
Grounding Neural Inference with
Satisfiability Modulo Theories

Zifan Wang⇤†
Center for AI Safety
zifan@safe.ai

Saranya Vijayakumar⇤
Carnegie Mellon University
saranyav@andrew.cmu.edu

Kaiji Lu†

Pinterest Inc.
Caleblu95@gmail.com

Vijay Ganesh
Georgia Institute of Technology

vganesh@gatech.edu

Somesh Jha
University of Wisconsin-Madison

jha@cs.wisc.edu

Matt Fredriskon‡

Carnegie Mellon University
mfredrik@cmu.edu

Abstract

Recent techniques that integrate solver layers into Deep Neural Networks (DNNs)
have shown promise in bridging a long-standing gap between inductive learning
and symbolic reasoning techniques. In this paper we present a set of techniques
for integrating Satisfiability Modulo Theories (SMT) solvers into the forward
and backward passes of a deep network layer, called SMTLayer. Using this
approach, one can encode rich domain knowledge into the network in the form of
mathematical formulas. In the forward pass, the solver uses symbols produced by
prior layers, along with these formulas, to construct inferences; in the backward
pass, the solver informs updates to the network, driving it towards representations
that are compatible with the solver’s theory. Notably, the solver need not be
differentiable. We implement SMTLayer as a Pytorch module, and our empirical
results show that it leads to models that 1) require fewer training samples than
conventional models, 2) that have consistent performance against certain types of
covariate shift, and 3) that ultimately learn representations that are consistent with
symbolic knowledge, and thus naturally interpretable. Our code is available at
https://github.com/cmu-transparency/smt-layer

1 Introduction

Deep neural networks (DNNs) have recently made significant strides, achieving surprising levels of
performance on tasks like question-answering [40], text summarization [27], and code generation [4,
21]. However, the ability of models that perform well on these benchmarks to consistently demonstrate
sound logical reasoning, even on tasks that may appear to be more simple and self-contained, remains
in question [6, 31, 39]. For example, a prediction market on whether GPT-4 will be able to consistently
solve “easy” Sudoku puzzles from the LA Times has remained open for several months at the time of
this writing, despite the prompt-tuning efforts of traders on the market [19].

One way to address this issue is to encode logical constraints that are essential for certain inference
tasks symbolically, making them available to the model either during training or inference. A
promising approach to this type of “neuro-symbolic” learning is to integrate solver layers into the
model [35, 34, 13, 18], both during training and inference. During training, the model must learn a
representation of the data that is compatible with the symbolic knowledge, and during inference this
⇤Equal contribution.
†Work done as a PhD student in Carnegie Mellon University.
‡Corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/cmu-transparency/smt-layer

grounded representation is used to provide information from which a symbolic reasoning engine (i.e.,
a “solver”) can extract accurate results.

The most straightforward way to incorporate a solver layer into a deep model is to learn representations
that are compatible with symbols used by the solver. For example, if one wanted to leverage symbolic
domain knowledge to classify images of birds, or diagnose ailments from CT scans, then one could
train a model as in “concept bottlenecking” [14]. This requires detailed supervised labels, which may
be prohibitively expensive to obtain and keep consistent with a potentially evolving domain theory.

We present a set of techniques for incorporating a Satisfiability Modulo Theories (SMT) solver into a
DNN layer so that symbolic knowledge can be leveraged to learn such a compatible representation,
without requiring label supervision. Our method, unlike prior methods, does not require fine-grained
labels to learn representations [14]. For example, for learning Visual Sudoku, regular supervised
learning requires labels of individual digits, rather than just the solution to a set of Sudoku puzzles, to
learn a dedicated digit classifier first. Our work sidesteps the need to manually break a problem apart
and obtain intermediate labels to supervise on, and instead allows for learning a predictor end-to-end
from just labels on the targeted task. Our approach is general, and can handle a broad range of domain
knowledge encoded as SMT constraints, provided that they interface with the surrounding neural
network layers over propositional variables. Unlike related prior work [35], our approach does not
approximate the solver’s behavior by formulating a differentiable relaxation. Rather, as the solver
works on a set of constraints, we extract information that is geared towards checking the correctness
of preceding layers, and use that information to construct training updates (Section 4.2).

We present two different approaches for this, one based on unsatisfiable cores, and another based on
weighted MaxSMT (Section 4.2). There are several advantages to this approach. Aside from the mild
interface constraints mentioned earlier (i.e., solver and neural layers interface with each other via
boolean variables), our approach does not place any restrictions on the theory solver embedded in the
layer, such as linearity [34] or even decidability—if the solver is capable of efficiently discharging
the relevant constraints, then the layer can operate as intended. Because there is no need to provide a
differentiable relaxation for each theory or solver technique that one may want to incorporate, we can
leverage the continuous and unabated progress being made in solver technology.

We implement our approach as a PyTorch [22] layer, using the Z3 [7] SMT solver as the solver layer
to solve SMT and MaxSMT constraints. On three applications involving vision and natural language:
visual arithmetic, algebraic equation solving, and a so-called natural language “liar’s puzzle,” we
demonstrate that our implementation can be incorporated into DNN architectures to solve problems
more effectively than conventional DNNs (Section 5). In particular, our results show that the data
needed to train a DNN with symbolic knowledge may be much simpler than may be necessary
otherwise, and that while doing so is more expensive computationally, often times the more efficient
(i.e., not involving MaxSMT) algorithms perform well in practice.

Our contributions are as follows:

1. We present SMTLayer, a framework for incorporating an SMT solver into a DNN, as a layer
that leverages symbolic knowledge during training and inference.

2. Our empirical evaluation, over four types of tasks requiring logical reasoning, e.g. visual
Sudoku, shows that models using SMTLayer require significantly less training data, can be
trained more efficiently, and generalize a lot better on the much larger test sets compared to
those based on closely-related prior work [35, 13].

Section 3 provides background, Section 4 describes SMTLayer, Section 5 gives our empirical
evaluation, and Appendix A.1 (supplementary material) discusses the broader impacts of our work.

2 Related Work

Solver Layers. Vlastelica et al. [34] integrate a black-box and non-differentiable combinatorial
solver on top of a deep network. To propagate the gradient through the solver on the backward pass,
they linearly interpolate the loss w.r.t the solver’s input and define the gradient of the solver as the
slopes of the line segments. CSL solves a set of problems where the solver’s objective must be linear
w.r.t its input, e.g. finding the shortest path and travel salesman problem (TSP). Further, the authors
assume that the only labels available are the outputs of solvers, e.g. the minimum cost in TSP, and

2

hence their tool has to discover the label for the output of the network itself. These requirements limit
the choices one has for the solver layer. Wang et al. [35] present SATNet, a network architecture with
a differentiable approximate MAXSAT solver layer. Their approximation is based on a coordinate
descent approach to solving the semidefinite program (SDP) relaxation of the MAXSAT problem.
SATNet does not assume that the logical structure of the problem is given, and instead attempts to
learn it.

Neural Logic Programming. While SATNet integrates a logic-based solver on top of a network,
DeepProbLog takes the opposite approach, extending the capability of a probabilistic logic pro-
gramming language with neural predicates [18]. In the context of our work, the logic program can
be viewed as a “solver layer” that explicitly encodes symbolic knowledge. Scallop [13] extends
DeepProbLog to scale without sacrificing accuracy compared to DeepProbLog. Similarly to Deep-
ProbLog, each possible result of the sum of two digits in MNIST is given a probability, in the form of
a weighted Boolean formula. They prune unlikely clauses of the formula, represented by proofs, only
keeping the top-k most likely. Likelihood is computed using weighted model counting [13, 3]. These
techniques are well-suited to problems that benefit from probabilistic Datalog, but have inherent
limitations: they cannot handle quantifiers, general negation, and the range of supported first-order
theories is more restrictive.

More recent work explores different directions in training models to perform neural-symbolic
reasoning. For example, SMT solvers and MCMC sampling are utilized to support network training,
side-stepping shortcut satisfaction [15, 16]. Hoernle et al. [12] introduce MultiplexNet, a deep model
that ensures the satisfaction of symbolic constraints during the inference stage and adds an additional
dimension to the neuro-symbolic learning landscape. Marconato et al. [20] has investigated how to
mitigate the challenges and limitations associated with neuro-symbolic reasoning shortcuts and Yang
et al. [37] use straight-through-estimators and logical constraints for neural network learning.

Differentiable Logic & Semantic Losses. Another recent direction has explored differentiable
logics [9, 33, 32], loss functions that incorporate logical semantics [1, 36], or training methods guided
by symbolic solvers [10, 28]. These approaches provide ways of integrating symbolic knowledge
into training, by making logical formulas differentiable, and therefore amenable to optimization
when included in a loss function. This line of work does not explicitly aim to make use of symbolic
information during inference. In contrast, the information that our approach extracts from the
solver during training is used to condition the model towards a representation that will allow it to
communicate effectively with the solver during inference. Additionally, we do not require the logical
formulas, or the solver, to be differentiable.

3 Background

Let X denote a domain of features, Y a domain of labels, and D a distribution over X⇥Y. Formally,
D is a probability measure on a space given by a �-algebra over subsets of }(X⇥Y). The goal of a
learning algorithm A is to find a function h : X ! Y that, for (x, y) ⇠ D, can be used to predict y
when given x. To do this, A is given a set of training examples S = (x1, y1), . . . , (xm, ym) sampled
i.i.d. from D, and uses some criterion to select h from a hypothesis class H of functions. We refer
to h as the model learned by A on S. When the learning algorithm A is clear from the context, we
will write hS to denote the model produced from the given sample. Throughout this paper, we will
generally assume that the loss is either the 0-1 loss `01 or binary cross-entropy `bce.

A theory T consists of a signature ⌃ of constant, predicate, and function symbols, as well as a
set of axioms over ⌃. Formulas in a theory are composed of elements of ⌃, variables, and logical
symbols such as quantifiers and Boolean operations. We use the term decision procedure to refer to
an algorithm that is given an open T -formula, and returns true if it is satisfiable, and false otherwise.
Additionally, it may return an assignment to all of the variables that demonstrates satisfiability,
or if the formula is not satisfiable, then it may return an unsatisfiable core, which is a subset of
clauses taken from the formula’s representation in conjunctive normal form that remains unsatisfiable.
Loosely, we also refer to such an algorithm as a “solver”, but this term is more general, and could
also refer to an algorithm that identifies the maximal set of clauses, possibly weighted by some
user-defined values, that are satisfiable when conjoined.

3

Features X Symbolic Domain Z

0010000111

Neural
Network

�(z1k . . . kz10, y) ⌘

a = 1z1>0k . . . k1z5>0 ^ b = 1z5>0k . . . k1z10>0 ^

a+ b = y

Prediction Logic �

Labels Y

{01011}

Satisfying
Assignments

Algorithm 1: F�
smt(z) Forward Pass

Inputs: z 2 Rp layer input
�(z0, . . . , zp�1, y0, . . . , yq�1)
T -formula

Output: y 2 Rq

1 begin
2 zb [z[i] > 0 : i = 0 . . . p� 1]

3 �̂ �(zb[0], . . . , zb[p� 1])

4 if �̂ is satisfiable then
5 yb[0], . . . , yb[q] solve(�̂, y0, . . .)
6 y [yb[i] > 0 : i = 0 . . . q � 1]
7 else
8 y 0
9 end

10 return y
11 end

Figure 1: Illustrative MNIST addition example (left), and SMT-based forward pass (right, Alg. 1).We
use a binary encoding of digits, because SMT solvers support constraints involving integers that are
encoded this way. While only four bits per digit are necessary to represent the inputs, five are needed
for the output, and we represent all digits as 5-bit vectors for uniformity.

4 Constructing SMTLayer

In this section, we present SMTLayer, a set of algorithms for computing the forward and backward
passes of a layer whose behavior is defined by a set of user-defined SMT constraints. SMTLayer does
not have trainable parameters, and its functionality is wholly defined by a set of SMT constraints �
that are provided by the model designer. SMTLayer can be used in modern deep-learning frameworks
as a drop-in replacement for more conventional neural network layers, e.g., dense, convolutional, and
LSTM [11] are prominent examples of widely-used layers.

Section 4.1 provides a high-level overview of our approach, Section 4.2 describes them in detail, and
Section 4.3 begins an analysis of this setting that we hope future work will continue developing.

4.1 Overview

We envision SMTLayer being used primarily at the top of a DNN taking inputs from a stack of
conventional DNN layers that convert raw input features into ground terms for the constraints
�(z0, . . . , zp�1, y0, . . . , yq�1) embedded in SMTLayer, and producing outputs that are consistent
with � and the given ground terms. Figure 1 shows an illustrative example, with the previously-studied
problem of MNIST addition [18, 13].

During the forward pass the outputs of the previous layer are mapped to designated free variables
z0, . . . , zp�1. The layer then checks the satisfiability of �, a formula in an appropriate combination of
first-order theories, after substituting these ground terms for the zi, and the output of the layer consists
of the solver’s model for y0, . . . , yq�1. These outputs are converted from Boolean to floating-point
values by mapping false to -1 and true to 1. At the moment, the only restriction on � that our layer
requires is that z and y be vectors of Booleans, so that they can be appropriately mapped to continuous
values; any other symbols appearing in � can come from arbitrary domains (e.g. strings) supported
by the underlying SMT solver.

In the backward pass, the layer receives the gradient of its output with respect to the function whose
derivative is being computed, which we will assume is the binary cross-entropy loss `(y, y?). Unless
stated otherwise, we will assume this loss for the remainder of the section. This gradient is used,
along with the inputs and outputs of the corresponding forward pass, to first compute an amended
output ŷ which corresponds to an output that would have yielded a smaller loss. Because the outputs
are Boolean, it is always possible to determine the ground truth output y? from this information.
Using ŷ, the layer determines which of components of its inputs are inconsistent with � and ŷ, and
provides the corresponding gradients to the previous layer. Section 4.2 details the manner in which
these gradients are computed.

4

4.2 SMTLayer, forward and backward

We now present the details of the forward and backward passes of SMTLayer. There are two
algorithms for each pass, F�

smt and F�
max are forward passes, and B�

core , B�
max are backward passes.

F�
max and B�

max both make use of MaxSMT solvers, whereas F�
smt and B�

core rely on satisfiability
solvers (SMT). They are all compatible with each other. That is, F�

smt (and F�
max) can be used

with either B�
max or B�

core . Algorithms for F�
smt and B�

core are included in this section, and the
MaxSMT-based variants are detailed in Appendix A.2.

Forward pass. Algorithm 1 illustrates F�
smt , our SMT-based forward pass, and Algorithm 3

for computing F�
max is given in Appendix A.2. Both of the algorithms are parameterized by a

user-provided first-order formula �, and take a single vector-valued input consisting of unscaled
floating-point values (logits). These values are cast to Booleans by taking their sign on line 2 of both
algorithms, and they are equated with the corresponding free variables z0, . . . , zp�1.

The key difference between F�
max and F�

smt is the way in which they handle inputs that are inconsistent
with � when interpreted as Booleans. F�

smt addresses this by providing an output that is also
inconsistent with �, i.e. a vector of zeroes, effectively signaling that the network below it did not
provide consistent inputs. Alternatively, we can interpret the values provided by the network as
Booleans enriched with “confidence” values. To obtain MaxSMT weights, Algorithm 3 scales the
input logits to a formal probability distribution via the softmax function (line 3). With this approach,
SMTLayer will always provide a valid, although not necessarily correct, output that is consistent wrt
� with the inputs of which the network below is most “confident.” (line 4).

Algorithm 2: B�
core(z, y, @y`(y, y

?))
unsat core-based backward pass
Inputs: z 2 Rp input of forward pass

y 2 Rq output of forward pass
@y`(y, y

?) gradient with respect to output
�(z0, . . . , zp�1, y0, . . . , yq�1) a T -formula.

Output: @z`(y, y
?) 2 Rp approximate gradient of `

1 begin
2 Gz @z`(z, sign(z))

3 ŷ = sign(y)� 2 · sign
�
@y`(y, y

?)
�

4 if sign(y) 6= sign(ŷ) then
5 zb [z[i] > 0 : i = 0 . . . p� 1]

ŷb [ŷ[i] > 0 : i = 0 . . . q � 1]
6 �z ,�y

V
0i<p zi = zb[i],

V
0i<q yi = ŷb[i]

7 I argminI✓[0,p) 1(¬�_¬�y _
W

i2I zi 6= zb[i]) · |I|
8 foreach i 2 I do
9 Gz [i] @z[i]`(z[i], 1� sign(z[i]))

10 end
11 foreach i 2 Ī do
12 Gz [i] 0
13 end
14 end
15 return Gz

16 end

Backward pass. The backward pass is
responsible for computing the gradient of
the loss with respect to the layer inputs. It
is given the gradient of the loss with respect
to the layer outputs, and is assumed to have
memoized the inputs and outputs from the
forward pass. The gradients returned by
this pass are then used by the backward
pass of previous layers, and ultimately to
derive updates to trainable parameters.

The key issue in designing a backward pass
for SMTLayer is the geometry of the func-
tions computed by either forward pass. For
any vector v 2 {�1, 0, 1}p and x, x0 with
sign(x) = sign(x0) = v, then B�

· (x) =
B�
· (x0), so these functions are piece-wise

constant step functions ranging over the
corners of the Rq unit hypercube. Thus,
while they are differentiable almost every-
where, the gradient is not helpful for train-
ing because it is always zero. Prior work
on integrating such functions into deep networks [35, 34] addresses this problem by relaxing the
function computed by the forward pass, so that its gradients are hopefully more informative.

In contrast, B�
core (Algorithm 2) and B�

max (Algorithm 4 in Appendix A.2) do not attempt to provide
gradients for a relaxation of the forward pass. Instead, they use information provided by the solver in
its computation of the forward pass to identify which components of the input may have contributed
to higher loss. The gradient is then computed by constructing a variant of the input provided to the
forward pass, which differs on the identified components, and returning the gradient of the BCE loss
of the original input on this variant. The two algorithms differ in the information that they extract
from the solver, i.e., either solutions to a MaxSMT instance or an unsatisfiable core.

Both algorithms begin by initializing the gradient to be the loss between the logit inputs, and their
hard labels (line 2). Recall that we assume the loss ` is binary cross-entropy, so the result will not

5

be zero. The purpose of this initialization is to emulate the dynamics of training with cross-entropy
loss with a conventional layer; when the rounded output matches the target, the loss is not zero, and
training will continue to move the parameters in a direction that makes them agree “more” with the
hard target.

One line 3, they then use the provided gradient from the subsequent layer together with the memoized
output from the forward pass to construct ŷ, a “corrected” output that satisfies `(ŷ, y?)  `(y, y?) . To
understand why, observe that the sign of ŷ computed on line 3 of both algorithms must be equal to that
of y?. This follows from two facts: (1) at any coordinate i where y[i] 6= y?[i], sign(@y`(y, y?))[i] =
sign(y)[i]; (2) at any coordinate i where y[i] = y?[i], sign(@y`(y, y?))[i] = �1 · sign(y)[i]. If the
sign of ŷ is the same as that of y, then both algorithms return the initialized gradient. Otherwise, they
extract information from the solver using z and ŷ.

Algorithm 2 that runs B�
core identifies a set of constraints zi = zb[i] that are inconsistent with � ^ �y .

Note that line 7 specifies a minimal unsatisfiable core, but this is not necessary. All that is needed
is that none of the clauses in the core be superfluous, i.e., deleting any singleton clause from I will
cause it to be satisfiable. If a superfluous clause remains in the core, then the gradient returned for
the corresponding input will have the incorrect sign, which may lead to issues with training. B�

core
then updates the gradient at each input identified in the core using the loss of z[i] with respect to
1� sign(z[i]), which will lead to updates in a direction that would have modified the input such that
i was not in the unsat core. The indices not in the unsat core have their gradients set to zero, as their
absence in the core is not evidence that these inputs were correct or incorrect.

Algorithm 4 (in Appendix A.2) that runs B�
max instead constructs a set of clauses �y that constrain

the free y0, . . . , yq�1 to take the values of ŷb, the Boolean conversion of ŷ. It then computes the
softmax values of the absolute incoming logits |z|, and uses them to find the maximally-weighted
set of clauses (softmax(|z|)[i], zi = zb[i]) that are consistent with � ^ �y. Intuitively, these are the
inputs that the previous layer is most confident in that can be made consistent with the corrected label
ŷ by changing some of the less confident inputs. B�

max then updates the initialized gradient at each
index for which the solution to this instance does not match the sign of the original input.

4.3 Analysis

To understand the settings where SMTLayer will provide optimal results, we introduce a class of
decomposable learning problems (Definition 1).
Definition 1 (Decomposable problem). Let T be a first-order theory with constants in Z. An ERM
problem D, H is decomposable by T if there exists a function f : X ! Z, companion hypothesis
class Hf ✓ X ! Z, and T -formula � such that:

1. For any h 2 H, there exists hf 2 Hf and h0 such that h = h0
� hf .

2. There exists a random function g : }(Y) ! Y such that for any n > 0 and 8S in the
support of Dn,

Pr
(x,y)⇠D

[(x, y) 2 S] = Pr
(x,·)⇠D

[(x, g(hxif,�)) 2 S]

where hxif,� = {y : �(f(x), y) is satisfied}.

In (2), f is called the grounding function and � is called the prediction logic.

Intuitively, a learning problem defined in terms of a distribution D and hypothesis class H is
decomposable if members of H can be decomposed into functions that are responsible for grounding
and prediction, and D can be expressed in terms of a grounding function and a first-order formula �.
There are a few important things to note. First, there is no requirement that the grounding function
f be a member of Hf . While this may be realized at times, we should not assume that the data is
actually generated by a function in the class that one learns over. In fact, we do not assume that f is
efficiently computable, as it may correspond to a natural process, or an aspect of data generation that
is not understood well enough to make computational claims.

Second, for a given x, there may be more than one satisfying assignment for y to �(f(x), y). The
function g in (2) accounts for this, requiring only that when solutions to �(f(x), y) are sampled
by g, the result is distributed identically to D. This paper will focus on the case where satisfying

6

assignments for y are unique, as these are more in line with “classic" ERM classification problems.
We leave exploration of the more general setting to future work.

We note that if the grounding function is known, can be computed efficiently, and � is efficiently
solvable, then the learning problem effectively has a closed-form solution. Rather, we assume that
only � and perhaps g are known, and a sample of D is given. The remaining challenge is to identify
a grounding hypothesis hf 2 Hf for which the construction in (2) is an effective solution to the
end-to-end learning problem posed by D, H. This stands in contrast to traditional ERM, in which
a good solution h 2 H must either solve both grounding and prediction, or find a “shortcut” that
manages to predict D as well as the decomposition.

Convergence. Regarding the backward passes, Theorem 2 below demonstrates that when � satisfies
certain conditions, and the companion hypothesis class Hf satisfies conditions that are sufficient to
guarantee convergence with SGD, then training with F�

smt and B�
max will converge to the optimal

solution in the number of iterations. The proof of this theorem is based on the observation that when
the conditions on � are met, then training with B�

max obtains the same solution that would be obtained
if the labels of � were available for supervised learning, so it is possible to use the solver’s solutions
interchangeably with the correct supervised labels. Thus, the conditions on Hf are sufficient to
ensure the stated convergence, as stated in a well-known result outlined in Chapter 14 of [26].

It is also worth noting that Theorem 2 does not necessarily hold if B�
core is used instead of B�

max .
The reason is that there may be many unsatisfiable cores that are locally minimal in cardinality, and
gradients are set only for inputs that appear in the computed core. These gradients will not match
those of the loss on a grounding sample, so the training dynamics are likely to be different. We believe
that training with B�

core may have more in common with block coordinate descent than gradient
descent, and save a more detailed exploration of the topic for future work.

Theorem 2. Let D, H be a T -decomposable problem with grounding function f and prediction logic

� where:

1. Z and Y are Cartesian products of Booleans.

2. For any (x, y) ⇠ D and y0 6= y, �(f(x), y0) is T -equivalent to false and there is exactly one

z such that �(z, y) is T -equivalent to true.

3. Hf is a convex set and for all hf 2 Hf , khfk  B, and the loss `(hf (·), z) is M -Lipschitz

and convex in x for any fixed z.

Then for any ✏ > 0, selecting hf by minimizing either LS(F
�
smt(hf (·))) with ⌧ � M2B2/✏2 iterations

of stochastic gradient descent, with gradients provided by B�
max , and learning rate ⌘ =

p
B2/M2⌧

yields a grounding hypothesis ĥf 2 Hf that satisfies: E[LD(ĥf)]  minhf2Hf LD(hf) + ✏. The

randomness in this expectation is taken over the choices of the SGD algorithm.

5 Experimental Evaluation

In this section we present an empirical evaluation of SMTLayer on four learning problems that
can be decomposed into perceptual and symbolic subtasks. Our results demonstrate the following
primary findings. 1) SMTLayer is effective: on every benchmark, it provides superior results over
“conventional” learning that takes place without encoded symbolic knowledge. 2) SMTLayer has
distinct advantages over prior approaches. Compared with SATNet [35], it requires significantly less
training data to converge, and in all cases yields a more accurate model; compared with Scallop [13],
it is less computationally expensive, requires less training data, and it is more expressive in terms of
the knowledge that it can encode; compared to approaches that incorporate symbolic knowledge into
training, but do not use it during inference [1], SMTLayer gives superior results on test data. 3) Models
trained with SMTLayer may be more robust to certain types of covariate shift that occur relative to
the symbolic component of the problem; when SMTLayer succeeds at learning a representation, it
will continue to produce correct inferences provided the perceptual component remains stationary.

7

5.1 Datasets

Additional details on the datasets and corresponding architectures used in our evaluation can be found
in Appendix A.4. Hyper-parameters used for training are in Appendix A.5.

MNIST Addition. The MNIST addition problem is illustrated in Figure 1, and is similar to the
benchmark described by [13]. For training, we use “MNIST +p%" to denote a training set of size
60,000 that contains p% of the possible pairs of digits. So p = 100 indicates all possible pairs of
digits are used, and for p = 10, we only use pairs of the same digit. We use p = 10, 25, 50, 75 and
100 in our experiments. In all cases, we use the same test set of all possible pairs of digits.

Visual Algebra. The task is to solve for the variable x in a graphical depiction of the equation
ax+ b = c, where a, b and c are randomly-chosen numbers, and each symbol is depicted visually
using EMNIST [5] and HASY graphics [29]. Similar to MNIST addition, the training sample selects
a and b uniformly from pairs of the same digit, and x uniformly from the odd numbers between 0
and 9. The test sample was generated by sampling a, b, and x uniformly.

Liar’s Puzzle. The liar’s puzzle is comprised of three sentences spoken by three distinct agents:
Alice, Bob, and Charlie. One of the agents is “guilty” of an unspecified offense, and in each sentence,
the corresponding agent either states that one of the other parties is either guilty or innocent. It is
assumed that two of the agents are honest, and the guilty party is not. The objective is to identify the
guilty party. A formal characterization of the underlying logic is given in Appendix A.4. We note
that the logic has non-stratified occurrences of negation, so it cannot be encoded with Scallop.

Visual Sudoku. This task is to complete a 9⇥ 9 Sudoku board where each entry is an MNIST digit.
We use the dataset from the SATNet evaluation [35], and examine three configurations obtained by
sampling 10%, 50%, and 100% of the original training set. Although there are examples of Sudoku
solvers implemented as logic programs, we were not able to implement one in Scallop without
violating stratified negation. When calculating accuracy, we check if the entire board is correct.

5.2 Setup

We implemented a prototype of our approach using Pytorch [22] and Z3 [7], which will be made
available in open-source when this paper is published. When training models with SMTLayer, we
use SGD with Nesterov momentum at rate 0.9 and gradient clipping rate 0.1. Before training a model
with SMTLayer (or a comparison technique, unless stated otherwise), we first pre-train the neural
network by replacing SMTLayer with a dense network containing one hidden layer of 512 neurons.
This can potentially limit the number of training updates needed at lower layers, but will not result
in a model with a representation that is compatible with symbolic knowledge, so further training is
needed. Results in Table 1 (left) were averaged over five runs of training. Results in Table 1 (right)
for SATNet [35] and semantic strengthening (Ahmed et al. [1]) were reported in the original papers;
details on our fine-tuning of GPT2-XL are given in Appendix A.6.

5.3 Results

Overall performance. In terms of accuracy, Table 1 (left) shows that SMTLayer outperforms prior
work in terms of accuracy, training time, or both, on all configurations. SMTLayer is consistently
faster than Scallop, nearly 4⇥ in the case of visual algebra. The per-epoch time to train the SATNet
models is less expensive than SMTLayer, but this is not always conclusive. In the case of visual
sudoku, the 10% SMTLayer model achieved superior error rates in 20 epochs, compared with 100
epochs for the 100% SATNet model. We also point out that although Theorem 2 suggests that
Algorithm 4 might have learning advantages over Algorithm 2 found this not to be the case on these
datasets. All of the results in Table 1 (left) were trained with Algorithm 2, and test inference was
done using Algorithm 1.

Solvers during inference. Table 1 (right) shows the performance of several approaches for solving
(non-visual) Sudoku puzzles presented as text. The purpose of this comparison is to highlight the
advantages of using symbolic information during inference, as done by SMTLayer, SATNet, and
Scallop, versus only during training, as in the case of Semantic Strengthening [1]. We include several

8

SMTLayer SATNet [35] Scallop [13]
configuration test epoch test epoch test epoch

acc.(%)time(sec.) acc.(%)time(sec.) acc.(%)time(sec.)

MNIST+ 10% 98.1 75.4 10.0 31.0 33.7 96.3
MNIST+ 25% 98.3 74.8 34.2 30.9 65.8 96.4
MNIST+ 50% 98.6 75.8 54.8 32.8 98.4 96.5
MNIST+ 75% 98.5 75.0 78.4 31.9 93.5 96.4
MNIST+ 100% 98.5 75.8 96.7 33.5 98.6 96.6
Vis. Alg. #1 98.2 168.2 19.6 80.1 18.7 602.8
Vis. Alg. #2 25.4 127.2 18.6 52.5 21.3 636.1
Liar’s Puzzle 86.1 28.7 84.6 3.0 — —
Vis. Sudoku 10% 66.0 135.7 0.0 9.9 — —
Vis. Sudoku 50% 73.1 608.1 0.0 45.4 — —
Vis. Sudoku 100% 79.1 1199.0 63.2 86.5 — —

approach
correct

(%)
time

(sec)

SMT 100.0 0.05
SATNet [35] 98.3 0.01
Ahmed et al. [1] 28.0 0.01
gpt2-xl-9K @ 1 2.3 2.22
gpt2-xl-9K @ 10 6.6 2.36
gpt2-xl-9K @ 100 11.1 4.99
gpt2-xl-1M @ 1 14.3 2.16
gpt2-xl-1M @ 10 39.8 2.29
gpt2-xl-1M @ 100 66.1 4.52
text-davinci-003 @ 1 0.0 12.56
gpt-3.5-turbo-0301 @ 1 0.3 19.28

Table 1: (Left) Results after training and inference with SMTLayer versus prior work. All SMTLayer
tests were measured with the MaxSMT forward pass. Epoch times are averaged over all epochs on
which the model was trained. — cells denote incompatibility with the approach. (Right) Comparison
with other neuro-symbolic and transformer-based approaches on the plain (non-visual) Sudoku
benchmark from Wang et al [35]. GPT2-XL was fine-tuned on either the training portion of the
benchmark (9K), or 1 million random instances (1M). Times reflect completion of one puzzle (using
OpenAI’s API for davinci and turbo-3.5), and @ is the number of attempts generated.

transformer-based approaches in this comparison, as there is widespread interest in their ability to
perform this type of reasoning, despite not making explicit use of symbolic information. Although
Semantic Strengthening and transformer-based approaches could be used to solve Visual Sudoku (in
the latter case, via a vision encoder-decoder), we are not aware of a public implementation of either,
so these numbers represent an upper-bound on what their performance on that benchmark would be.

The top row shows the performance of Z3 on the benchmark test set, and is included as a baseline for
the time needed to solve a puzzle. SATNet, which includes a differentiable relaxation of a SAT solver,
clearly performs the best of the learning-based approaches, and beats SMTLayer’s performance of
Vis. Sudoku because there is no possibility of grounding error. While it still must learn the rules
of Sudoku, it has a strong prior that enables it to do so very well; on the other hand, Semantic
Strengthening leverages Sudoku constraints during training, but does not learn a complete neural
representation of them to use during inference. The OpenAI models can recite the rules of Sudoku
when prompted, but are rarely successful in applying them to a specific puzzle (see Appendix A.6
for details). The GPT2-XL models tuned on the 9K benchmark instances do better, but it is only
when they are tuned on significantly more data (1M) that they begin to approach acceptable levels
of performance. It is important to note that this is only true when given 100 attempts, making them
more costly than approaches that leverage solvers.

Training sample size. Because SMTLayer encodes explicit knowledge that is essential to correct
inference on these datasets, our approach is able to perform well in data-impoverished settings where
the training sample is insufficient to fully specify the symbolic component of the learning task. This
is readily apparent across the results in Table 1: in the MNIST addition and first visual algebra
configuration, SMTLayer yields a model that performs nearly perfectly despite not being given a
sufficient sample in most cases. Because SATNet must learn the symbolic component, it is at a
disadvantage, and in these settings performs similarly to a conventional model. In theory, Scallop
should be able to perform as well as SMTLayer, as it also encodes explicit knowledge. However, it is
unable to learn a useful model for either visual algebra configuration, and does not learn the correct
representation for MNIST addition until it sees half of the possible digit pairs during training.

SMTLayer does particularly well on the visual Sudoku dataset introduced by [35]. When trained
on just 10% of the original sample, it learns a function that exceeds the performance of the SATNet
model by a healthy margin, which continues to grow as it is exposed to more training data. On the
other hand, we found that SATNet failed to converge with less than the full original training sample.

Robustness & interpretability. The reason that SMTLayer is able to perform well, and often
near the optimum, in configurations that other approaches perform poorly on, is that it learns
a representation that is consistent with the symbolic knowledge encoded in the SMTLayer. For
example, the constraints that we use for MNIST addition, visual algebra, and visual sudoku all encode

9

digits as bitvectors. In order to make a correct inference, the neural network must learn to encode
MNIST digits in their correct bitvector representation. If learning succeeds at this, then there are
two positive outcomes that follow. First, the model’s representation will be inherently interpretable,
because it will coincide with the provided symbolic domain knowledge. Second, the resulting model
is naturally robust to covariate shift that does not affect the distribution of perceptual data that the
network grounds, but that does affect the statistics of their composition.

This type of shift is on display in the MNIST 10% and visual algebra experiments, where at training
time, the model only sees pairs of same-numbered digits, and at test time it is exposed to a substantially
different distribution of digit pairs or formulas. We verified this by examining the representations
learned by SMTLayer and Scallop on MNIST Addition 10%; it is unreasonable to expect SATNet to
learn an interpretable representation. As expected, SMTLayer produces the correct representation in
proportion to the accuracy of a typical MNIST model (⇡ 99%), whereas Scallop’s representation
was correct roughly 50% of the time. However, architecture plays a role in this robustness, as shown
in the SMTLayer results for the second visual algebra configuration. Because the network is shown
the full instance, and not the individual digits, it learns the training bias. Despite having access to the
symbolic formulas in SMTLayer, it cannot disentangle the perceptual symbols from their covariance.

6 Limitations

A major constraint imposed by our approach arises from the SMTLayer’s dependence on Boolean
vectors as a means to interact with the theoretical framework. This compels the conversion of
continuous values into discrete forms, a process that risks compromising inference accuracy and
adding unnecessary complexity to the theoretical underpinnings. The integration of SMTLayer also
limits the amount of parallelism that can be used during training and inference, as the SMT solver
must be run on CPU cores. While it may be possible with significant engineering effort to move some
of this functionality to GPU cores, there will likely always be a need to run portions of SMTLayer on
general-purpose CPU cores, raising the cost and decreasing efficiency in batched settings.

7 Conclusion

Our approach for integrating logical theories into deep learning, SMTLayer, provides a pragmatic
solution to the problem of incorporating symbolic knowledge into learning for training and inference,
which we demonstrate on several problems involving both perceptual tasks—vision and natural
language—and logical reasoning. Notably, we show that models which incorporate symbolic knowl-
edge during training and inference can outperform conventional models as well as prior work in this
area, especially in settings where training data is limited. Continued progress on automated reasoning
techniques has played a pivotal role in the development of several fields over the past decades, and
our hope is that the contributions in this paper will aid in progress towards realizing their potential in
challenges that surpass the capabilities of existing learning techniques.

Acknowledgements. This work was supported by the U.S. Army Research Office under MURI
Grant W911NF-21-1-0317, and the National Science Foundation under Grant No. CNS-1943016.

10

References
[1] Kareem Ahmed, Kai-Wei Chang, and Guy Van den Broeck. Semantic strengthening of neuro-

symbolic learning. In Proceedings of the 26th International Conference on Artificial Intelligence

and Statistics (AISTATS), apr 2023.

[2] Oscar Chang, Lampros Flokas, Hod Lipson, and Michael Spranger. Assessing satnet’s ability
to solve the symbol grounding problem. Advances in Neural Information Processing Systems,
33:1428–1439, 2020.

[3] Mark Chavira and Adnan Darwiche. On probabilistic inference by weighted model counting.
Artificial Intelligence, 172(6-7):772–799, 2008.

[4] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[5] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. EMNIST: an extension
of MNIST to handwritten letters. CoRR, abs/1702.05373, 2017.

[6] Ernest Davis. Mathematics, word problems, common sense, and artificial intelligence. arXiv

preprint arXiv:2301.09723, 2023.

[7] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In International

conference on Tools and Algorithms for the Construction and Analysis of Systems, pages
337–340. Springer, 2008.

[8] Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE

Signal Processing Magazine, 29(6):141–142, 2012.

[9] Marc Fischer, Mislav Balunovic, Dana Drachsler-Cohen, Timon Gehr, Ce Zhang, and Martin
Vechev. DL2: Training and querying neural networks with logic. In Proceedings of the 36th

International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning

Research, pages 1931–1941. PMLR, 2019.

[10] Kshitij Goyal, Sebastijan Dumancic, and Hendrik Blockeel. Sade: Learning models that
provably satisfy domain constraints. In Machine Learning and Knowledge Discovery in

Databases: European Conference, ECML PKDD 2022, Grenoble, France, September 19–23,

2022, Proceedings, Part V, pages 410–425. Springer, 2023.

[11] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput.,
9(8):1735–1780, nov 1997.

[12] Nick Hoernle, Rafael Michael Karampatsis, Vaishak Belle, and Kobi Gal. Multiplexnet: Towards
fully satisfied logical constraints in neural networks. In Proceedings of the AAAI conference on

artificial intelligence, volume 36, pages 5700–5709, 2022.

[13] Jiani Huang, Ziyang Li, Binghong Chen, Karan Samel, Mayur Naik, Le Song, and Xujie Si.
Scallop: From probabilistic deductive databases to scalable differentiable reasoning. Advances

in Neural Information Processing Systems, 34:25134–25145, 2021.

[14] Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been
Kim, and Percy Liang. Concept bottleneck models. In International Conference on Machine

Learning, pages 5338–5348. PMLR, 2020.

[15] Zenan Li, Zehua Liu, Yuan Yao, Jingwei Xu, Taolue Chen, Xiaoxing Ma, L Jian, et al. Learn-
ing with logical constraints but without shortcut satisfaction. In The Eleventh International

Conference on Learning Representations, 2022.

[16] Zenan Li, Yuan Yao, Taolue Chen, Jingwei Xu, Chun Cao, Xiaoxing Ma, L Jian, et al. Softened
symbol grounding for neuro-symbolic systems. In The Eleventh International Conference on

Learning Representations, 2022.

[17] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International

Conference on Learning Representations, 2019.

11

[18] Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc
De Raedt. Deepproblog: Neural probabilistic logic programming. Advances in Neural Informa-

tion Processing Systems, 31, 2018.

[19] Manifold Markets. Will a prompt that enables GPT-4 to solve easy Su-
doku puzzles be found? Available at: https://manifold.markets/Mira/
will-a-prompt-that-enables-gpt4-to. Retrieved 5/17/23.

[20] Emanuele Marconato, Stefano Teso, and Andrea Passerini. Neuro-symbolic reasoning shortcuts:
Mitigation strategies and their limitations. arXiv preprint arXiv:2303.12578, 2023.

[21] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. In The Eleventh International Conference on Learning Representations, 2023.

[22] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems

32. 2019.

[23] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for
word representation. In Proceedings of the 2014 conference on empirical methods in natural

language processing (EMNLP), pages 1532–1543, 2014.

[24] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[25] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System
optimizations enable training deep learning models with over 100 billion parameters. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery amp;

Data Mining (KDD), 2020.

[26] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to

Algorithms. Cambridge University Press, 2014.

[27] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback.
Advances in Neural Information Processing Systems, 33:3008–3021, 2020.

[28] Stefano Teso, Roberto Sebastiani, and Andrea Passerini. Structured learning modulo theories.
Artificial Intelligence, 244:166–187, 2017.

[29] Martin Thoma. The hasyv2 dataset. CoRR, abs/1701.08380, 2017.

[30] Sever Topan, David Rolnick, and Xujie Si. Techniques for symbol grounding with satnet.
Advances in Neural Information Processing Systems, 34:20733–20744, 2021.

[31] Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati. Large
language models still can’t plan (a benchmark for llms on planning and reasoning about change).
arXiv preprint arXiv:2206.10498, 2022.

[32] Emile van Krieken, Erman Acar, and Frank van Harmelen. Analyzing differentiable fuzzy logic
operators. Artificial Intelligence, 302:1–46, January 2022.

[33] Peter Varnai and Dimos V Dimarogonas. On robustness metrics for learning stl tasks. In 2020

American Control Conference (ACC), pages 5394–5399. IEEE, 2020.

[34] Marin Vlastelica, Anselm Paulus, Vít Musil, Georg Martius, and Michal Rolínek. Differentiation
of blackbox combinatorial solvers. arXiv preprint arXiv:1912.02175, 2019.

[35] Po-Wei Wang, Priya Donti, Bryan Wilder, and Zico Kolter. Satnet: Bridging deep learning and
logical reasoning using a differentiable satisfiability solver. In International Conference on

Machine Learning, pages 6545–6554. PMLR, 2019.

12

https://manifold.markets/Mira/will-a-prompt-that-enables-gpt4-to
https://manifold.markets/Mira/will-a-prompt-that-enables-gpt4-to

[36] Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck. A semantic loss
function for deep learning with symbolic knowledge. In Proceedings of the 35th International

Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pages 5502–5511. PMLR, 10–15 Jul 2018.

[37] Zhun Yang, Joohyung Lee, and Chiyoun Park. Injecting logical constraints into neural networks
via straight-through estimators. In International Conference on Machine Learning, pages
25096–25122. PMLR, 2022.

[38] Dennis Yurichev. SAT/SMT by example, 2020. Available at https://sat-smt.codes/
(January, 2023).

[39] Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang, and Guy Van den Broeck. On
the paradox of learning to reason from data. arXiv preprint arXiv:2205.11502, 2022.

[40] Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter Liu. PEGASUS: Pre-training with
extracted gap-sentences for abstractive summarization. In Hal Daumé III and Aarti Singh,
editors, Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pages 11328–11339. PMLR, 13–18 Jul 2020.

13

https://sat-smt.codes/

	Introduction
	Related Work
	Background
	Constructing SMTLayer
	Overview
	SMTLayer, forward and backward
	Analysis

	Experimental Evaluation
	Datasets
	Setup
	Results

	Limitations
	Conclusion
	Appendix
	Broader Impacts
	Algorithms
	Proofs
	Dataset details
	Hyperparameters
	Evaluation of Transformer-Based Approaches at Sudoku Solving

