
Superposition Prompting: Improving and Accelerating Retrieval-
Augmented Generation

Thomas Merth 1 Qichen Fu 1 Mohammad Rastegari* 2 Mahyar Najibi 1

Abstract
Despite the successes of large language models
(LLMs), they exhibit significant drawbacks, par-
ticularly when processing long contexts. Their
inference cost scales quadratically with respect
to sequence length, making it expensive for de-
ployment in some real-world text processing ap-
plications, such as retrieval-augmented generation
(RAG). Additionally, LLMs also exhibit the “dis-
traction phenomenon”, where irrelevant context
in the prompt degrades output quality. To ad-
dress these drawbacks, we propose a novel RAG
prompting methodology, superposition prompt-
ing, which can be directly applied to pre-trained
transformer-based LLMs without the need for fine-
tuning. At a high level, superposition prompt-
ing allows the LLM to process input documents
in parallel prompt paths, discarding paths once
they are deemed irrelevant. We demonstrate the
capability of our method to simultaneously en-
hance time efficiency across a variety of question-
answering benchmarks using multiple pre-trained
LLMs. Furthermore, our technique significantly
improves accuracy when the retrieved context is
large relative the context the model was trained
on. For example, our approach facilitates an 93×
reduction in compute time while improving ac-
curacy by 43% on the NaturalQuestions-Open
dataset with the MPT-7B instruction-tuned model
over naive RAG.

1. Introduction
Transformer-based autoregressive large language models
(LLMs) have led to quantum leaps in text modeling perfor-

1Apple, Cupertino, CA, USA 2Meta, Menlo xPark, CA, USA
(*Work done while at Apple). Correspondence to: T. Merth
<tmerth@apple.com>, Q. Fu <qfu22@apple.com>, M. Raste-
gari <mrastegari@meta.com>, M. Najibi <najibi@apple.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

5 1 2 5 10 2 5 100
0

0.1

0.2

0.3

0.4

0.5

Naive LLM-RAG
BM-25
TF-IDF
Contriever
Attention Sort
Prompt Cache
Superposition (Ours)

Theoretical Max. Speedup (Log)

N
at

ur
al

 Q
ue

st
io

ns
 B

es
t

EM
 S

ub
sp

an

better

Figure 1. Theoretical Maximum Speedup vs. Accuracy
(Best EM Subspan) on NaturalQuestions-Open using the
mpt-7b-instruct model (Muennighoff et al., 2023). Refer to
Section 4.1.1 for experimental details. Plotted values are sourced
from Table 1 and Table 5.

mance over previous methods (Zhao et al., 2023). How-
ever, they have massive compute requirements, especially
as the context length increases due to the quadratic com-
pute cost of self-attention. Many prior works have explored
how to accelerate LLM inference (Huang et al., 2023; Miao
et al., 2023). However, such optimizations often require
significant architectural or parameter modifications to the
pre-trained model, thus mandating expensive re-training or
fine-tuning procedures. In addition to causing undesirable
compute requirements, long input contexts can also lead to
hallucinations and/or divergent responses in model outputs
(Liu et al., 2023a; Shi et al., 2023).

Retrieval-augmented generation (RAG) is one alluring ap-
plication of transformer-based LLMs. In this setting, the
LLM can ground its responses in auxiliary, relevant con-
text. Often, the retrieved documents contain long-form text,
leading to the aforementioned downsides (Gao et al., 2023).
To improve and accelerate RAG, we propose superposition
prompting 1. Superposition prompting is demonstrated to

1We drew inspiration from the “path integral” formulation of
quantum mechanics (Feynman, 1965), where a particle’s dynamics

1

Superposition Prompting: Improving and Accelerating Retrieval-Augmented Generation

Question: when was as you
like it first performed?

(Title: As You Like It) band Johnny Flynn and The Sussex Wit. The production included Pippa Nixon as
Rosalind, Luke Norris as Orlando, Adrian Scarborough as Touchstone…

(Title: Live Not as You Would Like To) A.N.Ostrovsky" in two volumes published by Count Grigory
Kushelev-Bezborodko. "Live Not As You Would Like To" premiered at the…

(Title: Exactly Like You (musical)) Ward as Arlene Murphy, Susan Mansur as Pricilla Vanerhosen and
Michael McGrath as Martin Murphy. Exactly Like You (musical) Exactly Like You…

(Title: As You Like It) As You Like It is a pastoral comedy by William Shakespeare believed to have been
written in 1599. The play's first performance is uncertain … 1603 has been suggested as a possibility.

Response:
As You Like It was likely first
performed in the year 1603.

Preamble

Document 4

Document 3

Document 2

Document 1 Query

Response

Question: when was as you
like it first performed?

Question: when was as you
like it first performed?

Question: when was as you
like it first performed?

Query

Query

Query

Superposition Prompting for RAG (ours)

Preamble Document 1

Naive LLM-RAG (as defined in Gao et al., 2023)

Precomputable?

✅

Parallelizable/batchable?

❌

Precomputable?

✅

 Parallelizable/batchable?

✅

Precomputable?

❌

Parallelizable/…?

✅

Precomputable?

❌

Parallelizable/batchable?

❌✂✂✂

Precomputable?

✅

 Parallelizable/batchable?

❌

prune paths

Below is an instruction that describes
a task. Write a response that…

Below is an instruction that describes
a task. Write a response that…

(Title: As You Like It) band Johnny
Flynn and The Sussex Wit. The
production included Pippa Nixon as
Rosalind, Luke Norris as Orlando,
Adrian Scarborough as Touchstone…

Question:
when was as
you like it first
performed?

(Title: Live Not as You Would Like To)
A.N.Ostrovsky" in two volumes
published by Count Grigory Kushelev-
Bezborodko. "Live Not As You Would
Like To" premiered at the…

(Title: Exactly Like You (musical)) Ward as
Arlene Murphy, Susan Mansur as Pricilla
Vanerhosen and Michael McGrath as
Martin Murphy. Exactly Like You
(musical) Exactly Like You…

(Title: As You Like It) As You Like It is a
pastoral comedy by William Shakespeare
believed to have been written in 1599 The
play's first performance is uncertain … 1603
has been suggested as a possibility

Response:
As You Like It was
likely first performed
in the year 1603.

Document 4Document 3Document 2 Query Response

Precomputable?

❌

 Parallelizable/batchable?

❌

Figure 2. Comparison of superposition prompting vs. the “classical” (Naive LLM-RAG) prompting paradigm. Squares represents a token,
and arrows depict attention dependencies. Whereas the classical approach is a “linked-list” style DAG, superposition prompting arranges
token dependencies such that all documents are processed independently. Due to this dependency structure, we can easily leverage
the LLM logits to prune irrelevant context, improving long context reasoning. The dependency structure also allows for faster prompt
processing, due to the new opportunities for caching and parallelism of the KV cache and logit computations (each gray box represents,
logically, a “batch” that is processed by the LLM, reusing upstream KV caches).

simultaneously improve model accuracy and compute time
efficiency for RAG-based question answering tasks with-
out any additional training or fine-tuning. To highlight our
results, we refer the reader to Figure 1.

In this work, our contributions are as follows; (1) we pro-
pose a new generalized framework for prompting LLMs
in RAG scenarios, (2) we demonstrate the benefit of our
method on question-answering datasets, and (3) we provide
extensive experimental evidence and ablation studies to give
more confidence to our design decisions. We also propose
additional practical optimizations to accelerate inference by
pruning, caching, and parallelizing the compute of prompt
paths. These optimizations are made possible due to the
topological structure of our superposition prompts.

For reproducibility, our implementation can be
found at https://github.com/apple/
ml-superposition-prompting.

2. Related Work
Retrieval Augmented Generation. Retrieval-augmented
generation (RAG) is a common application of LLMs to
generate answers to questions based on a set of retrieved
documents (Lewis et al., 2020). Instead of simply prompt-

can be represented as a weighted sum over possible trajectories.
Analogously, the language dynamics of superposition prompting
are modeled by a weighted sum of possible “token trajectories”.

ing a language model with a query, RAG augments the
prompt by injecting a set of retrieved documents into the
prompt. If done correctly, these documents contain useful
knowledge related to the query, which should elicit more
accurate and reliable output from the model. Extensive work
(Lewis et al., 2020; Guu et al., 2020; Borgeaud et al., 2021b;
Gao et al., 2023; Asai et al., 2023) has shown RAG to be
effective for many knowledge-intensive tasks (Petroni et al.,
2020). However, incorporating retrieved documents signif-
icantly extends the input sequence length and introduces
additional computational overhead, raising efficiency con-
cerns. Addressing the challenges of long context processing
and efficiency for RAG has become a key focus in recent
research (Guu et al., 2020; Beltagy et al., 2020; Ratner et al.,
2022).

Efficient Long Context Processing. There have been sig-
nificant efforts to reduce the memory footprint and com-
putational costs of transformers using techniques such as
compression and KV-caching (Sheng et al., 2023; Lin et al.,
2023; Xiao et al., 2022). More efficient versions of the
transformer architecture have also been explored. For exam-
ple, Longformer (Beltagy et al., 2020) introduced a drop-in
replacement to the standard self-attention, which makes it
scale linearly with sequence length. Similarly, Reformer
(Kitaev et al., 2020) uses locality-sensitive hashing to reduce
the complexity of attention and improve its efficiency for
long sequences. In parallel, the SparseTransformer (Child
et al., 2019) focuses on the sparsity of the attention layers.

2

https://github.com/apple/ml-superposition-prompting
https://github.com/apple/ml-superposition-prompting

Superposition Prompting: Improving and Accelerating Retrieval-Augmented Generation

While the above innovation addresses the efficiency of long
context processing, they often require non-trivial architec-
ture changes and/or re-training. This makes them impracti-
cal to use with existing, pre-trained LLMs (Touvron et al.,
2023; Zhang et al., 2022). Closer to our work are efficient
methods which optimize KV caching and consider token im-
portance (Zhang et al., 2023; Liu et al., 2023c). Other works
(orthogonal to ours) investigate how to improve efficiency
of LLM output generation (Ning et al., 2023). The above
methods differ from ours as they investigate acceleration for
LLMs generally, whereas we aim to leverage the specifics
of the RAG setting to achieve further improvements.

The closest to our work is the recently proposed Prompt
Cache (Gim et al., 2023). This method also leverages the
modular structure of the RAG setting to perform local at-
tention on the preamble and documents independently and
cache the results. In contrast, our method retains attention
dependencies between segments in the form of a dependency
graph. Also differentiating, we propose pruning and paral-
lelization mechanisms not explored by Gim et al., 2023.

Prompt Engineering. Prompt engineering is the process of
deliberately designing and tuning prompts before feeding
them to language models to generate text (Liu et al., 2023b).
Prior exploration (Bubeck et al., 2023) shows how careful
prompt construction can greatly improve the model’s re-
sponses. Intriguingly, the recent work “Lost in the Middle”
(Liu et al., 2023a) has shown that solely the location of the
“golden document” (the document containing the answer)
within a long context significantly affects the performance
of language models. Another theme of prompt engineering
works has explored how to use graph-like structures while
prompting LLMs. Our proposed method might seem, at first
glance, identical to other “tree-based” and “graph-based”
prompting methods, such as Tree of Thoughts (Yao et al.,
2023) and Graph of Thoughts (Besta et al., 2023). However,
these methods are proposed in the context of multi-step rea-
soning, not RAG. Different from the above, Parallel Context
Windows (Ratner et al., 2022)—along with other “structured
attention” works (Cai et al., 2023; Ye et al., 2023)—aims
to build dependencies between prompt text segments. How-
ever, these works were generally applied to few-shot learn-
ing applications, not retrieval-augmented generation. Our
approach also differs from these structured attention papers
in that we operate on generalized directed-acyclic graphs,
as opposed to just the special case of trees.

3. Proposed Method
The retrieval-augmented generation task is comprised of dis-
tinct text segments—the preamble (a.k.a. system prompt), a
(static) corpus of documents, and a (dynamic) user-supplied
query. Instead of concatenating these text segments in tex-
tual space, we group them into separate “batches” (the gray

boxes in Figure 2), which are passed as calls to the LLM
(re-using the KV caches from upstream token segments).
With a query as input, superposition prompting processes all
choices of documents paired with the query independently
(conditioned on the preamble)—in Figure 2, this can be
seen as the branching structure. Once the query batch is
processed, we then employ path pruning (Section 3.2.3)
to discard entire attention dependencies based on an im-
portance metric (the scissors in Figure 2). Both of these
optimizations improve inference efficiency and enable the
model to discard distracting documents unrelated to the
query.

Enabled by the added structure of our superposition prompt-
ing approach, we then propose techniques to further accel-
erate the inference. First, the high-level notion of token
sharing across prompts allows us to employ prompt path
caching (Section 3.3.1). Finally, we describe a prompt path
parallelization (Section 3.3.2) strategy that leverages inde-
pendence across segments.

3.1. Retrieval Augmented Generation

We stylize token sequences as bolded vectors and use ⊕ to
denote concatenation along the sequence dimension. Sup-
posing there are nd (pre-tokenized) offline documents avail-
able for retrieval, we define the set of document token se-
quences {d1, . . . ,dnd

}. We denote the user query as q,
and our custom preamble sequence as p. The goal is to
return some response r which answers the query, all while
minimizing the latency between the arrival of the query
and the serving of the response as observed by the client.
The obvious baseline solution (which we refer to as “Naive
LLM-RAG”) is where one simply concatenates the input
sequences as x = p ⊕ d1 ⊕ · · · ⊕ dnd

⊕ q, then autore-
gressively generates r using x as the prompt. However, as
shown in Section 4, our approach massively outperforms
such a baseline both in terms of quality and performance.

3.2. Superposition Prompting

We now detail superposition prompting, a new paradigm for
prompting language models. In superposition prompting,
prompts are not represented as a simple sequence of tokens
as they are with “classical” prompting methods (e.g. Naive
LLM-RAG). Rather, superpositioned prompts are directed
acyclic graphs (DAGs) where nodes are token sequences,
and edges codify attention dependencies. Plainly put, a par-
ticular token sequence, v, attends to the tokens in another
token sequence, u, if and only if there is a path from u
to v in the DAG. In this sense, superposition prompting is
a generalization of “classical” prompting (since a “classi-
cal” prompt is the linked-list special case). Please refer to
Algorithm 3 for an algorithmic formalization.

3

Superposition Prompting: Improving and Accelerating Retrieval-Augmented Generation

Fully causal

(a) Baseline

Preamble

Doc 4

Quer
y

Quer
y

Quer
y

Doc 2

Doc 3

R
es

po
ns

e
Q

ue
ry

Implicit
attention

Doc 1

(b) Superposition
prompting

Compute of
X’d regions are

removed

(c) w/ Path Pruning

Document 1 Compute of
blurred regions

are “hidden”

(d) w/ Path Caching

Compute of
hashed regions
are “hidden”

(e) w/ Path Paralleliza-
tion

Only compute of
dense regions is

observed

(f) w/ All

Figure 3. Implicit attention dependencies that must be computed during “online serving” (the colors in (b)-(f) correspond to the token
segment colors in Figure 2). Note how the various optimizations reduce the computational burden required at online serving-time by
pruning, precomputing, and parallelizing the work. It is worth re-emphasizing that in practice, inference is not sparse attention on one
large sequence, but rather dense attention with many different shorter token segments.

3.2.1. THE FORKJOIN PROMPT PATH TOPOLOGY

In order to leverage superposition prompting for RAG, we
must construct a graph topology out of our text segments.
We propose the ForkJoin graph structure, depicted in Fig-
ure 2. Note that each qi sequence is a duplicate of the orig-
inal q (Section 3.2.3 will justify this decision). Although
this duplication ends up increasing the number of tokens
processed, our ablation analysis in Appendix B.1 demon-
strates the superiority of this approach in terms of accuracy.
Furthermore, Section 3.3.2 describes how the cost of this du-
plication can be entirely hidden from the user. The ForkJoin
topology (implicitly) results in a pseudo-“local attention”
structure (Figure 3). We emphasize that this resulting atten-
tion pattern is a construct for visualization only—in reality,
all calls to the LLM use fully dense attention, although on
relatively smaller context lengths. Concretely, each of the
dashed boxes in Figure 2 is a separate LLM call.

3.2.2. TOKEN POSITION ASSIGNMENT

With classical prompting, tokens are (by default) spaced
equally, with a distance of 1. However, with superposition
prompting, positioning tokens is not trivial, since paths (of
potentially heterogeneous length) run parallel to each other.
Thus, we seek to answer the question, “how do we assign
meaningful positions to tokens in superposition prompts?”

One simple approach could be to truncate token sequences to
a common length to enforce a shared positioning. However,
truncating may result in loss of input signal if the trimmed to-
kens contained valuable information for the query. Another
approach could be to left-align (or right-pad) sequences to a
common length (Gim et al., 2023). While this left aligned
padding approach is simple, it yields discontinuities in the
prompt sequence position assignments (see Appendix E for
quantification). With the ALiBi encoding scheme (Press
et al., 2021), it can be easily shown that discontinuities
unfairly assign attention penalties to the tokens in shorter
documents, since the tokens will be concentrated at earlier
token positions (and thus larger distances from the current

token).2 Thus, we are motivated to propose a positional
assignment strategy that does not result in discontinuities.

x

Left edges are grounded at x=0

Right edges
are

“ragged”

Tokens connected by
rigid rods, each Δx=1

(a) Left Aligned

Right
edges

are
coupled
to each
other

Left edges are grounded at x=0

x

Tokens connected by springs
which relax at Δx=1

(b) Equilibrium (Ours)

Figure 4. Visual intuition for our proposed equilibrium position
assignment vs. left aligned (see Section 3.2.2).

We propose path equilibrium positioning as one simple,
reasonable strategy. With path equilibrium positioning, we
linearly space overlapping paths to fit the harmonic mean,
S(D), of their collective lengths (for a set of overlapping
paths D)

S(D) =
nd∑

d∈D
1

∥d∥
(1)

Intuitively, the resulting token positions matches the equi-
librium state of coupled masses connected by springs (Fig-
ure 4).

Note that the path equilibrium positioning strategy results
in real-valued positions. This is a departure from common
usage of token position assignments, where integer-valued
positions are predominant.3 We note that the choice of
position assignment scheme has no effect on inference effi-

2An analogous bias would exist if using a right aligned strategy,
except shorter documents would be unfairly assigned attention
boosts over longer documents.

3While this is trivial for the ALiBi positional encoding, it is
non-trivial for the Rotary Position Embedding (Su et al., 2021)
scheme. To handle this case, we linearly interpolate the argument
of the sinusoidal functions.

4

Superposition Prompting: Improving and Accelerating Retrieval-Augmented Generation

ciency, but can impact model output quality. In Section 5.1,
we validate the superiority of path equilibrium positioning.

3.2.3. PATH PRUNING

Further exploiting the topological structure we’ve imposed
on the prompt, we propose path pruning as a mechanism
to discard documents it sees as irrelevant to the query. As
demonstrated in our experiments, this can benefit both effi-
ciency and accuracy for LLM-based RAG.

In order to prune paths, we must compute a saliency score
for each path. Inspired by SGPT (Muennighoff, 2022), we
apply Bayes rule to the output of the language modeling
head to compute a saliency or entailment score. At a high
level, we leverage Bayes’ theorem to compute the posterior
distribution

P (di | qi,p) ∝ P (q | di,p)P (di | p)

as a saliency metric of document di’s relevancy to the
query.4 In our experiments, we decide which path indices
to prune by greedily selecting the top-k of this categorical
distribution (we perform ablations with respect to the choice
of k in Section 4.1.2 and Appendix A.1).

To “physically” apply the pruning, we can simply discard
the KV caches corresponding to the documents and queries
along those paths. Conveniently, all remaining KV caches
can be simply concatenated together for use in autoregres-
sive generation of the response.

We provide ablations against other reasonable saliency met-
rics in Section 5.2. A visual representation of the effect of
path pruning on the (implicit) attention patterns can be also
seen in Figure 3c.

3.3. Lossless Runtime Optimizations

3.3.1. PATH CACHING

Assuming auxiliary memory storage is available, we can ac-
celerate inference of superposition prompts by doing work
before any query has arrived. This path caching technique
generalizes the ideas put forth in PagedAttention (Kwon
et al., 2023), where we cache the KV embeddings along all
path prefixes (not just the “root node”, as PagedAttention
does). Importantly, our approach also differs from Prompt-
Cache (Gim et al., 2023). While their cached “prompt mod-
ules” only attend locally to themselves, our path prefix KV
caches attend locally to themselves as well as to all their an-
cestors in the graph. Please refer to Algorithm 2 in appendix
for formalization.

We now describe our path caching mechanism. Concretely,

4This resembles the “principle of least action,” which deter-
mines the optimal path weighting in the path integral formulation
of quantum mechanics.

the preamble KV cache and document KVs are not condi-
tioned on the query, and thus can be precomputed during
a “preprocessing” stage. Then, during the “online serving”
stage, we retrieve the preamble and document KVs from
storage instead of the original input token sequences. Fig-
ure 3d shows how, during the online serving stage, much of
the attention dependencies have already been computed.
Note that the memory requirement for employing path
caching is a scalar multiple, cmodel, of the raw tokenized
sequence length. Here, cmodel is a fixed scalar that depends
on the various aspects of the models, such as number of lay-
ers, and embedding dimension (e.g. cbloom-7b1 = 492 KB).

3.3.2. PATH PARALLELIZATION

Since the superpositioned paths of ForkJoin are indepen-
dent of each other (by construction), the corresponding KV
caches and logits of the query segments can be computed
in parallel. While this does not reduce the “CPU time,”
it importantly reduces the wall-clock time experienced by
the user. The parallelization across the duplicated queries
can be accomplished either by (1) concatenating sequences
along the batch dimension before inference5 (2) delegating
model calls across a distributed cluster of compute nodes
(e.g. GPUs), or (3) a combination of batching and dis-
tributed inference. The most effective strategy will depend
on the specifics of the cluster configuration (e.g. relative
network bandwidth vs. available compute per node).

4. Experimental Results
We perform experiments on three families of large lan-
guage models, namely OpenELM (Mehta et al., 2024),
BLOOMZ (Muennighoff et al., 2023), and MPT (MosaicML
NLP Team, 2023). To quantify the effectiveness of super-
position prompting when paired with models of different
scales, we use various model sizes from these families. For
OpenELM, we use the 3B-Instruct configuration. For
BLOOMZ, we instantiate 3B parameter (bloomz-3b) and
7.1B parameter (bloomz-7b1) models. Finally, for MPT,
we use the available instruct fine-tuned 7B parameter model
(mpt-7b-instruct). This set of models covers differ-
ent architectures, positional encoding schemes, sizes, and
pretraining recipes. We remind the reader we use the pub-
licly released pretrained checkpoints, without employing
any additional training, fine-tuning, or task adaptation.

For our experiments, we are primarily interested in the com-
pute time vs. accuracy tradeoff.6 We use the fvcore

5In general, prompt path lengths will vary, thus requiring
padding to a common length. However, a length binning strat-
egy may alleviate most overhead in practice.

6In our timing and speedup analysis, we follow previous works
(Gim et al., 2023) and do not consider the data retrieval portion of
the RAG pipeline, which would require too many assumptions.

5

Superposition Prompting: Improving and Accelerating Retrieval-Augmented Generation

(facebookresearch, 2024) package to compute theoretical
floating point operation (FLOP) counts for various inference
settings. We evaluate the compute cost of each method in
units of compute cycles—similar to FLOPs, but accounting
for parallelism. In practice, to achieve the speedups, ex-
tra resources (auxiliary memory and/or auxiliary compute
for parallelization) will be required. However, as stated,
the goal of this exploration is acceleration, not necessarily
FLOPs reduction. We refer the reader to Appendix A.2
for detailed breakdowns of the theoretical speedup gains
enabled by each of our proposed optimizations.

4.1. Results

We leverage the publicly available NaturalQuestions-Open
(Liu et al., 2023a) and MuSiQue (Trivedi et al., 2022)
datasets. We do not perform any manual prompt tuning
or prompt engineering for any method or baseline, and use
the same prompts across all experiments (per dataset) to con-
trol for discrepancies that could arise with varying prompt
wording. For reproducibility, we present the exact prompt
wording used for each dataset in Appendix F. We use greedy
autoregressive decoding in all experiments, and randomize
the order of documents to prevent any systematic bias possi-
ble due to location of the “gold documents” (à la Liu et al.,
2023a).

4.1.1. NATURALQUESTIONS-OPEN

NaturalQuestions-Open (Liu et al., 2023a) is an open do-
main question answering benchmark that is derived from
Natural Questions (Kwiatkowski et al., 2019). It con-
tains the historical queries issued to the Google search en-
gine, coupled with answers using the contents of English
Wikipedia. We follow the same experimental setup as Liu
et al., 2023a, including the same preprocessing and evalu-
ation methodology for the 20 document setting (reporting
Best EM Subspan, or “Accuracy” for short).

We present speedup vs. accuracy comparisons in Table 1.
For the TF-IDF baseline, we use TF-IDF (from SciPy pack-
age Virtanen et al., 2020) to select the top-k documents
conditioned on the query, then perform “naive LLM-RAG”
(as described in Section 3.1). Our BM-25 baseline is equiv-
alent, except we use Brown, 2020 for the top-k document
selection. We also have an equivalent baseline where we
use Contriever (Izacard et al., 2021) to select the top-k doc-
uments.7 We compare against the recently proposed Atten-
tion Sort method, using their method exactly as described in

7For a more generous representation of the BM-25, TF-IDF,
and Contriever baselines, we compute the speedup metrics assum-
ing document KV caching (although to our knowledge, this has
not been previously proposed in literature). Note that caching is
not possible with Naive LLM-RAG or Attention Sort since the
order of documents is variable, and in general, documents attend
to other documents (thus also parallelization is not possible).

Peysakhovich & Lerer, 2023. Finally, we compare against
Prompt Cache (Gim et al., 2023). Note that Naive LLM-
RAG, Prompt Cache, and Attention Sort always attend to
all documents.

In addition to Table 1, we present various architectural ab-
lation studies in Section 5 and Appendix A to justify our
design decisions.

4.1.2. MUSIQUE

MuSiQue (Trivedi et al., 2022) is a multi-hop reasoning
dataset consisting of question answer pairs collected with
the goal of making disconnected reasoning harder and conse-
quently adding to the difficulty of the previously introduced
multi-hop question answering datasets. We validate our ap-
proach on the dev split of MuSiQue-Ans (reporting Answer
EM and F1).

A slight modification is made to superposition prompting to
handle the multi-hop reasoning setup of MuSiQue. Specifi-
cally, we iteratively apply superposition pruning to build a
chain of t× k documents8, where t and k are hyperparame-
ters. At each time step {1, . . . t}, we create a superposition
with all remaining documents, prune to keep the top k,
prepend those (cached) documents to the running prefix,
then repeat. A visual depiction of this iterative superposi-
tion is presented in Figure 6. We hypothesize that iterative
superposition can improve performance since we equip the
LLM to iteratively solve the multi-hop reasoning challenge.

For our baselines, we compare against Attention Sort,
Prompt Cache, and Naive LLM-RAG (all of which always
attend to all documents). Our results are summarized in
Table 2.

4.2. Analysis

4.2.1. SUPERPOSITION PROMPTING CAN IMPROVE
TIME EFFICIENCY

Results on the NaturalQuestions-Open dataset Table 1
shows that superposition prompting is the leading effi-
cient method by an order of magnitude. These gains are
mainly due to the path parallelism, and path pruning mech-
anisms. Table 6 presents a breakdown of the contribu-
tion of each of these mechanisms to the speedup. For
instance, for mpt-7b-instruct (on NaturalQuestions-
Open), caching alone yields a 10.2× speedup, whereas par-
allelism alone yields a 14.8× speedup. These optimizations
combined with pruning yield a 93.7× speedup overall.

With MuSiQue, we see observe lower overall speedups for

8Note that only the first k documents chosen are cacheable.
Subsequent documents are not cacheable since their KV caches
depend on preceding documents (which are dynamically chosen
during query serving).

6

Superposition Prompting: Improving and Accelerating Retrieval-Augmented Generation

Table 1. Retrieval augmented generation accuracy for various models and methods on the NaturalQuestions-Open dataset. For baselines
with hyperparameters—namely the top-k parameter for BM-25, TF-IDF, and Contriever—we present their highest accuracy configuration
(see Appendix A.1 for all configurations). We emphasize the superiority of superposition prompting over the considered baselines along
the axes of both accuracy and speedup.

COMPUTE CYCLES THEOR. SPEEDUP ACCURACY
MODEL APPROACH

OPENELM-3B-IN.

NAIVE LLM-RAG 1.03E+13 1.0 0.001
BM-25 1.07E+11 96.9 0.166
TF-IDF 1.07E+11 96.9 0.215
CONTRIEVER 5.62E+11 18.4 0.191
ATTENTION SORT 3.09E+13 0.3 0.000
PROMPT CACHE 1.25E+11 82.4 0.000
SUPERPOSITION (OURS) 1.07E+11 96.8 0.241

BLOOMZ-3B

NAIVE LLM-RAG 9.75E+12 1.0 0.005
BM-25 1.35E+12 7.2 0.138
TF-IDF 1.35E+12 7.2 0.188
CONTRIEVER 1.37E+12 7.1 0.168
ATTENTION SORT 2.93E+13 0.3 0.004
PROMPT CACHE 1.29E+11 75.4 0.113
SUPERPOSITION (OURS) 9.92E+10 98.3 0.223

BLOOMZ-7B1

NAIVE LLM-RAG 2.22E+13 1.0 0.022
BM-25 7.35E+12 3.0 0.150
TF-IDF 3.21E+12 6.9 0.203
CONTRIEVER 3.23E+12 6.9 0.194
ATTENTION SORT 6.67E+13 0.3 0.022
PROMPT CACHE 2.86E+11 77.7 0.136
SUPERPOSITION (OURS) 2.38E+11 93.5 0.253

MPT-7B-INSTRUCT

NAIVE LLM-RAG 2.16E+13 1.0 0.026
BM-25 3.11E+12 7.0 0.278
TF-IDF 1.18E+12 18.4 0.333
CONTRIEVER 1.20E+12 18.1 0.338
ATTENTION SORT 6.49E+13 0.3 0.028
PROMPT CACHE 2.36E+11 91.8 0.278
SUPERPOSITION (OURS) 2.31E+11 93.7 0.465

the highest performing superposition prompting settings
(Table 2). This is due to the employment of iterative super-
position (Section 4.1.2), which limits caching opportunities
to the selection of the first k documents.

4.2.2. SUPERPOSITION PROMPTING CAN IMPROVE
ACCURACY

In Table 1 we clearly see that superposition prompting is the
dominant method in terms of accuracy on NaturalQuestions-
Open, seeing improvements of 12–43% over the naive solu-
tion, and up to 15% improvements over the next best com-
petitor. With MuSiQue (Table 2), we note that superposition
prompting yields the highest accuracy for each model.

One explanation for the accuracy improvement is how su-
perposition prompting reduces sequence lengths as per-
ceived by the transformer. Recent studies have investi-
gated the apparent lack of “length extrapolation” abilities
of transformer-based LLMs (Press et al., 2021; Ruoss et al.,
2023; Kazemnejad et al., 2023). One convenient property
of superposition prompting is that—from the perspective of

the transformer—the maximum sequence length observed
is the longest path through the graph.9 For example, with
NaturalQuestions-Open, superposition prompting decreases
the maximum path (and thus the sequence length) from an
average of 2923 tokens to 206 tokens. In this sense, superpo-
sition prompting for RAG can enable non-long-context trans-
formers to perform well on long sequences. This property
could allow model developers to significantly reduce pre-
training costs (since training special-purpose “long-context”
LLMs leads to increased costs (Press et al., 2021)).

Another explanation for the accuracy improvement is the
LLM “distraction” phenomenon. The previous works of
Liu et al., 2023a; Borgeaud et al., 2021a; Shi et al., 2023
present arguments for how LLMs can be sensitive to noisy
or irrelevant context. With the inclusion of the path pruning
mechanism, we equip the model with a structured way to
filter out the “noise” (i.e. irrelevant documents).

9This means the effective (perceived) sequence length is O(1)
instead of O(nd), where nd is the number of offline documents.

7

Superposition Prompting: Improving and Accelerating Retrieval-Augmented Generation

Table 2. Retrieval augmented generation accuracy for various models on the MuSiQue dataset. For superposition prompting, t denotes the
number of iterations of iterative superposition (described in Section 4.1.2), and k denotes the top-k selected (i.e. not pruned) at each step
(see Section 3.2.3).

COMPUTE CYCLES THEOR. SPEEDUP F1 EM
MODEL APPROACH

OPENELM-3B-IN.

NAIVE LLM-RAG 8.81E+12 1.0 0.006 0.000
ATTENTION SORT 2.64E+13 0.3 0.009 0.001
PROMPT CACHE 1.61E+11 54.7 0.000 0.000
SUPERPOSITION (X=1, K=4) (OURS) 1.42E+11 62.1 0.028 0.000
SUPERPOSITION (X=2, K=4) (OURS) 5.97E+11 14.8 0.039 0.006
SUPERPOSITION (X=4, K=1) (OURS) 1.99E+12 4.4 0.059 0.019

BLOOMZ-3B

NAIVE LLM-RAG 8.31E+12 1.0 0.060 0.030
ATTENTION SORT 2.49E+13 0.3 0.055 0.026
PROMPT CACHE 1.64E+11 50.5 0.136 0.081
SUPERPOSITION (X=1, K=4) (OURS) 1.33E+11 62.4 0.173 0.100
SUPERPOSITION (X=2, K=4) (OURS) 5.56E+11 14.9 0.187 0.117
SUPERPOSITION (X=4, K=1) (OURS) 1.87E+12 4.4 0.187 0.115

BLOOMZ-7B1

NAIVE LLM-RAG 1.91E+13 1.0 0.062 0.033
ATTENTION SORT 5.72E+13 0.3 0.058 0.031
PROMPT CACHE 3.67E+11 52.0 0.161 0.108
SUPERPOSITION (X=1, K=4) (OURS) 3.17E+11 60.2 0.159 0.090
SUPERPOSITION (X=2, K=4) (OURS) 1.33E+12 14.3 0.171 0.106
SUPERPOSITION (X=4, K=1) (OURS) 4.44E+12 4.3 0.182 0.115

MPT-7B-INSTRUCT

NAIVE LLM-RAG 1.86E+13 1.0 0.064 0.008
ATTENTION SORT 5.57E+13 0.3 0.062 0.009
PROMPT CACHE 3.09E+11 60.1 0.088 0.018
SUPERPOSITION (X=1, K=4) (OURS) 3.04E+11 61.1 0.111 0.029
SUPERPOSITION (X=2, K=4) (OURS) 1.29E+12 14.4 0.111 0.031
SUPERPOSITION (X=4, K=1) (OURS) 4.26E+12 4.4 0.120 0.040

4.2.3. SENSITIVITY TO ALIBI VS. ROPE

For reasons outlined in Section 3.2.2, superposition prompt-
ing is very naturally suited for transformers which accept
continuously-valued token position assignments (i.e. they
exhibit the position interpolation property as defined by
Chen et al., 2023). While the ALiBi positional encoding
scheme has been shown to posses this property, it has been
suggested that fine-tuning may be required to equip Ro-
tary Position Embedding (RoPE)-based models with this
property.

Our experiments validate that our proposed equilibrium
positional assignment mechanism is compatible even with
a non-fine-tuned RoPE-based model (i.e. the OpenELM
family). We leave it to future studies to measure the extent
to which fine-tuning may improve accuracy (if at all).

We note that OpenELM-3B-Instruct has significantly
lower accuracy for many baselines, such as AttentionSort,
Naive LLM-RAG and even Prompt Cache. We hypothesize
that this is due to the lack of length extrapolation capabilities
of RoPE, which would become more pronounced for those
baselines.

Table 3. Varying the position assignment function used with super-
position prompting on the NaturalQuestions-Open dataset.

ACCURACY
MODEL APPROACH

OPENELM-3B-IN. LEFT ALIGNED 0.224
EQUILIBRIUM (OURS) 0.241

BLOOMZ-3B
LEFT ALIGNED 0.208
EQUILIBRIUM (OURS) 0.223

BLOOMZ-7B1 LEFT ALIGNED 0.245
EQUILIBRIUM (OURS) 0.253

MPT-7B-INSTRUCT
LEFT ALIGNED 0.348
EQUILIBRIUM (OURS) 0.465

5. Ablations
5.1. Position Assignment Ablation

In Table 3, we investigate the effect of the position assign-
ment strategy during superposition prompting. We compare
our proposed equilibrium path positioning to the left aligned
strategy described in Section 3.2.2. Our findings validate

8

Superposition Prompting: Improving and Accelerating Retrieval-Augmented Generation

our hypothesis outlined in Algorithm 1, where we specu-
lated that left alignment would result in worse performance
(due to long sequence attention bias).

5.2. Path Saliency Metric Ablation

In Table 4, we ablate our choice of “path saliency” met-
ric. We compare against two other baselines—attention and
none. With none, we simply do not prune. The attention
baseline consists of using the attention scores for each docu-
ment (average across tokens, layers and attention heads) as
the path score. We highlight that our Bayesian path saliency
significantly outperforms attention-based scoring, as well
as the control baseline.

Table 4. Retrieval augmented generation accuracy for various path
saliency metrics on the NaturalQuestions-Open dataset.

ACCURACY
MODEL SELECTION METRIC

OPENELM-3B-IN.
NONE 0.005
ATTENTION 0.163
BAYESIAN (OURS) 0.241

BLOOMZ-3B
NONE 0.110
ATTENTION 0.100
BAYESIAN (OURS) 0.223

BLOOMZ-7B1
NONE 0.142
ATTENTION 0.127
BAYESIAN (OURS) 0.253

MPT-7B-INSTRUCT
NONE 0.224
ATTENTION 0.218
BAYESIAN (OURS) 0.465

5.3. Superposition Factor Ablation

We introduce the hyperparameter superposition factor as a
parameter to interpolate between a fully superimposed and
fully “classical” prompt. Larger superposition factors cor-
respond to “more superimposed” prompts, whereas smaller
superposition factors correspond to “less superimposed”
prompts (achieved by combining adjacent documents before
creating prompt paths).

Formally, we define m as the number of documents
considered for a retrieval-augmented generation query
(for instance, this is m = 20 for common settings of
NaturalQuestions-Open (Liu et al., 2023a) and MuSiQue
(Trivedi et al., 2022)). By setting a superposition factor
γ ∈ [1,m], we compute the “effective documents per path”
as ⌊m

γ ⌉. Importantly, note that when γ = 1, we’ve reduced
to the “classical” (Naive LLM-RAG) case. We perform an
ablation by sweeping this superposition factor parameter
and present results in Figure 5. A visual representation is
presented in Figure 7.

The curves generally show improvements along both axes

as we increase the superposition quotient. Interestingly, the
maximal accuracy may not be fully superimposed, suggest-
ing that this value should be tuned for the given application.

1 2 5 10 2 5 100

0

0.1

0.2

0.3

0.4

0.5

OpenELM-3B-Instruct
bloomz-3b
bloomz-7b1
mpt-7b-instruct

Theoretical Max. Speedup (Log)
N

at
ur

al
 Q

ue
st

io
ns

 B
es

t
EM

 S
ub

sp
an

SF = 1
(Naive LLM-

RAG)

SF = 2
SF = 4

SF = 10 SF = 20 (Ours)

Figure 5. Sweeping values of superposition factor (SF) on the
NaturalQuestions-Open dataset with a variety of models.

6. Conclusion and Discussion
In this work, we introduced a novel framework to accelerate
and improve retrieval-augmented generation with LLMs.
We verified the generalization of our method across various
models and datasets and performed extensive ablations.

Our method, superposition prompting, was shown to im-
prove long sequence modeling accuracy in single and multi-
hop question answering tasks, all while reducing user-
observed response latency. Conveniently, this optimization
was shown to be effective without any fine-tuning or addi-
tional training to the base model. We defer to future work
to explore how (if at all) fine-tuning could further improve
superposition prompting. We also highlight that future work
should investigate how to generalize these ideas outside of
the RAG setting.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. Specifically, we are proposing a
machine learning technique that can be used for improving
the quality of generative language modeling while reducing
the computational overheads often associated with their
deployment. There are many potential consequences of this
work, as for the field as a whole, none which we feel must
be specifically highlighted here.

9

Superposition Prompting: Improving and Accelerating Retrieval-Augmented Generation

Acknowledgements
We would like to extend a thanks to Sachin Mehta, Maxwell
Horton, Enrico Fini, and Arsalan Farooq for discussion and
feedback on the paper.

References
Asai, A., Wu, Z., Wang, Y., Sil, A., and Hajishirzi,

H. Self-rag: Learning to retrieve, generate, and cri-
tique through self-reflection. ArXiv, abs/2310.11511,
2023. URL https://api.semanticscholar.
org/CorpusID:264288947.

Beltagy, I., Peters, M. E., and Cohan, A. Long-
former: The long-document transformer. arXiv preprint
arXiv:2004.05150, 2020.

Besta, M., Blach, N., Kubicek, A., Gerstenberger, R.,
Gianinazzi, L., Gajda, J., Lehmann, T., Podstawski,
M., Niewiadomski, H., Nyczyk, P., and Hoefler,
T. Graph of thoughts: Solving elaborate problems
with large language models. ArXiv, abs/2308.09687,
2023. URL https://api.semanticscholar.
org/CorpusID:261030303.

Borgeaud, S., Mensch, A., Hoffmann, J., Cai, T., Ruther-
ford, E., Millican, K., van den Driessche, G., Lespiau,
J.-B., Damoc, B., Clark, A., de Las Casas, D., Guy,
A., Menick, J., Ring, R., Hennigan, T. W., Huang, S.,
Maggiore, L., Jones, C., Cassirer, A., Brock, A., Pa-
ganini, M., Irving, G., Vinyals, O., Osindero, S., Si-
monyan, K., Rae, J. W., Elsen, E., and Sifre, L. Improv-
ing language models by retrieving from trillions of to-
kens. In International Conference on Machine Learning,
2021a. URL https://api.semanticscholar.
org/CorpusID:244954723.

Borgeaud, S., Mensch, A., Hoffmann, J., Cai, T., Ruther-
ford, E., Millican, K., van den Driessche, G., Lespiau,
J.-B., Damoc, B., Clark, A., de Las Casas, D., Guy,
A., Menick, J., Ring, R., Hennigan, T. W., Huang, S.,
Maggiore, L., Jones, C., Cassirer, A., Brock, A., Pa-
ganini, M., Irving, G., Vinyals, O., Osindero, S., Si-
monyan, K., Rae, J. W., Elsen, E., and Sifre, L. Improv-
ing language models by retrieving from trillions of to-
kens. In International Conference on Machine Learning,
2021b. URL https://api.semanticscholar.
org/CorpusID:244954723.

Brown, D. Rank-BM25: A Collection of BM25 Algo-
rithms in Python, 2020. URL https://doi.org/
10.5281/zenodo.4520057.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J.,
Horvitz, E., Kamar, E., Lee, P., Lee, Y. T., Li, Y., Lund-
berg, S., Nori, H., Palangi, H., Ribeiro, M. T., and Zhang,

Y. Sparks of artificial general intelligence: Early experi-
ments with gpt-4, 2023.

Cai, T., Huang, K., Lee, J., and Wang, M. Scaling
in-context demonstrations with structured atten-
tion. ArXiv, abs/2307.02690, 2023. URL https:
//api.semanticscholar.org/CorpusID:
259360659.

Chen, S., Wong, S., Chen, L., and Tian, Y. Ex-
tending context window of large language models
via positional interpolation. ArXiv, abs/2306.15595,
2023. URL https://api.semanticscholar.
org/CorpusID:259262376.

Child, R., Gray, S., Radford, A., and Sutskever, I. Gen-
erating long sequences with sparse transformers. arXiv
preprint arXiv:1904.10509, 2019.

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and R’e,
C. Flashattention: Fast and memory-efficient exact
attention with io-awareness. ArXiv, abs/2205.14135,
2022. URL https://api.semanticscholar.
org/CorpusID:249151871.

facebookresearch. fvcore. https://github.com/
facebookresearch/fvcore, 2024.

Feynman, R. P. Quantum Mechanics and Path Integrals.
McGraw-Hill, 1965.

Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y.,
Dai, Y., Sun, J., Guo, Q., Wang, M., and Wang,
H. Retrieval-augmented generation for large lan-
guage models: A survey. ArXiv, abs/2312.10997,
2023. URL https://api.semanticscholar.
org/CorpusID:266359151.

Gim, I., Chen, G., seob Lee, S., Sarda, N., Khandelwal,
A., and Zhong, L. Prompt cache: Modular attention
reuse for low-latency inference. ArXiv, abs/2311.04934,
2023. URL https://api.semanticscholar.
org/CorpusID:265067391.

Guu, K., Lee, K., Tung, Z., Pasupat, P., and Chang, M.-
w. Realm: Retrieval-augmented language model pre.
Training, 2020.

Huang, Y., Xu, J., Jiang, Z., Lai, J., Li, Z., Yao, Y., Chen,
T., Yang, L., Xin, Z., and Ma, X. Advancing trans-
former architecture in long-context large language mod-
els: A comprehensive survey. ArXiv, abs/2311.12351,
2023. URL https://api.semanticscholar.
org/CorpusID:265308945.

Izacard, G., Caron, M., Hosseini, L., Riedel, S.,
Bojanowski, P., Joulin, A., and Grave, E. Un-
supervised dense information retrieval with con-
trastive learning. Trans. Mach. Learn. Res., 2022,

10

https://api.semanticscholar.org/CorpusID:264288947
https://api.semanticscholar.org/CorpusID:264288947
https://api.semanticscholar.org/CorpusID:261030303
https://api.semanticscholar.org/CorpusID:261030303
https://api.semanticscholar.org/CorpusID:244954723
https://api.semanticscholar.org/CorpusID:244954723
https://api.semanticscholar.org/CorpusID:244954723
https://api.semanticscholar.org/CorpusID:244954723
https://doi.org/10.5281/zenodo.4520057
https://doi.org/10.5281/zenodo.4520057
https://api.semanticscholar.org/CorpusID:259360659
https://api.semanticscholar.org/CorpusID:259360659
https://api.semanticscholar.org/CorpusID:259360659
https://api.semanticscholar.org/CorpusID:259262376
https://api.semanticscholar.org/CorpusID:259262376
https://api.semanticscholar.org/CorpusID:249151871
https://api.semanticscholar.org/CorpusID:249151871
https://github.com/facebookresearch/fvcore
https://github.com/facebookresearch/fvcore
https://api.semanticscholar.org/CorpusID:266359151
https://api.semanticscholar.org/CorpusID:266359151
https://api.semanticscholar.org/CorpusID:265067391
https://api.semanticscholar.org/CorpusID:265067391
https://api.semanticscholar.org/CorpusID:265308945
https://api.semanticscholar.org/CorpusID:265308945

Superposition Prompting: Improving and Accelerating Retrieval-Augmented Generation

2021. URL https://api.semanticscholar.
org/CorpusID:249097975.

Kazemnejad, A., Padhi, I., Ramamurthy, K. N., Das, P., and
Reddy, S. The impact of positional encoding on length
generalization in transformers. ArXiv, abs/2305.19466,
2023. URL https://api.semanticscholar.
org/CorpusID:258987259.

Kitaev, N., Kaiser, Ł., and Levskaya, A. Reformer: The
efficient transformer. arXiv preprint arXiv:2001.04451,
2020.

Kwiatkowski, T., Palomaki, J., Redfield, O., Collins, M.,
Parikh, A., Alberti, C., Epstein, D., Polosukhin, I., De-
vlin, J., Lee, K., Toutanova, K., Jones, L., Kelcey, M.,
Chang, M.-W., Dai, A. M., Uszkoreit, J., Le, Q., and
Petrov, S. Natural questions: A benchmark for question
answering research. Transactions of the Association for
Computational Linguistics, 7:452–466, 2019. doi: 10.
1162/tacl a 00276. URL https://aclanthology.
org/Q19-1026.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L.,
Yu, C. H., Gonzalez, J. E., Zhang, H., and Stoica,
I. Efficient memory management for large language
model serving with pagedattention. Proceedings of
the 29th Symposium on Operating Systems Principles,
2023. URL https://api.semanticscholar.
org/CorpusID:261697361.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin,
V., Goyal, N., Kuttler, H., Lewis, M., tau Yih, W.,
Rocktäschel, T., Riedel, S., and Kiela, D. Retrieval-
augmented generation for knowledge-intensive nlp
tasks. ArXiv, abs/2005.11401, 2020. URL https:
//api.semanticscholar.org/CorpusID:
218869575.

Lin, J., Tang, J., Tang, H., Yang, S., Dang, X., and Han,
S. Awq: Activation-aware weight quantization for llm
compression and acceleration. ArXiv, abs/2306.00978,
2023. URL https://api.semanticscholar.
org/CorpusID:258999941.

Liu, N. F., Lin, K., Hewitt, J., Paranjape, A., Bevilac-
qua, M., Petroni, F., and Liang, P. Lost in the middle:
How language models use long contexts. arXiv preprint
arXiv:2307.03172, 2023a.

Liu, X., Wang, J., Sun, J., Yuan, X., Dong, G., Di, P.,
Wang, W., and Wang, D. Prompting frameworks for
large language models: A survey. ArXiv, abs/2311.12785,
2023b. URL https://api.semanticscholar.
org/CorpusID:265308881.

Liu, Z., Desai, A., Liao, F., Wang, W., Xie, V., Xu, Z.,
Kyrillidis, A., and Shrivastava, A. Scissorhands: Exploit-
ing the persistence of importance hypothesis for llm kv
cache compression at test time. ArXiv, abs/2305.17118,
2023c. URL https://api.semanticscholar.
org/CorpusID:258947558.

Mehta, S., Sekhavat, M. H., Cao, Q., Horton, M.,
Jin, Y., Sun, C., Mirzadeh, I., Najibi, M., Belenko,
D., Zatloukal, P., and Rastegari, M. Openelm: An
efficient language model family with open training
and inference framework. ArXiv, abs/2404.14619,
2024. URL https://api.semanticscholar.
org/CorpusID:269302585.

Miao, X., Oliaro, G., Zhang, Z., Cheng, X., Jin,
H., Chen, T., and Jia, Z. Towards efficient gen-
erative large language model serving: A survey
from algorithms to systems. ArXiv, abs/2312.15234,
2023. URL https://api.semanticscholar.
org/CorpusID:266551872.

MosaicML NLP Team. Introducing mpt-7b: A new
standard for open-source, commercially usable llms,
2023. URL www.mosaicml.com/blog/mpt-7b.
Accessed: 2023-05-05.

Muennighoff, N. Sgpt: Gpt sentence embed-
dings for semantic search. ArXiv, abs/2202.08904,
2022. URL https://api.semanticscholar.
org/CorpusID:246996947.

Muennighoff, N., Wang, T., Sutawika, L., Roberts, A., Bi-
derman, S., Scao, T. L., Bari, M. S., Shen, S., Yong,
Z.-X., Schoelkopf, H., Tang, X., Radev, D. R., Aji,
A. F., Almubarak, K., Albanie, S., Alyafeai, Z., Web-
son, A., Raff, E., and Raffel, C. Crosslingual general-
ization through multitask finetuning. In Annual Meet-
ing of the Association for Computational Linguistics,
2023. URL https://api.semanticscholar.
org/CorpusID:253264914.

Ning, X., Lin, Z., Zhou, Z., Yang, H., and Wang,
Y. Skeleton-of-thought: Large language models
can do parallel decoding. ArXiv, abs/2307.15337,
2023. URL https://api.semanticscholar.
org/CorpusID:260315904.

Petroni, F., Piktus, A., Fan, A., Lewis, P., Yazdani, M.,
De Cao, N., Thorne, J., Jernite, Y., Karpukhin, V., Mail-
lard, J., et al. Kilt: a benchmark for knowledge intensive
language tasks. arXiv preprint arXiv:2009.02252, 2020.

Peysakhovich, A. and Lerer, A. Attention sorting
combats recency bias in long context language mod-
els. ArXiv, abs/2310.01427, 2023. URL https:
//api.semanticscholar.org/CorpusID:
263609111.

11

https://api.semanticscholar.org/CorpusID:249097975
https://api.semanticscholar.org/CorpusID:249097975
https://api.semanticscholar.org/CorpusID:258987259
https://api.semanticscholar.org/CorpusID:258987259
https://aclanthology.org/Q19-1026
https://aclanthology.org/Q19-1026
https://api.semanticscholar.org/CorpusID:261697361
https://api.semanticscholar.org/CorpusID:261697361
https://api.semanticscholar.org/CorpusID:218869575
https://api.semanticscholar.org/CorpusID:218869575
https://api.semanticscholar.org/CorpusID:218869575
https://api.semanticscholar.org/CorpusID:258999941
https://api.semanticscholar.org/CorpusID:258999941
https://api.semanticscholar.org/CorpusID:265308881
https://api.semanticscholar.org/CorpusID:265308881
https://api.semanticscholar.org/CorpusID:258947558
https://api.semanticscholar.org/CorpusID:258947558
https://api.semanticscholar.org/CorpusID:269302585
https://api.semanticscholar.org/CorpusID:269302585
https://api.semanticscholar.org/CorpusID:266551872
https://api.semanticscholar.org/CorpusID:266551872
www.mosaicml.com/blog/mpt-7b
https://api.semanticscholar.org/CorpusID:246996947
https://api.semanticscholar.org/CorpusID:246996947
https://api.semanticscholar.org/CorpusID:253264914
https://api.semanticscholar.org/CorpusID:253264914
https://api.semanticscholar.org/CorpusID:260315904
https://api.semanticscholar.org/CorpusID:260315904
https://api.semanticscholar.org/CorpusID:263609111
https://api.semanticscholar.org/CorpusID:263609111
https://api.semanticscholar.org/CorpusID:263609111

Superposition Prompting: Improving and Accelerating Retrieval-Augmented Generation

Press, O., Smith, N. A., and Lewis, M. Train short, test
long: Attention with linear biases enables input length
extrapolation. CoRR, abs/2108.12409, 2021. URL
https://arxiv.org/abs/2108.12409.

Ratner, N., Levine, Y., Belinkov, Y., Ram, O., Magar,
I., Abend, O., Karpas, E. D., Shashua, A., Leyton-
Brown, K., and Shoham, Y. Parallel context win-
dows for large language models. In Annual Meet-
ing of the Association for Computational Linguistics,
2022. URL https://api.semanticscholar.
org/CorpusID:258686160.

Ruoss, A., Del’etang, G., Genewein, T., Grau-Moya, J.,
Csordás, R., Bennani, M. A., Legg, S., and Veness,
J. Randomized positional encodings boost length gen-
eralization of transformers. ArXiv, abs/2305.16843,
2023. URL https://api.semanticscholar.
org/CorpusID:258947457.

Sheng, Y., Zheng, L., Yuan, B., Li, Z., Ryabinin,
M., Fu, D. Y., Xie, Z., Chen, B., Barrett,
C. W., Gonzalez, J., Liang, P., Ré, C., Stoica, I.,
and Zhang, C. High-throughput generative infer-
ence of large language models with a single gpu.
In International Conference on Machine Learning,
2023. URL https://api.semanticscholar.
org/CorpusID:257495837.

Shi, F., Chen, X., Misra, K., Scales, N., Dohan, D.,
hsin Chi, E. H., Scharli, N., and Zhou, D. Large lan-
guage models can be easily distracted by irrelevant con-
text. In International Conference on Machine Learning,
2023. URL https://api.semanticscholar.
org/CorpusID:256459776.

Su, J., Lu, Y., Pan, S., Wen, B., and Liu, Y. Roformer:
Enhanced transformer with rotary position embed-
ding. ArXiv, abs/2104.09864, 2021. URL https:
//api.semanticscholar.org/CorpusID:
233307138.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

Trivedi, H., Balasubramanian, N., Khot, T., and Sabharwal,
A. Musique: Multihop questions via single-hop ques-
tion composition. Transactions of the Association for
Computational Linguistics, 10:539–554, 2022.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J.,
Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ.,

Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D.,
Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A.,
Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa,
F., van Mulbregt, P., and SciPy 1.0 Contributors. SciPy
1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020. doi:
10.1038/s41592-019-0686-2.

Xiao, G., Lin, J., Seznec, M., Demouth, J., and Han, S.
Smoothquant: Accurate and efficient post-training quanti-
zation for large language models. ArXiv, abs/2211.10438,
2022. URL https://api.semanticscholar.
org/CorpusID:253708271.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T. L.,
Cao, Y., and Narasimhan, K. Tree of thoughts:
Deliberate problem solving with large language mod-
els. ArXiv, abs/2305.10601, 2023. URL https:
//api.semanticscholar.org/CorpusID:
258762525.

Ye, Q., Beltagy, I., Peters, M. E., Ren, X., and Ha-
jishirzi, H. Fid-icl: A fusion-in-decoder approach
for efficient in-context learning. In Annual Meet-
ing of the Association for Computational Linguistics,
2023. URL https://api.semanticscholar.
org/CorpusID:259370780.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V.,
et al. Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022.

Zhang, Z. A., Sheng, Y., Zhou, T., Chen, T., Zheng,
L., Cai, R., Song, Z., Tian, Y., Ré, C., Bar-
rett, C. W., Wang, Z., and Chen, B. H2o:
Heavy-hitter oracle for efficient generative inference
of large language models. ArXiv, abs/2306.14048,
2023. URL https://api.semanticscholar.
org/CorpusID:259263947.

Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y.,
Min, Y., Zhang, B., Zhang, J., Dong, Z., Du, Y., Yang,
C., Chen, Y., Chen, Z., Jiang, J., Ren, R., Li, Y., Tang,
X., Liu, Z., Liu, P., Nie, J., and rong Wen, J. A sur-
vey of large language models. ArXiv, abs/2303.18223,
2023. URL https://api.semanticscholar.
org/CorpusID:257900969.

12

https://arxiv.org/abs/2108.12409
https://api.semanticscholar.org/CorpusID:258686160
https://api.semanticscholar.org/CorpusID:258686160
https://api.semanticscholar.org/CorpusID:258947457
https://api.semanticscholar.org/CorpusID:258947457
https://api.semanticscholar.org/CorpusID:257495837
https://api.semanticscholar.org/CorpusID:257495837
https://api.semanticscholar.org/CorpusID:256459776
https://api.semanticscholar.org/CorpusID:256459776
https://api.semanticscholar.org/CorpusID:233307138
https://api.semanticscholar.org/CorpusID:233307138
https://api.semanticscholar.org/CorpusID:233307138
https://api.semanticscholar.org/CorpusID:253708271
https://api.semanticscholar.org/CorpusID:253708271
https://api.semanticscholar.org/CorpusID:258762525
https://api.semanticscholar.org/CorpusID:258762525
https://api.semanticscholar.org/CorpusID:258762525
https://api.semanticscholar.org/CorpusID:259370780
https://api.semanticscholar.org/CorpusID:259370780
https://api.semanticscholar.org/CorpusID:259263947
https://api.semanticscholar.org/CorpusID:259263947
https://api.semanticscholar.org/CorpusID:257900969
https://api.semanticscholar.org/CorpusID:257900969

Superposition Prompting: Improving and Accelerating Retrieval-Augmented Generation

A. Ablations (cont.)
A.1. Top-k Ablation

Here, we sweep values for top-k for our method, where k are the number of documents retained for generating the answer
(full table results are provided in Table 5). For completeness, we also ablate this hyperparameter for all “ranking-based”
baselines, namely BM-25, TF-IDF, and Contriever (described in Section 4.1.1). Note that for superposition prompting, this
top-k value corresponds the number of paths retained after path pruning. We see that accuracy tends to peak around k = 2
to k = 4, although it comes at a cost to speedup versus k = 1. Interestingly we do see that performance decreases steadily
for increasing k > 4. This seems to coincide with the arguments put forth in (Shi et al., 2023) and Press et al., 2021 and Liu
et al., 2023a of “increased distraction” as the context length increases.

Table 5. Retrieval augmented generation accuracy and speedups for various models on the NaturalQuestions-Open dataset, sweeping
top-k. Note that “Comp.” is used as an abbreviation for “Compute”, and “Sp.” is used as an abbreviation for “Speedup”.

COMP. CYCLES THEOR. SP. CUDA SP. ACCURACY
MODEL APPROACH TOP-K

BLOOMZ-3B

BM-25
8 3.13E+12 3.1 2.40 0.129
4 1.35E+12 7.2 3.83 0.138
2 5.09E+11 19.1 5.53 0.106
1 9.92E+10 98.2 6.51 0.092

CONTRIEVER

8 3.15E+12 3.1 2.26 0.162
4 1.37E+12 7.1 3.51 0.168
2 5.25E+11 18.6 4.87 0.153
1 1.15E+11 84.5 5.61 0.114

TF-IDF
8 3.13E+12 3.1 2.40 0.164
4 1.35E+12 7.2 3.81 0.188
2 5.09E+11 19.1 5.48 0.187
1 9.92E+10 98.2 6.46 0.155

SUPERPOSITION (OURS)
8 4.06E+11 24.0 5.80 0.244
4 2.30E+11 42.4 5.92 0.264
2 1.43E+11 68.3 5.96 0.252
1 9.92E+10 98.2 5.64 0.223

BLOOMZ-7B1

BM-25
8 7.35E+12 3.0 2.33 0.150
4 3.21E+12 6.9 3.99 0.150
2 1.22E+12 18.2 5.40 0.128
1 2.38E+11 93.4 8.02 0.098

CONTRIEVER

8 7.37E+12 3.0 2.26 0.185
4 3.23E+12 6.9 3.81 0.194
2 1.23E+12 18.0 5.04 0.172
1 2.54E+11 87.5 7.32 0.125

TF-IDF
8 7.35E+12 3.0 2.32 0.188
4 3.21E+12 6.9 4.00 0.203
2 1.22E+12 18.2 5.39 0.202
1 2.38E+11 93.4 8.01 0.159

SUPERPOSITION (OURS)
8 9.66E+11 23.0 6.52 0.271
4 5.49E+11 40.5 6.58 0.301
2 3.42E+11 65.0 6.59 0.288
1 2.38E+11 93.4 6.61 0.253

MPT-7B-INSTRUCT

BM-25
8 7.11E+12 3.0 2.29 0.268
4 3.11E+12 7.0 4.01 0.278
2 1.18E+12 18.4 5.38 0.269
1 2.31E+11 94.0 8.12 0.240

CONTRIEVER

8 7.13E+12 3.0 2.22 0.318
4 3.13E+12 6.9 3.80 0.334
2 1.20E+12 18.1 5.00 0.338
1 2.47E+11 87.8 7.28 0.287

TF-IDF
8 7.11E+12 3.0 2.28 0.297
4 3.11E+12 7.0 3.99 0.332
2 1.18E+12 18.4 5.34 0.333
1 2.31E+11 94.0 8.07 0.308

SUPERPOSITION (OURS)
8 9.27E+11 23.4 5.78 0.423
4 5.28E+11 41.0 6.14 0.456
2 3.30E+11 65.7 6.32 0.471
1 2.31E+11 94.0 6.46 0.465

13

Superposition Prompting: Improving and Accelerating Retrieval-Augmented Generation

A.2. Runtime Optimization Ablation

In Table 6 we present a full breakdown of the incremental effect of the path pruning, path caching, and path parallelism
optimizations proposed in Section 3.2.3, Section 3.3.1, and Section 3.3.2, respectively.

Table 6. Ablation of speedup vs. accuracy on the NaturalQuestions-Open dataset by enabling/disabling the optimizations proposed in
Section 3.3. Each of Pruning?/Caching?/Parallelism? correspond to path pruning, path caching, and path parallelism enabled.

COMPUTE CYCLES THEOR. SPEEDUP ACCURACY
MODEL PRUNING? CACHING? PARALLELISM?

OPENELM-3B-IN.

FALSE
FALSE

FALSE 9.81E+12 1.1 0.005
TRUE 6.82E+11 15.1 0.005

TRUE
FALSE 9.86E+11 10.5 0.005
TRUE 1.18E+11 87.2 0.005

TRUE
FALSE

FALSE 9.80E+12 1.1 0.241
TRUE 6.71E+11 15.4 0.241

TRUE
FALSE 9.74E+11 10.6 0.241
TRUE 1.07E+11 96.9 0.241

BLOOMZ-3B

FALSE
FALSE

FALSE 9.08E+12 1.1 0.114
TRUE 6.40E+11 15.2 0.114

TRUE
FALSE 9.25E+11 10.5 0.114
TRUE 1.18E+11 82.4 0.114

TRUE
FALSE

FALSE 9.06E+12 1.1 0.223
TRUE 6.21E+11 15.7 0.223

TRUE
FALSE 9.06E+11 10.8 0.223
TRUE 9.92E+10 98.2 0.223

BLOOMZ-7B1

FALSE
FALSE

FALSE 2.18E+13 1.0 0.125
TRUE 1.52E+12 14.6 0.125

TRUE
FALSE 2.20E+12 10.1 0.125
TRUE 2.68E+11 82.8 0.125

TRUE
FALSE

FALSE 2.18E+13 1.0 0.253
TRUE 1.49E+12 14.9 0.253

TRUE
FALSE 2.17E+12 10.2 0.253
TRUE 2.38E+11 93.4 0.253

MPT-7B-INSTRUCT

FALSE
FALSE

FALSE 2.13E+13 1.0 0.287
TRUE 1.46E+12 14.8 0.287

TRUE
FALSE 2.11E+12 10.3 0.287
TRUE 2.34E+11 92.7 0.287

TRUE
FALSE

FALSE 2.13E+13 1.0 0.465
TRUE 1.46E+12 14.8 0.465

TRUE
FALSE 2.11E+12 10.3 0.465
TRUE 2.31E+11 94.0 0.465

B. Supplementary Algorithm Details
B.1. Bayesian Path Selection

Define H : (R∗×nv ,S∗) → R as the language modeling cross-entropy. 10 Formally, for our ForkJoin prompt topology, we
compute the Bayesian path saliency as follows.

As detailed in Appendix B.3, during superposition prompting inference, we compute logits for the preamble π ∈ R∥p∥×nv

(where nv is the vocabulary size), logits for all documents δi ∈ R∥di∥×nv , and logits for all queries ϕi ∈ R∥q∥×nv for
i ∈ D. Then, for each k ∈ D, we can compute:

10More specifically, this is the “shifted” cross entropy between a logit tensor and sequence tensor of the same sequence dimension
(where we discard element 1 from the input sequence and the last element from the logit tensor).

14

Superposition Prompting: Improving and Accelerating Retrieval-Augmented Generation

logP (di | qi,p) = logP (qi | di,p) + logP (di | q)− C (2a)

=
logH(δi,di)

∥di∥
+

logH(π,p)

∥p∥
− C (2b)

Equation (2a) follows from Bayes Rule (where C is some unspecified constant), while Equation (2b) follows from our
definition of language model. The C term is inconsequential for our use, since we eventually softmax before comparing the
likelihoods. This justifies why we duplicate queries in the ForkJoin topology—without duplicating the query for each path,
we only have access to P (qi | d1, . . .dnd

,p), not the independent terms {P (qi | di,p) | i ∈ D} We choose to normalize
the log likelihood terms by their corresponding sequence lengths (∥di∥ and ∥q∥) to effectively achieve a “likelihood density
per token,” which prevents bias against shorter sequence lengths11.

B.2. Equilibrium Position Assignment

Section 3.2.2 outlined the intuition behind the equilibrium position assignment algorithm. Here, we algorithmically describe
the method.

For convenience, we define the ArangePositions function, a∆, as

a∆(s0,m) = ⟨s1, s1 +∆, ..., s1 + (n− 1)∆⟩ ∈ Pm (3)

where ∆ ∈ R is the step size, s0 ∈ R (the “starting” position) and m ∈ Z+ (the extend amount).

Algorithm 1 Equilibrium Positioning of the “Fork” portion of the ForkJoin Topology

Input: Preamble token sequence p, set of document sequences D = {di | i ∈ D}
p̌ = a1(0, ∥p∥) ▷ Using Equation (3)
for i = 1 to nd do
si = S(D)/∥di∥ ▷ Using Equation (1)
ďi = asi(max(p̌) + 1, ∥di∥)

end for
Output: Preamble token positions p̌, set of document token positions {ďi | i ∈ D}

B.3. Full Algorithm Outline

We denote D = {1, . . . , nd} as our document “indices.” Note that we stylize KV cache variables as boxed variables for
visual distinctness (for instance a). We define ∅ as an “empty” KV cache (i.e. sequence length of 0). We also define
LM : (x ,y, y̌) 7→ (y , ψ) where:

• x ∈ M (KV cache used as input)

• y ∈ S (new tokens not included in KV cache)

• y ∈ M and ∥y ∥ = ∥y∥ (KV cache computed by LLM)

• ψ ∈ R∥y∥×nv (logit predictions computed by LLM)

Following the insight of Section 3.3.2, we also define

LMP : ({x i | i ∈ X},y, y̌) 7→ ({y
i
| i ∈ X}, {ψi | i ∈ X})

with analogous outputs to LM, although “batched” (note how the call accepts a collection of input KV caches, and outputs a
collection of KV caches and a collection of logits). A visual depiction can be seen in Figure 3e.

With these definitions, we present the full formalized preprocessing algorithm Algorithm 2 and online serving Algorithm 3.

11Note that SGPT (Muennighoff, 2022) avoided length bias by truncating sequences to a common length. We choose not to follow this
design decision to prevent potential loss of vital information in the input data.

15

Superposition Prompting: Improving and Accelerating Retrieval-Augmented Generation

Algorithm 2 Offline Preprocessing

Input: Preamble token sequence p
Input: Set of document sequences D = {di | i ∈ D}
p̌⊕

⊕
i∈D ďi := Equilibrium(p,D) ▷ Algorithm 1

(p , π) := LM(∅ ,p, p̌)
for i = 1 to nd do

(d i, δi) := LM(p ,di, ďi)
end for
Output: Preamble positions p̌, KV cache p , logits π
Output: Set of document KV positions {ďi | i ∈ D}, KV caches {d i | i ∈ D} and logits {δi | i ∈ D}

Algorithm 3 Online Serving

Input: Preamble positions p̌, KV cache p , logits π
Input: Set of document KV positions {ďi | i ∈ D}, KV caches {d i | i ∈ D} and logits {δi | i ∈ D}
Input: Query tokens q
Input: Postamble tokens t ▷ For instance, “\n### Response\n” if using Alpaca instruct tuning format.
q̌ := a1(max(ď1), ∥q∥) ▷ Using Equation (3).
B := {p ⊕ d i|i ∈ D}
{(q

i
, ϕi)|i ∈ D} := LMP(B, q, q̌)

▷ Could use tuned threshold instead of top-k.
K := argminKi∈D P (di | qi,p) ▷ Using Equation (2).
pdqt := p ⊕

⊕
k∈K(d a ⊕ q

a
)⊕ t

t , τ := LM(pdqt , t, ť)
λ := τ
▷ Greedy Decoding shown here, but WLOG another decoding scheme could be used.
repeat
l := Sample(λ) ∈ S ▷ Some arbitrary sampling procedure.
(l , λ) := LM(pdqt ⊕ r , l, ľ)
r := r ⊕ l
r := r ⊕ l
e := Stop?(r) ∈ {0, 1} ▷ Say, 1 if EOS-terminated.

until e = 1
Output: Response token sequence r

C. CUDA Benchmarks
In Table 5 and Table 7, we present measurements of the compared methods in a realistic server deployment scenario (an
NVIDIA A100 80GB). Our CUDA implementation is written in pure PyTorch, and we report the median timing over 30
trials for each method (generating a 5 token response to the prompt). Mirroring our theoretical speedup projections, we
report speedups over the Naive LLM-RAG method.

We notice that the actual measured speedups are an order of magnitude smaller than the theoretical maximum speedups
calculated. This is expected—as we heavily optimize the FLOPs (up to 100×), the memory bottlenecks begin to dominate
the runtime. We expect that a fused CUDA kernel implementation could bridge the order of magnitude gap, similar to how
Dao et al., 2022 achieves an order of magnitude improvement over the naive PyTorch implementation by mitigating memory
transfer bottlenecks.

D. Additional Visualizations
D.1. Iterative Superposition

We present a visual depiction of iterative superposition (from Section 4.1.2) in Figure 6.

16

Superposition Prompting: Improving and Accelerating Retrieval-Augmented Generation

Table 7. CUDA speedup measurements for remaining baselines methods not enumerated in Table 5 (this table is meant to be directly
comparable to Table 5).

CUDA SPEEDUP ACCURACY
MODEL APPROACH

BLOOMZ-3B
NAIVE LLM-RAG 1.000 0.005
ATTENTION SORT 0.337 0.004
PROMPT CACHE 6.317 0.113

BLOOMZ-7B1
NAIVE LLM-RAG 1.000 0.022
ATTENTION SORT 0.335 0.022
PROMPT CACHE 8.643 0.136

MPT-7B-INSTRUCT
NAIVE LLM-RAG 1.000 0.026
ATTENTION SORT 0.332 0.028
PROMPT CACHE 8.113 0.278

D.2. Superposition Factor

We present a visual depiction of superposition factor (from Section 5.3) in Figure 7.

E. Dataset Statistics
To get a better sense of the effect of the position encoding schemes, we present token count statistics for the document
lengths of each evaluation dataset (using a BPE-based tokenizer). Define nd to be the number of offline documents per
example, and define M to be the overall number of examples. Use dj

i to correspond to the ith document within the jth
example.

• Average document length (1
Mnd

∑
i

∑
j ∥d

j
i∥)

– Natural Questions: 142.6
– MuSiQue: 121.2

• Average length of longest document (1
M

∑
j maxi ∥dj

i∥)

– Natural Questions: 170.2
– MuSiQue: 222.8

• Average Left Align token padding gap size (1
Mnd

∑
j

∑
i(maxk ∥dj

k∥ − ∥dj
i∥))

– Natural Questions: 27.6
– MuSiQue: 149.6

17

Superposition Prompting: Improving and Accelerating Retrieval-Augmented Generation

Question: when was as you
like it first performed?

(Title: As You Like It) band Johnny Flynn and The Sussex Wit. The production included Pippa Nixon as
Rosalind, Luke Norris as Orlando, Adrian Scarborough as Touchstone…

(Title: Live Not as You Would Like To) A.N.Ostrovsky" in two volumes published by Count Grigory
Kushelev-Bezborodko. "Live Not As You Would Like To" premiered at the…

(Title: Exactly Like You (musical)) Ward as Arlene Murphy, Susan Mansur as Pricilla Vanerhosen and
Michael McGrath as Martin Murphy. Exactly Like You (musical) Exactly Like You…

(Title: As You Like It) As You Like It is a pastoral comedy by William Shakespeare believed to have been
written in 1599. The play's first performance is uncertain … 1603 has been suggested as a possibility.

Preamble

Document 4

Document 3

Document 2

Document 1 Query

Question: when was as you
like it first performed?

Question: when was as you
like it first performed?

Question: when was as you
like it first performed?

Query

Query

Query

Below is an instruction that describes
a task. Write a response that…

Iterative Superposition (t=3, i=1) — Step 1

discard queriesselect path of Doc 3 based on argmax P(di | q, p)

(Title: As You Like It) As You Like It is a
pastoral comedy by William Shakespeare
believed to have been written in 1599. The
play's first performance is uncertain … 1603
has been suggested as a possibility.

Preamble

Document 3

Below is an instruction that describes
a task. Write a response that…

Question: when was as you
like it first performed?

(Title: As You Like It) band Johnny Flynn and The
Sussex Wit. The production included Pippa Nixon as
Rosalind, Luke Norris as Orlando, Adrian
Scarborough as Touchstone…

(Title: Live Not as You Would Like To)
A.N.Ostrovsky" in two volumes published by Count
Grigory Kushelev-Bezborodko. "Live Not As You
Would Like To" premiered at the…

(Title: Exactly Like You (musical)) Ward as Arlene
Murphy, Susan Mansur as Pricilla Vanerhosen and
Michael McGrath as Martin Murphy. Exactly Like
You (musical) Exactly Like You…

Document 4

Document 2

Document 1
Query

Question: when was as you
like it first performed?

Question: when was as you
like it first performed?

Query

Query

(Title: As You Like It) As You
Like It is a pastoral comedy
by William Shakespeare
believed to have been written
in 1599. The play's first
performance is uncertain …
1603 has been suggested as a
possibility.

Preamble

Document 3

Below is an instruction that describes
a task. Write a response that…

(Title: Exactly Like You
(musical)) Ward as Arlene
Murphy, Susan Mansur
as Pricilla Vanerhosen
and Michael McGrath as
Martin Murphy. Exactly
Like You (musical)
Exactly Like You…

Document 4

select path of Doc 4 based on
argmax P(di | d3, q, p,)

discard queries

(Title: As You Like It) band Johnny Flynn and The
Sussex Wit. The production included Pippa Nixon as
Rosalind, Luke Norris as Orlando, Adrian
Scarborough as Touchstone…

(Title: Live Not as You Would Like To)
A.N.Ostrovsky" in two volumes published by Count
Grigory Kushelev-Bezborodko. "Live Not As You
Would Like To" premiered at the…

Document 2

Document 1

Question: when was as you
like it first performed?

Question: when was as you
like it first performed?

Query

Query

Preamble

Below is an instruction that describes
a task. Write a response that…

Question:
when was as
you like it
first
performed?

(Title: Live Not as You Would Like
To) A.N.Ostrovsky" in two volumes
published by Count Grigory
Kushelev-Bezborodko. "Live Not As
You Would Like To" premiered at
the…

(Title: Exactly Like You (musical))
Ward as Arlene Murphy, Susan
Mansur as Pricilla Vanerhosen and
Michael McGrath as Martin
Murphy. Exactly Like You (musical)
Exactly Like You…

(Title: As You Like It) As You Like It
is a pastoral comedy by William
Shakespeare believed to have been
written in 1599 The play's first
performance is uncertain … 1603
has been suggested as a possibility

Response:
As You Like It was
likely first performed
in the year 1603.

Document 4Document 3 Document 2 Query Response

select path of Doc 2 based on
argmax P(di | d4, d3, q, p,)

discard queries
except for path 2

Iterative Superposition (t=3, i=1) — Step 2

Iterative Superposition (t=3, i=1) — Step 3

Iterative Superposition (t=3, i=1) — Step 4

Figure 6. Iterative superposition illustrated example with 3 iterations. Steps 1-3 are the “superposition” steps, where we evaluate multiple
documents. Step 4 is where we generate the response from the selected (i.e. unpruned) paths.

18

Superposition Prompting: Improving and Accelerating Retrieval-Augmented Generation

Question: when was as you
like it first performed?

(Title: As You Like It) band Johnny Flynn and The Sussex Wit. The production included Pippa Nixon as
Rosalind, Luke Norris as Orlando, Adrian Scarborough as Touchstone…

(Title: Live Not as You Would Like To) A.N.Ostrovsky" in two volumes published by Count Grigory
Kushelev-Bezborodko. "Live Not As You Would Like To" premiered at the…

(Title: Exactly Like You (musical)) Ward as Arlene Murphy, Susan Mansur as Pricilla Vanerhosen and
Michael McGrath as Martin Murphy. Exactly Like You (musical) Exactly Like You…

(Title: As You Like It) As You Like It is a pastoral comedy by William Shakespeare believed to have been
written in 1599. The play's first performance is uncertain … 1603 has been suggested as a possibility.

Response:
As You Like It was likely first performed in the
year 1603.

Preamble

Document 4

Document 3

Document 2

Document 1 Query

Response

Question: when was as you
like it first performed?

Question: when was as you
like it first performed?

Question: when was as you
like it first performed?

Query

Query

Query

Preamble Document 1

✂✂✂

prune paths

Below is an instruction that describes
a task. Write a response that…

Below is an instruction that describes
a task. Write a response that…

(Title: As You Like It) band Johnny
Flynn and The Sussex Wit. The
production included Pippa Nixon as
Rosalind, Luke Norris as Orlando,
Adrian Scarborough as Touchstone…

Question:
when was as
you like it first
performed?

(Title: Live Not as You Would Like To)
A.N.Ostrovsky" in two volumes
published by Count Grigory Kushelev-
Bezborodko. "Live Not As You Would
Like To" premiered at the…

(Title: Exactly Like You (musical)) Ward as
Arlene Murphy, Susan Mansur as Pricilla
Vanerhosen and Michael McGrath as
Martin Murphy. Exactly Like You
(musical) Exactly Like You…

(Title: As You Like It) As You Like It is a
pastoral comedy by William Shakespeare
believed to have been written in 1599 The
play's first performance is uncertain … 1603
has been suggested as a possibility

Response:
As You Like It was
likely first performed
in the year 1603.

Document 4Document 3Document 2 Query Response

Superposition Prompt (superposition factor = 4)

(Title: As You Like It) band Johnny Flynn and The Sussex
Wit. The production included Pippa Nixon as Rosalind,
Luke Norris as Orlando, Adrian Scarborough as
Touchstone…

(Title: Live Not as You Would Like To) A.N.Ostrovsky" in
two volumes published by Count Grigory Kushelev-
Bezborodko. "Live Not As You Would Like To" premiered at
the…

(Title: Exactly Like You (musical)) Ward as Arlene
Murphy, Susan Mansur as Pricilla Vanerhosen and
Michael McGrath as Martin Murphy. Exactly Like You
(musical) Exactly Like You…

(Title: As You Like It) As You Like It is a pastoral
comedy by William Shakespeare believed to have been
written in 1599. The play's first performance is
uncertain … 1603 has been suggested as a possibility.

Response:
As You Like It was likely first
performed in the year 1603.

Preamble

Document 4

Document 3

Document 2

Document 1

Response
Question: when was as you
like it first performed?

Question: when was as you
like it first performed?

Query

Query

✂

prune path

Below is an instruction that describes
a task. Write a response that…

Superposition Prompt (superposition factor = 2)

“Classical” Prompt (equivalent to superposition factor = 1)

Figure 7. Visual depiction of the superposition factor, which is measure of how “superpositioned” a prompt is. A rigorous definition is
provided in Section 5.3.

19

Superposition Prompting: Improving and Accelerating Retrieval-Augmented Generation

F. Prompt Example on NaturalQuestions-Open
As LLMs are sensitive to the specific wording of prompts, we present a prompt example in full for reproducibility.

Below is an instruction that describes a task. Write a response that appropriately completes the request.

Instruction:
Write a high-quality answer for the given question using only the following relevant search results.

[Document](Title: The Crossing (play)) The Crossing (play) The Crossing is a 2006 South African one-man play
by Jonathan Nkala.[. . .]
[Document](Title: The Crossing (TV series)) The Crossing is an American science fiction thriller series that airs on ABC
and CTV. The series debuted on April 2, 2018. On March 20, 2018, ABC released the pilot episode on their website. The
series is filmed in British Columbia, Canada.
[Document](Title: Crossing South) Crossing South Crossing South is a travel show, television production that was
created[. . .]
[Document](Title: Crossing (2007 film)) He received a Gemini nomination for his work on the show. Crossing (2007 film)
Crossing is a 2007[. . .]
[Document](Title: The Crossing (TV series)) British Columbia and in New Westminster. The first camp footage was filmed
at Camp McLean. Filming in Vancouver[. . .]
[Document](Title: Crossing East) honored by winning a Peabody Award. Crossing East Crossing East is an American
documentary series for public radio produced by Dmae Roberts[. . .]
[Document](Title: Crossings (TV series)) Crossings (TV series) Crossings is a Malaysia dark comedy television drama that
consisted of 13 episodes. Bob works as a copywriter[. . .]
[Document](Title: The Mexican Dream) of the border crossing action takes place was not that difficult. The bar and carwash
were probably[. . .]
[Document](Title: Southern Crossing (film)) it was filmed was ”so wonderful” they had to demolish it in references to the
theater’s heritage factor.[. . .]
[Document](Title: Crossing East) Crossing East Crossing East is an American documentary series for public radio produced
by Dmae Roberts and MediaRites and hosted by George Takei and Margaret Cho. Covering Asian immigration to the[. . .]
[Document](Title: Crossing Lines) series, having previously produced miniseries, as well as its first project since being
acquired by StudioCanal in 2012.[. . .]
[Document](Title: The Crossing (TV series)) a threat. Set in the fictional town of Port Canaan, Oregon and in Seattle, the
series was filmed in coastal areas of British Columbia[. . .]
.
.
.
[Document](Title: The Crossing Hero) Fridays, at 12nn. Beginning 5 April 2015, ”The Crossing Hero” airs on Taiwan’s
China Television (CTV),[. . .]

Question: where did they film the show the crossing?

Response:
<model continues from here...>

20

Superposition Prompting: Improving and Accelerating Retrieval-Augmented Generation

G. Prompt Example on MuSiQue

Below is an instruction that describes a task. Write a response that appropriately completes the request.

Instruction:
You are a question-answering assistant, who is careful to reference source material. Use the source(s) below to answer the
user question.

[Document](Title: National Workers Memorial (Australia)) The National Workers Memorial in the national capi-
tal, Canberra, Australian Capital[. . .]
[Document](Title: Braddon, Australian Capital Territory) Braddon (postcode: 2612) is an inner north suburb of Canberra,
Australian Capital[. . .]
[Document](Title: WKDM) WKDM 1380 is a United States ethnic brokered radio station licensed to New York City.
The station is owned by Multicultural Broadcasting and airs programming in Mandarin Chinese, 24 hours a day from
Monday[. . .]
[Document](Title: York, Upper Canada) The Town of York was the second capital of the district of Upper Canada and the
predecessor to Toronto (1834). It was established in 1793 by Lieutenant - Governor John Graves Simcoe as a “temporary”
location for the capital of Upper Canada, while he made plans to build a capital near today’s[. . .]
[Document](Title: KLIF-FM) KLIF-FM (93.3 FM, branded as “Hot 93.3”) is a radio station licensed to serve Haltom City,
Texas, United States. The station is owned by Cumulus Media, and the broadcast license is held by Radio License[. . .]
[Document](Title: WRGV) WRGV (107.3 FM) is a radio station licensed to serve the community of Pensacola, Florida,
United States. The station is currently owned by iHeartMedia, Inc. and the broadcast license is held by Clear Channel
Broadcasting Licenses, Inc. WRGV broadcasts an urban contemporary music format to the greater[. . .]
[Document](Title: WWRU) WWRU is a Korean language AM radio station licensed to Jersey City, New Jersey, broadcasting
to the New York[. . .]
[Document](Title: KDBS) KDBS (1410 AM, ESPN Alexandria) is an American radio station broadcasting a sports talk
format. The station is licensed by the Federal Communications Commission (FCC) to serve the community of Alexandria,
Louisiana. The[. . .]
[Document](Title: Brantley York) Richard Brantley York (January 3, 1805 – October 7, 1891) was a Methodist minister and
educator best known for founding and serving as president of the institution that would become Duke[. . .]
.
.
.
[Document](Title: Randolph County, Illinois) Owing to its role in the state’s history, the county motto is ”Where Illinois
Began.” It contains the historically[. . .]
[Document](Title: Minsk Region) Minsk Region or Minsk Voblasć or Minsk Oblast (, ”Minskaja vobłasć” ;, ”Minskaja
oblastj”) is one of the regions of Belarus. Its administrative center is Minsk, although it is a separate administrative[. . .]
[Document](Title: Mount Franklin (Australian Capital Territory)) Mount Franklin is a mountain with an elevation of in the
Brindabella Ranges that is located on the border[. . .]

Question: When did the town WIZE is licensed in become capitol of the state where Brantley York was born?

Response:
<model continues from here...>

21

