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Abstract
Fairness in classification tasks has tradition-001
ally focused on bias removal from neural repre-002
sentations, but recent trends favor algorithmic003
methods that embed fairness into the training004
process. These methods steer models towards005
fair performance, preventing potential elimina-006
tion of valuable information that arises from007
representation manipulation. Reinforcement008
Learning (RL), with its capacity for learning009
through interaction and adjusting reward func-010
tions to encourage desired behaviors, emerges011
as a promising tool in this domain. In this pa-012
per, we explore the usage of RL to address bias013
in multi-class classification by scaling the re-014
ward function to mitigate bias. We employ the015
contextual multi-armed bandit framework and016
adapt three popular RL algorithms to suit our017
objectives, demonstrating a novel approach to018
mitigating bias1.019

1 Introduction020

In recent years, the issue of bias and fairness in021

Artificial Intelligence and Natural Language Pro-022

cessing has received significant attention (Mehrabi023

et al., 2021). In decision-making models such024

as classification algorithms, bias often stems di-025

rectly from the training data leading to unfair out-026

comes between protected groups such as gender027

or race. To address this problem, previous work028

on fairness has often focused on achieving rep-029

resentational fairness, so that the information of030

the protected groups is lost (Ravfogel et al., 2020;031

Haghighatkhah et al., 2022). However, recent work032

has shown that there is no meaningful correlation033

between representational fairness and empirical034

fairness, i.e. fairness on downstream tasks (Shen035

et al., 2022). To address empirical fairness directly,036

other work has explored the intersection of bias037

mitigation and class-imbalanced learning (Subra-038

manian et al., 2021). Class-imbalanced learning039

1Our code is available at https://anonymous.4open.
science/r/RL_for_imbalanced_classification-755E

approaches aim to achieve fair performance by bal- 040

ancing the training data via sampling or reweighing 041

the loss function. 042

At the same time, Reinforcement Learning (RL) 043

has emerged as a promising alternative to tradi- 044

tional supervised learning methods for various NLP 045

tasks, including syntactic parsing, conversational 046

systems, and machine translation (Uc-Cetina et al., 047

2023). Unlike traditional supervised learning meth- 048

ods, RL is not bound to binary labels and is trained 049

directly on the continuous value of each input, as 050

illustrated in Figure 1. RL agents can learn from 051

sparse reward signals, receiving the rewards for the 052

action they choose, not necessarily the correct one. 053

By exploring the environment and adapting their 054

behavior based on the received rewards, RL agents 055

find optimal actions under varying state values. In 056

the context of classification, RL has been adapted 057

to mitigate class imbalance through a scaling com- 058

ponent of the reward function for binary classifica- 059

tion (Lin et al., 2020). However, implementations 060

for complex cases such as multi-class imbalanced 061

classification remain largely unexplored. 062

In this work, we leverage RL to address fairness 063

among protected groups in multi-class classifica- 064

tion. First, we propose to frame the fair classifi- 065

cation task as a Contextual Multi-Armed Bandit 066

(CMAB) problem, see Figure 1 for an overview of 067

our setup. To mitigate bias, we scale the reward 068

function to counteract imbalances among protected 069

groups within each class. We employ three dif- 070

ferent types of RL methods, each reflecting a key 071

type of RL approach, and adapt them for our task. 072

Additionally, we integrate the different scaling ap- 073

proaches into a supervised learning baseline to eval- 074

uate the effectiveness of our RL-based methods. 075

Experiments on two fair classification datasets 076

demonstrate that our RL algorithms achieve com- 077

petitive performance compared to existing base- 078

lines and that reward scaling is a powerful tool to 079

mitigate bias in classification. We further inves- 080
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Figure 1: Overview of the classification setup with
input vector x, and output class a for and Reinforce-
ment Learning and Supervised Learning, highlighting
the place of the reward scaling matrixWRS

tigate how stable reward scaling is under various081

class and subclass imbalances as well as various082

degrees of representational fairness. Notably, the083

deep RL algorithms perform best on the multi-class084

dataset, while the classical CMAB algorithm excels085

on the binary dataset. Moreover, our scaled super-086

vised implementation improves existing implemen-087

tations and shows state-of-the-art performance on088

multi-class setting.089

2 Related work090

2.1 Bias Mitigation091

Research on mitigating bias can be divided in those092

that tackle the training data (Wang et al., 2019),093

those that attempt to remove bias from representa-094

tions (Ravfogel et al., 2020; Haghighatkhah et al.,095

2022), and those that adjust the learning process096

(Elazar and Goldberg, 2018; Han et al., 2021).097

Within approaches that adjust the learning pro-098

cesses, we distinguish two main categories: those099

that add adversarial learners to ignore protected at-100

tributes (Wadsworth et al., 2018), and more closely101

to our work, approaches that adjust the loss func-102

tion to emphasize performance on minority classes.103

Prior work that modified the training setup104

to increase fairness used methods such as105

down/upsampling (Wang et al., 2019) and reweight-106

ing the loss function (Höfler et al., 2005; Lahoti107

et al., 2020). Han et al. (2022a) evaluate both down-108

sampling and loss reweighting on two datasets for109

fair text classification. Both techniques are applied110

to align training with different definitions of fair-111

ness. Downsampling using the Equal Opportunity112

fairness metric demonstrated impressive results. In113

this paper, we take the first step to explore whether114

reward scaling in reinforcement learning can im-115

prove fairness in classification.116

2.2 Reinforcement Learning for Classification 117

Literature on RL applications for classification pre- 118

dominantly considers the following two theoretical 119

frameworks: Markov Decision Process (MDP) and 120

the Contextual Multi-Armed Bandit (CMAB). 121

Early work by Wiering et al. (2011) casts clas- 122

sification as a sequential decision-making task, by 123

introducing a classification variant of the MDP. In 124

their setup agents manipulate memory cells to en- 125

code information by applying an action sequence 126

on a single sample. They demonstrated competitive 127

performance, but, remained limited to small tasks 128

due to the computational complexity. Lin et al. 129

(2020) extended this work, by introducing a vari- 130

ant of the classification MDP and applying a Deep 131

Q-learning Network (DQN) to binary classification 132

of images and texts. They focused on mitigating 133

bias arising from class imbalance by scaling the re- 134

wards inversely proportional to the class frequency. 135

However, in their setup the sequential component 136

was taken over multiple data points, which assumes 137

sequential dependency among data samples in the 138

classification task. 139

The RL framework CMAB offers a promising 140

alternative because it considers the input as a se- 141

quence of independent states. We formalize our 142

classification task as a CMAB problem, because 143

this is consistent with the independence of data 144

points in the commonly shuffled datasets. Dudík 145

et al. (2014) use CMAB agents by modifying K- 146

class classification as a K-armed bandit problem, 147

where the agent receives a reward of 1 for correct 148

and 0 for incorrect classification. Dimakopoulou 149

et al. (2019) use this framework and modify differ- 150

ent CMAB algorithms to balance exploration and 151

exploitation and compare the original and modi- 152

fied agents on 300 classification datasets. However, 153

their analysis focused on datasets with either lim- 154

ited classes, features, or observations. To the best 155

of our knowledge, we are the first to extend reward 156

scaling for fair multi-class classification or to apply 157

reward scaling for classification with CMAB. 158

3 Methodology 159

In this section, we describe how we formalize our 160

classification task as a CMAB. We introduce three 161

RL methods and explain how we adapt them for 162

fair classification.2 163

2Due to space limitations, we only summarize the key idea
of algorithms and how we adapt them in the paper. Please
refer to the Appendix and original papers for more details.
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3.1 Contextual Multi-Armed Bandit164

We formalize the multi-class classification task as a165

finite contextual multi-armed bandit (CMAB) prob-166

lem. In each round t, an agent is presented with167

a context vector xt ∈ Rd. The agent chooses an168

action at ∈ A from a fixed set of arms, based on169

the policy at ∼ π(xt). After the action is taken, the170

environment returns a reward: rt ∼ R. In a multi-171

class classification framework, the action space is172

the set of all possible classes, while the context173

vector is a representation of the input, e.g. a con-174

textual text embedding (see Section 4.1 for more175

information). Within a finite number of rounds, the176

agent aims to learn the optimal policy to maximize177

the total reward. In other words, given a set of178

testing data, we aim to learn the optimal policy to179

maximize the selection of correct classes.180

We extend the CMAB framework for fair clas-181

sification by constructing a reward function that182

counters data imbalances. We assign a reward183

scale for each sensitive state (a, g), comprising184

the desired class a (e.g. occupation) and protected185

attribute g (e.g. gender). The total reward for a186

given prediction is calculated asR(a, apred, g) =187

Acc(a, apred) · W(a, g). It comprises an accuracy188

term Acc, and a reward scale matrix W . Unlike189

previous work (Dudík et al., 2014), which defines190

the accuracy term as Acc ∈ {0, 1}, we define it191

as Acc ∈ {−1, 1}. Which allows us to scale the192

reward for both correct (+1) and incorrect classi-193

fications (-1). We use the term reward scale to194

indicate that this approach adjusts the magnitude195

but not the sign of the reward. Section 3.3 presents196

various designs of the reward scale.197

3.2 Reinforcement Learning Algorithms198

We select three different RL algorithms and adapt199

them to learn optimal policies for fair classification200

in the formalized CMAB problem. These algo-201

rithms include one classical CMAB algorithm that202

addresses the linear relationship between the ex-203

pected reward and the context, as well as two pop-204

ular deep RL algorithms for MDP problems, Deep205

Q-Network (DQN) and Proximal Policy Optimiza-206

tion (PPO), which allow us to leverage non-linear207

approximations. The two deep RL algorithms are208

selected as they are representative of the two key209

types of deep RL approaches: value-based meth-210

ods and policy gradient methods. By employing211

these three algorithms, we aim to investigate the212

application of diverse RL methods.213

3.2.1 LinUCB 214

The classical CMAB algorithm, disjoint Linear 215

UCB (LinUCB) (Li et al., 2010) assumes a lin- 216

ear relationship between the context embedding 217

xt and the reward E[rt,a|xt] = x⊤t θa. A benefit 218

of disjoint LinUCB over other CMAB algorithms 219

is that each class has a unique learnable weight 220

vector θa, which makes it suitable for classifica- 221

tion with many classes. In each round, the agent 222

chooses the arm (i.e. class label) with the highest 223

score θ̂⊤a xt + α
√
x⊤t A

−1
a xt, based on the context 224

vector xt. This is a combination of the mean of 225

the expected payoff, θ̂⊤a xt, and the standard de- 226

viation
√
x⊤t A

−1
a xt, weighted with parameter α 227

to control the level of exploration. The weight 228

vector of each arm is defined as θ̂at = A−1
at bat . 229

Here the covariant matrix Aat is calculated with 230

the history of context vectors chosen by that arm, 231

Aa = λId +
∑t−1

s=1 xsx
⊤
s . The vector ba is the 232

mean context vector of the arm weighted by the 233

obtained rewards, bat =
∑t

s=1 rs,atxs,at . 234

3.2.2 DQNbandit 235

To adapt the MDP algorithms for a CMAB prob- 236

lem, our CMAB implementation is congruent with 237

a one-step MDP, where each initial state is sampled 238

from the existing set of context s1 ∈ X , and each 239

second state is a terminal state. In DQN (Mnih 240

et al., 2015), the agent learns a Q-function, pa- 241

rameterized by ϕ, to estimate the return for each 242

state-action pair. According to the Bellman equa- 243

tion (Bellman, 1957), the optimal Q-value, Q∗, of 244

two sequential states are linked by: 245

Q∗(s, a) = Eπ[rt + γmax
a′

Q∗ (st+1, a
′)] (1) 246

In our case (the one-step MDP), each next state 247

is the terminal state, after which there is no re- 248

ward, thus we obtain, Qϕ (st+1, ·) = 0, and 249

Gt = rt. The parameters of ϕ are optimized us- 250

ing the mean-squared error between the current Q- 251

value, Qϕ(st, at), and the updated value provided 252

in Equation 1. The updated value is computed as 253

rt + γmaxa′ Qϕ (st+1, a
′), but since the next state 254

is always the terminal state it reduces to rt. We 255

finalize the adaptation of DQN for the CMAB by 256

casting the states as context vectors, obtaining the 257

loss function: 258

LDQN (ϕ) = E(xt,at,r)∈B
[
(r −Qϕ(xt, at))

2
]

259

The network is updated by sampling a minibatch of 260

tuples B from the replay buffer. The DQNbandit 261
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enables exploration using an ϵ-greedy policy for262

selecting actions.263

3.2.3 PPObandit264

Different from DQN, in Proximal Policy Optimiza-265

tion (PPO) (Schulman et al., 2017), the policy π266

(parameterized by θ) is directly optimized under267

the objective of selecting the best action. The gen-268

eral objective in policy gradient methods is to max-269

imize: Eτ∼πθ

[∑T
t=0∇θ log πθ(at|st) ·At

]
. The270

advantage At is computed as At = Qπ(st, at) −271

Vϕ(st), where a critic network Vϕ is used to esti-272

mate the state value. PPO ensures the policy does273

not deviate too far during an update, by scaling the274

advantage with the probability ratio, rt(θ). This ra-275

tio is clipped to create a conservative lower bound276

to control the policy’s change at each step. The277

actor’s objective function is thus defined as:278

Lactor(θ) = Et [min(rt(θ)At, clipϵ(rt(θ))At)]279

To adapt PPO for CMAB, the sequential compo-280

nent is removed and the state st is replaced by the281

context vector xt. For the actor loss, the advantage282

changes and is calculated as At = rt − Vϕ(xt).283

The return again reduces to the reward, thereby284

simplifying the critic loss to:285

Lcritic(ϕ) = Et

[
(Vϕ(xt)− rt)

2
]

286

Lastly, the final loss of the PPObandit agent con-287

tains a penalty that maximizes the policy’s entropy288

of the context vector to encourage exploration.289

3.3 Reward Scales290

Lin et al. (2020) implement reward scaling on an291

imbalanced binary classification dataset. Inspired292

by this, we propose different ways of reward scales293

for multi-class classification with imbalances of294

protected attributes. For context, we use the profes-295

sion classification dataset, BiasBios, where reward296

scaling tackles the sub-class imbalance of the pro-297

tected attribute gender. To illustrate the influence of298

various reward scales Figure 2 shows the scales of299

a balanced (Professor) and an imbalanced (Nurse)300

class for the protected groups with attribute gender.301

For the first method, we extend the implementa-
tion of Lin et al. (2020) into the multi-classification
setting and reduce the reward for the majority by
scaling it with the imbalanced ratio ρaimb =

|Da
min|

|Da
maj |

,
which is the ratio between the number of samples

of the minority and majority class in class a.

Wρ+(a, g) =

{
1 if g is minority in a

ρaimb if g is majority in a

Figure 2 demonstrates thatWρ+(x) scales with
a reverse of the bias within a class, however, com-
pared to a balanced class, the reward scale of the
majority is very low. Therefore, we propose a sec-
ond design that keeps the scales of the majority
group in the imbalanced class equal to the scales of
the balanced class. Thus we set the majority value
at 1 and only increase the minority value, based on
the inversed imbalanced ratio.

Wρ−(a, g) =

{
(ρaimb)

−1 if g is minority in a

1 if g is majority in a

The third implementation adopts the Equal Op-
portunity (EO) formalization used by Han et al.
(2022a). Contrary to the previous two methods it
ensures the average weights per class remain equal,
providing an improved theoretical fairness among
classes. The EO objective is achieved by aggre-
gating the loss per sensitive state and then scaling
it. However, our work scales per instance, thus
we convert the EO objective to instance-specific
weights (see Appendix B.3) and obtain:

WEO(a, g) =
1

2

1

P (g|a)

Lastly, we also employ the Inverse Probability
Weighting (IPW) technique (Höfler et al., 2005).
Full fairness across classes and protected groups
is obtained by scaling with the joint probability,
resulting in:

WIPW (a, g) =
1

P (a, g)

3.4 Supervised Learning: Loss reweighting 302

Parallel to reward scaling in RL is (instance) 303

reweighing in supervised learning (Han et al., 304

2022a; Lahoti et al., 2020), here loss reweighting 305

for clarity. Loss reweighting has been a popular 306

technique for imbalanced datasets, where the loss 307

of each data sample is scaled to mitigate the class 308

imbalance, traditionally using the IPW (Höfler 309

et al., 2005). The weighted cross-entropy loss using 310

the true probability p, predicted probability q: 311

LCE = −
∑
x,g

∑
a

W(a, g)p(a|x) log q(a|x) 312
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Figure 2: Reward scales for the professions Professor
and Nurse using the different scaling functions. Profes-
sor (50/50) and Nurse (90/10)

We implement supervised learning with loss313

reweighing to serve as a strong baseline and high-314

light the connection between loss reweighing and315

reward scaling.316

4 Experiments317

4.1 Dataset318

The BiasBios (De-Arteaga et al., 2019) consists of319

393,423 biographies labeled with one of 28 pro-320

fessions, and a binary gender label. Following321

De-Arteaga et al. (2019), the data is randomly split322

according to 65% training, 25% testing, and 10%323

for validating. The dataset contains two imbal-324

ances: varying frequencies of the professions and a325

difference in gender percentage for each class.326

Following Ravfogel et al. (2020) and Han et al.327

(2022a) we also evaluate on the Emoji (Elazar and328

Goldberg, 2018) sentiment analysis task of Twitter329

data (Blodgett et al., 2016). The task involves bi-330

nary sentiment classification evaluation with race331

as the protected attribute, approximated through the332

provided labels Standard American English (SAE)333

and African American English (AAE). As per Han334

et al. (2021), the dataset is composed of Happy335

(40% AAE, 10% SAE), and Sad: (10% AAE, 40%336

SAE). We use the same train, dev, and test splits of337

100k/8k/8k instances, respectively.338

Context Vectors Each textual data sample is em-339

bedded into a context vector via a pretrained en-340

coder, enabling the algorithms for classification.341

Following Ravfogel et al. (2020) we use the same342

fixed pretrained encoder for each dataset. For the343

BiasBios dataset, each biography is encoded using344

the [CLS] output of the uncased BERT-base model345

(Devlin et al., 2019). For the Emoji dataset, we use346

the DeepMoji encoder (Felbo et al., 2017), which347

has been demonstrated to capture a diverse range 348

of moods and demographic information. 349

4.2 Metrics 350

Following prior work, we evaluate performance us- 351

ing accuracy and fairness using the True Positive 352

Ratio (TPR) gap (De-Arteaga et al., 2019; Ravfogel 353

et al., 2020). The TPR gap of a class a ∈ A is cal- 354

culated as: TPRa
gap = TPRa

g −TPRa
∼g, where g 355

and ∼ g represent the two options for the sensitive 356

states. The global TPR metric, GAP, is then cal- 357

culated as the root mean square of the individual 358

metrics: 359

GAP =

√
1

|A|
∑
a∈A

(
TPRa

gap

)2 (2) 360

To quantify performance and fairness as a sin- 361

gle metric we use the Distance To the Optimum 362

(DTO) introduced in Han et al. (2022a). DTO 363

combines the metrics (accuracy, 1-GAP) as dimen- 364

sions of evaluation space and computes the Eu- 365

clidean distance between the achieved and Utopian 366

point. The smaller the distance to the Utopian point 367

(lower DTO), the better. We report the DTO with 368

the Utopian accuracy and GAP as the best values 369

across all evaluated models. 370

While accuracy measures the overall perfor- 371

mance and GAP the disparity among protected 372

groups within a class, these metrics do not capture 373

imbalance performance across classes. Therefore 374

we also evaluate our algorithms using the macro- 375

averaged F1 metric to detect if minority classes are 376

ignored. All metrics are scaled by 100 for ease of 377

reading and all metrics are represented in the tables 378

as the mean ± std over 5 random seeds, except 379

DTO which is taken over the mean. 380

4.3 Hyperparameters and model selection 381

Each algorithm uses the same classifier architec- 382

ture, except LinUCB, which has a custom set of 383

learnable parameters. The classifier has one hidden 384

layer MLP. All models are trained for 10 epochs, 385

except LinUCB, which achieved optimal perfor- 386

mance within 2 epochs. All models are evaluated 387

on the validation set after 50k iterations to account 388

for different convergence speeds of models. The 389

best model throughout training and across hyperpa- 390

rameters is selected using DTO. We apply hyperpa- 391

rameter optimization on both datasets for each of 392

the algorithms, for details see Appendix A.3. 393
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PPObandit Sup

Accuracy ↑ GAP ↓ Accuracy ↑ GAP ↓

Wρ+ 74.6 ± 0.7 9.9 ± 0.8 79.3 ± 0.1 7.9 ± 0.3
Wρ− 78.8 ± 0.1 8.4 ± 0.6 79.8 ± 0.3 6.9 ± 0.2
WEO 79.2 ± 0.2 8.5 ± 0.2 80.1 ± 0.2 7.1 ± 0.5
WIPW 45.8 ± 6.9 10.5 ± 0.9 72.1 ± 0.7 6.1 ± 0.3

Table 1: Results with different reward scales for Super-
vised Learning (Sup) and PPO on BiasBios

4.4 Comparison Models394

Besides the supervised implementation in Sec-395

tion 3.4, abbreviated to Sup, we also compare our396

models against various existing debiasing meth-397

ods. INLP (Ravfogel et al., 2020) debiases embed-398

dings by iteratively training classifiers to predict399

the protected attribute, it then removes this informa-400

tion from the embedding using a projection of the401

classifier’s nullspace. MP (Haghighatkhah et al.,402

2022) simplifies the INLP setup by using a sin-403

gle Mean Projection (MP) between the representa-404

tion of each class’s protected groups. DAdv, (Han405

et al., 2021) removes sensitive information from406

the embeddings by applying adversarial training us-407

ing diverse adversaries. Lastly, BTEO (Han et al.,408

2022a) subsamples the dataset to establish equal409

opportunity. We implement these existing methods410

with the same training settings for fair comparison.411

Notably, we highlight how SupervisedWEO is the-412

oretically equal to instance reweighing in Han et al.413

(2022a), but our implementation achieves signifi-414

cantly higher performance.415

5 Results and Analysis416

We train each of the RL algorithms with and with-417

out reward scaling. As a strong baseline, we also418

train a supervised learning model in the standard419

fashion and use loss reweighting with the same420

reward scale function.421

5.1 Different Reward Functions422

We first evaluate the effect of the different reward423

scales discussed in Section 3.3 by providing the424

results for the implementations of PPO and Sup,425

see Table 1, for full table see Appendix D.4.426

The results presented in the table demonstrate427

that the imbalance ratio ρ yields substantial gains in428

fairness and accuracy when applied to increase the429

reward for the minority class (Wρ−) as opposed to430

decreasing the reward for the majority class (Wρ+).431

Especially the accuracy of PPO is sensitive to this,432

suggesting that PPO might not work very well for 433

states with low reward scales. 434

As hypothesized, scaling with the joint proba- 435

bility of class and protected attribute as inWIPW 436

proves to be too unstable. It results in the worst 437

accuracy for both algorithms, with a minor im- 438

provement in fairness for supervised learning. The 439

overall difference betweenWEO andWρ− is min- 440

imal as expected from their similar reward scales 441

depicted in Figure 2. We use EO in our experiments 442

because of its better theoretical foundation. 443

5.2 Main Results 444

The main results of our experiments are summa- 445

rized in Table 2. 446

On the BiasBios dataset, our DQN and PPO 447

implementations achieve strong results, with PPO 448

outperforming DQN in fairness, as PPO’s lower 449

GAP shows. Our supervised implementation, Sup 450

WEO, surpasses all other baselines. LinUCB per- 451

forms significantly worse on this task, obtaining 452

one of the worst DTO scores. In contrast, on the 453

Emoji dataset, LinUCB achieves one of the best 454

performance-fairness trade-offs, as indicated by the 455

low DTO score, and is only surpassed by BTEO, 456

which has a slightly higher accuracy. On the other 457

hand, DQN obtains a lower accuracy and PPO 458

lower fairness compared to other metrics. 459

These results suggest that the classical CMAB 460

algorithm LinUCB excels on binary datasets, while 461

the deep RL implementations, DQN and PPO, per- 462

form better in multi-class settings. Notably, al- 463

though DQN and PPO obtain competitive results on 464

the BiasBios, their F1 score is considerably lower 465

than the baselines. Further analysis of per class 466

metrics (see Appendix D.2) reveals that while the 467

F1 for most classes was on par with the supervised 468

setup, both deep RL algorithms failed to recall two 469

of the very sparse classes. 470

Compared to baseline methods such as BTEO 471

and DAdv, our DQN and PPO implementations 472

demonstrate competitive performance on the Bi- 473

asBios dataset. Table 2 also shows that, contrary 474

to previous work (Han et al., 2022a),3 loss-scaling 475

for supervised learning (SupWEO) achieves supe- 476

rior overall performance to downsampling (BTEO). 477

Downsampling only seems to outperform scaling 478

when enough data is present, as demonstrated by 479

its lower GAP for the Emoji dataset. 480

3The EO scaled supervised implementation of Han et al.
(2022a) achieves an Accuracy of 75.7 and GAP of 13.9
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BiasBios (28 Classes) Emoji (2 Classes)
Algorithm Accuracy ↑ GAP ↓ DTO ↓ F1 ↑ Time ↓ Accuracy ↑ GAP ↓ DTO ↓ Time ↓

Sup 81.0 ± 0.1 16.4 ± 0.5 9.3 73.8 ± 0.3 1.0 72.3 ± 0.1 38.1 ± 0.6 28.3 1.0
INLP 80.2 ± 0.6 9.7 ± 0.4 2.8 71.7 ± 1.4 50.1 63.5 ± 3.6 24.1 ± 5.4 18.6 3.6
MP 81.1 ± 0.1 13.9 ± 0.6 6.8 74.0 ± 0.2 2.6 71.8 ± 0.3 17.1 ± 1.0 8.1 2.3
BTEO 79.2 ± 0.3 8.4 ± 0.6 2.3 68.1 ± 0.4 1.7 75.4 ± 0.1 10.4 ± 1.0 0.4 0.8
DAdv 80.8 ± 0.2 8.5 ± 0.6 1.4 72.9 ± 0.4 4.8 75.6 ± 0.3 11.6 ± 1.7 1.6 5.7
SupEO 80.1 ± 0.2 7.1 ± 0.5 1.0 71.7 ± 0.5 1.0 75.5 ± 0.1 11.4 ± 1.1 1.4 1.0
LinUCBEO 74.6 ± 0.2 12.2 ± 0.5 8.3 59.8 ± 1.1 31.9 75.3 ± 0.2 10.4 ± 0.7 0.5 2.8
DQNEO

bandit 79.2 ± 0.1 10.1 ± 0.4 3.6 66.4 ± 0.2 57.4 70.8 ± 0.8 10.0 ± 1.0 4.8 30.2
PPOEO

bandit 79.2 ± 0.2 8.5 ± 0.2 2.4 66.0 ± 0.8 2.9 75.4 ± 0.1 14.4 ± 0.6 4.4 3.0

Table 2: Results on the BiasBios and Emojis classification datasets for our own models (in grey) and the baselines.
Metrics are provided as mean ± std over 5 random seeds, except DTO which is computed over the mean Accuracy,
and GAP, and Time which is the relative time compared to the supervised baseline (first row).

Algo +WEO Accuracy ↑ GAP ↓ F1 ↑

Sup 81.0 (- 0.9) 16.4 (- 9.3) 73.8 (- 2.1)
LinUCB 78.4 (- 3.8) 15.5 (- 3.3) 67.3 (- 7.5)
DQNbandit 80.1 (- 0.9) 13.7 (- 3.6) 66.5 (- 0.1)
PPObandit 79.7 (- 0.5) 14.4 (- 5.9) 67.5 (- 1.5)

Table 3: Results on the Bias dataset without reward
scaling, presented as mean and difference from the case
without EO, where red (worse), blue (better).

5.3 Reward Scaling Impact481

We investigate the influence of reward scaling on482

our models by training them with and without scal-483

ing. Table 3 presents the results on BiasBios as the484

mean performance without scaling and the change485

in metrics when EO scaling is applied.486

Without reward scaling the three RL algorithms487

achieve similar accuracy to the supervised ap-488

proach but at the cost of a lower F1 score. As489

mentioned above, the RL algorithms fail on two490

very sparse classes, which explains the drop in491

GAP and F1. Failing to classify any instances of492

a class correctly results in a TPR gap of 0 for that493

class, since the result is "fair" among both genders.494

The EO reward scale significantly reduces the495

GAP of all implementations, at the cost of a slight496

decrease in Accuracy and F1 for most models.497

However, on LinUCB the scaling causes a large498

performance reduction with only a small GAP re-499

duction, suggesting that scaling hinders the perfor-500

mance more than it improves the fairness.501

To inspect the weak effect of reward scaling on502

LinUCB, we analyze the TPR gap per profession503

against the gender imbalance for both cases in Fig-504

ure 3. Without scaling, LinUCB’s performance505

follows a predictable positive correlation with gen-506

der imbalance. For instance, in the Nurse class507

(∼ 90% women), the model performs better for 508

the majority group (women), resulting in a posi- 509

tive TPR gap. However, after reward scaling this 510

correlation is inverted, causing the model to per- 511

form worse for the majority group and better for 512

the minority group. In case of the Nurse class, the 513

model obtains a negative TPR gap. This suggests 514

LinUCB is oversensitive to scaling on the BiasBios 515

dataset, causing it to overcompensate and penalize 516

the majority group. 517
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Figure 3: TPR gap plotted against the gender distribu-
tion per profession for LinUCB. Left without reward
scaling and right with EO reward scaling

5.4 Subclass Imbalance Sensitivity 518

For a more in-depth analysis of each model’s sensi- 519

tivity to subclass imbalance, we train them on the 520

Emoji dataset under various stereotyping ratios. A 521

stereotyping ratio represents the proportion of the 522

AAE and SAE samples in each class. For exam- 523

ple, a stereotyping ratio of 0.2 means the data is 524

distributed as Happy (20% AAE, 80% SAE), Sad 525

(80% AAE, 20% SAE). 526

Figure 4 reveals a strong inverse relationship 527

between LinUCB’s fairness and the stereotyping 528

ratio. Although the stereotypical ratios are sym- 529

metric at the value of 0.5 the fairness of LinUCB is 530

asymmetric at this value. Thus there is a residual 531

representation bias in the data that is not addressed 532
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Figure 4: Performance (Accuracy) and Fairness (GAP)
on the Emoji dataset using different stereotyping ratios.
All models use the scaling ofWEO.

by the reward scaling. In contrast, supervised learn-533

ing maintains a mostly stable fairness, except for534

the most extreme ratios. Interestingly, LinUCB535

reveals a reverse pattern in best and worst fairness.536

The relatively low accuracy of DQN and poor537

performance on fairness of PPO are consistent538

across ratios. However, PPO does have the most539

constant fairness and performance across stereotyp-540

ing ratios, indicating good training stability.541

5.5 Signal strength vs. Scaling542

We now examine how the strength of the protected543

information affects the efficacy of reward scaling.544

We focus on two scenarios that modify the gender545

signal in the representations: 1) adding explicit546

gender information, thus increasing the gender sig-547

nal strength 2) debiasing the embeddings using MP,548

which reduces it. Table 4 presents the mean and549

relative difference compared to the results without550

the specified modification.4551

Providing the model with gender information552

increases the overall accuracy. However, the impact553

on fairness, as indicated by the GAP score varies554

among algorithms. The GAP score increases for555

the two algorithms with the lowest GAPs (Sup,556

PPO) and decreases for the two with the highest557

GAP (LinUCB, DQN). Only the algorithms that558

perform less well on fairness benefited from access559

to protected attribute.560

Removing the bias with MP reduces the test ac-561

curacy for nearly all algorithms, indicating some562

useful information is removed. Again, the modi-563

fication increased relatively low GAP scores, and564

decreased relative high scores. As such, changing565

to a representation with relatively low bias helps566

LinUCB and DQN, whereas Sup and PPO that567

already achieved better fairness mainly see their568

overall performance hindered.569

4Full tables in Appendix D.5

Explicit Gender Info MP-Debiased

Algo+WEO Accuracy ↑ GAP ↓ Accuracy ↑ GAP ↓

Sup 80.2 (+ 0.1) 7.2 (+ 0.1) 80.0 (- 0.1) 7.4 (+ 0.3)
LinUCB 74.5 (+ 0.1) 11.7 (- 0.5) 74.3 (- 0.3) 11.5 (- 0.7)
DQNbandit 79.2 (+ 0.0) 10.0 (- 0.1) 79.0 (- 0.2) 8.6 (- 1.5)
PPObandit 79.3 (+ 0.1) 8.7 (+ 0.2) 79.2 (+ 0.0) 9.7 (+ 1.2)

Table 4: Results on the BiasBios with added gender info
(left) and MP-debiased (right), presented as mean, and
difference without change: red (worse), blue (better).

Notably, the differences in Table 4 are relatively 570

small and hardly ever surpass the standard devia- 571

tion provided in Table 2. This suggests that while 572

the strength of the protected information influences 573

performance and fairness, the impact might be less 574

pronounced than the choice algorithmic design. 575

Moreover, all methods reduced the GAP score com- 576

pared to only applying MP (which yields a GAP of 577

13.9, seeTable 2). 578

6 Discussion and Conclusion 579

This paper introduces a novel approach to fair clas- 580

sification using the Contextual Multi-Armed Ban- 581

dit (CMAB) framework and explores various Re- 582

inforcement Learning (RL) algorithms. Our find- 583

ings demonstrate the potential of different RL algo- 584

rithms for this task and the efficacy of reward scal- 585

ing in mitigating imbalances of protected groups. 586

The results show the MDP-derived deep RL meth- 587

ods perform best on the multi-class dataset, while 588

the classical bandit algorithm, LinUCB, excels on 589

the binary dataset. Moreover, our scaled supervised 590

learning implementation achieved new state-of-the- 591

art results on the complex BiasBios dataset. 592

Our experiments also revealed two limitations 1) 593

RL algorithms can ignore some very sparse classes, 594

despite performing well under most class imbal- 595

ances. 2) Reward scaling for LinUCB can impair 596

majority group performance beyond that of the mi- 597

nority group. However, the effect of reward scaling 598

remains robust across varying strengths of the pro- 599

tected information, highlighting its potential as a 600

powerful tool for achieving fair outcomes. 601

Despite these challenges, we believe that the pro- 602

posed framework presents a promising approach to 603

leverage RL algorithms for fair classification, open- 604

ing up new research avenues. We encourage future 605

work to extend upon our framework by exploiting 606

different RL characteristics , such as model updates 607

for MDP algorithms based on non-differentiable 608

fairness metrics. 609
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Limitations610

Important limitations of this work can be divided611

into two sections: 1) Limitations of the dataset612

and data requirements of our models 2) Limita-613

tions specific to our algorithms and experiments,614

independent of the data.615

Data limitation Firstly, all datasets considered616

in this study used English text, which restricts the617

analysis and might miss other types of biases re-618

lated to different linguistic and cultural contexts.619

Secondly, the protected groups evaluated in this620

study simplified to binary labels, which excludes621

people who do not fall into this category such as622

non-binary individuals and the multidimensional623

nature of ethnicity.624

Our reward scaling approach also requires these625

labels for classification. Although our setup could626

easily be extended to cases with more labels, it627

would be interesting to see fair classification with628

protected attributes as continuous values. But due629

to lack of good benchmarks restricts the evaluation630

of such cases.631

Algorithmic limitation Firstly, our paper used632

two deep RL MDP algorithms and one linear clas-633

sical CMAB agent. We recognize that while linear634

agents have a significant focus in the CMAB lit-635

erature, the fast field of CMAB agents includes636

options with non-linear algorithms that could also637

be applied to this task. The choice of LinUCB does638

not represent the state-of-the-art, but rather a clas-639

sical high-performance implementation.640

Second, the various hyperparameters limit the ex-641

tent of general statements about each algorithm.642

We have documented our hyperparameter search643

and training methods in the appendix, to ensure the644

interpretability of our experiments, but our results645

only demonstrate the capabilities of our best im-646

plementation. Moreover, the use of DTO to select647

the best model throughout training fails to account648

for potential trade-offs between fairness and accu-649

racy at different points in training. For example,650

on the Emoji dataset, PPO underperformed in Fair-651

ness and DQN in accuracy. However, it is possible652

that at another pointing training with a higher DTO653

score, the trade-off between fairness and accuracy654

was reversed.655

Ethics Statement656

The application of the paper was to improve fair-657

ness among protected groups in classification.658

However, no algorithm is able to obtain perfect 659

fairness and remove the bias perfectly. Therefore 660

applications of the mentioned debiasing methods 661

should always strongly take the mentioned limita- 662

tions into account. Moreover, the current experi- 663

ments are limited to specific datasets and real world 664

use cases may be different. Careful evaluation and 665

testing system behavior in the intended setting with 666

input from experts who can judge the consequences 667

of remaining bias is essential. 668
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A Reproducibility 811

A.1 Data Analysis 812

Because the BiasBios dataset needs to be scraped 813

online, we provide the full composition of the Bi- 814

asBios dataset split up in profession and gender in 815

Table 5. 816
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Profession Female Male

Professor 53290 64820
Physician 19579 18986
Attorney 12494 20113
Photographer 8689 15635
Journalist 9873 10077
Nurse 17236 1735
Psychologist 11385 6910
Teacher 9768 6428
Dentist 5153 9326
Surgeon 1972 11301
Architect 2398 7715
Painter 3543 4193
Model 6214 1288
Poet 3441 3570
Filmmaker 2310 4699
Software Engineer 1089 5817
Accountant 2081 3571
Composer 918 4682
Dietitian 3689 289
Comedian 592 2207
Chiropractor 690 1908
Pastor 609 1923
Paralegal 1499 268
Yoga Teacher 1406 257
Dj 211 1274
Interior Designer 1183 280
Personal Trainer 654 778
Rapper 136 1271
rapper 136 1271

Table 5: Class and gender composition of the BiasBios
dataset

A.2 Model Selection817

Selecting the best model throughout training or818

across hyperparameters is strongly dependent on819

the selection metric. To balance fairness and per-820

formance we use the proposed method of Han821

et al. (2022a), and select using DTO. The full822

equation of DTO is provided below, where the823

obtained metrics are determined by the point824

(Acc, (1−GAP )), and the utopian metrics are825 (
Accutop, (1−GAP utop)

)
.826

DTO =
√
(Accutop −Acc)2 + ((1−GAP utop)− (1−GAP ))2827

The best training timestep according to DTO is828

determined with utopian values (1,1), and the best829

hyperparameters setting utopian values as the best830

metric values during training (i.e. the highest per-831

formance and fairness each individually obtained,832

which do not necessarily belonging to the same 833

algorithm). 834

The reported DTO values in table X and Y are 835

obtained using the best performance and accuracy 836

method as: [performance, fairness] BiasBios 28C 837

= [0.811, 0.929], BiasBios 8C = [0.868, 0.978], 838

Moji=[0.756, 0.900] 839

A.3 Hyperparameters 840

The architecture of the neural network for each 841

algorithm is fixed and consists of 2 layers MLP. For 842

the critic in PPO the architecture is the same except 843

for the output size which is 1. Hyperparameter 844

optimization is applied for each of the parameters 845

of the algorithms using grid search. Table 7 shows 846

the ranges and the best values. 847

Type Dimensions

Layer 1 Linear n_features× 128
Layer 2 Linear 128× n_actions
Activation ReLU
Optimizer Adam

Table 6: Neural Network Architecture

Related work implementations Following pre- 848

vious work (Ravfogel et al., 2020; Han et al., 849

2022b), we use INLP and MP in a post hoc man- 850

ner to the features extracted from the last hidden 851

layer of the supervised model and train a logistic 852

classifier for the final classification. For our MP 853

debiasing experiments in section 5.5 we use MP 854

to debias the context vectors before training, in- 855

stead of poshoc on the hidden layer of the trained 856

network. 857

B Algorithms 858

B.1 Single-Step Markov Decision Process 859

To formalize how the policy-gradient methods such 860

as PPO relate to the Contextual Multi-Armed Ban- 861

dit framework, we define below the single-step 862

Markov Decision Process. An MDP is defined by 863

the tuple (S,A, P,R, γ), and our single-step vari- 864

ant contains only two states S = {s1, s2}. The 865

initial state is sampled each time from the environ- 866

ment and for our classification setup is part of the 867

set of context embeddings, s1 ∈ {xj}. To ensure 868

data samples are treated independently the second 869

state is always the terminal state s2 = sterminal. 870

The action space is equal to the number of classes: 871
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Algorithm Parameter Min Max
Best

BiosBias Emoji

lr (actor) 3.0× 10−4 1.0× 10−6 1.0× 10−4 3.0× 10−5

lr (critic) 1.0× 10−3 1.0× 10−5 1.0× 10−3 1.0× 10−4

PPO Batch size 64 512 512 512
Entropy c2 0.01 0.1 0.2 0.1
ϵ-clip 0.05 0.3 0.1 0.3

Supervised lr 1.0× 10−3 1.0× 10−6 3.0× 10−4 1.0× 10−3

Batch size 64 512 128 512

lr 3.0× 10−4 1.0× 10−6 3.0× 10−6 3.0× 10−4

DQN Batch size 32 256 256 32
Eps_end 0.001 0.1 0.1 0.01
Eps decay 0.5 1.0 0.5 0.5

LinUCB α 0.1 3.0 1.5 2.5

Table 7: Hyperparameter ranges and best values for different algorithms. For PPO the "Entropy c2" refers to the
coefficient of the entropy in the loss.

A = C = {c1, c2, .., c28}. The reward function872

R is equal to that of the CMAB and is defined873

in section 3.1. Lastly, each trajectory is defined874

as τ = {s1, a1, sterminal} and both the transition875

probability, P , and the discount factor γ are irrele-876

vant since each action results in the terminal state.877

B.2 LinUCB878

The full algorithm of LinUCB from Li et al. (2010),879

used in the paper is shown in Algorithm

Algorithm 1 LinUCB Algorithm
Require: Context features xt,a for context at time

t and arm a ∈ A, exploration parameter α.
Initialize Aa and ba for each arm a ∈ A
for each sample t do

for each arm a do
θ̂at = A−1

at bat

pt,a = θ̂⊤a xt,a + α
√
x⊤t,aA

−1
a xt,a

end for
Choose arm at = argmaxa∈A(pt,a) , and

observe real-valued payoff rt
Update Aat ← Aat + xt,atx

⊤
t,at

Update bat ← bat + rtxt,at
end for

880

B.3 Equal Opportunity Weights881

Where Han et al. (2022a) used EO for supervised882

learning, their implementation achieved this objec-883

tive by grouping the loss per class and then averag-884

ing over them. In this section, we see how we can 885

use this to obtain the weights for each data sample 886

based on the class a and protected attribute g. For 887

two protected groups g1 and g2 in class a , let C1 888

and C2 be the number of samples for g1 and g2, and 889

W1 andW2, be the weights. To get a statement of 890

the weights with EO for each sensitive state, (a, g), 891

we need two axioms. 892

Axiom 1. The weight scale ratio between the 893

two protected groups of a class should be inversely 894

proportional to their probability in the dataset: 895

W1 · C1 =W2 · C2

Axiom 2: To ensure fairness across classes, the
average weight per profession should be a fixed
value B so that:

1

C1 + C2
(W1 · C1 +W2 · C2) = B

Combining these two axioms we obtain the for-
mulation:

W2 =
B

2

(C1 + C2)

C2

W2 =
B

2

1

P (C2)

For the multi-class classification task the average
reward scale, B, should be 1, and the probability is
conditional on the class a, obtaining the final WEO

equation:

WEO(g, y) =
1

2

1

P (g|a)
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C Ablation Experiments896

Here we add our experiments that did not make the897

main paper.898

C.1 Analysis: Model and Data Efficiency899

An important aspect for evaluation is related to the900

data and computational of each algorithm. For ease901

of comparison, all algorithms except LinUCB were902

trained for 10 epochs. However, DQN and PPO903

each reuse the seen data in a different way to deal904

with the data sparsity of standard RL settings. DQN905

is updated using a replay-buffer from which it sam-906

ples a minibatch of N triplets (s, a, r) for each itera-907

tion. In contrast, PPO collects N samples during the908

observation phase after which it updates the model909

with this batch K_epoch number of times. Lastly,910

LinUCB achieves optimal results after 1 epoch but911

is constrained by the computations of its weight ma-912

trices, which require the inverse of a square matrix913

with dimension n_features. For computational914

efficiency, we use the Sherman–Morrison formula915

which updates the previous computed inverse with916

a rank one update (Sherman and Morrison, 1950)917

The time complexities in Table 2, demonstrate918

that PPO is closest to supervised learning and that919

DQN takes significantly more time since it needs to920

sample from the buffer at each iteration. Notably,921

LinUCB is strongly dependent on the number of922

classes, reducing its relative efficiency from 32 to 3923

times that of Supervised Learning. The bottleneck924

here is that it needs to compute an upper confidence925

bound for each class.926

Another important feature is the sensitivity to hy-927

perparameters. PPO and DQN are sensitive to sev-928

eral hyperparameters that determine the level of929

its exploration, such as DQN’s mini-batch size or930

exploration parameter, or PPO’s entropy and clip-931

ping coefficients. LinUCB is easiest to implement932

in this regard and does not require any neural net-933

work hyperparameters, but only one exploration934

parameter α, see section B.2.935

D Full result for experiments936

To distinguish the sensitivity of gender imbalance937

and data-sparsity we also run experiments with a938

subset of the data, following Aguirre et al. (2023),939

and select only the professions that have at least940

1000 samples for both genders in the test set, re-941

sulting in 8 professions.942

D.1 BiasBios: training performance over time 943

In Reinforcement Learning literature it is common 944

to provide the performance of an algorithm through- 945

out training for evaluation. Therefore we provide 946

the evaluation accuracy of our four algorithms in 947

Figure 5
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Figure 5: Evaluation accuracy of the different algo-
rithms the full 28 classes and the 8 class subset of the
Bias in Bios dataset

948

D.2 BiasBios: Recall per profession 949

As a further analysis of the lacking F1 score of 950

the RL algorithms compared to the supervised im- 951

plementation, we provide the Recall scores as a 952

percentage of the class. Since class 21, Profes- 953

sor appears significantly more often than the most 954

common class after it, we leave it out for clarity. 955

Figure 6: Recall of each class on the BiasBios dataset
for the four algorithm implementations

D.3 Full tables: BiasBios (28C and 8C) 956

Some of our results in section 5.3 are presented as 957

the mean only. The full results of our algorithms 958

as the mean and std over the five seeds is provided 959

in the tables here. Table 8 shows the performance 960

of our algorithms with and without reward scaling 961

on the BiasBios dataset with the 28 and 8 classes. 962
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28 Classes 8 Classes

Algorithm Accuracy ↑ GAP↓ DTO ↓ F1↑ Accuracy ↑ GAP ↓ DTO ↓ F1↑

Sup 81.0 ± 0.1 16.4 ± 0.5 10.0 73.8 ± 0.3 86.8 ± 0.1 8.3 ± 0.7 6.2 82.7 ± 0.1
LinUCB 78.4 ± 0.1 15.5 ± 0.3 9.6 67.3 ± 0.4 85.3 ± 0.2 7.6 ± 0.3 5.8 80.6 ± 0.2
DQNbandit 80.1 ± 0.2 13.7 ± 0.3 7.2 66.5 ± 1.3 86.5 ± 0.2 7.6 ± 0.3 5.5 82.2 ± 0.2
PPObandit 79.7 ± 0.5 14.4 ± 0.7 8.0 67.5 ± 2.0 86.0 ± 0.2 8.7 ± 0.4 6.7 81.6 ± 0.2
SupEO 80.1 ± 0.2 7.1 ± 0.5 1.1 71.7 ± 0.5 86.3 ± 0.2 2.4 ± 0.1 0.6 82.0 ± 0.2
LinUCBEO 74.6 ± 0.2 12.2 ± 0.5 9.6 59.8 ±1.1 83.4 ± 0.2 7.6 ± 0.3 6.8 77.6 ± 0.3
DQNEO

bandit 79.2 ± 0.1 10.1 ± 0.4 3.9 66.4 ± 0.2 86.2 ± 0.1 2.2 ± 0.2 0.7 81.6 ± 0.2
PPO

EO

bandit 79.2 ± 0.2 8.5 ± 0.2 2.7 66.0 ± 0.8 85.8 ± 0.1 2.8 ± 0.6 1.3 81.4 ± 0.2

Table 8: Results on the BiasBios dataset for the full dataset (28 classes) and a subset of the most common professions
(8 classes). The first rows use a constant reward scale, and the last four (in grey) use the EO reward scale

D.4 Full tables: four reward scaling methods963

The results from reward scaling using the four de-964

scribed scales and our four algorithms are shown965

in Table 9.

Algo Accuracy ↑ GAP ↓ F1

SU
P

Wρ+ 79.3 ± 0.1 7.9 ± 0.3 69.3 ± 0.3
Wρ− 79.8 ± 0.3 6.9 ± 0.2 71.8 ± 0.6
WEO 80.1 ± 0.2 7.1 ± 0.5 71.7 ± 0.5
WIPW 72.1 ± 0.7 6.1 ± 0.3 64.8 ± 0.8

PP
O

Wρ+ 74.6 ± 0.7 9.9 ± 0.8 49.7 ± 2.2
Wρ− 78.8 ± 0.1 8.4 ± 0.6 64.7 ± 0.8
WEO 79.2 ± 0.2 8.5 ± 0.2 66.0 ± 0.8
WIPW 45.8 ± 6.9 10.5 ± 0.9 45.3 ± 5.8

D
Q

N

Wρ+ 76.2 ± 1.1 10.4 ± 0.7 57.2 ± 4.8
Wρ− 79.3 ± 0.1 11.1 ± 0.6 65.8 ± 1.4
WEO 79.2 ± 0.1 10.1 ± 0.4 66.4 ± 0.2
WIPW 74.6 ± 0.3 12.8 ± 0.2 56.6 ± 0.3

L
in

U
C

B Wρ+ 72.8 ± 0.1 12.0 ± 0.5 54.6 ± 0.9
Wρ− 74.1 ± 0.4 11.6 ± 0.5 59.3 ± 1.7
WEO 74.6 ± 0.2 12.2 ± 0.5 59.8 ± 1.1
WIPW 37.3 ± 2.5 10.3 ± 0.7 35.4 ± 1.0

Table 9: Results with different reward scaling on Bias-
Bios for various algorithms

966

D.5 Full results: Explicit gender information967

and Ensemble techniques968

This section includes the full results of Section 5.5,969

after adding the gender information explicitely and970

after removing it with MP. The results are presented971

as mean and standard deviation over 5 seeds in972

Table 10 and Table 11973

Algo + g Accuracy ↑ GAP ↓ F1 ↑

SupEO 80.2 ± 0.2 7.2 ± 0.5 71.9 ± 0.7
LinUCBEO 74.5 ± 0.2 11.7 ± 0.5 59.6 ± 0.8
DQNEO

bandit 79.2 ± 0.2 10.0 ± 0.5 66.1 ± 0.4
PPOEO

bandit 79.3 ± 0.1 8.7 ± 0.3 66.1 ± 0.6

Table 10: Results on the BiasBios dataset with explicit
gender information added to the context.

Algo + MP Accuracy ↑ GAP ↓ F1 ↑

SupEO 80.0 ± 0.2 7.4 ± 0.4 71.9 ± 0.3
LinUCBEO 74.3 ± 0.4 11.5 ± 0.1 59.4 ± 1.0
DQNEO

bandit 79.0 ± 0.2 8.6 ± 0.3 65.8 ± 0.6
PPOEO

bandit 79.2 ± 0.2 9.7 ± 0.6 66.8 ± 1.4

Table 11: Performance on the BiasBios dataset, using
MP debiased embeddings
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