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Abstract

Domain-specific Instruction-tuning (IT) has be-
come the defacto standard for improving the
performance of large language models (LLMs)
in specialized applications, e.g., medical ques-
tion answering. Since the IT dataset might
contain redundant or low-quality data, data se-
lection (DS) is usually required to maximize
the data efficiency. Despite the successes in
the general domain, current DS methods often
struggle to select the desired data for domain-
specific IT. One of the main reasons is that
they neglect the impact of knowledge conflicts,
i.e., the discrepancy between LLMs’ pretrained
knowledge and context knowledge of IT data,
which could damage LLMs’ prior abilities and
lead to hallucination. To this end, we propose
a simple-yet-effective Knowledge-aware Data
Selection (namely KDS) framework to select
the domain-specific IT data that meets LLMs’
actual needs. The core of KDS is to leverage
two knowledge-aware metrics for quantitatively
measuring knowledge conflicts from two as-
pects: context-memory knowledge alignment
and intra-memory knowledge consistency. Tak-
ing the medical IT as the testbed, we conduct
extensive experiments and empirically prove
that KDS surpasses the other baselines and
brings significant and consistent performance
gains among all LLMs. More encouragingly,
KDS effectively improves the model generaliza-
tion and alleviates the hallucination.

1 Introduction

While large language models (LLMs) (OpenAl,
2023; Dubey et al., 2024) have showcased power-
ful capabilities in the general domain, they often
struggle to handle the domain-specific tasks, e.g.,
medical question answering (Labrak et al., 2024).
To enhance the performance of LLMs in these spe-
cialized applications, instruction-tuning (Wei et al.,
2021) (IT) on the specific domain is usually re-
quired. Different from traditional task-specific fine-
tuning that relies on numerous training data, IT
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Figure 1: Performance comparisons (%) of differ-
ent metrics. “IFD” means the instruction-following
difficulty (Li et al., 2024), “Complexityge;;,” and
“Quality getq” are from DEITA (Liu et al., 2024b), and
the metrics in red are ours. The y-axis denotes the av-
erage performance of tuned LLaMA models, where the
details are shown in §4 and the full results are in Table 9.

only requires a relatively small dataset, as its goal is
to align the LLMs’ pretrained abilities in a desired
direction (Zhou et al., 2024). Moreover, since the
dataset might contain some undesired samples, fine-
tuning with the full dataset is sub-optimal. Hence,
it is crucial to perform the domain-specific data
selection (DS) for more effective IT.

Recently, in the general-domain IT, some DS
methods (Chen et al., 2024b; Li et al., 2024) have
been proposed and achieved remarkable perfor-
mance. Specifically, by using the heuristic automa-
tion (e.g., GPT-4 annotation) or manual selection,
they can select high-quality and diverse data, which
is beneficial to model training. However, in our pre-
liminary experiments (as illustrated in Figure 1),
we found that these methods might fail to select the
desired data for domain-specific IT. We conjecture
that these DS methods are almost data-centric and
overly focus on data quality and diversity, while
neglecting whether the selected data meets LLMs’
actual needs. This motivates us to explore a more
effective model-adaptive DS method.

Inspired by prior studies (Manakul et al., 2023;
Xu et al., 2024; Gekhman et al., 2024; Su et al.,



2024) related to LLM hallucination, we recognize
that there is a critical issue in domain-specific IT,
i.e., knowledge conflicts between the LLMs’ pre-
trained knowledge and the context knowledge of IT
training data. Since the world knowledge of LLMs
is mainly learned during the pretraining stage and
IT fails to learn additional knowledge (Ren et al.,
2024), enforcing the LLMs to align the contradic-
tory domain knowledge through IT would easily
damage their prior abilities and lead to hallucina-
tion (Gekhman et al., 2024). Thus, there raises a
question: whether we can resolve the knowledge
conflicts in domain-specific IT and select the data
desired by LLMs more effectively?

To this end, we propose a knowledge-aware data
selection framework (namely KDS) to tackle the
knowledge conflicts and boost the LLMs’ domain-
specific performance. Specifically, KDS contains
three processes: @ multiple response generation, @
knowledge-aware data scoring and @ filtering and
sampling. First, in @, we probe the LLMs’ para-
metric pretrained knowledge in the form of multi-
ple candidate responses. Then, in @, to quantita-
tively evaluate the conflicts, we design two simple-
yet-effective metrics: knowledge alignment and
knowledge consistency. The former measures
the fine-grained alignment between the LLM’s re-
sponses and corresponding answers, while the latter
focuses on the reference-free scenarios and uses the
cluster-based semantic uncertainty to measure the
consistency of LLM’s multiple responses. Lastly,
in ®, we further introduce two auxiliary strategies,
i.e., quality filter and diversity filter, to ensure the
quality and diversity of final selected data.

We take a representative domain-specific ap-
plication, i.e., medical IT, as the testbed, and
evaluate the LLaMA3 (Dubey et al., 2024) and
Qwen2.5 (Yang et al., 2024) models tuned with
KDS on a variety of medical benchmarks. Exten-
sive results show that KDS not only surpasses the
other DS methods by a clear margin, but also brings
consistent and significant performance gains (up
to +2.56% average scores) across all LLMs. In-
depth analyses prove that KDS can effectively im-
prove data efficiency and multilingual generaliza-
tion. More encouragingly, KDS alleviates the hallu-
cination of tuned LLMs by bringing up to +9.86 %
performance gains in the medical hallucination test.

Contributions. To summarize, our contributions
are three-fold: (1) We reveal that knowledge con-
flicts are critical yet under-explored in domain-

specific DS and propose a knowledge-aware DS
(KDS) framework to resolve them. (2) KDS design
two simple-yet-effective metrics to quantitatively
measure the knowledge conflicts from two aspects:
context-memory knowledge alignment and intra-
memory knowledge consistency. (3) Extensive re-
sults on medical-domain benchmarks show that
KDS outperforms the baselines by a clear margin
and effectively improves the model generalization.

2 Related Works

2.1 Domain-specific Instruction-tuning

LLMs (OpenAl, 2023; Dubey et al., 2024; Yang
et al., 2024; Liu et al., 2024a) have achieved
great success in various general-domain NLP tasks.
However, these LLMs still fall short in domain-
specific applications, such as medical question an-
swering (Labrak et al., 2024). Hence, many prior
works (Singhal et al., 2023; Li et al., 2023; Chen
et al., 2023) attempt to perform the instruction-
tuning (IT) (Wei et al., 2021; Ouyang et al., 2022)
on the specific domain for efficient model adapta-
tion. Since IT does not rely on numerous training
data (Zhou et al., 2024) and the IT dataset might
contain some undesired (e.g., low-quality or repet-
itive) data, it is usually sub-optimal to fine-tune
LLMs with the full IT dataset (Li et al., 2024).
Hence, data selection (DS) for selecting the desired
subset appears to be crucial in domain-specific IT.

2.2 Data Selection for Domain-specific IT

In the general-domain IT, many data-centric DS
methods (Chen et al., 2024b; Liu et al., 2024b; Li
et al., 2024) have been proposed, which aim to se-
lect the high-quality and diverse data via heuristic
methods (e.g., GPT-4 annotation) or manual se-
lection. However, they usually struggle to work
in domain-specific IT due to the domain charac-
teristics. Domain-specific IT is more knowledge-
intensive and contains rich professional knowledge
that has not been learned during the LLMs’ pre-
training. Enforcing LLMs to learn additional con-
flict knowledge through IT often leads to negative
effects (Ren et al., 2024; Gekhman et al., 2024).
There are only a few works (Ren et al., 2024;
Ding et al., 2024; Gekhman et al., 2024) involv-
ing analyzing and resolving this problem. Ren
et al. (2024) first employ in-context learning
(ICL) (Brown et al., 2020) to probe LLLMs’ internal
knowledge and determine whether it conflicts with
the training data. Ding et al. (2024) use a simple
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Figure 2: Overview of our KDS framework, which contains three processes: @ obtaining multiple responses of
LLM for each question; @ scoring the data with the knowledge alignment and consistency metrics; @ filtering
the low-quality and repetitive data, and sampling the final data. Notably, for ease of illustration, we only show a
representative sample and simplified formulation in (b) and (c). n denotes the number of responses for each question,
D; = % is the assigned probability of j-th response and p; = > pj is the sum of probabilities of i-th cluser.

prompt to instruct the LLMs to filter the unfamiliar
data. Although achieving remarkable performance,
they still have some shortcomings: 1) the proposed
conflict detection methods are simply based on ICL,
which is sensitive to few-shot examples and might
introduce bias into the results (Min et al., 2022; Ye
et al., 2024); 2) they mainly focus on the multiple-
choice QA settings and might fall short in free-style
generation tasks. Different from these prior studies,
we propose a knowledge-aware DS framework that
designs two automatic metrics to robustly measure
knowledge conflicts, and our framework can be
applied to the free-style generation scenarios.

2.3 Knowledge Conflicts in LLMs

There are some existing works (Xu et al., 2024;
Wang et al., 2024; Manakul et al., 2023; Zhao et al.,
2024) involving exploring the effect of knowledge
conflicts in LLM applications, such as RAG (Jin
et al., 2024) and factual reasoning (Yu et al., 2023).
However, in the context of domain-specific IT, how
to detect and resolve knowledge conflicts is still
under-explored. To the best of our knowledge, we
are one of the rare works to explore this issue in
the domain-specific IT field.

3 Method

3.1 Task Formulation

Given a base LLM M,,;;4; that has been trained in
the general-domain SFT corpus and has the basic
instruction-following ability, the task of domain-
specific DS aims to select an optimal training sub-

set for maximizing the LLM’s target domain per-
formance, i.e., medical in our study. Let D de-
notes the full training set, containing n queries
Q = {q,q2, .-, qn} and their corresponding an-
swers A = {aj,a9,...,a,}, we employ the DS
methods to select a subset S C D of size k. Lastly,
we fine-tune the M,,;;,; on S and obtain the final
domain-specific LLM M ¢ipq.

3.2 Knowledge-aware Data Selection

Overview of KDS. To tackle knowledge conflicts,
the most important thing is to quantitatively mea-
sure them. According to Xu et al. (2024), there
are two main types of conflicts: context-memory
and intro-memory conflicts. The former refers to
the discrepancy between pretrained knowledge of
Mntir and context knowledge in D. The latter
refers to the divergence of multiple responses of
Mintial for the same question. Hence, in KDS, we
first design two metrics to measure both types of
conflicts, respectively. Then, considering the im-
portance of data quality and diversity, we further in-
troduce the quality-oriented and diversity-oriented
strategies to filter the data. The overview of KDS is
shown in Figure 2, containing three processes:

©® Multiple Response Generation. To detect
knowledge conflicts, we first need to explicitly ex-
press the LLM’s parametric pretrained knowledge.
A straightforward way is to feed the question g;
into M40 and obtain its response. Considering
the instability of LLM’s output, we are inspired by
self-consistency (Wang et al., 2023), and sample



a set of candidate responses {r¢, 7%, ....r? } from
the LLM’s decoder, where m is the number of re-
sponses. In practice, we set the temperature to 0.7
and sample m = 10 responses for each question.

0 Knowledge-aware Data Scoring. Given the
reference answers and LLM’s multiple responses,
we design two metrics to measure the knowledge
conflicts: Knowledge Alignment (termed KA) and
Knowledge Consistency (termed KC). The primary
intuition of KA is that, for a question, if LLM’s
response contradicts the answer, the LLM does not
know the knowledge for the question, i.e., there is
a knowledge conflict. Specifically, similar to prior
studies (Farquhar et al., 2024; Kuhn et al., 2023),
we use an external NLI model to judge the relation-
ships between LLLM’s responses and answers. The
calculation of KA can be formulated as:

KA Doie I(NLI(r?, a;) = entailment)
i = m ’
()
where Scoref4 is the KA score for i-th data,
NLI(-) is the inference results of NLI model, clas-
sified into either entailment/neutral/contradiction.
On the other hand, since the answers in .A might
be low-quality, misleading or even unavailable in
some scenarios, the KA would not work. There-
fore, we further design a reference-free KC metric,
which focuses on the intra-memory conflict. Intu-
itively, if M,tiq1 1S not familiar with the knowl-
edge of g, it shows a high uncertainty and may
yield divergent responses. To quantitatively eval-
uate the uncertainty, we are inspired by semantic
entropy (Kuhn et al., 2023) and propose a cluster-
based knowledge consistency metric. Let p;; = %
be the uniform probability for j-th response of
Mntial, We cluster the responses with similar
knowledge by using the NLI model for semantic
matching. Specifically, if two responses are deter-
mined as “entailment”, we treat them as the same
cluster. Then, we calculate the entropy of clusters

as the ScoreC, which is formulated as:

Score

Ci
Dy, = Z Dij, H(pz) - - Zpit Ingita
jEcluster t=1
KC logn

Score;*” = ——————
logn — H(p;)

€ (0,1), 2

where p;t is the sum of probabilities of ¢-th cluster,

¢; is the number of clusters, H(p;) is the entropy
for i-th data and log n is the entropy upperbound.

Lastly, we can sort the full D by using the individ-
ual ScoreX4 and Score®C, or the combination
“Score®A+ScoreC” as the metric.

® Filtering and Sampling. As emphasized by
many prior studies (Li et al., 2024; Liu et al.,
2024b), data “quality” and “diversity” are two im-
portant factors for effective SFT. Thus, we further
introduce two auxiliary strategies, i.e., quality fil-
ter and diversity filter. For the former, we de-
sign a quality-oriented prompt (as shown in Ap-
pendix A.4) to instruct the M 44 itself to rate the
data from O to 5, and filter the low-quality data with
scores below the threshold 7. Towards the diversity,
inspired by (Liu et al., 2024b), we first convert all
data into sentence embeddings using the BGE-m3!
model (Chen et al., 2024a) and calculate the cosine
distance between the data and its nearest neighbor
in the current subset. The data with cosine distance
below the threshold \ will be filtered. This process
is iterative and stops until the size of current subset
exceeds the data budget k. The pipeline of KDS is
shown in Algorithm 1 of Appendix A.5.3.

4 Experiments

4.1 Setup

Tasks and Datasets. We construct a medical
instruction-tuning dataset by selecting some medi-
cal tasks from MedAlpaca (Han et al., 2023). These
tasks contain rich professional and up-to-date med-
ical knowledge, based on which we can better sim-
ulate the knowledge conflict problem in domain-
specific IT scenarios. In practice, the dataset is
divided into a training set of 49K samples and a
held-out test (HoT) set of 495 samples.

To make a comprehensive evaluation, we
further evaluate the models on several out-of-
domain (OOD) benchmarks. Specifically, four
multiple-choice QA benchmarks (MedMCQA (Pal
et al., 2022), MedQA (4-option) (Jin et al.,
2021), PubmedQA (Jin et al., 2019) and MMLU-
Medical (Hendrycks et al., 2020)?) and a long-form
QA benchmark (Hosseini et al., 2024) are used.
For evaluation, we utilize the Rouge-L (Lin, 2004)
as the metric for the held-out test, and the Accu-
racy for the multiple-choice benchmarks. For the
long-form QA benchmark, we follow the original

"https://huggingface.co/BAAI/bge-m3

%Following Singhal et al. (2025), we select 6 sub-tasks
relevant to medical and clinical knowledge from MMLU, and
denote this subset as MMLU-Medical.



MMLU-Medical

Method HoT MedMCQA MedQA PubmedQA Avg.
Anatomy Clinical Biology Medicine Genetics Pro-Med

Compared Results upon LLaMA-3-8B-Instruct

“Base 2087 5706  60.17 7480 6370 7170 7500 6301  81.00 7500 4741
Full-SFT 29.36 54.72 59.86 68.20 62.96 72.83 75.00 63.01 78.00 68.01 47.02
Random 29.47 56.75 60.49 68.40 68.89 73.21 78.47 65.32 80.00 73.16 48.05
Alpagasus 27.78 56.90 60.33 71.40 65.93 73.96 77.08 65.32 81.00 71.69 48.15
IFD 26.89 55.92 59.23 75.60 66.67 73.96 77.78 61.85 79.00 70.59 48.21
DEITA 28.69 55.10 58.92 73.60 69.63 74.47 78.47 60.69 78.00 72.06 48.01
3DS 27.86 55.32 59.15 72.80 67.41 75.09 78.47 63.58 80.00 7243 47.99
KDS-KA 31.64 57.42 59.23 76.60 65.93 7547 77.78 65.90 84.00 75.37 49.83
KDS-KC 30.25 57.18 60.57 73.60 67.41 75.47 78.47 64.74 84.00 73.16 49.25
KDS-KA+KC 31.09 57.30 60.09 76.60 69.63 74.72 78.47 65.32 82.00 74.63 49.87
Compared Results upon Qwen-2.5-7B-Instruct

“Base 2478 5620 6214 7300 7207 7736 8611  67.63  83.00 7647  48.87
Full-SFT 35.55 57.11 60.57 73.20 71.11 75.85 84.72 68.21 83.00 76.10 50.49
Random 34.56 55.65 60.80 73.00 67.41 76.60 83.33 69.36 82.00 76.47 49.98
Alpagasus 34.39 55.82 62.06 74.00 70.37 78.49 85.42 69.36 85.00 76.47 50.63
IFD 30.61 52.81 60.49 75.40 68.15 77.74 84.72 68.21 81.00 76.47 49.23
DEITA 29.42 55.73 62.06 74.80 71.11 77.36 84.03 65.90 82.00 74.63 49.64
3DS 28.88 55.83 61.43 74.00 71.11 78.87 86.81 68.79 84.00 76.84 49.65
KDS-KA 35.45 55.82 61.51 75.60 71.11 78.11 87.50 68.21 86.00 77.21 51.07
KDS-KC 35.17 56.42 62.53 75.00 71.11 78.49 84.72 68.21 87.00 79.04 51.20
KDS-KA+KC 35.30 56.04 62.84 76.20 74.07 78.11 85.42 68.21 86.00 76.47 51.40
Compared Results upon Qwen-2.5-14B-Instruct

“Base 2403 6361 6984 7820 7530 8377  89.58 7572 88.00 8346  53.05
Full-SFT 36.63 62.90 69.05 76.60 72.59 83.02 90.97 78.03 91.00 83.82 54.74
Random 35.59 62.90 69.31 77.60 75.56 84.15 90.28 75.14 88.00 84.93 54.74
Alpagasus 35.86 63.50 69.78 77.80 75.56 82.64 89.58 75.72 89.00 85.03 54.98
IFD 35.07 63.33 69.99 77.80 73.33 82.26 89.58 75.14 88.00 85.66 54.75
DEITA 30.50 63.33 69.21 78.60 72.59 83.02 88.89 76.30 89.00 83.82 53.99
3DS 32.30 63.11 69.36 78.00 75.56 83.02 88.19 73.99 91.00 82.72 54.20
KDS-KA 36.53 63.71 70.46 78.60 74.07 83.77 90.28 77.46 89.00 86.76 55.48
KDS-KC 36.74 63.88 69.76 77.80 75.56 83.77 89.85 76.30 89.00 85.29 55.25
KDS-KA+KC 36.81 63.78 70.86 78.40 75.56 83.40 88.89 77.49 91.00 86.40 55.61

Table 1: Performance comparison (% ) on the held-out test (HoT) and multiple-choice medical QA benchmarks.
“Avg.” denotes the macro-average performance. Best results are in bold, and second-best results are underlined.

paper and employ the LLM-as-a-Judge as the met-
ric. Specifically, we use the GPT-40-mini to judge
from multiple aspects, covering Correctness, Help-
fulness, Harmfulness, Reasoning and Efficiency.
The details of all tasks are shown in Appendix A.1.

Models. We conduct extensive experiments
on three widely-used LLMs across different

model architectures and sizes, i.e., LLaMA-
3-8B-Instruct (Dubey et al., 2024), Qwen-
2.5-7B/14B-Instruct (Yang et al.,, 2024).

Within our framework, we use the powerful
DeBERTa-v3-large-mnli’ as the NLI
model, and set the quality threshold 7 to 3 and
diversity threshold A to 0.9. We fine-tune the LLMs
using the instruction data selected by different
methods. The default training data budget is set
as 5K. All models are trained with the LoRA (Hu
et al., 2021). The details of model training and
inference can be found in Appendix A.2.

3https://huggingface.co/MoritzLaurer/DeBERTa-v3-
large-mnli-fever-anli-ling-wanli

Baselines. We compare KDS with a series of
counterparts: Random, Alpagasus (Chen et al.,
2024b), IFD (Li et al., 2024), DEITA (Liu et al.,
2024b) and 3DS (Ding et al., 2024). For reference,
we also report the results of base models (Base) and
the models fine-tuning with the full training dataset
(Full-SFT). We re-implement the compared base-
lines following the original papers. The implemen-
tation of baselines is introduced in Appendix A.3.

4.2 Compared Results

The main results on HoT and multiple-choice med-
ical QA are reported in Table 1, and the results on
long-form medical QA are illustrated in Figure 3.

KDS surpasses the previous DS strategies by a
clear margin. As seen, “Full-SFT” and “Ran-
dom” usually perform poorly and even worse than
the original base model, indicating the necessity of
carefully-designed DS during the domain-specific
adaptation of LLMs. The previous DS methods
often struggle to improve the performance, because



Ours Win Tie Ours Lose
Correctness T - 40.8 43.8 155
Helpfulness T - 61.5 24.8 13.8
Harmfulness | | 6.2 70.8 23.0
Reasoning T - 57.5 26.0 16.5
Efficiency T - 55.8 245 19.8
1] Zb 4:0 6‘0 Sb 100

(a) Ours vs Random (%)

Correctness T - 26.8 53.5 19.8
Helpfulness T - 44.2 338 22.0
Harmfulness | | 7.8 79.0 13.2
Reasoning T - 41.8 34.8 235
Efficiency T - 395 335 27.0
1] Zb 4‘0 Gb Sb 100

(b) Ours vs 3DS (%)

Figure 3: Comparative winning rates (%) of KDS-
KA+KC vs other counterparts. We evaluate the tuned
LLaMA on the long-form medical QA benchmark us-
ing the GPT-40-mini as the LLM judge. Due to space
limitations, we only illustrate the results compared to
Random and 3DS. More results are shown in Figure 8.

they overly focus on the data quality and neglect
the knowledge conflict problem. In contrast, by
addressing this problem, our KDS framework can
bring consistent performance gains and outperform
the other counterparts by a clear margin. These
results confirm our motivation in §1.

KDS brings consistent and significant perfor-
mance gains among all model sizes and types.
We see that our KDS not only achieves remark-
able performance on the LLaMA models, but also
brings significant performance gains on the Qwen
models. Specifically, compared to the base models,
KDS achieves up to +2.46 %, +2.53% and +2.56 %
average gains for the LLaMA-3-8B-Instruction,
Qwen-2.5-7B/14B-Instruct models, respectively.
These results prove the effectiveness and univer-
sality of our KDS framework.

KDS effectively improves the long-form QA per-
formance. Figure 3 shows the winning rates of
our method (KDS-KA+KC) against other baselines
on the long-form medical QA. Due to space limi-
tations, we only show the performance of LLaMA
models tuned with ours and two baselines, i.e.,
“Random” and “3DS”. Specifically, compared to the
“Random”, KDS achieves much higher correctness
and helpfulness, while having lower harmfulness
on the long-form QA task. That is, KDS can effec-
tively improve the long-form QA performance.

Method KA score KC score
Base 47.41
Random 48.05
JOws 4983 4958
-w/0 quality 49.60 10.23 49.35 10.23
-w/o diversity 49.54 10.29 49.12 10.46
-w/o quality&diversity  49.09 974 48.60 (93

Table 2: Ablation study on the different strategies.
Red results denote the performance drops against the
full KDS. LLaMA-3-8B-Instruct is used in this study.

4.3 Ablation Study

Here, we gradually investigate the effect of each im-
portant component of our KDS. Notably, we mainly
use the LLaMA-3-8B-Instruct as the base model
and report the average performance of HoT and
multiple-choice QA benchmarks in this part. To
better investigate the effect of KA/KC, we use the
individual metric in our KDS.

Effect of data filter strategies. As mentioned in
§3, to ensure the data quality and diversity, we ad-
ditionally introduce a quality-orient and diversity-
orient data filter strategies upon the KA and KC
metrics. Here, to verify the effect of these strate-
gies, we compare our full KDS with the following
variants: 1) “-w/o quality” removes the quality fil-
ter; 2) “-w/o diversity” removes the diversity filter;
3) “-w/o quality&diversity” removes both the qual-
ity and diversity filter. The contrastive results are
shown in Table 2, from which we find that remov-
ing each strategy will lead to performance degrada-
tion and the full KDS performs best. This proves
the effectiveness of these strategies.

Influence of NLI model sizes. In KDS, we use
an extra NLI model to determine whether LLMs’
outputs are aligned with the references. Intu-
itively, a larger NLI model can achieve more ac-
curate judgments and lead to better performance.
To verify it, we conduct experiments by utilizing
three different sizes of DeBERTa-based NLI mod-
els, i.e., xsmall, base and large. To better
showcase its effect, we directly compare the per-
formance between models trained with the high
KA/KC samples and those with low KA/KC sam-
ples. Figure 4 (a) shows the contrastive results.
As seen, larger NLI models indeed perform better
in distinguishing the KA/KC of samples, confirm-
ing our conjecture. Thus, we choose to use the
DeBERTa-v3-large-mnli as the NLI model.
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Figure 4: (a) Effect of NLI models with different model sizes, (b) Parameter analysis of quality threshold 7 and
(c) Parameter analysis of diversity threshold A\. We use the LLaMA-3-8B-Instruct as the base model and report
the average performance of HoT and multiple-choice QA benchmarks. Full results are reported in Appendix A.6.

Impact of quality threshold 7. The threshold 7,
used to filter the low-quality data, is an important
hyper-parameter in KDS. In this study, we analyze
its influence by evaluating the performance with
different 7*, spanning from O to 4. Notably, since
we are performing individual analyses of quality
threshold, we do not use the diversity strategy here.
Figure 4 (b) illustrates the average results, in which
we can find that: 1) increasing the 7 from 0 to 3
brings consistent performance gains, indicating that
filtering the low-quality data is necessary; 2) too
large 7 (i.e., 4) would lead to performance degra-
dation, as many helpful samples might be ignored.
KDS performs best with 7 = 3, thus leaving as our
default experimental settings.

Impact of diversity threshold \. The factor A,
which is used to control the data diversity, is also
needed to be investigated. Figure 4 (c) illustrates
the results of varied A ranging from 0.7 to 0.95.
Overemphasizing diversity may cause too many
samples with high KA/KC scores to be filtered,
thus leading to significant performance drops. In
contrast, appropriately reducing the A can achieve
a better trade-off between model performance and
data diversity. More specifically, the case of A =
0.9 performs best, and we thereby use this setting
in our experiments.

5 Discussion

Here, we conduct further analyses to discuss: 1)
whether KDS still works at other data scales, and 2)
whether it gains better model generalization.

4Since the highest quality score is 5 and the corpus with a
quality score of 5 might be less than 5K samples (as shown in
Figure 7), we do not conduct experiments with 7 = 5.
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Figure 5: Results at various training data scales. We
use the LLaMA-3-8B-Instruct as the base model.

5.1 Does KDS still Work at other Data Scales?

In the above experiments, we mainly evaluate our
KDS under the training data budget of 5K samples.
Some readers may wonder whether KDS works in
the other training settings. To verify it, we select
varied numbers of samples using different data se-
lection methods and use them to train the LLaMA3-
8B model, respectively. The performance com-
parisons of different data selection methods are
illustrated in Figure 5. As seen, among all data
scales, our KDS can consistently outperform the
other counterparts. More encouragingly, using only
1K training samples, our method can outperform
other methods that use 5K samples. Takeaway: our
KDS can effectively improve the data efficiency
and work well at varied data scales.

5.2 Does KDS Improve the Generalization?

The IT is known to improve the model generaliza-
tion of LLMs (Wei et al., 2021). Intuitively, by
selecting the high-quality data aligned with LLMs’
prior knowledge, KDS can achieve smoother and



Method Reasoning FCT Reasoning Fake Reasoning Nota Average
Acc Score Acc Score Acc Score Acc (A1) Score (A 1)
Base 43.28 54.86 74.76 12.72 35.18 35.80 51.07 34.46
"~ Random 4617 5856  53.18 771 1511  -11.53 3815 1825

Alpagasus 45.74 60.69 60.98 9.52 18.37 -3.84 41.7043 55 22124385
IFD 47.45 64.73 51.24 7.26 17.81 -5.18 38.8340.63 222741402
DEITA 46.95 63.50 55.38 8.22 16.73 -1.70 39.69+1 54 21.3443.09
3DS 40.78 48.96 61.52 9.64 15.46 -10.72 39.25+1.10 15.96)5 29
KDS-KA 48.17 66.41 56.35 8.44 21.98 4.66 42.17 1402 26.5045 25
KDS-KC 48.90 68.14 51.24 7.26 23.79 8.94 41.3143 16 28.1119.86

Table 3: Results of different tuned Qwen2.5-7B models on Reasoning Hallucination Tests (Pal et al., 2023).
Green and red results refer to the performance gains and drops against the “Random” baseline, respectively.

Base Alpagasus 3DS
Full-SFT IFD ——— KDS-KA
Random DEITA —— KDS-KC

French English

39 59.66

Japanese

Russian Spanish

Figure 6: Comparative results of different tuned
Qwen2.5-7B models on the MMedBench (Qiu et al.,
2024). More detailed results are presented in Table 13.

more effective domain adaptation, thus resulting in
better generalization. To verify it, we further ana-
lyze the effect of KDS from the following aspects:

Multilingual Generalization. We evaluate the
tuned Qwen2.5-7B models on the popular mul-
tilingual medical QA benchmarks, i.e., MMed-
Bench (Qiu et al., 2024), and illustrate the compar-
ative results in Figure 6. As seen, our KDS brings
better performance gains against the other meth-
ods across all languages. Specifically, compared to
the base model, KDS achieves up to +4.17 % aver-
age performance gains, especially +6.25% gains
in Russian and +3.79% gains in Chinese.

Hallucination Alleviation. As stated by Pal et al.
(2023), IT has the side effect of exacerbating
the hallucination of LLMs. Here, we investigate
this problem by evaluating the tuned LLMs on a
popular medical hallucination benchmark, Med-
HALT (Pal et al., 2023). Specifically, we use the

“Reasoning Hallucination Tests” as the test set and
report the results of Qwen2.5-7B models in Table 3.
Following Pal et al. (2023), we measure the accu-
racy and pointwise score® for evaluation. It can
be found that IT indeed leads to more serious hal-
lucination, as “Random” method causes -16.21%
average score drops. More encouragingly, our KDS
can effectively alleviate this side effect and bring
up to +9.86 % average score gains against the “Ran-
dom” method. Takeaway: These results prove that
our KDS can not only improve the multilingual
generalization, but also effectively alleviate the
hallucination problem.

= Notes: Due to space limitations, we provide
more analyses in Appendix A.5, covering case
study in A.5.1, reliability of NLI models in A.5.2,
and efficiency of KDS in A.5.3.

6 Conclusion

In this paper, we reveal that fine-tuning the LLMs
using the data contradictory to LLMs’ pretrained
knowledge would damage LLLMs’ prior abilities
and lead to poor performance. In response to this
problem, we propose an innovative knowledge-
aware DS (KDS) framework, which involves using
two metrics to quantitatively measure the knowl-
edge conflicts. By filtering the data with higher
knowledge conflicts and sampling the high-quality
and diverse data, KDS can effectively stimulate
the LLMs’ internal abilities and boost the domain-
specific performance. Extensive results on medical-
domain benchmarks demonstrate the effectiveness
and universality of KDS. Moreover, in-depth anal-
yses prove that KDS can achieve higher data effi-
ciency and alleviate the model hallucination.

SEach correct prediction is awarded +1 point, while each
incorrect prediction incurs a penalty of -0.25 points.



Limitations

Our work has several potential limitations. On the
one hand, given the limited computational budget,
we only validate our KDS on up to 14B LLMs in
the main experiments. It will be more convincing
if scaling up to super-large model size (e.g., 70B)
and applying KDS to more cutting-edge model ar-
chitectures. On the other hand, besides the medical
domain, we believe that our KDS has great poten-
tial to expand to more domains, such as finance
and law. We will explore more domain-specific
applications of KDS in future work.

Ethics and Reproducibility Statements

Ethics We take ethical considerations very seri-
ously and strictly adhere to the ACL Ethics Policy.
This paper proposes a knowledge-aware data se-
lection framework to improve the domain-specific
performance of LLMs. It aims to select the desired
data with low knowledge conflicts, instead of en-
couraging them to learn privacy knowledge that
may cause the ethical problem. Moreover, all train-
ing and evaluation datasets used in this paper are
publicly available and have been widely adopted
by researchers. Thus, we believe that this research
will not pose ethical issues.

Reproducibility In this paper, we discuss the
detailed experimental setup, such as training hyper-
parameters, implementation of baselines, and statis-
tic descriptions. More importantly, we have pro-
vided our code and data in the Supplementary
Material to help reproduce our results.
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A Appendix
A.1 Details of Tasks and Datasets

In this work, we conduct extensive experiments
on several popular medical QA benchmarks. In
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Dataset #Type #Sample
Medical instruction-tuning
" Medical Flashcards ~~ long-form QA 33,553
WikiDoc long-form QA 10,000
WikiDoc-Patient-Info long-form QA 5,942
" Data Spliing
- Full-SFT Train long-form QA 49,000
- Held-out Test (HoT) long-form QA 495

Out-of-domain test

MedMCQA multi-choice 4,183
MedQA-4options multi-choice 1,273
PubmedQA multi-choice 500
MMMLU-Medical
- Anatomy (Anatomy) multi-choice 135
- Clinical-Knowledge (Clinical) multi-choice 265
- College-Biology (Biology) multi-choice 144
- College-Medicine (Medicine) multi-choice 173
- Medical-Genetics (Genetics) multi-choice 100
- Professional-Medicine (Pro-Med) multi-choice 272
" Long-form Medical QA' ~ long-form QA 400
More in-depth analyses
"MMedBench
- Chinese multi-choice 3,426
- English multi-choice 1,273
- French multi-choice 321
- Japanese multi-choice 160
- Russian multi-choice 256
- Spanish multi-choice 2,742
"MedHalt
- Reasoning FCT multi-choice 18,866
- Reasoning Fake multi-choice 1,858
- Reasoning Nota multi-choice 18,866

Table 4: Tasks descriptions and statistic information
of all used datasets in the our study.

addition, the multilingual medical QA tasks and
medical hallucination detection tasks are used to
reveal the underlying mechanism of our method.
Here, we introduce the descriptions of these tasks
and datasets in detail. Firstly, we present the statis-
tics of all datasets in Table 4. Then, each task is
described as:

Medical Instruction-tuning. Since there is not a
standard medical IT dataset, like the Alpaca (Taori
et al., 2023) in the general domain, we construct
the medical IT dataset by collecting some exist-
ing tasks from the MedAlpaca (Han et al., 2023).
Notably, considering the inference budgets, we do
not use the full MedAlpaca dataset (about 1.5 mil-
lion data points) but select a representative subset
of similar data size to Alpaca, containing Medical
Flashcards, Wikidoc and Wikidoc Patient Informa-
tion. Specifically, Medical Flashcards are sourced
from Anki Medical Curriculum® flashcards, cov-
ering the entirety of the medical school curricu-
lum, addressing subjects such as anatomy, phys-

®https://apps.ankiweb.net



iology, pathology, and pharmacology. Han et al.
(2023) harnessed GPT-3.5-Turbo to restructure the
cards into coherent, contextually pertinent question-
answer pairs. The questions and answers in this
dataset are concise and targeted, as the flashcards
offer limited space for incorporating extensive in-
formation. Wikidoc and Wikidoc Patient Informa-
tion consist of medical question-answer pairs ex-
tracted from WikiDoc’, a collaborative platform
for medical professionals to share and contribute
up-to-date medical knowledge. The questions and
answers are rephrased by using GPT-3.5-Turbo. Af-
ter collecting the data, we randomly select 49,000
samples as the training dataset and use the other
495 samples as the held-out test.

MedMCQA. MedMCQA (Pal et al., 2022) con-
sists of 4-option multiple-choice QA samples from
the Indian medical entrance examinations (Al-
IMS/NEET). This dataset covers 2.4K healthcare
topics and 21 medical subjects. We use the valida-
tion set with 4,183 questions for evaluation.

MedQA. MedQA (Jin et al., 2021) consists of
questions and corresponding 4-option or 5-option
answers in the style of the US Medical License
Exam (USMLE). We follow prior works (Chen
et al., 2023) and use the 4-option MedQA with
1,273 samples as the evaluation set.

PubmedQA. PubMedQA (Jin et al., 2019) con-
sists of 200K artificially created multiple-choice
QA samples and 1K expert-labeled samples. Given
a PubMed abstract as context and a question, LLM
needs to predict a yes, no, or maybe answer. Fol-
lowing Singhal et al. (2023), we use the 500 test
samples for evaluation.

MMLU-Medical. MMLU (Hendrycks et al.,
2020) is a comprehensive benchmark, including
exam questions from 57 subjects (e.g., STEM
and social sciences). Each MMLU subject con-
tains 4-option multiple-choice QA samples. Sim-
ilar to prior works (Singhal et al., 2025), we se-
lect 6 subjects that are most relevant to medi-
cal and clinical knowledge: Anatomy, Clinical-
Knowledge, College-Biology, College-Medicine,
Medical-Genetics and Professional-Medicine. We
denote this set as MMLU-Medical.

Long-form Medical QA. This dataset (Hosseini
et al., 2024) is a new publicly available medical

"https://www.wikidoc.org
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benchmark of real-world consumer medical ques-
tions with long-form answer evaluation, annotated
by medical doctors. For the evaluation criteria, it
instructs the LLMs to perform the pairwise com-
parisons using a fine-grained annotation scheme,
covering Correctness, Helpfulness, Harmfulness,
Reasoning, Efficiency and Bias. In our experiments,
we found that almost all models exhibit similar bais
performance. Thus, we ignore the Bias and use the
other criteria for evaluation.

MMedBench. MMedBench (Qiu et al., 2024) is
a multilingual medical multiple-choice QA bench-
mark across six primary languages: English, Chi-
nese, Japanese, French, Russian, and Spanish. The
entire test set of MMedBench comprises 8,518 QA
pairs. For a unified evaluation, we remove the
samples with multiple answers and use the filtered
8,178 samples as the evaluation set.

MedHalt. MedHalt (Qiu et al., 2024) is
a recently-proposed comprehensive evaluation
framework designed to evaluate hallucination in
medical LLMs. MedHalt contains two hallucina-
tion tests, i.e., reasoning hallucination tests and
memory-based hallucination tests. The former is
designed to assess how well an LLM can reason
about a given problem by means of False Confi-
dence Test (FCT), None of the Above (Nota) Test,
and Fake Questions Test (Fake). The latter focuses
on evaluating LLMs’ abilities to retrieve accurate
information from their encoded training data. In
our study, we use the reasoning hallucination tests
for hallucination evaluation.

A.2 Training and Evaluation Details

For model training, we fine-tune all LLMs with a
batch size of 32 and a peak learning rate of le-4.
The warm-up ratio is 0.1 and the maximum tok-
enizer length is 2,048. All models are trained with
LoRA (Hu et al., 2021) for 3 epochs. We conduct
all experiments on 8 NVIDIA A100 (40GB) GPUs.
During inference, we set the temperature to O for
reproducibility, and set the maximum output length
to 256 tokens. For evaluation, we use the pub-
lic Im-evaluation-harness® toolkit to mea-
sure the zero-shot accuracy of LLMs on multiple-
choice QA benchmarks, while using LLLM-as-a-
Judge to measure LLMSs’ performance on the long-
form medical QA benchmark. More specifically,
GPT-40-mini is used as the automated evaluator.

8https://github.com/EleutherAl/lm-evaluation-harness



A.3 Implementation of Baselines

In experiments, we compare our KDS with several
baseline methods. Here, we introduce the imple-
mentation of these methods in detail. Specifically,

Full-SFT. We fine-tune the LLMs with the full
IT training dataset without using DS methods. This
baseline is used to demonstrate the necessity of DS
for domain-specific IT.

Random. We randomly sample 5K data from the
IT training dataset and fine-tune the LL.Ms with
these data. This baseline is used as the vanilla DS.

IFD. Following the original paper (Li et al.,
2024), we first calculate the Instruction Follow-
ing Difficulty (IFD) scores for each data point of
the IT training dataset, and filter the data with I[FD
score exceeding 1. Lastly, we sort the dataset based
on IFD scores and select the Top 5K data as the
training subset.

Alpagasus. Chen et al. (2024b) design a prompt
to instruct the ChatGPT to score the data and select
the high-score subset. In our implementation, we
employ the same prompt and use the GPT-40-mini
as the automatic evaluator to score the data. After
sorting the data based on the score, we select the
Top 5K data for training.

DEITA. DEITA (Liu et al., 2024b) aims to se-
lect the data via a quality scorer and a complexity
scorer. In practice, we first score and sort the data
by using the open-source LLaMA-based quality”
and complexity scorers!®. Then, we use the rec-
ommended diversity-oriented method in (Liu et al.,
2024b) to select the Top 5K diverse data as the
training corpus.

3DS. 3DS (Ding et al., 2024) is the most rele-
vant method to us, which also attempts to select
the data that meets the LLMs’ actual needs in the
medical IT field. Different from ours, it first filters
irrelevant or redundant data via a prompt and uses
three metrics (i.e., Instruction Understanding, Re-
sponse Confidence, and Response Correctness) to
select the appropriately challenging data. We use
the same prompt and follow the recommendations
in the original paper to select SK samples.

*https://huggingface.co/hkust-nlp/deita-quality-scorer
https://huggingface.co/hkust-nlp/deita-complexity-
scorer

13

mmm  LLaMA-3-8B-Instruct

30k == Qwen-2.5-7B-Instruct
*2 B Qwen-2.5-14B-Instruct
2
(=}
<
= 20k
=
S
=
-
o)
E
g 10k
i I

0 = .I I ,I
0 1 2 3 4 5

Quality Score

Figure 7: Distributions of quality score measured by
different base LLMs.

A.4 Prompt Details

Here, we present the detailed prompts for the qual-
ity filter, and the prompts for evaluating the perfor-
mance on the long-form QA benchmark, respec-
tively. Specifically, we instruct the LLMs to rate
the data from O to 5 via the following prompts:

Quality Filter Prompt

You are a fair and professional medical Al
assistant. Your task is to rate according to
the quality of the response to the instruction
and the input. Each response receives
a score on a scale of O to 5, where a
higher score indicates a higher level of
quality. Please directly output a single line
containing the value indicating the scores.

Instruction: <instruct>
Input: <question>
Response: <answer>

\. .

In Figure 7, we illustrate the distributions of qual-
ity scores measured by different base LLMs. In
general, the quality scores of different LLMs show
a normal distribution, indicating that LLMs can
measure the quality of medical data. For the evalu-
ation of the long-form medical QA benchmark, we
follow prior work (Hosseini et al., 2024) and use
the following prompts for instructing GPT-40-mini
to make the judgment.

Evaluation Prompt for long-form

medical QA benchmark

You are an expert medical evaluator. Your task
is to act as an impartial judge and evaluate




the quality of responses generated by two Al
models. We will provide you with a medical
question, a pair of Al-generated answers
(Response A and Response B), and a set of
evaluation criteria. You should first read the
medical question, and then evaluate the quality
of the responses with regard to each criterion
by comparing the two responses. Answer
the question asked in each criterion. Avoid
positional biases and ensure that the order in
which the responses are presented does not
influence your decision. Do not allow the length
of the responses to influence your evaluation.
Be as objective as possible. Output your final
verdict for each criterion by strictly following
this format: “response_a” if Response A is
better, “response_b” if Response B is better,
“tie” if both responses are equally good.

## Medical Question:
{question}

[The Start of Response A]
{response of modell}
[The End of Response A]
[The Start of Response B]
{response of model2}
[The End of Response B]

## Evaluation Criteria:

1. Correctness: Which answer is more correct
and accurate considering the current consensus
of the scientific and clinical community?

2. Helpfulness: Which answer is more helpful?
Measure helpfulness based on the model’s
ability to assist users, considering the question’s
intent.

3. Harmfulness: Which answer poses a higher
risk of causing harm?

4. Reasoning: Which answer demonstrates
better reasoning steps? (Correct rationale or
manipulation of knowledge for answering the
question.)

5. Efficiency: Which answer provides accurate
medical knowledge and descriptions without
omitting important relevant facts or including
extraneous information?

## Output Format

Please provide your evaluation results in
the following JSON format by filling in the
placeholders in []:
{“correctness’:

“helpfulness”: {“verdict”: “[verdict]”},
“harmfulness”: {“verdict”: “[verdict]”}, “rea-
soning”: {“verdict”: “[verdict]”}, “efficiency”:
{“verdict”: “[verdict]”}}

{“verdict”:  “[verdict]”},
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A.5 More analyses
A.5.1 Case Study

To have a close look, we provide some case studies
in this part. Taking two questions in the long-form
medical QA benchmark as examples, we report
the comparisons of LLaMA models tuned with dif-
ferent methods in Table 5. Specifically, for our
method, we use the combined “KA+KC” metric in
this study. Since the long-form medical QA bench-
mark only provides the questions without answers,
we present the outputs of a proprietary LLM, i.e.,
GPT-40, as reference answers. It can be found
that, with the help of our KDS, LLM can achieve
more effective domain adaptation and output more
professional and accurate responses.

For a better understanding of our proposed met-
rics, we additionally show some comparative ex-
amples of high and low metric scores in Table 7.
As seen, our methods can indeed distinguish the
samples with high knowledge conflicts.

A.5.2 Reliability of NLI models

As mentioned in §4, we use the DeBERTa-v3 (He
et al., 2021) model tuned with MNLI (Williams
et al., 2018) as the NLI models in our KDS. Some
readers may wonder whether these NLI mod-
els have the ability to identify knowledge align-
ment/consistency. To investigate this, we manually
label 100 pairs of answer and model response, and
evaluate the performance of these NLI models. The
results are shown in Table 8, from which we find
that larger NLI models achieve better performance,
confirming our statements in §4.3. More specifi-
cally, the large-size model achieves an accuracy of
up to 89%. Thus, we believe that it is reliable to
use them as NLI models in our KDS.

Task base

85%

xsmall

79%

large

89%

NLI accuracy

Table 8: Performance of NLI models with varied
model sizes on the medical-domain test sets. We man-
ually label 100 pairs of answers and model responses as
the test in this experiment.

Notably, since DeBERTa-v3-large-mnli
has achieved remarkable performance and there
is a lack of a medical NLI dataset suitable for
LLMs, we do not attempt to further fine-tune the
NLI model on the medical NLI corpus in this study.
Nevertheless, we believe that incorporating more
domain-specific knowledge into the NLI models



has the potential to further boost the effectiveness
of our KDS, which is in our future work.

A.5.3 Efficiency of KDS

In this part, we discuss the efficiency of our KDS
framework. First, we present the overall pipeline
of our KDS in Algorithm 1.

Algorithm 1 Knowledge-aware Data Selection

1: Input: The full training dataset D = {Q, A}, base LLM
Mintial, data budget k, quality filter threshold 7, diver-
sity filter threshold A

: Output: The selected subset S

: Initialize Empty Dataset S

: for Each sample (¢, a) € D do

Obtaining multiple responses of Mptiq; for ¢
Calculating Score®“ in Eq. 1 or Score’“ in Eq. 2
end for

: Sorting D with Score®4 or Score

: Getting the sorted Pool D*

: for Each sample (¢,a) € D* do

Obtaining quality score s4 using the prompt in A.4

KC

Obtaining the sentence embedding emb(q, a) using
the BGE-m3 model

13:  // Cos(emb(q, a),S) denotes the cosine distance be-
tween emb(q, a) and its nearest neighbor in S

14:  if s < 7 and Cos(emb(q,a),S) < X then

15: S+ SuU{(g,a)}

16:  else

17: Continue

18:  endif

19:  if |S] equals to k then

20: Break

21:  endif

22: end for

Specifically, KDS mainly contains two forward-
pass processes of LLMs (i.e., quality filter and
knowledge-aware data scoring), which could lead
to some additional budgets. In practice, we can
first perform the quality filter and select a rela-
tively small high-quality subset for the subsequent
knowledge-aware data scoring. By doing so, the in-
ference budgets can be greatly reduced. Moreover,
the NLI checking and diversity filter processes only
require the smaller models, which will not induce
much latency. In general, compared to the prior
DS methods that rely on heuristic methods (e.g.,
GPT-4 annotation) or manual selection, our KDS
is relatively more feasible in real-world applica-
tions, and the latency of KDS is tolerable against
its performance gains.

A.6 Full Results

Here, we report the full results of experiments in
our main paper. Specifically, Figure 8 shows more
comparative ELO results of LLaMA models tuned
with ours and the other DS methods. Figure 9
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shows more visualizations of performance com-
parisons on the MMedBench. Table 9 shows the
detailed results using different metrics. Table 10
shows the detailed results of the ablation study.
Table 11 shows the detailed results of parameter
analyses of 7 and A. Table 12 shows the detailed
results using different NLI models. Table 13 shows
the detailed results on the MMedBench. Table 14
shows the detailed results of data scaling. Please
refer to the figures and tables for more details.



Ours Win Tie Ours Lose Ours Win Tie Ours Lose Ours Win Tie Ours Lose
Correctness 1 1 46.8 275 25.8 40.8 4338 155 252 565 18.2
Helpfulness 1 - 635 122 242 61.5 248 138 40.8 39.0 202
Harmfulness | { 68 658 275 62 70.8 23.0 6.8 0.8 125
Reasoning T | 58.8 125 288 575 26.0 165 39.0 400 210
Efficiency 1 { 60.8 122 270 558 245 198 375 395 230
0 20 40 60 80 100 o 20 40 60 80 100 0 20 a0 60 80 100
(a) Ours vs Base (b) Ours vs Random (¢) Ours vs Alpagasus
Correctness 1 - 50.5 37.0 125 24.8 55.0 202 268 535 19.8
Helpfulness 1 - 66.5 20 115 39.0 37.0 24.0 442 338 220
Harmfulness | {5.2 715 232 72 7712 155 7.8 79.0 132
Reasoning T | 655 20 125 37.0 37.8 252 418 34.8 235
Efficiency T | 58.2 28 190 36.0 36.8 272 395 335 27.0
0 20 40 60 80 100 o0 20 40 60 80 100 0 20 40 60 80 100
(d) Ours vs IFD (e) Ours vs DEITA (f) Ours vs 3DS
Figure 8: Comparative winning rates (%) of KDS-KA+KC v.s. other baselines on the long-form medical QA

benchmark (Hosseini et al., 2024). LLaMA-3-8B-Instruct is used as the base model, and GPT-40-mini is used as
the automated evaluator.

—— Base Full-SFT Random Alpagasus IFD DEITA 3DS = KDS-KA — KDS-KC

French English French English French English

Chinese Japanese

a
Russian

Russian Spanish

Russian

Spanish Spanish

(a) LLaMA-3-8B-Instruct (b) Qwen-2.5-7B-Instruct (¢) Qwen-2.5-14B-Instruct

Figure 9: Visualization of comparative results on the MMedBench (Qiu et al., 2024). The more detailed results
are presented in Table 13.
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Question: How long can a healthy man expect to live?
GPT-40: In the United States, the average life expectancy for a healthy man is around 76 years . ..

Random: A healthy man can expect to live for approximately 78 years.

IFD: The average life expectancy of a healthy man is 79 years.

Alpagasus: The average life expectancy for a healthy man is around 76 years old . ..

DEITA: The average life expectancy for a healthy man is around 76 years ...

3DS: A healthy man can expect to live for approximately 78.7 years, according to the Centers for
Disease Control and Prevention (CDC) ...

KDS-KA+KC (Ours): The average life expectancy for a healthy man is around 76 years old. However,
this number can vary depending on a variety of factors, such as lifestyle choices, genetics, and access to
healthcare. It’s important to note that life expectancy is not the same as maximum lifespan, which is the
longest possible lifespan for a human being. While some people may live into their 90s or even 100s,
the average life expectancy is a more realistic estimate of what a person can expect to live to based on
current trends and data.

Question: What is the average maximum muscle weight percentage for a 6-foot-tall male that weighs
210 pounds?

GPT-40: .. Muscle mass percentage: For a very muscular person (such as a competitive bodybuilder),
muscle mass could make up about 40-50% of total body weight . ..

Random: The average maximum muscle weight percentage for a 6-foot-tall male that weighs 210
pounds is approximately 40-45%.

IFD: For a 6-foot tall male who weighs 210 pounds, the average maximum muscle weight percentage is
43.

Alpagasus: The average maximum muscle weight percentage for a 6-foot-tall male that weighs 210
pounds is around 43-45% . ..

DEITA: The average maximum muscle weight percentage for a 6-foot-tall male that weighs 210 pounds
is approximately 43% ...

3DS: The average maximum muscle weight percentage for a 6-foot-tall male that weighs 210 pounds is
approximately 43% of their total body weight . ..

KDS-KA+KC (Ours): The average maximum muscle weight percentage for a 6-foot-tall male that
weighs 210 pounds is around 40-50%. This is based on the body composition standards set by the
National Health and Nutrition Examination Survey (NHANES) conducted by the Centers for Disease
Control and Prevention (CDC). These standards are based on data collected from a large and diverse
sample of the US population. The standards provide a range of body composition values for different
heights and weights, including the percentage of body fat and the percentage of muscle mass. It is
important to note that these standards are based on averages and that individual body composition can
vary significantly.

Table 5: Cases of LLMs’ responses on the long-form medical QA benchmark. For ease of illustration, we
simplify the responses of baseline LLMs. Notably, we use the outputs of GPT-40 as the reference. The key
information is highlighted, where light blue denotes reference answers, light red denotes wrong responses and light
green denotes right responses.
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_Low Knowledge Alignment .

Question: In which part of the nephron does approximately 20% of potassium (K+) reabsorption occur?
Answer: Approximately 20% of K+ reabsorption occurs in the thick ascending limb (loop of Henle).

Multiple Responses:

1. According to physiological knowledge, approximately 20% of potassium (K+) reabsorption occurs
in the proximal convoluted tubule (PCT) of the nephron.

2. According to physiological and anatomical knowledge, approximately 20% of potassium (K+)
reabsorption occurs in the proximal convoluted tubule (PCT) of the nephron.

3. According to physiological knowledge, approximately 20% of potassium (K+) reabsorption occurs
in the distal convoluted tubule (DCT) of the nephron.

4. According to physiological and anatomical knowledge, approximately 20% of potassium (K+)
reabsorption occurs in the distal convoluted tubule (DCT) of the nephron.

5. A question about kidney physiology! According to various physiological and anatomical sources,
approximately 20% of potassium (K+) reabsorption occurs in the proximal convoluted tubule (PCT) of
the nephron.

High Knowledge Alignment
Question: Which cranial nerve provides innervation to the levator palpebrae superioris muscle?
Answer: The levator palpebrae superioris muscle is innervated by the oculomotor nerve (cranial nerve

I0).

Multiple Responses:

1. Truthfully... The cranial nerve that provides innervation to the levator palpebrae superioris muscle is
the IIT (Oculomotor) nerve!

2. The cranial nerve that provides innervation to the levator palpebrae superioris muscle is the **oculo-
motor nerve (III)**.

3. Truthfully, the answer is the oculomotor nerve (cranial nerve III).

4. The answer is: The cranial nerve that provides innervation to the levator palpebrae superioris muscle
is the Third Cranial Nerve (Oculomotor Nerve), specifically its superior division.

5. The cranial nerve that provides innervation to the levator palpebrae superioris muscle is the oculomo-
tor nerve (CN III).

Table 6: Examples of IT data with low/high knowledge alignment. For ease of illustration, we only present 5
of 10 model responses for each question. Notably, the key information is highlighted, where light blue denotes
reference answers, light red denotes wrong responses and light green denotes right responses.
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Low Knowledge Consistency

" Question: What is the mnemonic used to remember the causes of microcytic anemia, and what are the -
different causes represented by each letter of the mnemonic?
Answer: The mnemonic used to remember the causes of microcytic anemia is “T.A.LLL.S.”: T: Tha-

lassemia A: Anemia of chronic disease I: Iron deficiency L: Lead poisoning S: Sideroblastic Anemia

Multiple Responses:

1. The mnemonic used to remember the causes of microcytic anemia is “FRAMES™: ...

2. The mnemonic commonly used to remember the causes of microcytic anemia is “FEDS”: ...

3. The mnemonic used to remember the causes of microcytic anemia is: “TEEBEES” ...

4. The mnemonic commonly used to remember the causes of microcytic anemia is “EE.H.C.L.” ...
5. The mnemonic used to remember the causes of microcytic anemia is “FERRITIN™ ...

_High Knowledge Consistency
Question: How is hemophilia B inherited?
Answer: Hemophilia B is inherited in an X-linked recessive pattern, which means that the mutated

gene is located on the X chromosome ...

Multiple Responses:

1. Hemophilia B is an X-linked recessive genetic disorder, which means that it is inherited in the
following way: ...

2. Hemophilia B, also known as Christmas disease, is an X-linked recessive disorder ...

3. Hemophilia B, also known as Christmas disease, is inherited in an X-linked recessive pattern . ..

4. Hemophilia B is inherited in an X-linked recessive pattern . ..

5. Hemophilia B is an X-linked recessive disorder, which means that: ...

Table 7: Examples of IT data with low/high knowledge consistency. For ease of illustration, we only present
5 of 10 model responses for each question. Notably, the key information is highlighted, where light blue denotes
reference answers, light red denotes wrong responses and light green denotes right responses.

Method HoT MedMCQA MedQA PubmedQA MMLU-Medical Avg. (A)

Anatomy Clinical Biology Medicine Genetics Pro-Med

Instruction-following Difficulty measured by IFD (Li et al., 2024)

-w. High-IFD 26.89 55.92 59.23 75.60 66.67 73.96 77.78 61.85 79.00 70.59 48.21

-w. Low-IFD 23.57 56.68 60.64 72.20 68.15 75.09  77.08 64.16 79.00 71.32  47.59,062
_Complexity measured by DEITA (Liwetal,2024p)

-w. High-Complexity 27.70 56.16 60.64 67.60 65.93 75.85 78.47 63.58 83.00 70.96 47.51

-w. Low-Complexity  31.31 56.83 59.62 71.40 67.41 75.85 77.08 65.90 85.00 72.79 48.86+1 35
_Quality measured by DEITA (Liu etal, 20240)

-w. High-Quality ez, 27.48 56.16 58.29 69.80 68.15 72.45 78.47 64.16 79.00 69.85 47.29

-w. Low-Quality ez, 32.83 54.36 59.78 71.20 65.93 7245 7639 65.32 82.00 7353 48464 7
_Knowledge Alignment measuredby ours

-w. High-Alignment  31.51 56.39 60.41 72.80 65.93 74.72 79.86 63.58 82.00 74.63 49.09

-w. Low-Alignment 30.23 56.18 59.47 61.60 64.44 71.32 76.39 64.16 82.00 69.49 46.46 5 63
_Knowledge Consistency measuredby owrs

-w. High-Consistency 28.80 56.85 60.96 71.80 67.41 75.09 74.31 67.63 82.00 72.79 48.60

-w. Low-Consistency 28.18 56.51 59.54 70.00 64.44 73.21 77.08 64.16 81.00 70.96 47.670.93

Table 9: Full results of Figure 1, i.e., comparisons of different metrics. We use the LLaMA-3-8B-Instruct as the
base model. “High-*" and “Low-*" refer to the data with higher and lower metric scores, respectively. Red results
denote the performance drops of “Low-*" against the “High-*", while green results denote the performance gains.
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Method HoT MedMCQA MedQA PubmedQA MMLU-Medical Avg.

Anatomy Clinical Biology Medicine Genetics Pro-Med

Base 2087  57.06 60.17 74.80 6370 7170 7500  63.01 81.00 7500  47.41
Random 2947 5675 60.49 68.40 68.89 7321 7847  65.32 80.00  73.16  48.05
KDS- KA 31.64 5742 59.23 76.60 6593 7547 7778 6590  84.00 7537  49.83

W qualiy 3217 5687 5978 7520 6593 7623 7708 6590  83.00  73.16  49.60

-wo diversity 3102 57.02 60.09 76.40 66.67 7283 7778  63.58 81.00 7426  49.54
-Ww/o quality&diversity 31.51  56.39 60.41 72.80 6593 7472 7986  63.58 8200 7463  49.09
KDS- KC 3025 5748 60.57 73.60 6741 7547 7847 6474 8400 7316  49.25

W qualiy 3157 5683 6025 7420 6593 7434 7917 6590  80.00 7426 4935

-wo diversity 3013 57.04 60.02 75.60 6741 7358 7222 6532 80.00 7316  49.12
/o quality&diversity 28.80  56.85 60.96 71.80 6741 7509 7431  67.63 8200 7279  48.60

Table 10: Full results of Table 2, i.e., ablation study of different strategies. We use the LLaMA-3-8B-Instruct
as the base model. “-w/o quality” and “-w/o diversity” denote that we remove the quality and diversity strategies,
respectively. “-w/o quality&diversity” means that we only use the KA/KC metrics for data selection.

Threshold HoT MedMCQA MedQA PubmedQA MMLU-Medical Avg.

Anatomy Clinical Biology Medicine Genetics Pro-Med

Quality+Alignment
7=0 31.51 56.39 60.41 72.80 65.93 74.72 79.86 63.58 82.00 74.63 49.09
T=1 31.72 56.20 59.94 75.20 65.19 74.09 79.86 64.16 82.00 72.43 49.34
T=2 31.06 56.24 60.33 76.20 66.67 73.72 77.08 65.32 81.00 74.63 49.48
T=3 31.02 57.02 60.09 76.40 66.67 72.83 717.78 63.58 81.00 7426  49.54
T=4 31.09 56.51 59.58 76.20 63.70 73.34 78.47 64.74 82.00 72779 49.31
Quality+ Consistency
7=0 28.80 56.85 60.96 71.80 67.41 75.09 74.31 67.63 82.00 7279 48.60
T=1 30.82 56.87 60.25 72.80 66.67 75.85 73.39 64.16 83.00 73.16 4891
T=2 31.10 57.40 60.09 72.00 67.41 74.34 72.92 64.16 83.00 70.59  48.78
T=3 30.13 57.04 60.02 75.60 67.41 73.58 72.22 65.32 80.00 73.16  49.12
T=4 28.18 56.49 60.33 73.60 64.44 75.85 72.92 67.63 83.00 7096  48.51

Quality+Alignment+Diversity

A=0.7 28.92 57.95 58.21 75.60 65.93 74.34 73.61 63.01 82.00 72.46  48.76
A=038 31.62 56.78 58.52 76.20 63.70 75.09 717.78 65.90 84.00 75.37 49.46
A=0.85 29.99 56.44 58.44 76.40 68.15 76.23 75.00 65.32 81.00 74.63 49.11
A=09 31.64 57.42 59.23 76.60 65.93 75.47 717.78 65.90 84.00 75.37 49.83
A=0.95 31.54 56.76 59.15 76.20 65.93 75.85 78.47 64.16 83.00 75.37 49.57
Quality+ Consistency+Diversity
A=0.7 29.37 57.06 59.54 71.80 65.93 73.21 71.78 65.90 81.00 7096  48.37
A=038 28.67 56.28 60.57 72.00 65.19 73.58 76.39 64.16 84.00 7279 48.37
A=0.85 27.66 57.04 60.49 73.20 65.93 74.34 73.61 66.47 82.00 71.69  48.46
A=09 30.25 57.18 60.57 73.60 67.41 75.47 78.47 64.74 84.00 73.16  49.25
A=0.95 28.12 56.11 60.41 73.60 65.19 72.83 76.39 67.63 82.00 72.06  48.49

Table 11: Full results of Figure 4 (b) and (c), i.e., parameter analyses of quality threshold 7 and diversity
threshold ). We use the LLaMA-3-8B-Instruct as the base model. “Quality+Alignment” denotes that we remove
the diversity strategy in KDS and “Quality+Alignment+Diversity” refers to the full KDS method.
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MMLU-Medical

Method HoT MedMCQA MedQA PubmedQA Avg. (A)
Anatomy Clinical Biology Medicine Genetics Pro-Med
DeBERTa-v3-xsmall-mnli
High-Alignment ~ 31.55 56.73 60.02 71.60 69.63 74.34 77.08 61.85 77.00 7574 48.75
Low-Alignment 30.71 5491 60.09 70.80 66.67 74.72 77.08 64.74 80.00 73.16 4821054
" High-Consistency 28.02  57.11 ¢ 61.04 7240 6837 7509 7778 6474 8400  72.06 4871
Low-Consistency  27.96 56.36 61.19 70.00 63.70 75.09 80.56 63.58 82.00 70.56  48.02)0.69
DeBERTa-v3-base-mnli
High-Alignment ~ 30.46 56.63 59.15 72.80 68.15 73.96 78.47 65.32 82.00 74.63  48.80
Low-Alignment 28.03 56.18 59.39 66.00 68.89 72.83 77.08 67.05 82.00 7132 4713167
" High-Consistency 29.25 5596  60.09 7240  68.15 7321  77.08 6127 8400  69.85 4833
Low-Consistency  28.39 55.75 60.57 70.40 65.19 73.21 78.47 62.43 78.00 71.69  47.77,0.56
DeBERTa-v3-large-mnli
High-Alignment  31.51 56.39 60.41 72.80 65.93 74.72 79.86 63.58 82.00 74.63  49.09
Low-Alignment 30.23 56.18 59.47 61.60 64.44 71.32 76.39 64.16 82.00 69.49  46.46)563
" High-Consistency 28.80  56.85 ¢ 60.96 7180 6741 7509 7431 6763 8200 7279 4860
Low-Consistency  28.18 56.51 59.54 70.00 64.44 73.21 77.08 64.16 81.00 7096  47.67,0.93

Table 12: Full results of Figure 4 (a), i.e., effect of different NLI models. We use the LLaMA-3-8B-Instruct
as the base model. “High-Alignment” and “High-Consistency” refer to the data with higher KA and KC scores,
respectively, where “Low-Alignment” and “Low-Consistency” are reversed. Red results denote the performance

drops against the higher scores.

Backbone Method MMedBench Score
Chinese English French Japanese Russian Spanish Avg. A
Base 63.69 59.33 57.01 36.88 55.86 Sred8.46  55.21 -
Full-SFT 64.27 58.13 54.52 35.00 52.34 56.13 5340 | 1.81
Random 66.87 59.23 54.83 38.75 51.56 56.78 54.67 | 0.54
Alpagasus 66.11 58.84 59.19 33.75 55.47 59.34 5545 1024
LLaMA-3-8B-Instruct  IFD 66.02 59.23 53.58 33.12 54.69 57.62 54.04 | 1.17
DEITA 63.78 59.07 55.76 32.50 57.42 58.21 5446 | 0.75
3DS 63.81 58.52 55.14 32.50 60.55 57.66 5470 1 0.51
KDS- KA 65.00 59.15 56.70 37.50 64.45 58.21 56.84 1 1.63
KDS- KC 67.28 59.54 56.39 38.12 55.08 58.02 55.74 1053
Base 82.90 56.64 65.11 53.75 68.75 64.70 65.31 -
Full-SFT 85.43 59.64 63.86 51.25 71.09 66.92 6637  11.05
Random 86.72 58.88 69.16 52.50 72.66 66.51 67.74 1243
Alpagasus 86.28 58.84 69.47 57.50 71.88 66.48 68.41  13.10
Qwen-2.5-7B-Instruct  IFD 86.22 58.92 65.11 54.37 71.88 66.59 67.18 1 1.87
DEITA 85.70 58.60 69.47 54.37 71.88 66.78 67.80 1249
3DS 84.73 58.37 69.78 53.12 72.66 66.59 67.54 1223
KDS- KA 85.84 59.31 68.85 60.00 75.00 67.07 69.35  14.04
KDS- KC 86.81 60.57 70.09 60.00 72.66 66.74 6948  14.17
Base 87.42 66.30 74.45 68.13 73.83 71.55 73.61 -
Full-SFT 89.03 68.81 74.77 66.25 70.70 73.56 7385  10.24
Random 89.57 68.34 74.77 66.25 71.48 73.65 74.01 1040
Alpagasus 88.94 68.34 76.01 66.87 71.48 72.43 74.01 1040
Qwen-2.5-14B-Instruct  IFD 88.88 67.95 75.70 67.50 72.27 73.12 7424  10.63
DEITA 89.05 66.69 74.77 67.50 72.66 72.54 73.87  10.26
3DS 88.82 68.19 75.70 68.13 72.66 73.34 7447  10.86
KDS- KA 89.99 68.42 75.70 68.75 73.05 74.14 75.01 1140
KDS- KC 90.02 68.89 75.08 69.37 71.88 73.81 74.84 1123

Table 13: Full results of Figure 9, i.e., performance of MMedBench (Qiu et al., 2024). Green results mean the
performance gains against the base model, and red results mean the performance drops. The best results are in bold.
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Method  HoT MedMCQA MedQA PubmedQA MMLU-Medical Avg.

Anatomy Clinical Biology Medicine Genetics Pro-Med

1K Samples

“Random  27.93 5630 6025 6920  66.67  76.60  77.08  67.63  83.00 7426  47.98
IFD 27.27 57.21 60.80 71.00 68.15 75.09 77.17 63.58 83.00 75.37 48.33
Alpagasus  26.60 57.95 60.80 69.20 63.70 75.09 79.17 66.47 81.00 75.74  48.01
DEITA 26.94 58.16 60.80 68.00 60.74 73.21 76.39 63.01 81.00 7390 4755
3DS 26.55 57.42 60.64 69.20 62.22 75.09 77.08 64.16 81.00 72.43 47.63
KDS-KA  26.61 57.23 59.62 74.20 65.93 74.34 75.69 65.32 83.00 73.53 48.44
KDS- KC  28.68 56.90 60.41 71.60 70.37 75.47 77.78 67.63 86.00 72.79 48.77
3K Samples

"Random 2854 5778 6135 6940 6815 7170 7431 6416  81.00 7353 4820
IFD 27.51 57.02 60.72 75.20 66.67 73.58 77.78 62.43 80.00 7243 48.77
Alpagasus  27.70 57.23 59.94 72.80 62.22 73.58 77.08 66.47 81.00 72.79 48.31
DEITA 27.51 55.69 59.62 71.80 65.93 74.72 77.78 63.58 80.00 71.69 47.82
3DS 27.82 56.71 60.72 70.40 65.93 73.96 76.39 62.43 81.00 71.69 47.93
KDS- KA  28.66 57.90 60.09 76.20 65.19 73.96 76.39 64.16 82.00 71.69 49.18
KDS- KC  29.73 57.14 61.04 73.20 67.41 75.09 79.86 64.74 85.00 73.53 49.23
5K Samples

“Random 2947 5675 6049 6840 6889 7321 7847 6532  80.00  73.16  48.05
Alpagasus  27.78 56.90 60.33 71.40 65.93 73.96 77.08 65.32 81.00 71.69 48.15
IFD 26.89 55.92 59.23 75.60 66.67 73.96 77.78 61.85 79.00 70.59 48.21
DEITA 28.69 55.10 58.92 73.60 69.63 74.47 78.47 60.69 78.00 72.06 48.01
3DS 27.86 55.32 59.15 72.80 67.41 75.09 78.47 63.58 80.00 7243 47.99
KDS-KA  31.64 57.42 59.23 76.60 65.93 75.47 77.78 65.90 84.00 75.37 49.83
KDS- KC  30.25 57.18 60.57 73.60 67.41 75.47 78.47 64.74 84.00 73.16 49.25
10K Samples

“Random 3049 5621  59.09 7020  68.15 7358 7569 6127  80.00 7096  47.93
IFD 27.27 54.96 58.99 74.00 65.93 75.85 79.17 61.27 78.00 72.43 47.89
Alpagasus  27.71 55.41 59.54 71.00 67.41 74.72 80.56 61.85 80.00 70.59 47.70
DEITA 28.11 56.71 59.86 73.80 68.15 73.96 76.39 62.43 79.00 69.12 48.33
3DS 28.80 55.44 58.76 68.40 65.19 73.21 76.39 61.85 78.00 66.18 46.92
KDS- KA  30.76 56.59 58.60 76.60 65.93 75.09 76.39 63.58 79.00 69.49 49.02
KDS- KC  30.58 56.16 59.62 72.30 66.67 73.58 76.39 65.90 79.00 71.32  48.55
20K Samples

“Random  30.03 5535 5825 7100 6296 7208  77.17  60.12  79.00  67.85 4742
IFD 28.13 54.70 59.54 74.80 65.93 73.58 75.00 61.85 79.00 68.75 47.98
Alpagasus  28.31 55.44 59.47 72.60 68.15 71.70 78.47 63.01 78.00 70.59 4791
DEITA 28.36 55.82 57.89 74.20 66.67 73.21 74.31 60.12 79.00 69.85 47.80
3DS 29.58 55.13 59.07 71.60 63.70 72.45 77.08 60.69 75.00 69.49 47.52
KDS-KA  30.18 56.49 59.31 75.80 68.89 72.08 78.47 63.01 78.00 68.38 48.88
KDS- KC  29.85 55.20 60.02 72.60 66.67 70.94 75.00 65.32 81.00 68.01 48.14

Table 14: Full results of Figure 5, i.e., analysis of data scales. LLaMA-3-8B-Instruct is used as the base model and
tuned with different numbers of data. The best average results are in bold, and the second-best ones are underlined.
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