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ABSTRACT

Deep neural networks are commonly trained using stochastic non-convex opti-
mization procedures, which are driven by gradient information estimated on frac-
tions (batches) of the dataset. While it is commonly accepted that batch size is an
important parameter for offline tuning, the benefits of online selection of batches
remain poorly understood. We investigate online batch selection strategies for two
state-of-the-art methods of stochastic gradient-based optimization, AdaDelta and
Adam. As the loss function to be minimized for the whole dataset is an aggre-
gation of loss functions of individual datapoints, intuitively, datapoints with the
greatest loss should be considered (selected in a batch) more frequently. However,
the limitations of this intuition and the proper control of the selection pressure
over time are open questions. We propose a simple strategy where all datapoints
are ranked w.r.t. their latest known loss value and the probability to be selected de-
cays exponentially as a function of rank. Our experimental results on the MNIST
dataset suggest that selecting batches speeds up both AdaDelta and Adam by a
factor of about 5.

1 INTRODUCTION

Deep neural networks (DNNs) are currently the best-performing method for many classification
problems, such as object recognition from images (Krizhevsky et al., 2012; Donahue et al., 2014)
or speech recognition from audio data (Deng et al., 2013). The standard method to train DNNs is
backpropagation via stochastic gradient descent (SGD) based on fixed-size mini-batches of the data.
This training step is the computational bottleneck of DNNs: on large datasets (where DNNs per-
form particularly well), it requires several days, even on high-performance GPUs, and any speedups
would be of substantial value to the booming field of DNNs.

In light of the computational burden of DNN training, we find it surprising that popular DNN op-
timization methods do not implement procedures to adaptively choose which datapoints to include
in a batch. Instead, it is common in SGD to fix the batch size and iteratively sweep the algorithm
over all datapoints. Here, we propose and evaluate online batch selection methods to help SGD
focus on the most relevant training datapoints and progress faster. More specifically, we sample
the datapoints for each batch from a non-uniform probability distribution that depends on the loss
previously computed for each datapoint under consideration.

We first formally describe stochastic gradient descent and the current state-of-the-art DNN optimiza-
tion procedures AdaDelta (Zeiler, 2012) and Adam (Kingma & Ba, 2014). Then, we describe our
proposed online batch selection procedure and demonstrate that it can substantially speed up both
AdaDelta and Adam.

2 STOCHASTIC GRADIENT DESCENT (SGD)

The training of a DNN with n free parameters can be formulated as the problem of minimizing a
function f : Rn → R. Following the notation of Hazan et al. (2015), we define a loss function
ψ : Rn → R for each training datapoint; the distribution of training datapoints then induces a
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Algorithm 1 The original AdaDelta algorithm
1: given ρ = 0.95, ε = 10−6

2: initialize time step t← 0, parameter vector xt=0 ∈ Rn, first moment vector st=0 ← 0, second
moment vector vt=0 ← 0

3: repeat
4: t← t+ 1
5: ∇ft(xt−1)← SelectBatch(xt−1) . select batch and return the corresponding gradient
6: gt ← ∇ft(xt−1)
7: vt ← ρvt−1 + (1− ρ)g2t . here and below all operations are element-wise

8: ∆xt ← −
√

st−1+ε
√vt+ε

gt
9: st ← ρst−1 + (1− ρ)∆x2

t
10: xt ← xt−1 +∆xt
11: until stopping criterion is met
12: return optimized parameters xt

distribution over functions D, and the overall function f we aim to optimize is the expectation of
this distribution:

f(x) := Eψ∼D [ψ(x)] . (1)

The commonly used procedure to optimize f is to iteratively adjust xt (the parameter vector at time
step t) using gradient information obtained on a relatively small batch of size b. More specifically,
at each time step t and for a given xt ∈ Rn, a batch

{
ψbi=1

}
∼ Db is selected to compute ∇ft(xt),

where ft(xt) = 1
b

∑b
i=1 ψi(xt). The Stochastic Gradient Descent (SGD) procedure then becomes a

natural extension of the Gradient Descent (GD) to stochastic optimization of f as follows:

xt+1 = xt − ηt∇ft(xt), (2)

where ηt is a learning rate. One would like to use second-order information

xt+1 = xt − ηtH−1
t ∇ft(xt), (3)

but this is often infeasible since the computation and storage of the Hessian Ht is intractable for
large n. The usual way to deal with this problem by using limited-memory quasi-Newton methods
such as L-BFGS (Liu & Nocedal, 1989) is not currently in favor in deep learning, not the least due
to (i) the stochasticity of∇ft(xt), (ii) ill-conditioning of f and (iii) the presence of saddle points as
a result of the hierarchical geometric structure of the parameter space (Fukumizu & Amari, 2000).
Despite some recent progress in understanding and addressing the latter problems (Bordes et al.,
2009; Dauphin et al., 2014; Choromanska et al., 2014; Dauphin et al., 2015), state-of-the-art opti-
mization techniques tend to approximate the inverse Hessian in a reduced way, e.g., by considering
only its diagonal to achieve adaptive learning rates.

In this paper, we argue that not only the update of xt given∇ft(xt) is crucial, but the selection of the
batch

{
ψbi=1

}
∼ Db used to compute∇ft(xt) also greatly contributes to the overall performance.

3 ADADELTA AND ADAM

We start by describing the Adadelta and Adam algorithms, which we both build upon and use as
the baseline for our experiments. Other related work (most of which appeared as parallel ICLR
submissions) is described in Section 7.

The AdaDelta algorithm (Zeiler, 2012) is based on AdaGrad (Duchi et al., 2011), where the learning

rate ηt is set to be η/
√∑t

i=1(∇fi(xi))2 with the purpose to estimate the diagonal of the Hessian of
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Algorithm 2 The original Adam algorithm
1: given α = 0.001, β1 = 0.9, β2 = 0.999, ε = 10−8

2: initialize time step t← 0, parameter vector xt=0 ∈ Rn, first moment vector mt=0 ← 0, second
moment vector vt=0 ← 0

3: repeat
4: t← t+ 1
5: ∇ft(xt−1)← SelectBatch(xt−1) . select batch and return the corresponding gradient
6: gt ← ∇ft(xt−1)
7: mt ← β1mt−1 + (1− β1)gt . here and below all operations are element-wise
8: vt ← β2vt−1 + (1− β2)g2

t
9: m̂t ← mt/(1− βt1) . here, β1 is taken to the power of t

10: v̂t ← vt/(1− βt2) . here, β2 is taken to the power of t
11: xt ← xt−1 − αm̂t/(

√
v̂t + ε)

12: until stopping criterion is met
13: return optimized parameters xt

the functions fi (Duchi et al., 2011). This idea can be traced back to variable metric methods, such
as the BFGS family of algorithms (Fletcher, 1970). The accumulation of gradient amplitudes from
t = 1 can negatively impact the search if the old information is irrelevant for the current objective
function landscape. Similarly to the approach proposed by Schaul et al. (2012), AdaDelta attempts
to overcome this issue by decaying the information about gradient amplitudes (stored in vector vt,
see line 7 in Algorithm 1) with a factor of 1− ρ defining the time window. Additionally, AdaDelta
stores the information about parameter changes ∆xt (stored in vector st, see line 9) to recompute

the new ∆xt as−
√

st−1+ε
√vt+ε

gt. The purpose of this normalization is to capture the change of gradient
amplitudes and to adjust the learning rates accordingly.

The Adam algorithm (Kingma & Ba, 2014) considers two momentum vectors, the first momentum
mt for gradients with a decay factor 1 - β1 (see line 7 in Algorithm 2) and the second momentum
vt for gradient amplitudes with a decay factor 1 - β2 (see line 8). In order to overcome the ini-
tialization bias introduced by setting mt=0 and vt=0 to zero vectors, the authors proposed to use
bias-corrected estimates m̂t and v̂t (see lines 9-10). The change of xt is performed according to the
first bias-corrected momentum m̂t, with the learning rates set according to the second bias-corrected
momentum v̂t.

The principal reason for selecting AdaDelta and Adam for our experiments is their claimed robust-
ness which should reduce the problem of hyperparameter tuning to obtain satisfactory performance.

4 ONLINE BATCH SELECTION

All approaches mentioned in the previous section attempt to deal with stochasticity arising from
the fact that the noise-less ∇f(xt) is often intractable to compute. Instead, ∇ft(xt) is computed
w.r.t. a batch

{
ψbi=1

}
∼ Db (see line 5 in Algorithms 1 and 2). It is common to reshuffle the

whole dataset once per epoch and divide it into a number of batches with size b and thus to schedule
the appearance of datapoints. As different datapoints correspond to different loss function values
(e.g., some are more difficult to classify), gradient amplitudes and directions may also appear to
be significantly different. This motivated the use of momentum both for gradient directions and
amplitudes to smooth the incoming information.

We propose to online select batches (both size and datapoints) for an algorithm A to maximize its
progress (e.g., defined by the objective function f or cross-validation error) over the resource budget
(e.g., the number of evaluated datapoints or time). More formally, this problem can be formulated in
the framework of reinforcement learning (Sutton & Barto, 1998). In this paper, we provide an initial
study of this problem in the context of deep learning to explore possible design choices starting from
the simplest ones. Related works on batch selection are discussed in section 7.

Let us assume for simplicity that the number of available training datapoints is bounded by N . At
each time step t, the probability of the i-th datapoint to be selected to compose a batch of size b
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Algorithm 3 Batch Selection Procedure SelectBatch()
1: given parameter vector x ∈ Rn
2: global parameters number of datapoints N , datapoints di for i = 1, . . . , N ; batch size b;

counters c, ce, cs, cr; two-dimensional array l with l(1)(1:N) storing loss values and l(2)(1:N) stor-
ing datapoint indexes; selection pressure se; selection probabilities pi and cumulative selection
probabilities ai defined for i-th loss ranked datapoints; period of sorting Ts; frequency of loss
recomputation rfreq for rratio ·N datapoints with the greatest known loss values

3: first call initialization c← 0, ce ← −N , cs ← 0, cr ← 0, l(1)(1:N) =∞, l(2)(1:N) = 1 : N

4: c← c+ b
5: if c− ce > N then
6: ce ← c, e← ce div N . once per epoch, we recompute selection probabilities
7: use Eq. (5) to compute se . O(1)
8: use Eq. (4) to compute pi, i = 1, . . . , N . O(N)

9: aj ←
∑j
i=1 pi for j = 1, . . . , N . O(N)

10: if c− cs > Ts then
11: cs ← c . every Ts evaluated datapoints, we sort datapoints w.r.t. the latest known loss
12: l← sort(l) in descending order w.r.t. loss values stored in array l(1)(:) . O(N log(N))

13: if c− cr > N/rfreq then
14: cr ← c . rfreq times per epoch, we recompute loss values for the top rratio ·N datapoints
15: for i = 1 to rratio ·N do
16: l

(1)
i ← ψi(x) w.r.t. datapoint with index l(2)i . we do it in biggest possible batches

17: l← sort(l) in descending order w.r.t. loss values stored in array l(1)(:) . O(N log(N))

18: for i = 1 to b do
19: if Default random selection then
20: sample datapoint index di ∈ [1, N ] uniformly at random
21: if Default shuffle selection then
22: sample datapoint index di ∈ [1, N ] uniformly at random without repetitions in one epoch
23: if Loss-dependent selection then
24: sample random r ∈ [0, 1), find the lowest rank index isel s.t. r < aisel . O(log(N))

25: di ← l
(2)
isel

26: associate ψi(x) with the loss function computed on the datapoint with index di
27: f ← 1

b

∑b
i=1 ψi(x) . forward pass

28: for i = 1 to b do
29: l

(1)
isel
← ψi(x) . latest known loss

30: return ∇f(x) . compute and return gradient

is denoted by pi. By setting pi to 0 for all already selected datapoints and to 1
N+1−t otherwise,

the whole set will be enumerated in N/b steps (denoted here as one epoch). Clearly, if we set
the selection probability pi of some datapoints to 0, then, we reduce the size of the training set by
eliminating these datapoints from the batch selection. A smaller training set is typically easier to fit
but also to over-fit. A possible strategy is to first select the datapoints with the greatest contributions
to the objective function; e.g., one could always select the datapoint with the greatest loss. However,
after the exploitation of that datapoint is performed and its loss is (likely) reduced, the datapoint
with the next greatest loss would need to be identified and any datapoint from the training set is
a potential candidate. While one can rely on the assumption that ranks of losses over datapoints
change slowly in time, the exploitation-exploration dilemma is inevitable.

The procedure we propose for batch selection is given in Algorithm 3, and we can integrate it into
AdaDelta and Adam by calling it in line 5 of Algorithms 1 and 2. When datapoints are shuffled or
selected uniformly at random (i.e., when the default AdaDelta and Adam are used), the first 17 lines
of Algorithm 3 should be skipped.

We propose a simple rank-based batch selection strategy, where all training datapoints k are ranked
(sorted) in descending order w.r.t. their latest computed ψk(x) (see lines 12 and 17 in Algorithm
3). Each i-th ranked datapoint is selected with probability pi. We propose to exponentially decay
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pi with its rank i such that pN = p1
se

, where se is the ratio between the greatest and smallest
probabilities of selection at epoch e. Thus, between any i and i+1, the probability drops by a factor
of exp(log(se)/N). When normalized to sum up to 1.0, the probability of i-th ranked datapoint to
be selected is defined as

pi =
1/ exp(log(se)/N)i∑N
i=1 1/ exp(log(se)/N)i

, (4)

Intuitively, this selection pressure parameter se affects the effective size of the training data we use.
Let Neff denote the number of unique datapoints selected among the last N selections; then, Neff
is likely (but not necessarily, see section 10.1 in the supplementary material) to decrease when s
increases.

To imitate the increase of Neff at each epoch e, from epoch e0 to epoch eend, we exponentially
decrease the selection pressure from se0 to seend

with

se = se0 exp(log(seend
/se0)/(eend − e0))eend−e0 , (5)

and then substitute it into (4) to compute it once per epoch. The realization of datapoint selection is
quite straightforward: given an array aj ←

∑j
i=1 pi for j = 1, . . . , N (once per epoch when se is

updated, see lines 7-9), we uniformly at random generate r ∈ [0, 1) and find the lowest index isel
such that r < aisel (see line 24). The datapoint to be selected is the one whose rank w.r.t. the latest
known loss value is isel (see line 25).

The latest loss computed for a datapoint is only an estimate of its current loss. In order to improve
the quality of the ranking, we propose to periodically, rfreq times per epoch, recompute the loss for
rratio ·N datapoints with the greatest latest known loss (see lines 16-17).

5 TIME COMPLEXITY

The computational complexity of datapoint selection scales as O(log(N)) per datapoint using a
bisection-based search in the array a whose values are increasing with rank. The sorting procedure
scales as O(N log(N)), but is performed periodically every Ts evaluated datapoints (which in turn
reduces the constant factor because the array is partially sorted). The time overhead of the selection
procedure without recomputing loss values (see lines 16-17) is roughly 5% when measured on a
GPU for MNIST. If the cost of computing training and validation losses (for plotting) is included,
then the relative cost is smaller than 5%.

The procedure of recomputing loss values (see lines 16-17) is optional. It is parameterized by its
frequency rfreq and the amount of datapoints rratio · N ; it costs rfreq · rratio forward passes per
datapoint. In practice, if the maximum feasible batch size is used and the recomputation is performed
every two epochs (rfreq = 0.5) for the whole dataset (rratio = 1.0), then the total overhead is
expected to be roughly 20% (i.e., by a factor of 1.2 more expensive) w.r.t. the default algorithms. If
the cost of computing training and validation losses (for plotting) is included (e.g., it is excluded in
Figure 1), then the relative cost is smaller than 20%.

6 EXPERIMENTAL RESULTS

We empirically investigate the impact of the proposed online batch selection strategies when com-
bined with AdaDelta and Adam. We conducted our experiments on the standard MNIST dataset of
handwritten digits (LeCun et al., 1998) with 50.000 training, 10.000 validation and 10.000 test dat-
apoints. We do not employ any data augmentation and pre-processing procedures. All experiments
were performed using the python library Lasagne1; we provide the source code to reproduce our ex-
periments online at https://sites.google.com/site/batchsel/ (anonymous for the

1https://github.com/Lasagne/Lasagne
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Figure 1: Convergence curves of AdaDelta (Left Column) and Adam (Right Column) on MNIST
dataset. The original algorithms are denoted by “default shuffle” (respectively, “default with ran-
dom”) when datapoints are shuffled and selected sequentially (respectively, uniformly at random).
The value of s denotes the ratio of probabilities to select the training datapoint with the greatest latest
known loss rather than the smallest latest known loss. Legends with s = se0 → seend

correspond to
an exponential change of s from se0 to seend

as a function of epoch index e, see Eq. (5). Legends
with the prefix “r” correspond to the case when the loss values for rratio ·N = 1.0N datapoints with
the greatest latest known loss are recomputed rfreq = 0.5 times per epoch. All curves are computed
on the whole training set and smoothed by a moving average of the median of 11 runs.
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Figure 2: Minimum validation error found on MNIST for deep neural network trained with a given
budget of time. The results correspond to the best hyperparameter settings found by CMA-ES after
1000 function evaluations. The original Adam and Adadelta algorithms are denoted by dotted lines,
their versions with batch selection are denoted by solid lines.

reviewers). In all experiments, we use Batch Normalization (Ioffe & Szegedy, 2015) as implemented
by Courbariaux et al. (2015) in Lasagne because i) we found that it consistently improves the error
rate by roughly 0.1-0.15%, and ii) to demonstrate the compatibility of our approach with the existing
acceleration techniques.

We performed our experiments with various values of the batch size b, but mainly report the results
for b = 64 (see Figure 1) because they demonstrate better generalization errors over time. The results
for b = 16 and b = 256 are given in the supplementary material (Figures 5 and 6, respectively).

Figure 1 shows that a 5-fold speedup can be achieved i) during the first 10 epochs if the recompu-
tation procedure is not considered (see our early experiments in Figure 1 (top row)), and, ii) during
the whole run if the recomputation procedure is considered (see the remaining rows in Figure 1).
Figure 1 (top row) is reported mainly to support the motivation for the recomputation procedure.

Figure 1 (top row) shows the cost function (cross-entropy loss) over epochs for the original AdaDelta
and Adam (when datapoints are shuffled and selected sequentially or uniformly at random) and their
accelerated versions with our batch selection procedure. Our original approach was to have a fixed
s (see, e.g., s = 102 → 102 and s = 108 → 108 in the figure) and we found that s = 102

significantly speeds up both AdaDelta and Adam. Greater values, such as s = 108, lead to even
faster convergence during the first 10 epochs. However, the cost function stops decaying at later
epochs and a divergence may occur (more likely for greater values of s). This effect might partially
explain why previous attempts (if any) to perform batch selection were not successful: the use of
very strong selection might lead to divergence. To reduce this problem, we introduced a decreasing
s over epochs as described in Eq. (5). The exponential decrease of s from 102 to 1 over 50 epochs
(denoted as s = 102 → 1) corresponds to a standard uniform selection at the last epoch such that
most of the training datapoints will be considered. Using s = 102 → 1 corresponds to a weaker
selection and a reduced speedup compared to s = 102 → 102. However, s = 108 → 1 combines
the fast convergence at the first 10 epochs with a steady improvement at the later epochs.

To further improve the convergence for greater values of s, we proposed to additionally, rfreq = 0.5
times per epoch, recompute the loss for rratio ·N = 1.0N datapoints with the greatest latest known
loss. Figure 1 (second row) shows the results when this recomputation (denoted by a prefix “r”) is
applied. It does not change the results much for s = 102 → 102 and s = 102 → 1, but drastically
improves the results for s = 108 → 108. The reason for this improvement is a more consistent
ranking of the datapoints.

Any improvement in terms of the number of epochs to achieve certain training loss values is inter-
esting for algorithm design. However, the performance over time is often of more practical interest,
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and we show it in Figure 1 (third row). This figure demonstrates that the relative overhead coming
from the batch selection procedure is rather negligible and is greatly compensated by the overall
speedup of a factor of 5 observed after 5 epochs for both AdaDelta and Adam.

In order to check whether the faster convergence leads to an overfitting, we present Figure 1 (last
row) with the error measured on the validation dataset over time. The results suggest that the accel-
erated AdaDelta and Adam achieve better validation errors faster, by a factor up to 5.

It could be possible that the obtained results are just artifacts of the used hyperparameters settings.
To check this hypothesis, we performed hyperparameter optimization of both networks and learning
strategies to minimize the validation error of both the original Adam and Adadelta and their variants
with batch selection. Figure 2 confirms that our proposed batch selection is beneficial for training
networks on MNIST and leads to a speedup of peak performance by a factor of 3. The details
of the employed hyperparameter optimization algorithm (Covariance Matrix Adaptation Evolution
Strategy, CMA-ES, by Hansen & Ostermeier (2001)), as well as all experimental settings, are given
in the supplementary material (Section 10.5).

7 RELATED WORK

The use of uniform sampling of training examples or dual coordinates is a common way to deal with
large-scale stochastic optimization problems. Although the sampled stochastic quantity is an un-
biased estimate of the corresponding true quantity, the variance of the resulting stochastic quantity
may be very high since individual estimates can vary significantly over different examples (Zhao
& Zhang, 2014). The idea to use a non-uniform sampling is known in derivative-free optimization
(more specifically, in evolutionary computation) as selection (Bäck, 1996) and is used in state-of-the-
art optimizers to bias the search towards better solutions (Hansen & Ostermeier, 2001). Recently, the
idea to bias the selection of more important training examples or dual coordinates has gained pop-
ularity in coordinate-descent methods (Nesterov, 2012) and stochastic gradient methods (Needell
et al., 2014; Zhao & Zhang, 2014; Schmidt et al., 2015). These selection strategies are often de-
scribed in the framework of importance sampling (Zhao & Zhang, 2014). They often consist of i)
biasing the sampling towards the Lipschitz constants of the gradients, so that gradients that change
quickly get sampled more often and gradients that change slowly get sampled less often (Schmidt
et al., 2015), and ii) re-weighting the obtained gradients by inverses of their sampling probabilities
to reduce the variance and unbias the estimates of gradients of the original objective function. The
latter allows to make sure that all guarantees for the original and the re-weighted updates are equally
valid (Needell et al., 2014).

In contrast to these works, our approach does not re-weight the gradients and does not estimate their
Lipschitz constants. This allows us to render the selection to be invariant to rank-preserving trans-
formations of the loss function. To investigate whether our approach is viable outside its original
domain of application, we empirically compared it to the Non-Uniform Stochastic Average Gradi-
ent Method (SAG-NUS*) by Schmidt et al. (2015). SAG-NUS* is a state-of-the-art method which
tracks estimates of Lipschitz constants to select training examples non-uniformly in order to speed
up the solution of a strongly-convex optimization problem arising from the training of conditional
random fields (Schmidt et al., 2015). Our batch selection approach showed competitive performance
compared to SAG-NUS* (see Figure 4 in the supplementary material).

Non-uniform selection of batches of training data is virtually absent in deep learning. The only really
closely relevant work we are aware of is a parallel ICLR 2016 submission by Schaul et al. (2015),
where a very similar approach is used for acceleration of learning in Deep Q-Networks by prioritiz-
ing replay of relevant experiences. Another parallel ICLR submission by Alain et al. (2015) employs
importance sampling for variance reduction and to obtain an unbiased estimate of the gradient in the
context of parallel evaluations of gradients; however, no non-uniform selection is used. From Schaul
et al. (2015), we found that Hinton (2007) used importance sampling for classification on MNIST
(see also “small-data” experiments by Simpson (2015)), and, interestingly, warned that the use of
extreme values of selection probabilities such as 0.01 and 100 is dangerous because “a case that used
to be easy might have developed a large gradient while it was being ignored, and multiplying this
gradient by 100 could give the network a shock”. Note that we do not re-weight gradients, which
allows us to use much larger values for the difference in probabilities s, with a best-found value in
the order of 108. Alain et al. (2015) also notice that their algorithm’s stability is in danger due to

8
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the normalization by probabilities, the essential part of optimal importance sampling they employ
(optimal in the sense of variance reduction in estimating the local gradient, but not necessarily in
terms of better generalization, etc). To counter this effect, they add a small value to all probabili-
ties, a parameter-dependent heuristic which may drift the final approach from its theoretically-sound
origin. The authors of (Alain et al., 2015) note that their importance sampling approach is limited
to fully connected networks (at least so far), whereas our approach directly works for any kind of
network structure. We found that the use of importance sampling is not beneficial for MNIST when
used with our batch selection approach (see Figure 3 in the supplementary material).

Curriculum learning is another relevant concept where the examples are not randomly presented
but organized in a meaningful order which illustrates gradually more concepts, and gradually more
complex ones Bengio et al. (2009). In the context of deep learning, curriculum learning can be
viewed as a particular case of batch selection when s < 1 and not s > 1 as we explore in this paper.

8 LIMITATIONS

Time complexity. The sorting procedure leads to a negligible overhead for MNIST with 50.000
training datapoints. Much larger datasets will increase the absolute overhead of the sorting but the
relative overhead might continue being negligible compared to the cost of learning since networks
are typically much bigger then. If this is not the case, the bisection algorithm for sorting might be
used instead of the current naive use of QuickSort. The overhead of the whole procedure then would
scale as O(logN) per datapoint. The dominant overhead comes from the recomputation procedure,
but this can be controlled by rfreq and rratio.

Hyperparameter settings. While the values of s in order of 102 - 108 seem reasonable for MNIST,
it remains unclear what values should be used for other datasets. As for other hyperparameters,
we can of course use automated hyperparameter optimization methods to set s, but we may also be
able to derive a hyperparameter-less robust adaptive schedule. The simplest approach to choose s
would be to set it to a small value, e.g., s = 10 and iteratively increase it, e.g., by a factor of 10
until the performance does not improve anymore. In this case, rratio might be set to 1 and rfreq
(initially set to 0) should be increased. It would be of interest to automate this process similarly to
the online hyperparameter adaptation procedure given in Loshchilov et al. (2014), where an internal
success criterion is considered. While both AdaDelta and Adam are claimed to be robust to their
hyperparameter settings, we found that their performance can be further improved by means of
hyperparameter tuning (see Figure 2). However, the question of optimal hyperparameter settings is
of great interest and we plan to investigate it further with CMA-ES (Hansen & Ostermeier, 2001) and
standard Bayesian optimization methods (Bartz-Beielstein et al., 2005; Snoek et al., 2012; Bergstra
et al., 2011; Hutter et al., 2011).

Generalization to other datasets. The main limitation of the current work is the breadth of its
empirical evaluation, which only considered training of deep networks for the MNIST dataset and
training of conditional random fields for optimal character recognition. The proposed method is
expected to work well provided that the ranks of datapoints w.r.t. loss values are relatively stable
over time. Our preliminary experiments with the CIFAR-10 dataset so far only show benefits of
batch selection over random selection and not over shuffling; we are actively working on analyz-
ing the possible causes for this and at this point only report some preliminary experiments in the
supplementary material (Section 10.5).

9 CONCLUSION

While the common approach to deal with the stochasticity involved in training of deep learning
networks considers a post-processing of the gradient information incoming from batches of the
dataset, we propose to control the source of this information, the batch itself. More specifically, we
suggest to more frequently select training datapoints with the greatest contribution to the objective
function. The probability of each datapoint to be selected is decreasing with the rank of its latest
known loss value. Thus, the selection itself is invariant to rank-preserving transformation of the loss
function.

9
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Our experiments demonstrated that online batch selection speeds up the convergence of the state-
of-the-art DNN training methods AdaDelta and Adam by a factor of about 5. We also envision
that a tighter coupling of learning approaches and batch selection would allow to provide additional
speedups; for instance, one should properly link learning rates and batch size, arguably, two sides
of the same coin. The increase of the batch size over time seems to be promising to deal with the
noise involved in gradient estimation when approaching the optimum (see theoretical investigations
by Friedlander & Schmidt (2012); Babanezhad et al. (2015) and section 10.2 in the supplementary
material).

This paper provides only an initial study of possible online batch selection strategies. More ad-
vanced approaches might involve not only objective function values but also some additional indica-
tors, such as gradient amplitudes, datapoint features/classes, and similarity to other datapoints. The
selection then may consider not only the training objective function but also some proxies to the
generalization capabilities of the network.

Overall, we showed that even simple batch selection mechanisms can lead to a substantial perfor-
mance improvement. We hope that this finding will attract attention to this underexplored approach
for speeding up the training of neural networks.
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10 SUPPLEMENTARY MATERIAL

10.1 WHEN Neff = N ?

The selection pressure parameter s affects the effective size of the training data we used. Let Neff
denote the number of unique datapoints selected in the last N steps; then, Neff is likely to decrease
when s increases. However, this is not necessarily the case: albeit unlikely, one possible scenario
in which Neff would still equal N is the following: if p1 = ∞ and pi>1 = 0, the datapoint with
the greatest latest known loss ft(xt) is selected and the optimization algorithm A uses ∇ft(xt) to
minimize ft(xt), the new value ft(xt) appears to be the lowest loss value seen so far, the datapoint
is ranked last and its selection is then scheduled to be in N steps, the whole situation happens again
and again leading to the sweep over the whole dataset and thus Neff = N .

10.2 ONLINE SELECTION OF THE BATCH SIZE

We decided to move the following material to simplify the main paper.

Not only the content of the selected batch, but also its size represents a design parameter of interest.
When b = N , we have a denoised access to f . When b = 1, we obtain a noisy but N times cheaper
access to f . The negative impact of this noise supposedly depends on the distance to the optimum in
the objective and/or decision space. As we progress to the optimum over time, increasing the batch
size is an approach to deal with the noise. Moreover, the use of a relatively small batch size in the
beginning of search has a potential to bring a significant speedup, however, it has a potential risk of
performing unnecessary random walk. We therefore propose to increase batch size over time. More
specifically, we propose to consider both exponential and linear increases of b over epochs e:

be = be0 exp(log(beend
/be0)/(eend − e0))eend−e0 , (6)

be = be0 + (beend
− be0)(e− e0)/eend, (7)

where e0 and eend correspond to the first and last epochs of the increase (not necessarily the last
epoch of optimization).

The closer approach of the optimum requires a greater batch size to be used to overcome the impre-
cision of gradient estimation. Therefore, starting with relatively small batches on easy training/opti-
mization problems does not seem to be a bad idea. This intuition is supported by the recent results of
Hazan et al. showing that the Normalized Stochastic Gradient Descent (NSGD) (when the gradient
is normalized by its amplitude) provably requires a minimum batch size to achieve an ε precision,
without which the convergence of the NSGD cannot be guaranteed. The detailed theoretical analysis
of advantages of batch size scheduling can be found in (Friedlander & Schmidt, 2012; Babanezhad
et al., 2015).

We do not report the results for this section because the additional speedup provided by this pro-
cedure is pronounced in terms of epochs but not in terms of time. This is the case because small
batches are more expensive (per datapoint) to compute on a GPU. However, we do include batch
size selection procedure when dealing with hyper-parameter optimization (see section 10.5).

10.3 IMPORTANCE SAMPLING

We use Importance Sampling (IS) on top of our batch selection approach. More specifically, we
normalized gradients by normalized probabilities pi/

∑b
i=1 pi of the corresponding datapoint to be

selected (Zhao & Zhang, 2014). Figure 3 shows the results of our original approach (solid lines) and
its modified version (dotted lines) where IS is used. The latter shows a worse validation accuracy in
all cases.

10.4 RANK-BASED SELECTION FOR NON-UNIFORM STOCHASTIC AVERAGE GRADIENT
METHOD

The Non-Uniform Stochastic Average Gradient Method (SAG-NUS*) is a state-of-the-art method
which tracks Lipschitz constants estimates to select training examples for faster solving a strongly-
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Figure 3: Convergence curves of AdaDelta (Left) and Adam (Right) on MNIST dataset. Bold
lines correspond to our original approach, dotted lines correspond to its version with Importance
Sampling. The value of s denotes the ratio of probabilities to select the training datapoint with the
greatest latest known loss rather than the smallest latest known loss. Legends with s = se0 → seend

correspond to an exponential change of s from se0 to seend
as a function of epoch index e, see Eq.

(5). Legends with the prefix “r” correspond to the case when the loss values for rratio ·N = 1.0N
datapoints with the greatest latest known loss are recomputed rfreq = 0.5 times per epoch. All
curves are computed on the whole training set and smoothed by a moving average of the median of
11 runs.
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Figure 4: Objective minus optimal objective value against effective number of passes for different
deterministic, stochastic, and semi-stochastic optimization strategies. Top-left: OCR, Top-right:
CoNLL-2000, bottom-left: CoNLL-2002, bottom-right: POS-WSJ.

convex optimization problem arising from the training of Conditional Random Fields (CRFs)
(Schmidt et al., 2015). We replaced the Lipschitz constants-based proportional selection by our
rank-based selection which does not depend of Lipschitz constants themself but only on their ranks;
the rest of SAG-NUS* remained unchanged. We benchmark a wide variety of approaches using the
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source code kindly provided by Schmidt et al. (2015) on four CRF training tasks: the optical char-
acter recognition (OCR) dataset of Roller (2004), the CoNLL-2000 shallow parse chunking dataset
2, the CoNLL-2002 Dutch named-entity recognition dataset 3, and a part-of-speech (POS) tagging
task using the Penn Treebank Wall Street Journal data (POS-WSJ). The proper description of all
algorithms and experimental settings is given in (Schmidt et al., 2015). We denote our modification
of SAG-NUS* with rank-based selection as rSAG-NUS* and parameterize it by s denoting the ratio
between the greatest and smallest selection probabilities in the same way as in the main paper. We
did not try to refresh the ranking as in the main paper.

The results of rSAG-NUS* with s = 1 showed in Figure 4 corresponds to uniform selection and
defines a baseline. The results for rSAG-NUS* with s = 3 are competitive to SAG-NUS* on three
out of four datasets. The reason of a divergence seen for the CoNLL-2002 and rSAG-NUS* with s =
3, s = 4 is not yet clear but the recomputation procedure (which we omitted in these experiments)
might help to avoid it. This preliminary experiment suggests that our rank-based selection is a viable
alternative (in three cases out of four) to the Lipschitz proportional selection. The source code to
reproduce the experiments and Figure 4 is available at https://sites.google.com/site/
batchsel/.

Table 1: Hyperparameters descriptions, pseudocode transformations and ranges
name description transformation range
x1 selection pressure at e0 10−2+102x1

[10−2, 1098]

x2 selection pressure at eend 10−2+102x2
[10−2, 1098]

x3 batch size at e0 24+4x3 [24, 28]
x4 batch size at eend 24+4x4 [24, 28]
x5 frequency of loss recomputation rfreq 2x5 [0, 2]
x6 alpha for batch normalization 0.01 + 0.2x6 [0.01, 0.21]
x7 epsilon for batch normalization 10−8+5x7 [10−8, 10−3]
x8 dropout rate after the first Max-Pooling layer 0.8x8 [0, 0.8]
x9 dropout rate after the second Max-Pooling layer 0.8x9 [0, 0.8]
x10 dropout rate before the output layer 0.8x10 [0, 0.8]
x11 number of filters in the first convolution layer 23+5x11 [23, 28]
x12 number of filters in the second convolution layer 23+5x12 [23, 28]
x13 number of units in the fully-connected layer 24+5x13 [24, 29]
x14 Adadelta: learning rate at e0 100.5−2x14 [10−1.5, 100.5]
x15 Adadelta: learning rate at eend 100.5−2x15 [10−1.5, 100.5]
x16 Adadelta: ρ 0.8 + 0.199x16 [0.8, 0.999]
x17 Adadelta: ε 10−3−6x17 [10−9, 10−3]
x14 Adam: learning rate at e0 10−1−3x14 [10−4, 10−1]
x15 Adam: learning rate at eend 10−3−3x15 [10−6, 10−3]
x16 Adam: β1 0.8 + 0.199x16 [0.8, 0.999]
x17 Adam: ε 10−3−6x17 [10−9, 10−3]
x18 Adam: β2 1− 10−2−2x18 [0.99, 0.9999]
x19 adaptation end epoch index eend 20 + 200x19 [20, 220]

10.5 HYPERPARAMETER OPTIMIZATION

We investigated whether the use batch selection is still beneficial when hyperparameters are opti-
mized. We used Covariance Matrix Adaptation Evolution Strategy (CMA-ES) by Hansen & Oster-
meier (2001) in its “active” regime (Hansen & Ros, 2010) as implemented in a Python code available
at https://pypi.python.org/pypi/cma. We used a greater than default population size
λ = 30 to benefit from parallel evaluations of solutions on a mixed set of 30 GPU’s, mostly GeForce
GTX TITAN Black. Evaluation of each solution involves network building and training using input
hyperparameter values. The total time for each evaluation is limited. The best validation error found
in all epochs represents the objective function. Table 1 shows the names of hyperparameters, their

2http://www.cnts.ua.ac.be/conll2000/chunking
3http://www.cnts.ua.ac.be/conll2002/ner
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Figure 5: Convergence curves of AdaDelta (Left Column) and Adam (Right Column) on MNIST
dataset. The original algorithms are denoted by “default shuffle” (respectively, “default with ran-
dom”) when datapoints are shuffled and selected sequentially (respectively, uniformly at random).
The value of s denotes the ratio of probabilities to select the training datapoint with the greatest latest
known loss rather than the smallest latest known loss. Legends with s = se0 → seend

correspond to
an exponential change of s from se0 to seend

as a function of epoch index e, see Eq. (5). Legends
with the prefix “r” correspond to the case when the loss values for rratio ·N = 1.0N datapoints with
the greatest latest known loss are recomputed rfreq = 0.5 times per epoch. All curves are computed
on the whole training set and smoothed by a moving average of the median of 11 runs.
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Figure 6: Convergence curves of AdaDelta (Left Column) and Adam (Right Column) on MNIST
dataset. The original algorithms are denoted by “default shuffle” (respectively, “default with ran-
dom”) when datapoints are shuffled and selected sequentially (respectively, uniformly at random).
The value of s denotes the ratio of probabilities to select the training datapoint with the greatest latest
known loss rather than the smallest latest known loss. Legends with s = se0 → seend

correspond to
an exponential change of s from se0 to seend

as a function of epoch index e, see Eq. (5). Legends
with the prefix “r” correspond to the case when the loss values for rratio ·N = 1.0N datapoints with
the greatest latest known loss are recomputed rfreq = 0.5 times per epoch. All curves are computed
on the whole training set and smoothed by a moving average of the median of 11 runs.
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description and the way to transform the initial variables from the ranges [0, 1] (note, we constrain
the search) to the actual ranges. Some variables take different ranges depending on whether we run
Adadelta or Adam, the others remain inactive (e.g., x1, x2, x5) when batch selection is not used.

We performed one run for Adadelta, Adam, Adadelta with batch selection and Adam with batch
selection for time budgets of 5, 10, 15 and 30 minutes. The mean of CMA-ES was set to 0.5 for
all variables, the initial step-size was set to 0.2. The results for 34 iterations, about 1000 function
evaluations, are given in Figure 7. The results suggest that batch selection is beneficial both when
hyperparameters are random (in the very beginning of the run) and optimized (in the end of the run).
It can be seen that the results found for Adadelta and Adam with batch selection and time budget of
10 minutes are similar to the ones found by the original Adadelta and Adam after 30 minutes. This
suggests that the speedup of a factor of 3 is observed (see also Figure 2).

Figure 8 shows the results of our preliminary attempt to apply batch selection for the CIFAR-10
dataset, in a similar way as Figure 2 in the main paper does for the MNIST dataset. We note that
in this very preliminary experiment on CIFAR-10, batch selection performed slightly better than
random selection, but not yet better than shuffling; we are currently analyzing the reasons for this
behavior and are extending batch selection to generalize shuffling. We also note that, for a network
training time of 60 minutes, CMA-ES was able to improve validation error of the best solution
found from 12% in the first generation to about 10% (found at the latest 34-th generation; we used
population size 15 on 15 GeForce GTX TITAN X).

To our best knowledge, our experiments are the first where CMA-ES is used for optimization of
hyperparameters of deep neural networks. A more detailed analysis and comparison with other
techniques is required.
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Figure 7: Best validation errors found for AdaDelta and Adam with and without batch selection
when hyperparameters are optimized by CMA-ES. The results are given for different training time
budgets: 5, 10, 15 and 30 minutes.

19



Workshop track - ICLR 2016

20 30 40 50 60
9

10

11

12

13

14

15

Training time budget in minutes

M
in

im
um

 v
al

id
at

io
n 

er
ro

r 
in

 % batch selection
default shuffle
default random

Figure 8: Minimum validation error found on CIFAR-10 for deep neural network trained by Adam
with a given budget of time (15 and 60 minutes). The results correspond to the best hyperparameter
settings found by CMA-ES with population size 15 after 510 function evaluations.
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