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Abstract

Domain-specific Instruction-tuning (IT) has be-001
come the defacto standard for improving the002
performance of large language models (LLMs)003
in specialized applications, e.g., medical ques-004
tion answering. Since the IT dataset might005
contain redundant or low-quality data, data se-006
lection (DS) is usually required to maximize007
the data efficiency. Despite the successes in008
the general domain, current DS methods often009
struggle to select the desired data for domain-010
specific IT. One of the main reasons is that011
they neglect the impact of knowledge conflicts,012
i.e., the discrepancy between LLMs’ pretrained013
knowledge and context knowledge of IT data,014
which could damage LLMs’ prior abilities and015
lead to hallucination. To this end, we propose016
a simple-yet-effective Knowledge-aware Data017
Selection (namely KDS) framework to select018
the domain-specific IT data that meets LLMs’019
actual needs. The core of KDS is to leverage020
two knowledge-aware metrics for quantitatively021
measuring knowledge conflicts from two as-022
pects: context-memory knowledge alignment023
and intra-memory knowledge consistency. Tak-024
ing the medical IT as the testbed, we conduct025
extensive experiments and empirically prove026
that KDS surpasses the other baselines and027
brings significant and consistent performance028
gains among all LLMs. More encouragingly,029
KDS effectively improves the model generaliza-030
tion and alleviates the hallucination.031

1 Introduction032

While large language models (LLMs) (OpenAI,033

2023; Dubey et al., 2024) have showcased power-034

ful capabilities in the general domain, they often035

struggle to handle the domain-specific tasks, e.g.,036

medical question answering (Labrak et al., 2024).037

To enhance the performance of LLMs in these spe-038

cialized applications, instruction-tuning (Wei et al.,039

2021) (IT) on the specific domain is usually re-040

quired. Different from traditional task-specific fine-041

tuning that relies on numerous training data, IT042
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Figure 1: Performance comparisons (%) of differ-
ent metrics. “IFD” means the instruction-following
difficulty (Li et al., 2024), “Complexitydeita” and
“Qualitydeita” are from DEITA (Liu et al., 2024b), and
the metrics in red are ours. The y-axis denotes the av-
erage performance of tuned LLaMA models, where the
details are shown in §4 and the full results are in Table 9.

only requires a relatively small dataset, as its goal is 043

to align the LLMs’ pretrained abilities in a desired 044

direction (Zhou et al., 2024). Moreover, since the 045

dataset might contain some undesired samples, fine- 046

tuning with the full dataset is sub-optimal. Hence, 047

it is crucial to perform the domain-specific data 048

selection (DS) for more effective IT. 049

Recently, in the general-domain IT, some DS 050

methods (Chen et al., 2024b; Li et al., 2024) have 051

been proposed and achieved remarkable perfor- 052

mance. Specifically, by using the heuristic automa- 053

tion (e.g., GPT-4 annotation) or manual selection, 054

they can select high-quality and diverse data, which 055

is beneficial to model training. However, in our pre- 056

liminary experiments (as illustrated in Figure 1), 057

we found that these methods might fail to select the 058

desired data for domain-specific IT. We conjecture 059

that these DS methods are almost data-centric and 060

overly focus on data quality and diversity, while 061

neglecting whether the selected data meets LLMs’ 062

actual needs. This motivates us to explore a more 063

effective model-adaptive DS method. 064

Inspired by prior studies (Manakul et al., 2023; 065

Xu et al., 2024; Gekhman et al., 2024; Su et al., 066
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2024) related to LLM hallucination, we recognize067

that there is a critical issue in domain-specific IT,068

i.e., knowledge conflicts between the LLMs’ pre-069

trained knowledge and the context knowledge of IT070

training data. Since the world knowledge of LLMs071

is mainly learned during the pretraining stage and072

IT fails to learn additional knowledge (Ren et al.,073

2024), enforcing the LLMs to align the contradic-074

tory domain knowledge through IT would easily075

damage their prior abilities and lead to hallucina-076

tion (Gekhman et al., 2024). Thus, there raises a077

question: whether we can resolve the knowledge078

conflicts in domain-specific IT and select the data079

desired by LLMs more effectively?080

To this end, we propose a knowledge-aware data081

selection framework (namely KDS) to tackle the082

knowledge conflicts and boost the LLMs’ domain-083

specific performance. Specifically, KDS contains084

three processes: ❶ multiple response generation, ❷085

knowledge-aware data scoring and ❸ filtering and086

sampling. First, in ❶, we probe the LLMs’ para-087

metric pretrained knowledge in the form of multi-088

ple candidate responses. Then, in ❷, to quantita-089

tively evaluate the conflicts, we design two simple-090

yet-effective metrics: knowledge alignment and091

knowledge consistency. The former measures092

the fine-grained alignment between the LLM’s re-093

sponses and corresponding answers, while the latter094

focuses on the reference-free scenarios and uses the095

cluster-based semantic uncertainty to measure the096

consistency of LLM’s multiple responses. Lastly,097

in ❸, we further introduce two auxiliary strategies,098

i.e., quality filter and diversity filter, to ensure the099

quality and diversity of final selected data.100

We take a representative domain-specific ap-101

plication, i.e., medical IT, as the testbed, and102

evaluate the LLaMA3 (Dubey et al., 2024) and103

Qwen2.5 (Yang et al., 2024) models tuned with104

KDS on a variety of medical benchmarks. Exten-105

sive results show that KDS not only surpasses the106

other DS methods by a clear margin, but also brings107

consistent and significant performance gains (up108

to +2.56% average scores) across all LLMs. In-109

depth analyses prove that KDS can effectively im-110

prove data efficiency and multilingual generaliza-111

tion. More encouragingly, KDS alleviates the hallu-112

cination of tuned LLMs by bringing up to +9.86%113

performance gains in the medical hallucination test.114

Contributions. To summarize, our contributions115

are three-fold: (1) We reveal that knowledge con-116

flicts are critical yet under-explored in domain-117

specific DS and propose a knowledge-aware DS 118

(KDS) framework to resolve them. (2) KDS design 119

two simple-yet-effective metrics to quantitatively 120

measure the knowledge conflicts from two aspects: 121

context-memory knowledge alignment and intra- 122

memory knowledge consistency. (3) Extensive re- 123

sults on medical-domain benchmarks show that 124

KDS outperforms the baselines by a clear margin 125

and effectively improves the model generalization. 126

2 Related Works 127

2.1 Domain-specific Instruction-tuning 128

LLMs (OpenAI, 2023; Dubey et al., 2024; Yang 129

et al., 2024; Liu et al., 2024a) have achieved 130

great success in various general-domain NLP tasks. 131

However, these LLMs still fall short in domain- 132

specific applications, such as medical question an- 133

swering (Labrak et al., 2024). Hence, many prior 134

works (Singhal et al., 2023; Li et al., 2023; Chen 135

et al., 2023) attempt to perform the instruction- 136

tuning (IT) (Wei et al., 2021; Ouyang et al., 2022) 137

on the specific domain for efficient model adapta- 138

tion. Since IT does not rely on numerous training 139

data (Zhou et al., 2024) and the IT dataset might 140

contain some undesired (e.g., low-quality or repet- 141

itive) data, it is usually sub-optimal to fine-tune 142

LLMs with the full IT dataset (Li et al., 2024). 143

Hence, data selection (DS) for selecting the desired 144

subset appears to be crucial in domain-specific IT. 145

2.2 Data Selection for Domain-specific IT 146

In the general-domain IT, many data-centric DS 147

methods (Chen et al., 2024b; Liu et al., 2024b; Li 148

et al., 2024) have been proposed, which aim to se- 149

lect the high-quality and diverse data via heuristic 150

methods (e.g., GPT-4 annotation) or manual se- 151

lection. However, they usually struggle to work 152

in domain-specific IT due to the domain charac- 153

teristics. Domain-specific IT is more knowledge- 154

intensive and contains rich professional knowledge 155

that has not been learned during the LLMs’ pre- 156

training. Enforcing LLMs to learn additional con- 157

flict knowledge through IT often leads to negative 158

effects (Ren et al., 2024; Gekhman et al., 2024). 159

There are only a few works (Ren et al., 2024; 160

Ding et al., 2024; Gekhman et al., 2024) involv- 161

ing analyzing and resolving this problem. Ren 162

et al. (2024) first employ in-context learning 163

(ICL) (Brown et al., 2020) to probe LLMs’ internal 164

knowledge and determine whether it conflicts with 165

the training data. Ding et al. (2024) use a simple 166
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Figure 2: Overview of our KDS framework, which contains three processes: ❶ obtaining multiple responses of
LLM for each question; ❷ scoring the data with the knowledge alignment and consistency metrics; ❸ filtering
the low-quality and repetitive data, and sampling the final data. Notably, for ease of illustration, we only show a
representative sample and simplified formulation in (b) and (c). n denotes the number of responses for each question,
pj =

1
n is the assigned probability of j-th response and p

′

i =
∑

pj is the sum of probabilities of i-th cluser.

prompt to instruct the LLMs to filter the unfamiliar167

data. Although achieving remarkable performance,168

they still have some shortcomings: 1) the proposed169

conflict detection methods are simply based on ICL,170

which is sensitive to few-shot examples and might171

introduce bias into the results (Min et al., 2022; Ye172

et al., 2024); 2) they mainly focus on the multiple-173

choice QA settings and might fall short in free-style174

generation tasks. Different from these prior studies,175

we propose a knowledge-aware DS framework that176

designs two automatic metrics to robustly measure177

knowledge conflicts, and our framework can be178

applied to the free-style generation scenarios.179

2.3 Knowledge Conflicts in LLMs180

There are some existing works (Xu et al., 2024;181

Wang et al., 2024; Manakul et al., 2023; Zhao et al.,182

2024) involving exploring the effect of knowledge183

conflicts in LLM applications, such as RAG (Jin184

et al., 2024) and factual reasoning (Yu et al., 2023).185

However, in the context of domain-specific IT, how186

to detect and resolve knowledge conflicts is still187

under-explored. To the best of our knowledge, we188

are one of the rare works to explore this issue in189

the domain-specific IT field.190

3 Method191

3.1 Task Formulation192

Given a base LLM Mintial that has been trained in193

the general-domain SFT corpus and has the basic194

instruction-following ability, the task of domain-195

specific DS aims to select an optimal training sub-196

set for maximizing the LLM’s target domain per- 197

formance, i.e., medical in our study. Let D de- 198

notes the full training set, containing n queries 199

Q = {q1, q2, ..., qn} and their corresponding an- 200

swers A = {a1, a2, ..., an}, we employ the DS 201

methods to select a subset S ⊆ D of size k. Lastly, 202

we fine-tune the Mintial on S and obtain the final 203

domain-specific LLM Mfinal. 204

3.2 Knowledge-aware Data Selection 205

Overview of KDS. To tackle knowledge conflicts, 206

the most important thing is to quantitatively mea- 207

sure them. According to Xu et al. (2024), there 208

are two main types of conflicts: context-memory 209

and intro-memory conflicts. The former refers to 210

the discrepancy between pretrained knowledge of 211

Mintial and context knowledge in D. The latter 212

refers to the divergence of multiple responses of 213

Mintial for the same question. Hence, in KDS, we 214

first design two metrics to measure both types of 215

conflicts, respectively. Then, considering the im- 216

portance of data quality and diversity, we further in- 217

troduce the quality-oriented and diversity-oriented 218

strategies to filter the data. The overview of KDS is 219

shown in Figure 2, containing three processes: 220

❶ Multiple Response Generation. To detect 221

knowledge conflicts, we first need to explicitly ex- 222

press the LLM’s parametric pretrained knowledge. 223

A straightforward way is to feed the question qi 224

into Mintial and obtain its response. Considering 225

the instability of LLM’s output, we are inspired by 226

self-consistency (Wang et al., 2023), and sample 227
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a set of candidate responses {ri1, ri2, ..., rim} from228

the LLM’s decoder, where m is the number of re-229

sponses. In practice, we set the temperature to 0.7230

and sample m = 10 responses for each question.231

❷ Knowledge-aware Data Scoring. Given the232

reference answers and LLM’s multiple responses,233

we design two metrics to measure the knowledge234

conflicts: Knowledge Alignment (termed KA) and235

Knowledge Consistency (termed KC). The primary236

intuition of KA is that, for a question, if LLM’s237

response contradicts the answer, the LLM does not238

know the knowledge for the question, i.e., there is239

a knowledge conflict. Specifically, similar to prior240

studies (Farquhar et al., 2024; Kuhn et al., 2023),241

we use an external NLI model to judge the relation-242

ships between LLM’s responses and answers. The243

calculation of KA can be formulated as:244

ScoreKA
i =

∑m
j=1 I(NLI(rij , ai) = entailment)

m
,

(1)245

where ScoreKA
i is the KA score for i-th data,246

NLI(·) is the inference results of NLI model, clas-247

sified into either entailment/neutral/contradiction.248

On the other hand, since the answers in A might249

be low-quality, misleading or even unavailable in250

some scenarios, the KA would not work. There-251

fore, we further design a reference-free KC metric,252

which focuses on the intra-memory conflict. Intu-253

itively, if Mintial is not familiar with the knowl-254

edge of qi, it shows a high uncertainty and may255

yield divergent responses. To quantitatively eval-256

uate the uncertainty, we are inspired by semantic257

entropy (Kuhn et al., 2023) and propose a cluster-258

based knowledge consistency metric. Let pij =
1
m259

be the uniform probability for j-th response of260

Mintial, we cluster the responses with similar261

knowledge by using the NLI model for semantic262

matching. Specifically, if two responses are deter-263

mined as “entailment”, we treat them as the same264

cluster. Then, we calculate the entropy of clusters265

as the ScoreKC , which is formulated as:266

p
′
it =

∑
j∈cluster

pij , H(p
′
i) = −

ci∑
t=1

p
′
it log p

′
it ,267

ScoreKC
i =

log n

log n−H(p
′
i)

∈ (0, 1), (2)268

where p
′
it

is the sum of probabilities of t-th cluster,269

ci is the number of clusters, H(p
′
i) is the entropy270

for i-th data and log n is the entropy upperbound.271

Lastly, we can sort the full D by using the individ- 272

ual ScoreKA and ScoreKC , or the combination 273

“ScoreKA+ScoreKC” as the metric. 274

❸ Filtering and Sampling. As emphasized by 275

many prior studies (Li et al., 2024; Liu et al., 276

2024b), data “quality” and “diversity” are two im- 277

portant factors for effective SFT. Thus, we further 278

introduce two auxiliary strategies, i.e., quality fil- 279

ter and diversity filter. For the former, we de- 280

sign a quality-oriented prompt (as shown in Ap- 281

pendix A.4) to instruct the Mintial itself to rate the 282

data from 0 to 5, and filter the low-quality data with 283

scores below the threshold τ . Towards the diversity, 284

inspired by (Liu et al., 2024b), we first convert all 285

data into sentence embeddings using the BGE-m31 286

model (Chen et al., 2024a) and calculate the cosine 287

distance between the data and its nearest neighbor 288

in the current subset. The data with cosine distance 289

below the threshold λ will be filtered. This process 290

is iterative and stops until the size of current subset 291

exceeds the data budget k. The pipeline of KDS is 292

shown in Algorithm 1 of Appendix A.5.3. 293

4 Experiments 294

4.1 Setup 295

Tasks and Datasets. We construct a medical 296

instruction-tuning dataset by selecting some medi- 297

cal tasks from MedAlpaca (Han et al., 2023). These 298

tasks contain rich professional and up-to-date med- 299

ical knowledge, based on which we can better sim- 300

ulate the knowledge conflict problem in domain- 301

specific IT scenarios. In practice, the dataset is 302

divided into a training set of 49K samples and a 303

held-out test (HoT) set of 495 samples. 304

To make a comprehensive evaluation, we 305

further evaluate the models on several out-of- 306

domain (OOD) benchmarks. Specifically, four 307

multiple-choice QA benchmarks (MedMCQA (Pal 308

et al., 2022), MedQA (4-option) (Jin et al., 309

2021), PubmedQA (Jin et al., 2019) and MMLU- 310

Medical (Hendrycks et al., 2020)2) and a long-form 311

QA benchmark (Hosseini et al., 2024) are used. 312

For evaluation, we utilize the Rouge-L (Lin, 2004) 313

as the metric for the held-out test, and the Accu- 314

racy for the multiple-choice benchmarks. For the 315

long-form QA benchmark, we follow the original 316

1https://huggingface.co/BAAI/bge-m3
2Following Singhal et al. (2025), we select 6 sub-tasks

relevant to medical and clinical knowledge from MMLU, and
denote this subset as MMLU-Medical.
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Method HoT MedMCQA MedQA PubmedQA MMLU-Medical Avg.
Anatomy Clinical Biology Medicine Genetics Pro-Med

Compared Results upon LLaMA-3-8B-Instruct
Base 20.87 57.06 60.17 74.80 63.70 71.70 75.00 63.01 81.00 75.00 47.41
Full-SFT 29.36 54.72 59.86 68.20 62.96 72.83 75.00 63.01 78.00 68.01 47.02
Random 29.47 56.75 60.49 68.40 68.89 73.21 78.47 65.32 80.00 73.16 48.05
Alpagasus 27.78 56.90 60.33 71.40 65.93 73.96 77.08 65.32 81.00 71.69 48.15
IFD 26.89 55.92 59.23 75.60 66.67 73.96 77.78 61.85 79.00 70.59 48.21
DEITA 28.69 55.10 58.92 73.60 69.63 74.47 78.47 60.69 78.00 72.06 48.01
3DS 27.86 55.32 59.15 72.80 67.41 75.09 78.47 63.58 80.00 72.43 47.99
KDS-KA 31.64 57.42 59.23 76.60 65.93 75.47 77.78 65.90 84.00 75.37 49.83
KDS-KC 30.25 57.18 60.57 73.60 67.41 75.47 78.47 64.74 84.00 73.16 49.25
KDS-KA+KC 31.09 57.30 60.09 76.60 69.63 74.72 78.47 65.32 82.00 74.63 49.87

Compared Results upon Qwen-2.5-7B-Instruct
Base 24.78 56.20 62.14 73.00 72.07 77.36 86.11 67.63 83.00 76.47 48.87
Full-SFT 35.55 57.11 60.57 73.20 71.11 75.85 84.72 68.21 83.00 76.10 50.49
Random 34.56 55.65 60.80 73.00 67.41 76.60 83.33 69.36 82.00 76.47 49.98
Alpagasus 34.39 55.82 62.06 74.00 70.37 78.49 85.42 69.36 85.00 76.47 50.63
IFD 30.61 52.81 60.49 75.40 68.15 77.74 84.72 68.21 81.00 76.47 49.23
DEITA 29.42 55.73 62.06 74.80 71.11 77.36 84.03 65.90 82.00 74.63 49.64
3DS 28.88 55.83 61.43 74.00 71.11 78.87 86.81 68.79 84.00 76.84 49.65
KDS-KA 35.45 55.82 61.51 75.60 71.11 78.11 87.50 68.21 86.00 77.21 51.07
KDS-KC 35.17 56.42 62.53 75.00 71.11 78.49 84.72 68.21 87.00 79.04 51.20
KDS-KA+KC 35.30 56.04 62.84 76.20 74.07 78.11 85.42 68.21 86.00 76.47 51.40

Compared Results upon Qwen-2.5-14B-Instruct
Base 24.03 63.61 69.84 78.20 75.30 83.77 89.58 75.72 88.00 83.46 53.05
Full-SFT 36.63 62.90 69.05 76.60 72.59 83.02 90.97 78.03 91.00 83.82 54.74
Random 35.59 62.90 69.31 77.60 75.56 84.15 90.28 75.14 88.00 84.93 54.74
Alpagasus 35.86 63.50 69.78 77.80 75.56 82.64 89.58 75.72 89.00 85.03 54.98
IFD 35.07 63.33 69.99 77.80 73.33 82.26 89.58 75.14 88.00 85.66 54.75
DEITA 30.50 63.33 69.21 78.60 72.59 83.02 88.89 76.30 89.00 83.82 53.99
3DS 32.30 63.11 69.36 78.00 75.56 83.02 88.19 73.99 91.00 82.72 54.20
KDS-KA 36.53 63.71 70.46 78.60 74.07 83.77 90.28 77.46 89.00 86.76 55.48
KDS-KC 36.74 63.88 69.76 77.80 75.56 83.77 89.85 76.30 89.00 85.29 55.25
KDS-KA+KC 36.81 63.78 70.86 78.40 75.56 83.40 88.89 77.49 91.00 86.40 55.61

Table 1: Performance comparison (%) on the held-out test (HoT) and multiple-choice medical QA benchmarks.
“Avg.” denotes the macro-average performance. Best results are in bold, and second-best results are underlined.

paper and employ the LLM-as-a-Judge as the met-317

ric. Specifically, we use the GPT-4o-mini to judge318

from multiple aspects, covering Correctness, Help-319

fulness, Harmfulness, Reasoning and Efficiency.320

The details of all tasks are shown in Appendix A.1.321

Models. We conduct extensive experiments322

on three widely-used LLMs across different323

model architectures and sizes, i.e., LLaMA-324

3-8B-Instruct (Dubey et al., 2024), Qwen-325

2.5-7B/14B-Instruct (Yang et al., 2024).326

Within our framework, we use the powerful327

DeBERTa-v3-large-mnli3 as the NLI328

model, and set the quality threshold τ to 3 and329

diversity threshold λ to 0.9. We fine-tune the LLMs330

using the instruction data selected by different331

methods. The default training data budget is set332

as 5K. All models are trained with the LoRA (Hu333

et al., 2021). The details of model training and334

inference can be found in Appendix A.2.335

3https://huggingface.co/MoritzLaurer/DeBERTa-v3-
large-mnli-fever-anli-ling-wanli

Baselines. We compare KDS with a series of 336

counterparts: Random, Alpagasus (Chen et al., 337

2024b), IFD (Li et al., 2024), DEITA (Liu et al., 338

2024b) and 3DS (Ding et al., 2024). For reference, 339

we also report the results of base models (Base) and 340

the models fine-tuning with the full training dataset 341

(Full-SFT). We re-implement the compared base- 342

lines following the original papers. The implemen- 343

tation of baselines is introduced in Appendix A.3. 344

4.2 Compared Results 345

The main results on HoT and multiple-choice med- 346

ical QA are reported in Table 1, and the results on 347

long-form medical QA are illustrated in Figure 3. 348

KDS surpasses the previous DS strategies by a 349

clear margin. As seen, “Full-SFT” and “Ran- 350

dom” usually perform poorly and even worse than 351

the original base model, indicating the necessity of 352

carefully-designed DS during the domain-specific 353

adaptation of LLMs. The previous DS methods 354

often struggle to improve the performance, because 355

5



0 20 40 60 80 100
(a) Ours vs Random (%)

Efficiency

Reasoning

Harmfulness

Helpfulness

Correctness

Ours Win Tie Ours Lose

55.8

57.5

6.2

61.5

40.8

24.5

26.0

70.8

24.8

43.8

19.8

16.5

23.0

13.8

15.5

0 20 40 60 80 100
(b) Ours vs 3DS (%)

Efficiency

Reasoning

Harmfulness

Helpfulness

Correctness

39.5

41.8

7.8

44.2

26.8

33.5

34.8

79.0

33.8

53.5

27.0

23.5

13.2

22.0

19.8

Figure 3: Comparative winning rates (%) of KDS-
KA+KC vs other counterparts. We evaluate the tuned
LLaMA on the long-form medical QA benchmark us-
ing the GPT-4o-mini as the LLM judge. Due to space
limitations, we only illustrate the results compared to
Random and 3DS. More results are shown in Figure 8.

they overly focus on the data quality and neglect356

the knowledge conflict problem. In contrast, by357

addressing this problem, our KDS framework can358

bring consistent performance gains and outperform359

the other counterparts by a clear margin. These360

results confirm our motivation in §1.361

KDS brings consistent and significant perfor-362

mance gains among all model sizes and types.363

We see that our KDS not only achieves remark-364

able performance on the LLaMA models, but also365

brings significant performance gains on the Qwen366

models. Specifically, compared to the base models,367

KDS achieves up to +2.46%, +2.53% and +2.56%368

average gains for the LLaMA-3-8B-Instruction,369

Qwen-2.5-7B/14B-Instruct models, respectively.370

These results prove the effectiveness and univer-371

sality of our KDS framework.372

KDS effectively improves the long-form QA per-373

formance. Figure 3 shows the winning rates of374

our method (KDS-KA+KC) against other baselines375

on the long-form medical QA. Due to space limi-376

tations, we only show the performance of LLaMA377

models tuned with ours and two baselines, i.e.,378

“Random” and “3DS”. Specifically, compared to the379

“Random”, KDS achieves much higher correctness380

and helpfulness, while having lower harmfulness381

on the long-form QA task. That is, KDS can effec-382

tively improve the long-form QA performance.383

Method KA score KC score

Base 47.41
Random 48.05

Ours 49.83 49.58
-w/o quality 49.60 ↓0.23 49.35 ↓0.23
-w/o diversity 49.54 ↓0.29 49.12 ↓0.46
-w/o quality&diversity 49.09 ↓0.74 48.60 ↓0.98

Table 2: Ablation study on the different strategies.
Red results denote the performance drops against the
full KDS. LLaMA-3-8B-Instruct is used in this study.

4.3 Ablation Study 384

Here, we gradually investigate the effect of each im- 385

portant component of our KDS. Notably, we mainly 386

use the LLaMA-3-8B-Instruct as the base model 387

and report the average performance of HoT and 388

multiple-choice QA benchmarks in this part. To 389

better investigate the effect of KA/KC, we use the 390

individual metric in our KDS. 391

Effect of data filter strategies. As mentioned in 392

§3, to ensure the data quality and diversity, we ad- 393

ditionally introduce a quality-orient and diversity- 394

orient data filter strategies upon the KA and KC 395

metrics. Here, to verify the effect of these strate- 396

gies, we compare our full KDS with the following 397

variants: 1) “-w/o quality” removes the quality fil- 398

ter; 2) “-w/o diversity” removes the diversity filter; 399

3) “-w/o quality&diversity” removes both the qual- 400

ity and diversity filter. The contrastive results are 401

shown in Table 2, from which we find that remov- 402

ing each strategy will lead to performance degrada- 403

tion and the full KDS performs best. This proves 404

the effectiveness of these strategies. 405

Influence of NLI model sizes. In KDS, we use 406

an extra NLI model to determine whether LLMs’ 407

outputs are aligned with the references. Intu- 408

itively, a larger NLI model can achieve more ac- 409

curate judgments and lead to better performance. 410

To verify it, we conduct experiments by utilizing 411

three different sizes of DeBERTa-based NLI mod- 412

els, i.e., xsmall, base and large. To better 413

showcase its effect, we directly compare the per- 414

formance between models trained with the high 415

KA/KC samples and those with low KA/KC sam- 416

ples. Figure 4 (a) shows the contrastive results. 417

As seen, larger NLI models indeed perform better 418

in distinguishing the KA/KC of samples, confirm- 419

ing our conjecture. Thus, we choose to use the 420

DeBERTa-v3-large-mnli as the NLI model. 421
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Figure 4: (a) Effect of NLI models with different model sizes, (b) Parameter analysis of quality threshold τ and
(c) Parameter analysis of diversity threshold λ. We use the LLaMA-3-8B-Instruct as the base model and report
the average performance of HoT and multiple-choice QA benchmarks. Full results are reported in Appendix A.6.

Impact of quality threshold τ . The threshold τ ,422

used to filter the low-quality data, is an important423

hyper-parameter in KDS. In this study, we analyze424

its influence by evaluating the performance with425

different τ 4, spanning from 0 to 4. Notably, since426

we are performing individual analyses of quality427

threshold, we do not use the diversity strategy here.428

Figure 4 (b) illustrates the average results, in which429

we can find that: 1) increasing the τ from 0 to 3430

brings consistent performance gains, indicating that431

filtering the low-quality data is necessary; 2) too432

large τ (i.e., 4) would lead to performance degra-433

dation, as many helpful samples might be ignored.434

KDS performs best with τ = 3, thus leaving as our435

default experimental settings.436

Impact of diversity threshold λ. The factor λ,437

which is used to control the data diversity, is also438

needed to be investigated. Figure 4 (c) illustrates439

the results of varied λ ranging from 0.7 to 0.95.440

Overemphasizing diversity may cause too many441

samples with high KA/KC scores to be filtered,442

thus leading to significant performance drops. In443

contrast, appropriately reducing the λ can achieve444

a better trade-off between model performance and445

data diversity. More specifically, the case of λ =446

0.9 performs best, and we thereby use this setting447

in our experiments.448

5 Discussion449

Here, we conduct further analyses to discuss: 1)450

whether KDS still works at other data scales, and 2)451

whether it gains better model generalization.452

4Since the highest quality score is 5 and the corpus with a
quality score of 5 might be less than 5K samples (as shown in
Figure 7), we do not conduct experiments with τ = 5.
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Figure 5: Results at various training data scales. We
use the LLaMA-3-8B-Instruct as the base model.

5.1 Does KDS still Work at other Data Scales? 453

In the above experiments, we mainly evaluate our 454

KDS under the training data budget of 5K samples. 455

Some readers may wonder whether KDS works in 456

the other training settings. To verify it, we select 457

varied numbers of samples using different data se- 458

lection methods and use them to train the LLaMA3- 459

8B model, respectively. The performance com- 460

parisons of different data selection methods are 461

illustrated in Figure 5. As seen, among all data 462

scales, our KDS can consistently outperform the 463

other counterparts. More encouragingly, using only 464

1K training samples, our method can outperform 465

other methods that use 5K samples. Takeaway: our 466

KDS can effectively improve the data efficiency 467

and work well at varied data scales. 468

5.2 Does KDS Improve the Generalization? 469

The IT is known to improve the model generaliza- 470

tion of LLMs (Wei et al., 2021). Intuitively, by 471

selecting the high-quality data aligned with LLMs’ 472

prior knowledge, KDS can achieve smoother and 473
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Method Reasoning FCT Reasoning Fake Reasoning Nota Average

Acc Score Acc Score Acc Score Acc (∆ ↑) Score (∆ ↑)

Base 43.28 54.86 74.76 12.72 35.18 35.80 51.07 34.46
Random 46.17 58.56 53.18 7.71 15.11 -11.53 38.15 18.25
Alpagasus 45.74 60.69 60.98 9.52 18.37 -3.84 41.70↑3.55 22.12↑3.85
IFD 47.45 64.73 51.24 7.26 17.81 -5.18 38.83↑0.68 22.27↑4.02
DEITA 46.95 63.50 55.38 8.22 16.73 -7.70 39.69↑1.54 21.34↑3.09
3DS 40.78 48.96 61.52 9.64 15.46 -10.72 39.25↑1.10 15.96↓2.29
KDS-KA 48.17 66.41 56.35 8.44 21.98 4.66 42.17↑4.02 26.50↑8.25
KDS-KC 48.90 68.14 51.24 7.26 23.79 8.94 41.31↑3.16 28.11↑9.86

Table 3: Results of different tuned Qwen2.5-7B models on Reasoning Hallucination Tests (Pal et al., 2023).
Green and red results refer to the performance gains and drops against the “Random” baseline, respectively.

KDS-KA
KDS-KC

Figure 6: Comparative results of different tuned
Qwen2.5-7B models on the MMedBench (Qiu et al.,
2024). More detailed results are presented in Table 13.

more effective domain adaptation, thus resulting in474

better generalization. To verify it, we further ana-475

lyze the effect of KDS from the following aspects:476

Multilingual Generalization. We evaluate the477

tuned Qwen2.5-7B models on the popular mul-478

tilingual medical QA benchmarks, i.e., MMed-479

Bench (Qiu et al., 2024), and illustrate the compar-480

ative results in Figure 6. As seen, our KDS brings481

better performance gains against the other meth-482

ods across all languages. Specifically, compared to483

the base model, KDS achieves up to +4.17% aver-484

age performance gains, especially +6.25% gains485

in Russian and +3.79% gains in Chinese.486

Hallucination Alleviation. As stated by Pal et al.487

(2023), IT has the side effect of exacerbating488

the hallucination of LLMs. Here, we investigate489

this problem by evaluating the tuned LLMs on a490

popular medical hallucination benchmark, Med-491

HALT (Pal et al., 2023). Specifically, we use the492

“Reasoning Hallucination Tests” as the test set and 493

report the results of Qwen2.5-7B models in Table 3. 494

Following Pal et al. (2023), we measure the accu- 495

racy and pointwise score5 for evaluation. It can 496

be found that IT indeed leads to more serious hal- 497

lucination, as “Random” method causes -16.21% 498

average score drops. More encouragingly, our KDS 499

can effectively alleviate this side effect and bring 500

up to +9.86% average score gains against the “Ran- 501

dom” method. Takeaway: These results prove that 502

our KDS can not only improve the multilingual 503

generalization, but also effectively alleviate the 504

hallucination problem. 505

☞ Notes: Due to space limitations, we provide 506

more analyses in Appendix A.5, covering case 507

study in A.5.1, reliability of NLI models in A.5.2, 508

and efficiency of KDS in A.5.3. 509

6 Conclusion 510

In this paper, we reveal that fine-tuning the LLMs 511

using the data contradictory to LLMs’ pretrained 512

knowledge would damage LLMs’ prior abilities 513

and lead to poor performance. In response to this 514

problem, we propose an innovative knowledge- 515

aware DS (KDS) framework, which involves using 516

two metrics to quantitatively measure the knowl- 517

edge conflicts. By filtering the data with higher 518

knowledge conflicts and sampling the high-quality 519

and diverse data, KDS can effectively stimulate 520

the LLMs’ internal abilities and boost the domain- 521

specific performance. Extensive results on medical- 522

domain benchmarks demonstrate the effectiveness 523

and universality of KDS. Moreover, in-depth anal- 524

yses prove that KDS can achieve higher data effi- 525

ciency and alleviate the model hallucination. 526

5Each correct prediction is awarded +1 point, while each
incorrect prediction incurs a penalty of -0.25 points.
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Limitations527

Our work has several potential limitations. On the528

one hand, given the limited computational budget,529

we only validate our KDS on up to 14B LLMs in530

the main experiments. It will be more convincing531

if scaling up to super-large model size (e.g., 70B)532

and applying KDS to more cutting-edge model ar-533

chitectures. On the other hand, besides the medical534

domain, we believe that our KDS has great poten-535

tial to expand to more domains, such as finance536

and law. We will explore more domain-specific537

applications of KDS in future work.538

Ethics and Reproducibility Statements539

Ethics We take ethical considerations very seri-540

ously and strictly adhere to the ACL Ethics Policy.541

This paper proposes a knowledge-aware data se-542

lection framework to improve the domain-specific543

performance of LLMs. It aims to select the desired544

data with low knowledge conflicts, instead of en-545

couraging them to learn privacy knowledge that546

may cause the ethical problem. Moreover, all train-547

ing and evaluation datasets used in this paper are548

publicly available and have been widely adopted549

by researchers. Thus, we believe that this research550

will not pose ethical issues.551

Reproducibility In this paper, we discuss the552

detailed experimental setup, such as training hyper-553

parameters, implementation of baselines, and statis-554

tic descriptions. More importantly, we have pro-555

vided our code and data in the Supplementary556

Material to help reproduce our results.557
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A Appendix797

A.1 Details of Tasks and Datasets798

In this work, we conduct extensive experiments799

on several popular medical QA benchmarks. In800

Dataset #Type #Sample

Medical instruction-tuning
Medical Flashcards long-form QA 33,553
WikiDoc long-form QA 10,000
WikiDoc-Patient-Info long-form QA 5,942
Data Splitting

- Full-SFT Train long-form QA 49,000
- Held-out Test (HoT) long-form QA 495

Out-of-domain test
MedMCQA multi-choice 4,183
MedQA-4options multi-choice 1,273
PubmedQA multi-choice 500
MMMLU-Medical

- Anatomy (Anatomy) multi-choice 135
- Clinical-Knowledge (Clinical) multi-choice 265
- College-Biology (Biology) multi-choice 144
- College-Medicine (Medicine) multi-choice 173
- Medical-Genetics (Genetics) multi-choice 100
- Professional-Medicine (Pro-Med) multi-choice 272

Long-form Medical QA long-form QA 400

More in-depth analyses
MMedBench

- Chinese multi-choice 3,426
- English multi-choice 1,273
- French multi-choice 321
- Japanese multi-choice 160
- Russian multi-choice 256
- Spanish multi-choice 2,742

MedHalt
- Reasoning FCT multi-choice 18,866
- Reasoning Fake multi-choice 1,858
- Reasoning Nota multi-choice 18,866

Table 4: Tasks descriptions and statistic information
of all used datasets in the our study.

addition, the multilingual medical QA tasks and 801

medical hallucination detection tasks are used to 802

reveal the underlying mechanism of our method. 803

Here, we introduce the descriptions of these tasks 804

and datasets in detail. Firstly, we present the statis- 805

tics of all datasets in Table 4. Then, each task is 806

described as: 807

Medical Instruction-tuning. Since there is not a 808

standard medical IT dataset, like the Alpaca (Taori 809

et al., 2023) in the general domain, we construct 810

the medical IT dataset by collecting some exist- 811

ing tasks from the MedAlpaca (Han et al., 2023). 812

Notably, considering the inference budgets, we do 813

not use the full MedAlpaca dataset (about 1.5 mil- 814

lion data points) but select a representative subset 815

of similar data size to Alpaca, containing Medical 816

Flashcards, Wikidoc and Wikidoc Patient Informa- 817

tion. Specifically, Medical Flashcards are sourced 818

from Anki Medical Curriculum6 flashcards, cov- 819

ering the entirety of the medical school curricu- 820

lum, addressing subjects such as anatomy, phys- 821

6https://apps.ankiweb.net
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iology, pathology, and pharmacology. Han et al.822

(2023) harnessed GPT-3.5-Turbo to restructure the823

cards into coherent, contextually pertinent question-824

answer pairs. The questions and answers in this825

dataset are concise and targeted, as the flashcards826

offer limited space for incorporating extensive in-827

formation.Wikidoc and Wikidoc Patient Informa-828

tion consist of medical question-answer pairs ex-829

tracted from WikiDoc7, a collaborative platform830

for medical professionals to share and contribute831

up-to-date medical knowledge. The questions and832

answers are rephrased by using GPT-3.5-Turbo. Af-833

ter collecting the data, we randomly select 49,000834

samples as the training dataset and use the other835

495 samples as the held-out test.836

MedMCQA. MedMCQA (Pal et al., 2022) con-837

sists of 4-option multiple-choice QA samples from838

the Indian medical entrance examinations (AI-839

IMS/NEET). This dataset covers 2.4K healthcare840

topics and 21 medical subjects. We use the valida-841

tion set with 4,183 questions for evaluation.842

MedQA. MedQA (Jin et al., 2021) consists of843

questions and corresponding 4-option or 5-option844

answers in the style of the US Medical License845

Exam (USMLE). We follow prior works (Chen846

et al., 2023) and use the 4-option MedQA with847

1,273 samples as the evaluation set.848

PubmedQA. PubMedQA (Jin et al., 2019) con-849

sists of 200K artificially created multiple-choice850

QA samples and 1K expert-labeled samples. Given851

a PubMed abstract as context and a question, LLM852

needs to predict a yes, no, or maybe answer. Fol-853

lowing Singhal et al. (2023), we use the 500 test854

samples for evaluation.855

MMLU-Medical. MMLU (Hendrycks et al.,856

2020) is a comprehensive benchmark, including857

exam questions from 57 subjects (e.g., STEM858

and social sciences). Each MMLU subject con-859

tains 4-option multiple-choice QA samples. Sim-860

ilar to prior works (Singhal et al., 2025), we se-861

lect 6 subjects that are most relevant to medi-862

cal and clinical knowledge: Anatomy, Clinical-863

Knowledge, College-Biology, College-Medicine,864

Medical-Genetics and Professional-Medicine. We865

denote this set as MMLU-Medical.866

Long-form Medical QA. This dataset (Hosseini867

et al., 2024) is a new publicly available medical868

7https://www.wikidoc.org

benchmark of real-world consumer medical ques- 869

tions with long-form answer evaluation, annotated 870

by medical doctors. For the evaluation criteria, it 871

instructs the LLMs to perform the pairwise com- 872

parisons using a fine-grained annotation scheme, 873

covering Correctness, Helpfulness, Harmfulness, 874

Reasoning, Efficiency and Bias. In our experiments, 875

we found that almost all models exhibit similar bais 876

performance. Thus, we ignore the Bias and use the 877

other criteria for evaluation. 878

MMedBench. MMedBench (Qiu et al., 2024) is 879

a multilingual medical multiple-choice QA bench- 880

mark across six primary languages: English, Chi- 881

nese, Japanese, French, Russian, and Spanish. The 882

entire test set of MMedBench comprises 8,518 QA 883

pairs. For a unified evaluation, we remove the 884

samples with multiple answers and use the filtered 885

8,178 samples as the evaluation set. 886

MedHalt. MedHalt (Qiu et al., 2024) is 887

a recently-proposed comprehensive evaluation 888

framework designed to evaluate hallucination in 889

medical LLMs. MedHalt contains two hallucina- 890

tion tests, i.e., reasoning hallucination tests and 891

memory-based hallucination tests. The former is 892

designed to assess how well an LLM can reason 893

about a given problem by means of False Confi- 894

dence Test (FCT), None of the Above (Nota) Test, 895

and Fake Questions Test (Fake). The latter focuses 896

on evaluating LLMs’ abilities to retrieve accurate 897

information from their encoded training data. In 898

our study, we use the reasoning hallucination tests 899

for hallucination evaluation. 900

A.2 Training and Evaluation Details 901

For model training, we fine-tune all LLMs with a 902

batch size of 32 and a peak learning rate of 1e-4. 903

The warm-up ratio is 0.1 and the maximum tok- 904

enizer length is 2,048. All models are trained with 905

LoRA (Hu et al., 2021) for 3 epochs. We conduct 906

all experiments on 8 NVIDIA A100 (40GB) GPUs. 907

During inference, we set the temperature to 0 for 908

reproducibility, and set the maximum output length 909

to 256 tokens. For evaluation, we use the pub- 910

lic lm-evaluation-harness8 toolkit to mea- 911

sure the zero-shot accuracy of LLMs on multiple- 912

choice QA benchmarks, while using LLM-as-a- 913

Judge to measure LLMs’ performance on the long- 914

form medical QA benchmark. More specifically, 915

GPT-4o-mini is used as the automated evaluator. 916

8https://github.com/EleutherAI/lm-evaluation-harness
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A.3 Implementation of Baselines917

In experiments, we compare our KDS with several918

baseline methods. Here, we introduce the imple-919

mentation of these methods in detail. Specifically,920

Full-SFT. We fine-tune the LLMs with the full921

IT training dataset without using DS methods. This922

baseline is used to demonstrate the necessity of DS923

for domain-specific IT.924

Random. We randomly sample 5K data from the925

IT training dataset and fine-tune the LLMs with926

these data. This baseline is used as the vanilla DS.927

IFD. Following the original paper (Li et al.,928

2024), we first calculate the Instruction Follow-929

ing Difficulty (IFD) scores for each data point of930

the IT training dataset, and filter the data with IFD931

score exceeding 1. Lastly, we sort the dataset based932

on IFD scores and select the Top 5K data as the933

training subset.934

Alpagasus. Chen et al. (2024b) design a prompt935

to instruct the ChatGPT to score the data and select936

the high-score subset. In our implementation, we937

employ the same prompt and use the GPT-4o-mini938

as the automatic evaluator to score the data. After939

sorting the data based on the score, we select the940

Top 5K data for training.941

DEITA. DEITA (Liu et al., 2024b) aims to se-942

lect the data via a quality scorer and a complexity943

scorer. In practice, we first score and sort the data944

by using the open-source LLaMA-based quality9945

and complexity scorers10. Then, we use the rec-946

ommended diversity-oriented method in (Liu et al.,947

2024b) to select the Top 5K diverse data as the948

training corpus.949

3DS. 3DS (Ding et al., 2024) is the most rele-950

vant method to us, which also attempts to select951

the data that meets the LLMs’ actual needs in the952

medical IT field. Different from ours, it first filters953

irrelevant or redundant data via a prompt and uses954

three metrics (i.e., Instruction Understanding, Re-955

sponse Confidence, and Response Correctness) to956

select the appropriately challenging data. We use957

the same prompt and follow the recommendations958

in the original paper to select 5K samples.959

9https://huggingface.co/hkust-nlp/deita-quality-scorer
10https://huggingface.co/hkust-nlp/deita-complexity-

scorer
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Figure 7: Distributions of quality score measured by
different base LLMs.

A.4 Prompt Details 960

Here, we present the detailed prompts for the qual- 961

ity filter, and the prompts for evaluating the perfor- 962

mance on the long-form QA benchmark, respec- 963

tively. Specifically, we instruct the LLMs to rate 964

the data from 0 to 5 via the following prompts: 965

Quality Filter Prompt

You are a fair and professional medical AI
assistant. Your task is to rate according to
the quality of the response to the instruction
and the input. Each response receives
a score on a scale of 0 to 5, where a
higher score indicates a higher level of
quality. Please directly output a single line
containing the value indicating the scores.

Instruction: <instruct>
Input: <question>
Response: <answer>

966

In Figure 7, we illustrate the distributions of qual- 967

ity scores measured by different base LLMs. In 968

general, the quality scores of different LLMs show 969

a normal distribution, indicating that LLMs can 970

measure the quality of medical data. For the evalu- 971

ation of the long-form medical QA benchmark, we 972

follow prior work (Hosseini et al., 2024) and use 973

the following prompts for instructing GPT-4o-mini 974

to make the judgment. 975

Evaluation Prompt for long-form
medical QA benchmark

You are an expert medical evaluator. Your task
is to act as an impartial judge and evaluate

976
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the quality of responses generated by two AI
models. We will provide you with a medical
question, a pair of AI-generated answers
(Response A and Response B), and a set of
evaluation criteria. You should first read the
medical question, and then evaluate the quality
of the responses with regard to each criterion
by comparing the two responses. Answer
the question asked in each criterion. Avoid
positional biases and ensure that the order in
which the responses are presented does not
influence your decision. Do not allow the length
of the responses to influence your evaluation.
Be as objective as possible. Output your final
verdict for each criterion by strictly following
this format: “response_a” if Response A is
better, “response_b” if Response B is better,
“tie” if both responses are equally good.

## Medical Question:
{question}
[The Start of Response A]
{response of model1}
[The End of Response A]
[The Start of Response B]
{response of model2}
[The End of Response B]

## Evaluation Criteria:
1. Correctness: Which answer is more correct
and accurate considering the current consensus
of the scientific and clinical community?
2. Helpfulness: Which answer is more helpful?
Measure helpfulness based on the model’s
ability to assist users, considering the question’s
intent.
3. Harmfulness: Which answer poses a higher
risk of causing harm?
4. Reasoning: Which answer demonstrates
better reasoning steps? (Correct rationale or
manipulation of knowledge for answering the
question.)
5. Efficiency: Which answer provides accurate
medical knowledge and descriptions without
omitting important relevant facts or including
extraneous information?

## Output Format
Please provide your evaluation results in
the following JSON format by filling in the
placeholders in []:
{“correctness”: {“verdict”: “[verdict]”},
“helpfulness”: {“verdict”: “[verdict]”},
“harmfulness”: {“verdict”: “[verdict]”}, “rea-
soning”: {“verdict”: “[verdict]”}, “efficiency”:
{“verdict”: “[verdict]”}}

977

A.5 More analyses 978

A.5.1 Case Study 979

To have a close look, we provide some case studies 980

in this part. Taking two questions in the long-form 981

medical QA benchmark as examples, we report 982

the comparisons of LLaMA models tuned with dif- 983

ferent methods in Table 5. Specifically, for our 984

method, we use the combined “KA+KC” metric in 985

this study. Since the long-form medical QA bench- 986

mark only provides the questions without answers, 987

we present the outputs of a proprietary LLM, i.e., 988

GPT-4o, as reference answers. It can be found 989

that, with the help of our KDS, LLM can achieve 990

more effective domain adaptation and output more 991

professional and accurate responses. 992

For a better understanding of our proposed met- 993

rics, we additionally show some comparative ex- 994

amples of high and low metric scores in Table 7. 995

As seen, our methods can indeed distinguish the 996

samples with high knowledge conflicts. 997

A.5.2 Reliability of NLI models 998

As mentioned in §4, we use the DeBERTa-v3 (He 999

et al., 2021) model tuned with MNLI (Williams 1000

et al., 2018) as the NLI models in our KDS. Some 1001

readers may wonder whether these NLI mod- 1002

els have the ability to identify knowledge align- 1003

ment/consistency. To investigate this, we manually 1004

label 100 pairs of answer and model response, and 1005

evaluate the performance of these NLI models. The 1006

results are shown in Table 8, from which we find 1007

that larger NLI models achieve better performance, 1008

confirming our statements in §4.3. More specifi- 1009

cally, the large-size model achieves an accuracy of 1010

up to 89%. Thus, we believe that it is reliable to 1011

use them as NLI models in our KDS. 1012

Task xsmall base large

NLI accuracy 79% 85% 89%

Table 8: Performance of NLI models with varied
model sizes on the medical-domain test sets. We man-
ually label 100 pairs of answers and model responses as
the test in this experiment.

Notably, since DeBERTa-v3-large-mnli 1013

has achieved remarkable performance and there 1014

is a lack of a medical NLI dataset suitable for 1015

LLMs, we do not attempt to further fine-tune the 1016

NLI model on the medical NLI corpus in this study. 1017

Nevertheless, we believe that incorporating more 1018

domain-specific knowledge into the NLI models 1019
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has the potential to further boost the effectiveness1020

of our KDS, which is in our future work.1021

A.5.3 Efficiency of KDS1022

In this part, we discuss the efficiency of our KDS1023

framework. First, we present the overall pipeline1024

of our KDS in Algorithm 1.

Algorithm 1 Knowledge-aware Data Selection
1: Input: The full training dataset D = {Q,A}, base LLM
Mintial, data budget k, quality filter threshold τ , diver-
sity filter threshold λ

2: Output: The selected subset S
3: Initialize Empty Dataset S
4: for Each sample (q, a) ∈ D do
5: Obtaining multiple responses ofMintial for q
6: Calculating ScoreKA in Eq. 1 or ScoreKC in Eq. 2
7: end for
8: Sorting D with ScoreKA or ScoreKC

9: Getting the sorted Pool D∗

10: for Each sample (q, a) ∈ D∗ do
11: Obtaining quality score sq using the prompt in A.4
12: Obtaining the sentence embedding emb(q, a) using

the BGE-m3 model
13: // Cos(emb(q, a),S) denotes the cosine distance be-

tween emb(q, a) and its nearest neighbor in S
14: if sq < τ and Cos(emb(q, a),S) < λ then
15: S ← S ∪ {(q, a)}
16: else
17: Continue
18: end if
19: if |S| equals to k then
20: Break
21: end if
22: end for

1025
Specifically, KDS mainly contains two forward-1026

pass processes of LLMs (i.e., quality filter and1027

knowledge-aware data scoring), which could lead1028

to some additional budgets. In practice, we can1029

first perform the quality filter and select a rela-1030

tively small high-quality subset for the subsequent1031

knowledge-aware data scoring. By doing so, the in-1032

ference budgets can be greatly reduced. Moreover,1033

the NLI checking and diversity filter processes only1034

require the smaller models, which will not induce1035

much latency. In general, compared to the prior1036

DS methods that rely on heuristic methods (e.g.,1037

GPT-4 annotation) or manual selection, our KDS1038

is relatively more feasible in real-world applica-1039

tions, and the latency of KDS is tolerable against1040

its performance gains.1041

A.6 Full Results1042

Here, we report the full results of experiments in1043

our main paper. Specifically, Figure 8 shows more1044

comparative ELO results of LLaMA models tuned1045

with ours and the other DS methods. Figure 91046

shows more visualizations of performance com- 1047

parisons on the MMedBench. Table 9 shows the 1048

detailed results using different metrics. Table 10 1049

shows the detailed results of the ablation study. 1050

Table 11 shows the detailed results of parameter 1051

analyses of τ and λ. Table 12 shows the detailed 1052

results using different NLI models. Table 13 shows 1053

the detailed results on the MMedBench. Table 14 1054

shows the detailed results of data scaling. Please 1055

refer to the figures and tables for more details. 1056
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Figure 8: Comparative winning rates (%) of KDS-KA+KC v.s. other baselines on the long-form medical QA
benchmark (Hosseini et al., 2024). LLaMA-3-8B-Instruct is used as the base model, and GPT-4o-mini is used as
the automated evaluator.
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Figure 9: Visualization of comparative results on the MMedBench (Qiu et al., 2024). The more detailed results
are presented in Table 13.
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Case 1
Question: How long can a healthy man expect to live?
GPT-4o: In the United States, the average life expectancy for a healthy man is around 76 years . . .

Random: A healthy man can expect to live for approximately 78 years.
IFD: The average life expectancy of a healthy man is 79 years.
Alpagasus: The average life expectancy for a healthy man is around 76 years old . . .
DEITA: The average life expectancy for a healthy man is around 76 years . . .
3DS: A healthy man can expect to live for approximately 78.7 years, according to the Centers for
Disease Control and Prevention (CDC) . . .

KDS-KA+KC (Ours): The average life expectancy for a healthy man is around 76 years old. However,
this number can vary depending on a variety of factors, such as lifestyle choices, genetics, and access to
healthcare. It’s important to note that life expectancy is not the same as maximum lifespan, which is the
longest possible lifespan for a human being. While some people may live into their 90s or even 100s,
the average life expectancy is a more realistic estimate of what a person can expect to live to based on
current trends and data.

Case 2
Question: What is the average maximum muscle weight percentage for a 6-foot-tall male that weighs
210 pounds?
GPT-4o: . . .Muscle mass percentage: For a very muscular person (such as a competitive bodybuilder),
muscle mass could make up about 40-50% of total body weight . . .

Random: The average maximum muscle weight percentage for a 6-foot-tall male that weighs 210
pounds is approximately 40-45%.
IFD: For a 6-foot tall male who weighs 210 pounds, the average maximum muscle weight percentage is
43.
Alpagasus: The average maximum muscle weight percentage for a 6-foot-tall male that weighs 210
pounds is around 43-45% . . .
DEITA: The average maximum muscle weight percentage for a 6-foot-tall male that weighs 210 pounds
is approximately 43% . . .
3DS: The average maximum muscle weight percentage for a 6-foot-tall male that weighs 210 pounds is
approximately 43% of their total body weight . . .

KDS-KA+KC (Ours): The average maximum muscle weight percentage for a 6-foot-tall male that
weighs 210 pounds is around 40-50%. This is based on the body composition standards set by the
National Health and Nutrition Examination Survey (NHANES) conducted by the Centers for Disease
Control and Prevention (CDC). These standards are based on data collected from a large and diverse
sample of the US population. The standards provide a range of body composition values for different
heights and weights, including the percentage of body fat and the percentage of muscle mass. It is
important to note that these standards are based on averages and that individual body composition can
vary significantly.

Table 5: Cases of LLMs’ responses on the long-form medical QA benchmark. For ease of illustration, we
simplify the responses of baseline LLMs. Notably, we use the outputs of GPT-4o as the reference. The key
information is highlighted, where light blue denotes reference answers, light red denotes wrong responses and light
green denotes right responses.
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Low Knowledge Alignment
Question: In which part of the nephron does approximately 20% of potassium (K+) reabsorption occur?
Answer: Approximately 20% of K+ reabsorption occurs in the thick ascending limb (loop of Henle).

Multiple Responses:
1. According to physiological knowledge, approximately 20% of potassium (K+) reabsorption occurs
in the proximal convoluted tubule (PCT) of the nephron.
2. According to physiological and anatomical knowledge, approximately 20% of potassium (K+)
reabsorption occurs in the proximal convoluted tubule (PCT) of the nephron.
3. According to physiological knowledge, approximately 20% of potassium (K+) reabsorption occurs
in the distal convoluted tubule (DCT) of the nephron.
4. According to physiological and anatomical knowledge, approximately 20% of potassium (K+)
reabsorption occurs in the distal convoluted tubule (DCT) of the nephron.
5. A question about kidney physiology! According to various physiological and anatomical sources,
approximately 20% of potassium (K+) reabsorption occurs in the proximal convoluted tubule (PCT) of
the nephron.
. . .

High Knowledge Alignment
Question: Which cranial nerve provides innervation to the levator palpebrae superioris muscle?
Answer: The levator palpebrae superioris muscle is innervated by the oculomotor nerve (cranial nerve
III).

Multiple Responses:
1. Truthfully... The cranial nerve that provides innervation to the levator palpebrae superioris muscle is
the III (Oculomotor) nerve!
2. The cranial nerve that provides innervation to the levator palpebrae superioris muscle is the **oculo-
motor nerve (III)**.
3. Truthfully, the answer is the oculomotor nerve (cranial nerve III).
4. The answer is: The cranial nerve that provides innervation to the levator palpebrae superioris muscle
is the Third Cranial Nerve (Oculomotor Nerve), specifically its superior division.
5. The cranial nerve that provides innervation to the levator palpebrae superioris muscle is the oculomo-
tor nerve (CN III).
. . .

Table 6: Examples of IT data with low/high knowledge alignment. For ease of illustration, we only present 5
of 10 model responses for each question. Notably, the key information is highlighted, where light blue denotes
reference answers, light red denotes wrong responses and light green denotes right responses.
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Low Knowledge Consistency
Question: What is the mnemonic used to remember the causes of microcytic anemia, and what are the
different causes represented by each letter of the mnemonic?
Answer: The mnemonic used to remember the causes of microcytic anemia is “T.A.I.L.S.”: T: Tha-
lassemia A: Anemia of chronic disease I: Iron deficiency L: Lead poisoning S: Sideroblastic Anemia

Multiple Responses:
1. The mnemonic used to remember the causes of microcytic anemia is “FRAMES”: . . .
2. The mnemonic commonly used to remember the causes of microcytic anemia is “FEDS”: . . .
3. The mnemonic used to remember the causes of microcytic anemia is: “TEEBEES” . . .
4. The mnemonic commonly used to remember the causes of microcytic anemia is “F.E.H.C.L.” . . .
5. The mnemonic used to remember the causes of microcytic anemia is “FERRITIN” . . .
. . .

High Knowledge Consistency
Question: How is hemophilia B inherited?
Answer: Hemophilia B is inherited in an X-linked recessive pattern, which means that the mutated
gene is located on the X chromosome . . .

Multiple Responses:
1. Hemophilia B is an X-linked recessive genetic disorder, which means that it is inherited in the
following way: . . .
2. Hemophilia B, also known as Christmas disease, is an X-linked recessive disorder . . .
3. Hemophilia B, also known as Christmas disease, is inherited in an X-linked recessive pattern . . .
4. Hemophilia B is inherited in an X-linked recessive pattern . . .
5. Hemophilia B is an X-linked recessive disorder, which means that: . . .
. . .

Table 7: Examples of IT data with low/high knowledge consistency. For ease of illustration, we only present
5 of 10 model responses for each question. Notably, the key information is highlighted, where light blue denotes
reference answers, light red denotes wrong responses and light green denotes right responses.

Method HoT MedMCQA MedQA PubmedQA MMLU-Medical Avg. (∆)
Anatomy Clinical Biology Medicine Genetics Pro-Med

Instruction-following Difficulty measured by IFD (Li et al., 2024)
-w. High-IFD 26.89 55.92 59.23 75.60 66.67 73.96 77.78 61.85 79.00 70.59 48.21
-w. Low-IFD 23.57 56.68 60.64 72.20 68.15 75.09 77.08 64.16 79.00 71.32 47.59↓0.62

Complexity measured by DEITA (Liu et al., 2024b)
-w. High-Complexity 27.70 56.16 60.64 67.60 65.93 75.85 78.47 63.58 83.00 70.96 47.51
-w. Low-Complexity 31.31 56.83 59.62 71.40 67.41 75.85 77.08 65.90 85.00 72.79 48.86↑1.35

Quality measured by DEITA (Liu et al., 2024b)
-w. High-Qualitydeita 27.48 56.16 58.29 69.80 68.15 72.45 78.47 64.16 79.00 69.85 47.29
-w. Low-Qualitydeita 32.83 54.36 59.78 71.20 65.93 72.45 76.39 65.32 82.00 73.53 48.46↑1.17

Knowledge Alignment measured by ours
-w. High-Alignment 31.51 56.39 60.41 72.80 65.93 74.72 79.86 63.58 82.00 74.63 49.09
-w. Low-Alignment 30.23 56.18 59.47 61.60 64.44 71.32 76.39 64.16 82.00 69.49 46.46↓2.63

Knowledge Consistency measured by ours
-w. High-Consistency 28.80 56.85 60.96 71.80 67.41 75.09 74.31 67.63 82.00 72.79 48.60
-w. Low-Consistency 28.18 56.51 59.54 70.00 64.44 73.21 77.08 64.16 81.00 70.96 47.67↓0.93

Table 9: Full results of Figure 1, i.e., comparisons of different metrics. We use the LLaMA-3-8B-Instruct as the
base model. “High-*” and “Low-*” refer to the data with higher and lower metric scores, respectively. Red results
denote the performance drops of “Low-*” against the “High-*”, while green results denote the performance gains.
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Method HoT MedMCQA MedQA PubmedQA MMLU-Medical Avg.
Anatomy Clinical Biology Medicine Genetics Pro-Med

Base 20.87 57.06 60.17 74.80 63.70 71.70 75.00 63.01 81.00 75.00 47.41
Random 29.47 56.75 60.49 68.40 68.89 73.21 78.47 65.32 80.00 73.16 48.05

KDS- KA 31.64 57.42 59.23 76.60 65.93 75.47 77.78 65.90 84.00 75.37 49.83
-w/o quality 32.17 56.87 59.78 75.20 65.93 76.23 77.08 65.90 83.00 73.16 49.60
-w/o diversity 31.02 57.02 60.09 76.40 66.67 72.83 77.78 63.58 81.00 74.26 49.54
-w/o quality&diversity 31.51 56.39 60.41 72.80 65.93 74.72 79.86 63.58 82.00 74.63 49.09

KDS- KC 30.25 57.18 60.57 73.60 67.41 75.47 78.47 64.74 84.00 73.16 49.25
-w/o quality 31.57 56.83 60.25 74.20 65.93 74.34 79.17 65.90 80.00 74.26 49.35
-w/o diversity 30.13 57.04 60.02 75.60 67.41 73.58 72.22 65.32 80.00 73.16 49.12
-w/o quality&diversity 28.80 56.85 60.96 71.80 67.41 75.09 74.31 67.63 82.00 72.79 48.60

Table 10: Full results of Table 2, i.e., ablation study of different strategies. We use the LLaMA-3-8B-Instruct
as the base model. “-w/o quality” and “-w/o diversity” denote that we remove the quality and diversity strategies,
respectively. “-w/o quality&diversity” means that we only use the KA/KC metrics for data selection.

Threshold HoT MedMCQA MedQA PubmedQA MMLU-Medical Avg.
Anatomy Clinical Biology Medicine Genetics Pro-Med

Quality+Alignment
τ = 0 31.51 56.39 60.41 72.80 65.93 74.72 79.86 63.58 82.00 74.63 49.09
τ = 1 31.72 56.20 59.94 75.20 65.19 74.09 79.86 64.16 82.00 72.43 49.34
τ = 2 31.06 56.24 60.33 76.20 66.67 73.72 77.08 65.32 81.00 74.63 49.48
τ = 3 31.02 57.02 60.09 76.40 66.67 72.83 77.78 63.58 81.00 74.26 49.54
τ = 4 31.09 56.51 59.58 76.20 63.70 73.34 78.47 64.74 82.00 72.79 49.31

Quality+Consistency
τ = 0 28.80 56.85 60.96 71.80 67.41 75.09 74.31 67.63 82.00 72.79 48.60
τ = 1 30.82 56.87 60.25 72.80 66.67 75.85 73.39 64.16 83.00 73.16 48.91
τ = 2 31.10 57.40 60.09 72.00 67.41 74.34 72.92 64.16 83.00 70.59 48.78
τ = 3 30.13 57.04 60.02 75.60 67.41 73.58 72.22 65.32 80.00 73.16 49.12
τ = 4 28.18 56.49 60.33 73.60 64.44 75.85 72.92 67.63 83.00 70.96 48.51

Quality+Alignment+Diversity
λ = 0.7 28.92 57.95 58.21 75.60 65.93 74.34 73.61 63.01 82.00 72.46 48.76
λ = 0.8 31.62 56.78 58.52 76.20 63.70 75.09 77.78 65.90 84.00 75.37 49.46
λ = 0.85 29.99 56.44 58.44 76.40 68.15 76.23 75.00 65.32 81.00 74.63 49.11
λ = 0.9 31.64 57.42 59.23 76.60 65.93 75.47 77.78 65.90 84.00 75.37 49.83
λ = 0.95 31.54 56.76 59.15 76.20 65.93 75.85 78.47 64.16 83.00 75.37 49.57

Quality+Consistency+Diversity
λ = 0.7 29.37 57.06 59.54 71.80 65.93 73.21 77.78 65.90 81.00 70.96 48.37
λ = 0.8 28.67 56.28 60.57 72.00 65.19 73.58 76.39 64.16 84.00 72.79 48.37
λ = 0.85 27.66 57.04 60.49 73.20 65.93 74.34 73.61 66.47 82.00 71.69 48.46
λ = 0.9 30.25 57.18 60.57 73.60 67.41 75.47 78.47 64.74 84.00 73.16 49.25
λ = 0.95 28.12 56.11 60.41 73.60 65.19 72.83 76.39 67.63 82.00 72.06 48.49

Table 11: Full results of Figure 4 (b) and (c), i.e., parameter analyses of quality threshold τ and diversity
threshold λ. We use the LLaMA-3-8B-Instruct as the base model. “Quality+Alignment” denotes that we remove
the diversity strategy in KDS and “Quality+Alignment+Diversity” refers to the full KDS method.
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Method HoT MedMCQA MedQA PubmedQA MMLU-Medical Avg. (∆)
Anatomy Clinical Biology Medicine Genetics Pro-Med

DeBERTa-v3-xsmall-mnli
High-Alignment 31.55 56.73 60.02 71.60 69.63 74.34 77.08 61.85 77.00 75.74 48.75
Low-Alignment 30.71 54.91 60.09 70.80 66.67 74.72 77.08 64.74 80.00 73.16 48.21↓0.54
High-Consistency 28.02 57.11 61.04 72.40 68.37 75.09 77.78 64.74 84.00 72.06 48.71
Low-Consistency 27.96 56.36 61.19 70.00 63.70 75.09 80.56 63.58 82.00 70.56 48.02↓0.69

DeBERTa-v3-base-mnli
High-Alignment 30.46 56.63 59.15 72.80 68.15 73.96 78.47 65.32 82.00 74.63 48.80
Low-Alignment 28.03 56.18 59.39 66.00 68.89 72.83 77.08 67.05 82.00 71.32 47.13↓1.67
High-Consistency 29.25 55.96 60.09 72.40 68.15 73.21 77.08 61.27 84.00 69.85 48.33
Low-Consistency 28.39 55.75 60.57 70.40 65.19 73.21 78.47 62.43 78.00 71.69 47.77↓0.56

DeBERTa-v3-large-mnli
High-Alignment 31.51 56.39 60.41 72.80 65.93 74.72 79.86 63.58 82.00 74.63 49.09
Low-Alignment 30.23 56.18 59.47 61.60 64.44 71.32 76.39 64.16 82.00 69.49 46.46↓2.63
High-Consistency 28.80 56.85 60.96 71.80 67.41 75.09 74.31 67.63 82.00 72.79 48.60
Low-Consistency 28.18 56.51 59.54 70.00 64.44 73.21 77.08 64.16 81.00 70.96 47.67↓0.93

Table 12: Full results of Figure 4 (a), i.e., effect of different NLI models. We use the LLaMA-3-8B-Instruct
as the base model. “High-Alignment” and “High-Consistency” refer to the data with higher KA and KC scores,
respectively, where “Low-Alignment” and “Low-Consistency” are reversed. Red results denote the performance
drops against the higher scores.

Backbone Method MMedBench Score

Chinese English French Japanese Russian Spanish Avg. ∆

LLaMA-3-8B-Instruct

Base 63.69 59.33 57.01 36.88 55.86 5red8.46 55.21 -
Full-SFT 64.27 58.13 54.52 35.00 52.34 56.13 53.40 ↓ 1.81
Random 66.87 59.23 54.83 38.75 51.56 56.78 54.67 ↓ 0.54
Alpagasus 66.11 58.84 59.19 33.75 55.47 59.34 55.45 ↑ 0.24
IFD 66.02 59.23 53.58 33.12 54.69 57.62 54.04 ↓ 1.17
DEITA 63.78 59.07 55.76 32.50 57.42 58.21 54.46 ↓ 0.75
3DS 63.81 58.52 55.14 32.50 60.55 57.66 54.70 ↓ 0.51
KDS- KA 65.00 59.15 56.70 37.50 64.45 58.21 56.84 ↑ 1.63
KDS- KC 67.28 59.54 56.39 38.12 55.08 58.02 55.74 ↑ 0.53

Qwen-2.5-7B-Instruct

Base 82.90 56.64 65.11 53.75 68.75 64.70 65.31 -
Full-SFT 85.43 59.64 63.86 51.25 71.09 66.92 66.37 ↑ 1.05
Random 86.72 58.88 69.16 52.50 72.66 66.51 67.74 ↑ 2.43
Alpagasus 86.28 58.84 69.47 57.50 71.88 66.48 68.41 ↑ 3.10
IFD 86.22 58.92 65.11 54.37 71.88 66.59 67.18 ↑ 1.87
DEITA 85.70 58.60 69.47 54.37 71.88 66.78 67.80 ↑ 2.49
3DS 84.73 58.37 69.78 53.12 72.66 66.59 67.54 ↑ 2.23
KDS- KA 85.84 59.31 68.85 60.00 75.00 67.07 69.35 ↑ 4.04
KDS- KC 86.81 60.57 70.09 60.00 72.66 66.74 69.48 ↑ 4.17

Qwen-2.5-14B-Instruct

Base 87.42 66.30 74.45 68.13 73.83 71.55 73.61 -
Full-SFT 89.03 68.81 74.77 66.25 70.70 73.56 73.85 ↑ 0.24
Random 89.57 68.34 74.77 66.25 71.48 73.65 74.01 ↑ 0.40
Alpagasus 88.94 68.34 76.01 66.87 71.48 72.43 74.01 ↑ 0.40
IFD 88.88 67.95 75.70 67.50 72.27 73.12 74.24 ↑ 0.63
DEITA 89.05 66.69 74.77 67.50 72.66 72.54 73.87 ↑ 0.26
3DS 88.82 68.19 75.70 68.13 72.66 73.34 74.47 ↑ 0.86
KDS- KA 89.99 68.42 75.70 68.75 73.05 74.14 75.01 ↑ 1.40
KDS- KC 90.02 68.89 75.08 69.37 71.88 73.81 74.84 ↑ 1.23

Table 13: Full results of Figure 9, i.e., performance of MMedBench (Qiu et al., 2024). Green results mean the
performance gains against the base model, and red results mean the performance drops. The best results are in bold.
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Method HoT MedMCQA MedQA PubmedQA MMLU-Medical Avg.
Anatomy Clinical Biology Medicine Genetics Pro-Med

1K Samples
Random 27.93 56.30 60.25 69.20 66.67 76.60 77.08 67.63 83.00 74.26 47.98
IFD 27.27 57.21 60.80 71.00 68.15 75.09 77.17 63.58 83.00 75.37 48.33
Alpagasus 26.60 57.95 60.80 69.20 63.70 75.09 79.17 66.47 81.00 75.74 48.01
DEITA 26.94 58.16 60.80 68.00 60.74 73.21 76.39 63.01 81.00 73.90 47.55
3DS 26.55 57.42 60.64 69.20 62.22 75.09 77.08 64.16 81.00 72.43 47.63
KDS- KA 26.61 57.23 59.62 74.20 65.93 74.34 75.69 65.32 83.00 73.53 48.44
KDS- KC 28.68 56.90 60.41 71.60 70.37 75.47 77.78 67.63 86.00 72.79 48.77

3K Samples
Random 28.54 57.78 61.35 69.40 68.15 71.70 74.31 64.16 81.00 73.53 48.20
IFD 27.51 57.02 60.72 75.20 66.67 73.58 77.78 62.43 80.00 72.43 48.77
Alpagasus 27.70 57.23 59.94 72.80 62.22 73.58 77.08 66.47 81.00 72.79 48.31
DEITA 27.51 55.69 59.62 71.80 65.93 74.72 77.78 63.58 80.00 71.69 47.82
3DS 27.82 56.71 60.72 70.40 65.93 73.96 76.39 62.43 81.00 71.69 47.93
KDS- KA 28.66 57.90 60.09 76.20 65.19 73.96 76.39 64.16 82.00 71.69 49.18
KDS- KC 29.73 57.14 61.04 73.20 67.41 75.09 79.86 64.74 85.00 73.53 49.23

5K Samples
Random 29.47 56.75 60.49 68.40 68.89 73.21 78.47 65.32 80.00 73.16 48.05
Alpagasus 27.78 56.90 60.33 71.40 65.93 73.96 77.08 65.32 81.00 71.69 48.15
IFD 26.89 55.92 59.23 75.60 66.67 73.96 77.78 61.85 79.00 70.59 48.21
DEITA 28.69 55.10 58.92 73.60 69.63 74.47 78.47 60.69 78.00 72.06 48.01
3DS 27.86 55.32 59.15 72.80 67.41 75.09 78.47 63.58 80.00 72.43 47.99
KDS- KA 31.64 57.42 59.23 76.60 65.93 75.47 77.78 65.90 84.00 75.37 49.83
KDS- KC 30.25 57.18 60.57 73.60 67.41 75.47 78.47 64.74 84.00 73.16 49.25

10K Samples
Random 30.49 56.21 59.09 70.20 68.15 73.58 75.69 61.27 80.00 70.96 47.93
IFD 27.27 54.96 58.99 74.00 65.93 75.85 79.17 61.27 78.00 72.43 47.89
Alpagasus 27.71 55.41 59.54 71.00 67.41 74.72 80.56 61.85 80.00 70.59 47.70
DEITA 28.11 56.71 59.86 73.80 68.15 73.96 76.39 62.43 79.00 69.12 48.33
3DS 28.80 55.44 58.76 68.40 65.19 73.21 76.39 61.85 78.00 66.18 46.92
KDS- KA 30.76 56.59 58.60 76.60 65.93 75.09 76.39 63.58 79.00 69.49 49.02
KDS- KC 30.58 56.16 59.62 72.80 66.67 73.58 76.39 65.90 79.00 71.32 48.55

20K Samples
Random 30.03 55.35 58.25 71.00 62.96 72.08 77.17 60.12 79.00 67.85 47.42
IFD 28.13 54.70 59.54 74.80 65.93 73.58 75.00 61.85 79.00 68.75 47.98
Alpagasus 28.31 55.44 59.47 72.60 68.15 71.70 78.47 63.01 78.00 70.59 47.91
DEITA 28.36 55.82 57.89 74.20 66.67 73.21 74.31 60.12 79.00 69.85 47.80
3DS 29.58 55.13 59.07 71.60 63.70 72.45 77.08 60.69 75.00 69.49 47.52
KDS- KA 30.18 56.49 59.31 75.80 68.89 72.08 78.47 63.01 78.00 68.38 48.88
KDS- KC 29.85 55.20 60.02 72.60 66.67 70.94 75.00 65.32 81.00 68.01 48.14

Table 14: Full results of Figure 5, i.e., analysis of data scales. LLaMA-3-8B-Instruct is used as the base model and
tuned with different numbers of data. The best average results are in bold, and the second-best ones are underlined.
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