.9) 81.6 (1.2) 86.1 (0.7) 82.9 (1.5) 72.6 (1.3) 77.3 (0.4) 65.6 (0)

Table 5: Surgical fine-tuning results on Living-17 initialized with a CLIP ViT-B/16. We find that similar to
the results using a ResNet-50 architecture, fine-tuning a single parameter block with this vision transformer
architecture outperforms full fine-tuning, and in particular, a middle block still performs best for this feature-
level shift.

data for 15 total epochs. We tune over the 3 learning rates {1e-3, 1e-4, 1e-5} for all methods
except last-layer fine-tuning, where we tune over {1e-1, 1e-2, 1e-3}, and we use a weight decay
of 0.0001 for all methods.

• ImageNet → ImageNet-C [9, 19]: We use the Standard pre-trained model from [8], which is
trained on the source ImageNet distribution. We then fine-tune on the labeled target data for 10
total epochs. We tune over the 3 learning rates {1e-3, 1e-4, 1e-5} for all methods, and we use a
weight decay of 0.0001 for all methods.

• Living-17 and Entity-30 [58]: We first train on the source data for 5 epochs, tuning only the head
for 3 epochs and then fine-tuning all for 2 more epochs, following LP-FT [31] and using the Adam
optimizer. We then fine-tune on the labeled target data for 15 epochs. We tune over the 3 learning
rates {0.0005, 0.0001, 0.00001} for all methods and do not use any weight decay.

• Waterbirds [56]: We first start with a ResNet-50 pretrained on ImageNet and train on the source
distribution for 300 epochs, taking the best checkpoint based on early stopping and using the
Adam optimizer. We then fine-tune on the labeled target data for 100 total epochs. We tune over
the 3 learning rates {0.005, 0.001, 0.0005} for all methods and use a weight decay of 0.0001.

• CelebA [56]: We first start with a ResNet-50 pretrained on ImageNet and train on the source
distribution for 50 epochs, taking the best checkpoint based on early stopping and using the Adam
optimizer. We then fine-tune on the labeled target data for 50 total epochs. We tune over the 3
learning rates {0.001, 0.0005, 0.0001} for all methods and use a weight decay of 0.0001.

We additionally include an ablation where we use a CLIP ViT-B/16 (Vision Transformer) as our
initial model pretrained on the WebImageText dataset. This model consists of 2 first layers followed
by 4 transformer blocks and 2 last layers. We analyze surgical fine-tuning with this model architec-
ture on the Living-17 dataset, which has a feature-level shift. In Table 5, we find that our results in
Section 2 hold similarly using this vision transformer, as tuning only a middle block outperforms
full fine-tuning or tuning any other block of layers.

E.4 Complete unsupervised adaptation results
Method. We experiment with MEMO [76] as our unsupervised adaptation method. Given a test
image x, MEMO first takes an "adapt" stage, where it minimizes the marginal entropy over standard
augmentations of x, then it takes a "test" step, where the network predicts a label for x. Note that
MEMO tests a single image at a time, i.e., the test batch size is 1. We also consider the two following
variations.

• Episodic: This version is discussed in the origin work. Here after predicting the labels, we
reset the weights of the network to the pre-trained ones, i.e., we undo the "adapt" stage.

• Online: We also consider the online variation of MEMO, where we do not reset the weights
after each test image, i.e., we accumulate the "adaptation" changes over test images.

We have also experimented with TENT [68], but since TENT only updates the batchnorm modules
(whereas MEMO updates all parameters), freezing parameters with TENT did not produce expected
results and we did not pursue it further.

Dataset and Network. We use the CIFAR-10-C and ImageNet-C corruption datasets for our exper-
iments. For CIFAR-10-C, we use the same ResNet-26 [18] pre-trained model used by MEMO [76],
which is available in their GitHub repository. For ImageNet-C, we use RVT∗-small architecture and
pre-trained weights used by (author?) [76].

Hyper-parameters. For CIFAR-10-C, we use 1000 corrupted test image for hyper-parameter tuning
and report the test accuracy on the held out 9000 examples. We consider the following hyper-
parameter grid:
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Corruption
Settings Tuned Layers gauss impulse shot fog frost snow elast brit contr defoc

No Adaptation 51.6 49.7 55.2 72.0 66.9 75.9 74.4 85.9 70.3 75.9

Episodic All 56.31 56.39 59.94 77.42 71.93 78.63 78.99 88.15 72.66 76.32
First layer 53.11 51.29 56.53 73.27 68.41 77.16 76.46 86.53 70.82 76.11

First 2 layers 53.20 51.21 56.58 73.48 68.64 77.06 76.41 86.47 70.67 76.15
First 2 blocks 53.20 51.36 56.63 73.37 68.61 77.22 76.45 86.56 70.73 76.09

Last 51.69 49.82 55.24 72.01 67.05 75.91 74.56 85.98 70.28 75.98

Online All 51.48 49.53 55.85 75.69 72.64 77.36 76.16 86.83 70.88 79.89
First layer 68.14 59.21 71.10 79.61 76.20 79.29 76.86 86.72 74.26 82.18

First 2 layers 68.00 60.92 73.07 79.22 76.16 79.34 76.18 86.65 73.97 81.97
First 2 blocks 67.84 59.30 70.96 79.11 75.91 79.44 76.46 86.91 74.67 82.12

Last 51.61 49.71 55.21 71.99 66.92 75.87 74.49 86.00 70.27 75.91

Table 6: MEMO [76] with parameter freezing results on CIFAR-10-C. Bold numbers represent superior results
for a particular corruption.

• Learning rate: 10−3, 10−4, 10−5 and 10−6, then 2.5x, 5x, 0.5x of the best learning rate
from before.

• Steps: 1, 2.
• Weight decay: 0, 10−3, 10−2, 10−1.
• Number of augmentations per image: 32

For ImageNet-C, we do not do any hyper-parameter tuning and simply use the best hyper-parameters
described by (author?) [76], which are:

• Learning rate: 0.00001
• Weight decay: 0.01
• Steps: 1
• Number of augmentations per image: 32 (This is 64 in (author?) [76], but we use 32 for

computational cost)

Moreover, for ImageNet-C, the experiments are done over 2000 test images (the first 2 test image per
class for each of the 1000 classes) instead of the entire test set of 50, 000 images, for computational
reasons. This produces numbers that are slightly different from the original work, hence we include
the no adaptation baselines as well for fair comparison.

Finally, in practice, we saw that AdamW and SGD optimizers work better for the episodic and online
setting, respectively.

Layers. We use the following naming convention for the layers of ResNet-26:

• First: Only the first conv layer.
• First 2 layers: The first conv layer of the entire network, and the first conv layer within the

first block.
• First 2 blocks: The first conv layer, and the first block.
• Last: The last fully-connected (FC) layer.

For RVT∗-small:

• First layer: First conv layer inside the first transformer block.
• First block: First transformer block.
• Last: Head or the final fully connected layer.

Results. Tables 6 and 7 show results for MEMO with parameter freezing for CIFAR-10-C and
ImageNet-C respectively.
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Corruption
Settings Tuned Layers gauss impul shot fog frost snow brit contr elast glass motion zoom pixel jpeg

No Adapt 43.80 45.90 42.40 55.20 45.95 50.05 73.95 53.25 35.00 19.35 40.35 32.05 52.60 60.60

Episodic All 45.35 47.40 44.60 55.35 47.05 50.25 74.35 54.85 36.25 20.55 41.40 33.95 55.55 61.70
First layer 44.00 46.00 42.40 55.20 45.90 50.10 74.0 53.30 35.20 19.45 40.60 32.15 52.80 60.60
First block 44.10 46.30 42.60 55.40 46.00 50.15 74.10 53.20 35.15 19.75 40.75 32.25 53.20 60.75

Last 43.75 45.95 42.40 55.25 46.0 50.05 73.95 53.30 35.05 19.35 40.40 32.05 52.60 60.60

Online All 1.05 0.90 1.40 0.35 3.40 1.60 0.80 0.80 2.75 1.05 2.50 2.25 2.70 3.40
First layer 44.70 46.30 43.40 46.50 47.0 50.9 74.15 48.85 36.40 20.20 41.65 32.50 55.70 61.05
First block 46.50 49.65 46.75 55.80 47.40 52.55 74.80 54.15 40.50 24.75 41.45 34.15 56.85 61.05

Last 43.80 45.90 42.40 55.15 45.95 50.00 73.90 53.20 35.05 19.35 40.35 32.05 52.60 60.60

Table 7: MEMO [76] with parameter freezing results on ImageNet-C. Bold numbers represent superior results
for a particular corruption.
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