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ABSTRACT

Graph neural networks have emerged as a powerful tool for large-scale mesh-based
physics simulation. Existing approaches primarily employ hierarchical, multi-scale
message passing to capture long-range dependencies within the graph. However,
these graph hierarchies are typically fixed and manually designed, which do not
adapt to the evolving dynamics present in complex physical systems. In this pa-
per, we introduce a novel neural network named DHMP, which learns Dynamic
Hierarchies for Message Passing networks through a differentiable node selection
method. The key component is the anisotropic message passing mechanism, which
operates at both intra-level and inter-level interactions. Unlike existing methods, it
first supports directionally non-uniform aggregation of dynamic features between
adjacent nodes within each graph hierarchy. Second, it determines node selection
probabilities for the next hierarchy according to different physical contexts, thereby
creating more flexible message shortcuts for learning remote node relations. Our
experiments demonstrate the effectiveness of DHMP, achieving 22.7% improve-
ment on average compared to recent fixed-hierarchy message passing networks
across five classic physics simulation datasets.

1 INTRODUCTION

Simulating physical systems with deep neural networks has achieved remarkable success due to their
efficiency compared with traditional numerical solvers. Graph Neural Networks (GNNs) have been
validated as a powerful tool for mesh-based physical scenarios, such as fluids and rigid collisions (Wu
et al.| 2020). The primary mechanism driving the GNN-based models is message passing (Sanchez-
Gonzalez et al.,|2020; [Pfaff et al.l 2021} |Allen et al.,|2023). In this process, time-varying physical
quantities are encoded within the mesh structure at each time step and are updated by aggregating
information broadcast from neighboring nodes. These existing methods generally rely on local
message passing, limiting their ability to propagate influence over long distances. A common solution
involves using multi-scale graph structures to facilitate direct information shortcuts between distant
nodes (Lino et al.| [2022; |Cao et al.| 2023 |Yu et al., [2024; |[Han et al.| [2022; [Fortunato et al.|, [2022).

However, as illustrated in Table[T} these approaches depend on heuristic methods to create coarser
message passing structures with predefined graphs (Cao et al.| [2023} |Yu et al., [2024) or downsample
the nodes based on spatial proximity (Lino et al.2022) where hierarchies are preprocessed in one
pass before training. These fixed graph hierarchies over the entire physical sequence do not account
for the diverse range of physical contexts; while in practical systems like turbulence, despite identical
boundary conditions, even minor changes in initial conditions can lead to significant differences in
subsequent dynamics. Moreover, the spatial correlations in a physical process can evolve over time,
making static GNN hierarchies insufficient for accommodating the time-varying node interactions.

To tackle these challenges, we propose a novel approach named Dynamic Hierarchical Message
Passing (DHMP), which constructs context-aware and temporally evolving graph hierarchies based
on the original mesh topology and the input physical quantities. The key insight is to develop a
differentiable node selection method that allows for flexible modeling of node interactions. This is
technically supported by the proposed anisotropic message passing, which aggregates the neighboring
features to the central node in a directionally non-uniform manner, predicting its downsampling
probabilities as a node within the coarser graph level. We then employ Gumbel-Softmax sampling to
create a differentiable approximation of the hard sampling for the downsampled graph.
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Table 1: Comparison of mesh-based simulation models. Dynamic hierarchy refers to hierarchical
graph structures evolving over time. Context-aware indicates that the graph structures are determined
by the physical inputs. Prop. denotes different feature propagation mechanisms.

Model Hicrachical Dynamic  Context-Aware Anisotropic Learnable
Hierarchy Hierarchy Intra-level Prop.  Inter-level Prop.

MGN (2020) X - - X -

BSMS-GNN (2023) v X X X X

Lino et al.(2022) v X X X v

DHMP v v v v v

The anisotropic message passing mechanism not only adaptively creates multi-scale graph structures
but also enables learned directionally non-uniform importance weights to facilitate both intra-level
and inter-level propagation of dynamic information. As shown in Table [} existing approaches
perform isotropic feature aggregation within intra-level transition, assuming equal contributions from
neighboring nodes, which may overlook the directional nature of physical processes. While some
methods employ attention mechanisms to replace isotropic intra-level propagation (Dwivedi & Bres+
son, 2020; [Janny et al., 2023} |Yu et al., 2024} Han et al.,[2022), our approach demonstrates advantages
in computational efficiency. Furthermore, existing models generally rely on unlearnable importance
weights to transfer information across hierarchical levels. In contrast, the inter-level aggregation
weights in DHMP are data-specific and time-varying, effectively harnessing the anisotropic nature of
our message passing mechanism to enhance multi-scale modeling flexibility.

Overall, our contributions are summarized as follows:

* We present DHMP, a new method that constructs dynamic hierarchies via a differentiable node se-
lection process, enabling context-aware modeling of hierarchical structures for physics simulations.

* As a key component in DHMP, the proposed anisotropic message passing enables learnable, non-
uniform intra-level and inter-level feature propagation, significantly enhancing model performance.

* DHMP achieves a 22.7% promotion on average across four standard benchmarks, compared with
fixed-hierarchy models. It is also shown to generalize well to test cases with time-varying mesh
structures (Table , unseen resolutions (Table , and out-of-distribution dynamics (Table E])

2 PRELIMINARIES

Message passing. We consider simulating mesh-based physical systems, where the task is to
predict the dynamic quantities of the mesh at future timesteps given the current mesh configuration.
A mesh-based system is represented as a bi-directed graph G = (V, 'l where V and £ denote the
set of nodes and edges, respectively. Message passing neural networks (MPNNs) compute the node
representations by stacking multiple message passing layers of the form:

Edge update: &;; = ¢°(e;;, vi, v;); Node update: ¥; = ¢ (v;, ¢ ({&;; | Vi, ei; €E})), (D

where v; is the feature of node v; € V and 1) denotes a non-parametric aggregation function. The
function ¢° updates the features of edges based on the endpoints, while ¢” updates the node states
with aggregated messages from its neighbors. In existing mesh-based simulation methods, multi-layer
perceptrons (MLPs) with residual connections are commonly employed for ¢¢(-) and ¢*(-), with the
aggregation function ¢ (-) being defined as the sum of edge features. Notably, since the aggregation
function treats all neighbors equally, the contributions from neighboring nodes may be averaged out,
and the repeated message-passing process can further dilute distinctive node features. This issue is
exacerbated in dynamic physical systems, where transferring directed patterns is crucial.

Hierarchical MPNNs. To facilitate long-range modeling, hierarchical MPNNs process information
at L scales by creating a graph for each level and propagating information between them (Lino et al.,
2022; [Fortunato et al., 2022} (Cao et al [2023; |Yu et al., [2024). Let G; = (V1,&;) represent the
graph structure at the finest level, i.e., the input mesh. The lower-resolution graphs Go, Gs, ..., Gy,
with V4| > [Va2| > ... > |Vi|, contain fewer nodes and edges, which allows for more efficient

' Bi-directed means each original undirected edge is represented twice in G: if there is an edge between i and
J,itis represented as two directed edges ¢ — j and j — 7. Each node has a self-loop.
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feature propagation over longer physical distances with certain propagation steps. The typical process
for constructing multi-scale structures primarily involves downsampling and upsampling between
adjacent graph hierarchies. Downsampling reduces the number of nodes while upsampling transfers
information from a lower-resolution graph to a higher-resolution one. The downsampling operation
can be broken down into two steps:

* SELECT: Nodes are selected from the current graph structure G; to create a new, coarser graph
Gi+1. Various criteria for node selection (Diehl, 2019;|Ying et al., 2018} [Lino et al.,|[2022) can be
applied to form V;;. The edges &41 in G, are constructed by connecting the selected nodes
based on the original edges &;. However, this process can sometimes lead to loss of connectivity
and introduce partitions (Gao & Ji, [2019; |Lee et al.l 2019} |Cao et al.l [2023)). To mitigate this,
connectivity in &1 can be strengthened by adding K -hop edges.

* REDUCE: The features of the nodes in V; 1 are aggregated from their corresponding neighborhood
features in the finer graph G;.

The upsampling process is represented by the EXPAND, the inverse of the REDUCE function, which
aggregates information from the coarser level back to the finer level. Most previous work generates
coarser graphs for each sequence either by using numerical software or by downsampling the input
mesh through heuristic pooling strategies. This process occurs during the data preprocessing stage,
enabling the preprocessed hierarchy of the same input mesh topology to be reused across various
initial conditions and different time steps.

3 METHOD

In this section, we introduce the Dynamic Hierarchical Message Passing Networks (DHMP), a fully
differentiable model that learns to dynamically generate coarser graphs over the sequence while
simultaneously learning to simulate the physical system over the learned hierarchical graphs.

3.1 OVERVIEW

Figure |I| demonstrates an overview of the proposed model, which operates in an encode-process-
decode pipeline. The encoder first maps the input field to a latent feature space Vi = {v;|v; € V1 }
at the original mesh resolution. Subsequently, we model the physical dynamics across the learned
multi-scale graph hierarchies with adaptive graph structures. To enhance the propagation of long-term
dependencies between distant nodes, we propose an anisotropic message passing (AMP) mechanism,
which is largely inspired by the directed nature of significant dynamic patterns.

In Section we present the details of the AMP layer. In Section we discuss the approach for
learning context-aware graph hierarchies. In Section[3.4] we describe the inter-level downsampling
and upsampling processes that incorporate AMP-based feature propagation. Finally, in Section [3.5]
we outline the implementation details and hyperparameter choices.

3.2 ANISOTROPIC MESSAGE PASSING

We introduce the AMP layer, which facilitates information propagation both within and between graph
hierarchies, enabling DHMP to effectively capture local and long-range dependencies simultaneously.

As shown in Eq. (T)), a common method in mesh-based simulation is to use the summation aggregation
function for node update: ¥; = ¢" (vi, Zv]» N, éij), where v; € N, denotes a neighboring node

of v; in the graph. Using the summation aggregation has two drawbacks: i) it can excessively
smooth the neighboring features, potentially failing to capture intricate local relations, as discussed in
previous literature (Alon & Yahav, 2021} |Dong et al., 2023} [Dwivedi et al.,|2022)), and ii) it does not
account for the directed nature that can be inherent in physics scenarios.

To address these issues, we propose the AMP layer, which employs a more flexible aggregation
function to facilitate anisotropic feature propagation within each message-passing hierarchy. Instead
of directly summing the edge features, AMP exploits learnable parameters ¢* : R¥* — R to predict
the importance weight of edge feature &;; to node v;:

wij = ¢ (€45, Vi, Vj). (2)
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Anisotropic Message Passing (AMP)

A'N» uvv’vv‘A ‘ﬂ
A'«VAVAAVAV""A""" j
,Vn AVAVAVAVIYAY] |
R0 VA# ﬂhﬂé#?Aﬁﬂﬁ?ﬂ%e"'
i' AAVAVA vmv um i mvmvuu AVAVAVAVAY

vv
‘ RE wmvmmv#v mﬂ
%m

oy g,«vﬂ vam

AAVAVAVAAVAAVAVA 'I?v:x:'AVAVAVAAez?"VI
n
E Dynamic Hierarchical Message Passing(DHMP) E
| v
1XAMP 1XAMP
gl <).---V- gl e - gl <,_...'. gl V1,:¢U (Vi, Z C!i]'eij)
[ A JEN
DiffSELECT ' ' i K K
REDUCE E E EXPAND Differentiable Pooling
\A M v
1XAMP 1xAMP
Go > G2 > G2 —> G2
A A
DiffSELECT| | 1 ! expanp
! 1
REDUCE vy E ﬁ
gr IXAME gL, Forward > DiffSELECT ~ —> REDUCE
7 Gradient ------ > node - — = EXPAND

Figure 1: In DHMP, physical dynamics is modeled on multiple graph resolutions with adaptive
structures, Gy, Go, . . ., G, and are processed using their respective AMP layers. The Di ffSELECT
operation performs differentiable pooling to create coarser graphs with learnable downsampling prob-
abilities. REDUCE and EXPAND integrate inter-level information using learned feature aggregation
weights over the neighboring nodes. DHMP is trained end-to-end with one-step supervision.

To ensure that the coefficients are easily comparable across different nodes, we normalize them using
the softmax function across all choices of j:

exp (wi;)
2ken; €xXP (Wik)

The normalized coefficients are used to compute a linear combination of the corresponding edge
features. This linear combination serves as the final input for the node update function ¢ given node

feature v;:

Vv, = ¢" (Vz', Z aijéij>- 4)

vj eENy i

Unlike traditional MPNNs with non-parametrized aggregation functions, the proposed AMP layer
allows for the implicit assignment of varying contribution weights to the updated edge features
within the same neighborhood. Analyzing the learned direction-specific weights in AMP provides
additional benefits for interoperability. AMP also differs from the Graph Convolutional Networks
(GCNs) (Niepert et all, 2016) and attention-based GNNs (Velickovi¢ et al. 2018)): while these
methods model aggregation by assigning weights to node features, AMP emphasizes weighting edge
features which contain relative distance offsets. These edge features provide direct information about
node positions, making them essential for capturing spatial relationships and enhancing generalization.

a;; = softmax; (w;;) =

3

3.3 DIFFERENTIABLE MULTI-SCALE GRAPH CONSTRUCTION

With the AMP layer functioning within each graph level, local dependencies are effectively propagated
throughout the high-resolution graphs, guiding the selection of nodes to be discarded in the next
hierarchy for improved long-range modeling. We now delve into the details of the differentiable node
selection method (Dif £SELECT) for hierarchical graph construction.

In the D1 £ £ SELECT operation, we train the node update module ¢* based on anisotropic aggregated
edge features to produce a probability p; for each node. This probability indicates the likelihood of
retaining node v; in the next-level coarser graph G;11. Accordingly, we rewrite Eq. (@) as follows:

dhpt=o(vl Y alel). )

UJGNvi

4
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Next, we employ Gumbel-Softmax sampling (Jang et al.,[2017) on p; to determine whether node v;
is included in the downsampled graph:

z} = Gumbel-Softmax (p!), (6)

where z! is a binary variable indicating the selection of node v;. When z! = 1, node v; is retained in
the next graph level. In this way, the node set V; ; is dynamically constructed based on node features
from the finer graph level. The Gumbel-Softmax technique provides a differentiable approximation
to hard sampling, thereby facilitating end-to-end training. Additionally, we implement the Gumbel-
Softmax with temperature annealing to stabilize training, initially encouraging the exploration of
hierarchies and gradually refining the selection process.

The edges &1 in the coarser graph G; 1 are constructed by connecting the selected nodes using the
original graph’s edges £. However, this process may result in disconnected partitions (see Figure
in the appendix). To address this issue, we enhance the connectivity in &1 by incorporating the
K-hop edges during the edge selection process, defined as follows:

S(K
gl( ) =& U {el—j | Elvkl,vk2, ey Uk, € V, st €ik1sChikos - sChx_1,j € 51} 7)

In essence, ¢;; € £/ if there exists a sequence of intermediate nodes {vy, , Vg, - - - , Vg, } consecu-
tively connected by edges in &; or e;; € &. The edges in &4 are defined as:

5z+1 = {eij | ﬂvi,vj S Vl+1 s.t. g5 € gl(K)} ®)

&1+1 consists of edges from the enhanced edge set gl(K) that connect nodes in V1. As K increases,

nodes in E}(K) can be connected through additional intermediate nodes, thereby improving long-range
connectivity. In practice, the most effective value of K is 2, which ensures effective connectivity.

The graph construction process is fully differentiable, allowing for seamless integration into differen-
tiable physical simulators. By flexibly adapting graph hierarchies based on simulation states, it paves
the way for more accurate predictions of the spatiotemporal patterns in complex systems.

3.4 INTER-LEVEL FEATURE PROPAGATION WITH AMP

During the downsampling process from G; to the generated coarser graph G; 1, as illustrated in
Figure|[I] the REDUCE operation aggregates information to each node in V;41 from its corresponding
neighbors in V;. Conversely, the EXPAND operation unpools the reduced graph back to a finer
resolution, delivering the information of the pooled nodes to their neighbors at the finer level.

Prior works employed non-parametric aggregation in inter-level propagation, convolving features
based on the normalized node degree. It simplifies intricate relationships between nodes and neglects
the directional aspects of information flow. In comparison, the inter-level aggregation weights in
DHMP are data-specific and time-varying. Notably, the importance weight aéj in the proposed
AMP layer inherently captures the significance of node v;’s features to node v; at the graph level I.
Consequently, it can be directly reused for the REDUCE and EXPAND operations in the downsampling
and upsampling processes. We provide details of these operations as follows:

* REDUCE: Let v; be the node at the coarser graph level. The downsampling process aggregates the

. R . . . 41
information of the current neighbors AV; by reusing the weight af;: v;™' < 37\~ af;vh.

* EXPAND: We first unpool the node features from the next-level coarser graph G; . To achieve this,
we record the nodes selected during the downsampling process and use this information to place
nodes back in their original positions in the graph. Next, we re-use the importance weight /! ;o

assign features in the coarser graph to nodes in the finer graph, i.e., vl < >° JEN: véﬂaﬁj.
* FeatureMixing: Following the EXPAND operation, DHMP conducts an additional message
passing step based on v!. It then integrates the resulting features with the intra-level message

passing outcomes in G; (before downsampling) through a skip connection.

3.5 IMPLEMENTATION DETAILS

We train DHMP using the one-step supervision that measures the Ly loss between the ground truth
and the next-step predictions. We include detailed descriptions of the physical quantities represented
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by input node and edge features in Appendix [B] We implement the encoder, decoder, node update
function ¢", and edge update function ¢ using two-layer MLPs with ReL U activation and a hidden
size of 128. Likewise, the network component for generating importance weights, ¢, in AMP is
implemented using a two-layer MLP. We apply layer normalization to the MLP outputs, except for
those of the decoder and the importance weight network. We perform a single message passing step at
each graph level. We discuss the specific number of graph levels L for downsampling in Appendix [A]
In the Gumbel-Softmax operator for differentiable node selection, we use temperature annealing to
decrease the temperature from 5 to 0.1 with a decay factor of v = 0.999, which aims to encourage
the exploration of hierarchies while gradually refining node selection to ensure training stability.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate our approach on five mesh-based physics simulation benchmarks established
in previous literature (Pfaff et al.} 2021} |Cao et al., 2023 Wu et al.,[2023; Narain et al.,[2012).

* CylinderFlow: Simulation of incompressible flow around a cylinder based on 2D Eulerian meshes.
* Airfoil: Aerodynamic simulation around airfoil cross-sections based on 2D Eulerian meshes.

* Flag: Simulation of flag dynamics in the wind based on Lagrangian meshes with fixed topology.
* DeformingPlate: Deformation of hyper-elastic plates based on Lagrange tetrahedral meshes.

* FoldingPaper: Deformation of paper sheets on Lagrangian meshes, with varying forces at the four
corners and evolving mesh graph.

For details regarding the datasets, including descriptions of the input physical quantities, please refer
to Appendix [A] Additional information concerning our implementation can be found in Appendix

Compared models. We primarily compare DHMP with the following methods:
* MGN (Pfaff et al.l 2021), which performs multiple times of message passing at the original graph.

* BSMS-GNN (Cao et al., 2023), which generates static hierarchies using bi-stride pooling and
performs message passing on predefined meshes.

* [Lino et al.[(2022), which also trains MPNNs on manually-set multi-scale mesh graphs.

e HCMT (Yu et al.| 2024), which generates static hierarchies by applying Delaunay triangulation to
the bi-stride pooled nodes, and enables directed feature propagation with the attention mechanism.

All models are trained using the Adam optimizer with an exponential learning rate decay from 10~*
to 10~°. We further clarify the architecture details and the hyperparameters in Appendix

4.2 MAIN RESULTS

Standard benchmarks. Table 2] presents the root mean squared error (RMSE) of one-step predic-
tion (RMSE-1) and long-term rollouts for 100-600 future time steps (RMSE-all). DHMP consistently
outperforms the compared models across all benchmarks. This demonstrates the effectiveness of
building context-aware, temporally evolving hierarchies with learnable, directionally non-uniform

Table 2: Quantitative comparison of the one-step and long-term prediction errors. We report the
mean results over 3 random seeds, with corresponding standard deviations detailed in Appendix [F
Promotion denotes the improvement over the second-best model.

RMSE-1 (x107?) RMSE-All (x1072)

Model

Cylinder  Airfoil Flag Plate  Cylinder Airfoil Flag Plate
MGN (2021) 0.4046  77.38  0.4890 0.0579  59.78 2816 1245  3.982
BSMS-GNN (2023)  0.2263  71.69  0.5080 0.0632 16.98 2493 168.1  1.811
Lino et al.| (2022) 3.9352  85.66 0.9993 0.0291 27.60 2080 1182  2.090
HCMT (2024) 09190  48.62 0.4013 0.0295  23.59 3238 90.32  2.468
DHMP 0.1568 4141 0.3049 0.0282  6.571 2002  76.16  1.296
Promotion 30.7% 148% 24.0% 3.10% 613% 3.75% 157% 28.5%




324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

MGN BSMS-GNN DHMP Ground Truth

Figure 3: Top: the velocity field from the true data. Bottom: the temporal difference of the velocity
fields between adjacent time steps alongside the constructed coarser-level mesh graph (G;—4). The
highlighted areas demonstrate a notable experimental phenomenon: the mesh dynamically evolves
with the data context, and aligns with the critical areas of change in the data.

feature propagation both within and across graph levels. Figure 2] presents long-term predictions on
CylinderFlow, based solely on the system’s initial conditions at the first step. As we can see, DHMP
captures the complex, time-varying fluid flow around the cylinder obstacle more successfully, with its
predictions closely matching the ground truth evolution. More results are shown in Appendix[I|

Can the learned hierarchies adapt to evolving data dynamics? In Figure[3] we visualize the
dynamic hierarchies constructed by DHMP at different time steps, where coarser-level nodes tend
to concentrate in regions highlighted by the temporal differences in the true data. We have two
observations here: First, the constructed hierarchy evolves as the data context changes. Second,
the temporally evolving graph structures align with the high-intensity regions, either in the velocity
fields (top) or in their temporal variations (bottom). These findings highlight the effectiveness of our
approach in capturing significant patterns within the dynamic system.

Paper simulation with changing meshes. We evaluate Typle 3: Errors of 2D paper simulation
DHMP in a more challenging setting with time-varying (x10~2) on time-varying meshes.

meshes for paper folding simulation, generated using the
ARCSim solver (Narain et al., 2012} Wu et al.| [2023). No- Model ~ RMSE-1 ~ RMSE-All
tably, methods such as BSMS-GNN and HCMT require MGN 0.0618 24.08
pre-computed hierarchies as part of their data preprocess- DHMP 0.0544 7.41
ing, which poses a significant limitation in scenarios with
continuously changing mesh topologies. We assess the models using ground-truth remeshing nodes
provided by the ARCSim Adaptive Remeshing component, following the setup from
(2021). As shown in Table 3] DHMP achieves superior short-term and long-term accuracy compared
to MGN, indicating that the dynamic graph hierarchies in our approach can better fit physical systems
with significant geometric variations, as represented by the time-varying input mesh structures.
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Figure 4: The analyses of dynamic hierarchies, anisotropic intra-level propagation, and learnable
inter-level feature propagation. The red dashed lines represent results from BSMS-GNN (Cao et al
2023)). Lower values indicate better performance.

M1 M2 M3 DHMP M1 M2 M3 DHMP

M1 M2 M3 DHMP

BSMS-GNN DHMP Bi-stride Pooling [l DiffSELECT
High error 540, J

I 40% 4

30%

20% A

I 10%

Low error 0%

. Vi Vs Ve Vz
(a) Error distribution for BSMS-GNN and DHMP (b) Ratios of challenging nodes

Figure 5: (a) Error maps, where nodes with the top 10% of errors in each model’s predictions are
marked in yellow and referred to as “challenging nodes”. (b) DHMP retains more challenging nodes
in coarser graph hierarchies to capture multi-scale dependencies more effectively.

Model stability under variable graph structures. Due to the stochasticity of Gumbel-Softmax
sampling in D1 f £ SELECT, we evaluate the stability of trained DHMP by conducting three indepen-
dent runs on the test set. The mean and standard deviations of the prediction errors reveal minimal
discrepancies across different runs, as shown in Table[IT]in Appendix [E] These findings demonstrate
that once trained, DHMP generates consistent graph hierarchies based on the same inputs.

Computation efficiency. The computation efficiency is evaluated in Appendix [G] It shows that
DHMP has the lowest training cost and lower inference time compared to attention-based model.

4.3 ABLATION STUDIES

DHMP has three contributions: (i) dynamic hierarchy, (ii) anisotropic intra-level propagation, (iii)
learnable inter-level propagation. To investigate the effectiveness of each component, we imple-
ment various variants of DHMP, including Static-Anisotropic-Unlearnable (M1), Static-Anisotropic-
Learnable (M2); Dynamic-Anisotropic-Unlearnable (M3), and compare them against BSMS-GNN.
The baseline model uses static hierarchies, isotropic intra-level summation, and unlearnable inter-level
propagation. Ablation study results compared to baseline BSMS-GNN are presented in Figure[d]

Effectiveness of dynamic hierarchies. From Figure[d] by comparing DHMP vs. M2 and M3 vs.
M1, we observe the advantages of learning dynamic hierarchical graph structures. These results
highlight the significance of adaptively modeling interactions in context-dependent graphs. To better
understand how DHMP constructs dynamic hierarchies, we visualize the distribution of nodes with
the top 10% prediction errors in Figure[S(a)} Accordingly in Figure [5(b)| we observe that DHMP
retains a higher proportion of “challenging” nodes in the coarser message passing levels, enabling
our model to capture multi-scale dependencies more effectively, especially in areas where finer
message passing levels struggle. In contrast, the predefined static hierarchies in the BSMS baseline
are data-independent and may inevitably overlook modeling long-range relations surrounding these
pivotal nodes, even though they typically present higher errors than those in DHMP.

Effectiveness of anisotropic message passing. Figure [ further illustrates the importance of
enhancing the direction-specific contributions during both intra-level and inter-level updates. First,
incorporating AMP into the static hierarchy results in performance improvements, as shown by the
comparison between M1 and BSMS-GNN. Additionally, the significance of transmitting directed
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Figure 6: Visualizations of the variance of the generated anisotropic weights calculated on adjacent
edges (top) and the corresponding variance of physical quantities computed over time (bottom). The
strong correlation between them reveals the AMP’s ability to perceive significant patterns in data.

Table 4: Results on out-of-distribution (OOD) mesh resolutions.

RMSE-1 (x1072) RMSE-All (x1072)

Model

Cylinder  Airfoil Flag Plate  Cylinder Airfoil Flag  Plate
BSMS-GNN 09177 202.3  0.6486 0.0474 33.87 6179 1432 1.904
DHMP 0.4855 126.7  0.5536 0.0368 47.72 5759 1209 2553

inter-level information is highlighted by comparing DHMP vs. M3 and M1 vs. M2. In Figure[f] we
visualize the variance of predicted anisotropic edge weights and compare it with areas where physical
quantities present substantial variations over time. The results reveal a strong correlation between the
anisotropic learning mechanism and the rapidly changing dynamics of the physical system.

4.4 GENERALIZATION ANALYSES

Generalization to out-of-distribution mesh resolutions. Almost none of the existing machine
learning models for mesh-based physics simulation are resolution-free. They may fail when evaluated
on unseen mesh resolutions. We assess the generalization performance of DHMP by training it on
low-resolution meshes and testing it on high-resolution meshes. The average number of nodes in
the test data is twice that of the training data, and the number of edges is three times greater. As
shown in Table [d] DHMP demonstrates improved zero-shot generalization ability to more refined
mesh structures. This improvement is primarily attributed to our model’s capability to generate
hierarchical graphs adaptively. However, it is important to note that this result does not imply that our
method has fully explored generalization across arbitrary resolutions—achieving true resolution-free
modeling requires a more refined model design. Nevertheless, this holds significant value in practical
applications and has the potential to greatly reduce the time overhead of numerical simulation
processes for preparing the large-scale mesh data required for model training.

Generalization to physics variations.

We evaluate DHMP under strong distri- Table 5: Generalization results across various scales of

bution shifts in the input physical quan-
tities. Table[5]presents data statistics and
the RMSE results on the CylinderFlow
and Airfoil datasets. DHMP achieves
lower RMSEs than BSMS-GNN in both
short-term and long-term simulations,
which can be largely attributed to the pro-
posed AMP layer. When the fluid dynam-
ics in the test set become more complex—
characterized by increased variance in
the velocity field over time—the dynam-
ics patterns propagate more rapidly in
space. The AMP layer can more effec-
tively capture directed long-range node
interactions.

input velocities, presented by the variance and norm of
data in training/test splits. Increase denotes the relative
increase of the test data compared to the training data.

Cylinder Airfoil
Split Var Norm Var Norm
Train 7.92 579.6 288.3 173.4
Test 13.43 826.3 827.4 180.6
Increase 64.5% 42.5% 186.9%  4.20%
Model RMSE-1 RMSE-All RMSE-1 RMSE-All
BSMS-GNN 2.58x107%  0.251 1.035 30.32
DHMP 2.14x107*  0.091  0.665  22.57
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5 RELATED WORK

Learning-based physics simulation. Recent literature has shown that learning-based simulators
can efficiently handle complex and high-dimensional problems, such as fluid dynamics (Zhu et al.,
2024]), structural analysis (Kavvas et al.l 2018; Thail |2022), and climate modeling (Kurth et al.|[2018];
Rasp et al., 2018; |Rolnick et al., 2022} |Lam et al., 2023)). The models can be roughly categorized
into three groups based on data representation: those modeling partial differential equations (Raissi
et al.,2017;2019; |Lu et al.,[2019; [Li et al.l 2021; |Wang et al.l |2021)), particle-based systems (L1 et al.|
2019; Sanchez-Gonzalez et al., 2020; Ummenhofer et al.,|2020; |Prantl et al., 2022)), and mesh-based
systems (Pfaff et al.l 2021} [Lino et al., 2022} [Fortunato et al., 2022; |Cao et al., 2023). The rapid
inference time and differentiable property of these models greatly facilitate downstream tasks, such
as inverse design (Wang & Zhang, [2021; |Goodrich et al., [2021; |Allen et al., 2022} Janny et al.| 2023]).

GNN-based physics simulation. Previous work has explored GNNss in various physical domains,
such as articulated systems (Sanchez-Gonzalez et al.| 2018)), soft-body deformation and fluids (L1
et al.,|2019; Mrowca et al.,[2018; Sanchez-Gonzalez et al.,|2020; |[Rubanova et al., [2022; 'Wu et al.,
2023), rigid body dynamics (Battaglia et al.| 2016} L1 et al., |2019; Mrowca et al.l 2018}; Bear et al.|
2021} [Rubanova et al.,|2022), and aerodynamics (Belbute-Peres et al.,|2020; |Hines & Bekemeyer,
2023}, |Pfaff et al., [2021}; [Fortunato et al., 2022} |Cao et al.,|2023). Among them, MGN (Pfaff et al.,
2021) is a key method that models mesh-based dynamics through graph interactions. Subsequent
approaches primarily focus on enhancing modeling capabilities and reducing computational costs.

Hierarchical GNNs for physics simulation. Hierarchical GNNs employ multi-scale graph struc-
tures (Lino et al., 2022;|Han et al., 2022; Fortunato et al.,|2022; |Allen et al., 2023} Janny et al., 2023}
Cao et al., [2023; Yu et al., 2024)) to decrease overhead by using fewer nodes at coarser levels and
enabling long-range feature propagation. GMR-Transformer-GMUS (Han et al., [2022)) employs a
uniform sampling pooling method to select pivotal nodes. MS-MGN (Fortunato et al.,|2022) uses
a dual-level hierarchical GNN and performs message passing at both fine and coarse resolutions.
Hierarchical GNNs with multi-level structures (Lino et al.| 2022} |Cao et al., 2023} |Yu et al.| [2024;
Garnier et al., [2024; [Hy & Kondor, 2023) are most relevant to our approach, as they integrate
message passing neural networks within the U-Net architecture (Ronneberger et al., [2015). |[Lino
et al.| (2022) uses manually set grid resolutions and spatial proximity for graph pooling, which
requires predefined parameters. BSMS-GNN (Cao et al., 2023)) introduces a bi-stride pooling strategy
that pools nodes on alternating breadth-first search frontiers while enhancing edges with two-hop
connections. HCMT (Yu et al., [2024])) refines the structure further by applying Delaunay triangulation
to bi-stride nodes. Notably, these methods construct multi-level structures as preprocessing and
cannot change the graph hierarchies under varying physical conditions. Moreover, they typically
use uniform feature aggregation for intra-level propagation, which may hinder the directed transfer
of significant dynamic patterns, or use attention-based aggregation, which increases computational
overhead. Furthermore, inter-level propagation is often predefined or unlearnable, limiting flexibility
in transferring information across hierarchy levels. In contrast, our model generates context-aware
and temporally evolving graph hierarchies and incorporates learnable anisotropic feature propagation,
allowing it to better adapt to various initial conditions and rapidly changing dynamic systems.

6 CONCLUSIONS AND LIMITATIONS

In this paper, we introduced DHMP, a neural network that significantly advances the state-of-the-art
in mesh-based physics simulation. Our key innovation is dynamically creating the context-aware
graph structures of hierarchical GNNs through a differentiable node selection process. To this end,
we proposed an anisotropic message passing mechanism to enhance the propagation of long-term
dependencies between distant nodes, aligning with the directed nature of significant dynamic patterns.
Extensive experiments show that DHMP outperforms existing models, especially those with fixed
graph hierarchies, in both short-term and long-term predictions.

A potential limitation of this work is the need to improve the interpretability of the learned hierarchy
structure. Additionally, we would consider incorporating specific physical priors into DHMP to
further enhance the model’s robustness and generalizability, particularly in resolution-free problem
settings, which have been less explored in existing mesh-based approaches.
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APPENDIX

A DATASETS

We employ four established datasets from MGN (Pfaff et al., 2021): CylinderFlow, Airfoil, Flag, and
DeformingPlate.

* The CylinderFlow case examines the transient incompressible flow field around a fixed cylinder
positioned at different locations, with varying inflow velocities.

» The Airfoil case explores the transient compressible flow field at varying Mach numbers around
the airfoil, with different angles of attack.

* The Flag case involves a flag blowing in the wind on a fixed Lagrangian mesh.

* The DeformingPlate case involves hyperelastic plates being compressed by moving obstacles.

The CylinderFlow, Airfoil, and Flag datasets are each split into 1,000 training sequences, 100
validation sequences, and 100 testing sequences. The DeformingPlate dataset is split into 500 training
sequences, 100 validation sequences, and 100 testing sequences.

We also consider a more challenging dataset, FoldingPaper, where varying forces at the four corners
deform paper with time-varying Lagrangian mesh graphs, generated using the ARCSim solver (Narain
et al., 20125 [Wu et al., 2023). This dataset is divided into 500 training sequences, 100 validation
sequences, and 100 testing sequences.

We present statistical details of all five datasets in Table [6|and the input physical quantities in Table[7}

Table 6: Statistics of the CylinderFlow, Airfoil, Flag, DeformingPlate, and FoldingPaper datasets.

Dataset Average # nodes  Average # edges Mesh type # Hierarchies  # Steps
CylinderFlow 1886 5424 triangle, 2D 7 600
Airfoil 5233 15449 triangle, 2D 7 100
Flag 1579 9212 triangle, 2D 7 400
DeformingPlate 1271 4611 tetrahedron, 3D 6 400
FoldingPaper 110 724 triangle, 2D 3 325

Table 7: Comparisons of the edge offsets and node inputs of different physical systems.

Dataset Type Edge offset e;; Node Input v;  Outputs Noise Scale
CylinderFlow Eulerian Xij, |X”‘ Vi, N 1'}»; Vit 2e — 2
Airfoil Eulerian Xij, |X1]‘ Piy Vi, T ’L.)i, /h‘, Pz Vi . 2e — 2, pPi - lel
Flag Lagrangian Xij7 |Xvij|7 Tij, ‘IU‘ i‘i, n; ii xX;: 3e—3
DeformingPlate Lagrangian X;, | Xy, zij, |Ti;] Zi, Mg & zi:3e—3

B MODEL IMPLEMENTATION

We present model configurations of different physical systems below:

* Edge offsets. X and x stand for the mesh-space and world-space position. For an Eulerian
system, only mesh position is used for e;;, while for a Lagrangian system, both mesh-space and
world-space positions are used. The edge offsets are directly used as low-dimensional input to the
edge update function ¢°. In other words, these features are concatenated and fed into ¢¢ without
any transformation through an MLP or other encoding processes to generate a higher-dimensional
representation.

* Input and target of the physical term of node v;. v is the velocity, p is the density, P is the
absolute pressure, and the dot @ = a;+; — a; stands for temporal change for a variable a. n
stands for the node type of v;. Random Gaussian noise is added to the node input features to
enhance robustness during training (Pfaff et al., [2021} Sanchez-Gonzalez et al.|[2020; |Cao et al.|
2023)). All the variables involved are normalized to zero-mean and unit variance via preprocessing.
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The preprocessed physical term is fed to the encoder to transform it into a high-dimensional
representation.

The encoder, decoder, node update function ¢”, and edge update function ¢¢ all utilize two-layer
MLPs with ReLU activation and a hidden size of 128. Similarly, the importance weight network ¢*
in AMP is implemented using a two-layer MLP. LayerNorm is applied to the MLP outputs, except
for the decoder and the importance weight network. We set K = 2 for edge enhancement, which is
aligned with the setting of BSMS-GNN (Cao et al.,|2023). In the Gumbel-Softmax for differentiable
node selection, temperature annealing decreases the temperature from 5 to 0.1 using a decay factor of
v = 0.999, encouraging exploration of hierarchies while gradually refining their selection to ensure
stability. DHMP is trained with Adam optimizer, using an exponential learning rate decay from 10~%
to 107, All experiments are conducted using 4 Nvidia RTX 3090. We mainly build DHMP based on
the released code of BSMS-GNN (Cao et al., [2023).

C BASELINE DETAILS

We compare DHMP with four competitive baselines: (1) MGN (Pfaff et al., [2021) which performs
multiple message passing on the input high-resolution mesh topology; (2) BSMS-GNN (Cao et al.,
2023)), which uses predefined bi-stride pooling prior as preprocessing to generate static hierarchies on
same mesh topology; (3) Lino et al.(Lino et al.l 2022)), which uses manually set grid resolutions and
spatial proximity for graph pooling; (4) HCMT (Yu et al.;,|2024)), which uses Delauny triangulation
based on bi-stride nodes and adopt attention mechanism to enable non-uniform feature propagation.
The architecture details of the compared models are as follows:

* MGN. InMGN, we use 15 message passing steps in all datasets. The encoder, decoder, node
update function, and edge update function are configured in the same way as in our model.

* BSMS-GNN. We use the same number of graph hierarchies in DHMP and as in BSMS-GNN.
We use the minimum average distance as the seeding heuristic for the BFS search recommended in
its original paper. The multi-level building is processed in one pass. The inter-level propagation
uses the normalized node degree to convolve features from neighbors to central nodes. The encoder,
decoder, node update function, and edge update function are set up the same way as in our model.
We perform one message passing step at each graph level.

* Linoetal. We use the four-scale GNN structure proposed in the work of [Lino et al.|(2022). The
edge length of the smallest cell for each dataset is 1/10 of the average scene size, with each lower
scale doubling in size. We follow its original paper to use 4 message passing steps at the top and
bottom levels and two for the others.

* HCMT. The hidden dimension and the number of attention heads in the HCMT block are set
to 128 and 4, respectively. We use the same number of hierarchies as in DHMP. For the Cylinder
and Airfoil datasets, due to the presence of hollow sections in the mesh, we do not apply Delaunay
triangulation for remeshing. Instead, we use edge connections generated through bi-stride pooling.
Like in DHMP, we use a single message passing step at each graph level.

Notably, the node encoder, decoder, node update function, and edge update function of MGN, BSMS-
GNN, and Lino et al. have the same network architecture as those in DHMP. To reduce the number
of network parameters, we avoid separately encoding the edge offset e;;. Instead, we concatenate it
with the node latents and use this combined input for the edge update function to compute &j;.

All models are trained using the Adam optimizer, with an exponential learning rate decay from 10~*
to 107% and a decay rate of v = 0.79. The batch size is set to 32. Following BSMS-GNN, model
convergence is defined by a performance improvement threshold of < 1%, at which point the training
process is terminated.

D ADDITIONAL RESULTS

D.1 ABLATION STUDY

In Sec.[3] we compare different variants of our DHMP model against the BSMS-GNN baseline, to
evaluate the effectiveness of (i) dynamic hierarchy construction based on the input mesh topology and
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Table 8: Qualitative results of model variants of DHMP and the baseline model.

RMSE-1 (x1072) RMSE-AIl (x1072)
Model Cylinder Flag Cylinder Flag
BSMS-GNN (Cao et al.,[2023) 0.2263 0.5080 16.98 168.1
Static-Anisotropic-Unlearnable (M1) 0.1995 0.4804 9.621 121.1
Static-Anisotropic-Learnable (M2) 0.1695 0.4666 8.317 109.9
Dynamic-Anisotropic-Unlearnable (M3) 0.1631 0.3538 7.793 82.65
DHMP 0.1568 0.3049 6.571 76.16
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Figure 7: Mesh visualization on Flag Dataset. Original mesh (left), sub-level graph after differentiable
node selection with K-hop enhancement with K = 2 (middle), and sub-level graph after node
selection without K -hop enhancement (right).

physical quantities, (ii) anisotropic intra-level feature propagation, (iii) learnable inter-level feature
propagation. The variants we investigate include:

* Static-Anisotropic-Unlearnable (M1): (ii),
e Static-Anisotropic-Learnable (M2): (ii+ iii),
* Dynamic-Anisotropic-Unlearnable (M3): (i)+(ii).

In this ablation study, we utilize a static graph hierarchy preprocessed using bi-stride pooling as
described in the BSMS-GNN paper (Cao et al., 2023), along with a non-parametric intra-level
aggregation function from previous works (Pfaff et al., [2021;|Cao et al.,[2023). Additionally, BSMS-
GNN employs unlearnable node degree metrics to generate inter-level aggregation weights, which
convolve features based on the normalized node degree for inter-level propagation. We show the
quantitative RMSE values of Figure d]in Table 8]

D.2 EDGE ENHANCEMENT

When constructing the lower-level graph G;,; based on the selected nodes, the edges &1 are
formed by connecting these nodes using the original edges &; from the previous graph. However,
this approach may lead to disconnected partitions, as observed in previous work (Lee et al.| 2019
Cao et al.| 2023; |Gao & Jil [2019)), and illustrated in Figure m To address this issue, we enhance
the connectivity of £ by incorporating K-hop edges during the edge construction process. We
investigate the impact of different K values, specifically K = 2, 3,4, on the Flag dataset. The results
are presented in Table[J] along with comparisons of the computational efficiency.

Notably, K = 2 yields the lowest RMSE across all conditions (RMSE-1, RMSE-50, and RMSE-all),
indicating superior performance compared to higher K values. Despite the performance decline ob-
served with K = 3 and K = 4, they still outperform the baseline results, indicating the effectiveness
of dynamic hierarchical modeling and anisotropy message passing.

D.3 IMPACT OF EDGE OFFSET ENCODING

To align with the original implementation of MGN (Pfaff et al.l [2021), we conduct additional
experiments on the CylinderFlow dataset where we implement MGN, BSMS-GNN, and DHMP
with edge offset encoding. The results are illustrated in Figure [8] where we have the following
observations.
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Table 9: Results for different values of K in edge enhancement. Here, K = 1 denotes directly using
edges of selected nodes from previous graph levels. Training time and memory usage are measured
with a batch size of 32, while inference time and memory are evaluated with a batch size of 1.

Training Infer
RMSE-1 (x1072) RMSE-AIl (x1072) Time (ms) VRAM (GBs) Time (ms) VRAM (GBs)
K=1 0.3296 100.1 31.57 14.75 23.60 1.17
K=2 0.3049 76.16 33.67 16.53 26.33 1.24
K=3 0.3380 86.84 34.67 18.49 33.21 1.25
K=4 0.3510 105.4 35.27 18.76 32.25 1.28
[ Without Edge Encoder @ With Edge Encoder
RMSE-1 (x1072) RMSE-AIl (x1072)
0.4 601
0.31
0.24
0.1
0.0
MGN BSMS-GNN BSMS-GNN DHMP
Training Time (ms) Training VRAM (GBs)
40+
30
20
10+
0_
MGN BSMS-GNN BSMS-GNN
Training Cost (hrs) Inference Time (ms)
60 1
40+
20
0 MGN BSMS-GNN DHMP ' MGN BSMS-GNN DHMP

Figure 8: Model comparisons without vs. with edge encoding in the CylinderFlow dataset.

First, while edge encoding generally improves model accuracy, it introduces a significant compu-
tational overhead. For example, MGN with edge encoding results in a 3x increase in VRAM usage
and longer training times compared to the version without edge encoding. For larger datasets, such
as Airfoil (which has three times the number of nodes and edges as CylinderFlow), this overhead is
expected to be even more pronounced. The increased demands on memory and processing time make
it challenging to run these computations on limited GPU resources.

Second, DHMP (with or without edge encoding) consistently outperforms other models in terms
of both RMSE-1 and RMSE-All, even when compared to models with edge encoding. Therefore,
in our main manuscript, we compare all models using versions without edge encoding to mitigate
the substantial increase in computational requirements. We believe this approach provides a fair
comparison.
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Figure 9: Model comparisons on different numbers of graph hierarchies.

Table 10: Comparison of DHMP without vs. with KP-AMP on the CylinderFlow dataset.

RMSE-1 (x107?) RMSE-All (x1072)
DHMP 0.1568 6.571
DHMP with KP-AMP 0.1438 6.444

D.4 HYPERPARAMETER ANALYSES ON NUMBER OF HIERARCHIES

We conduct an ablation study to assess the impact of varying numbers of hierarchies on model perfor-
mance. The results from the CylinderFlow dataset, illustrated in Figure EL demonstrate that DHMP
consistently outperforms BSMS-GNN across all tested numbers of graph hierarchies. Both models
show improved performance with increased hierarchy depth up to 7, indicating that deeper levels help
capture more complex interactions and thus enhance accuracy. However, a slight performance decline
is observed at level 9, which may suggest the onset of overfitting. Overall, the dynamically learned
hierarchies in DHMP are shown to be more effective compared to the predefined static hierarchies
used in BSMS-GNN.

D.5 FURTHER IMPROVEMENT WITH KP-AMP

Recent work by introduces a novel framework for graph neural networks, empha-
sizing the distinct processing of information from different hop distances within a graph. In their
approach, each hop distance is treated as a separate entity, with dedicated MLPs used to process
the messages passing through edges of different hop lengths. This design enables the model to
learn varying structural features at different scales, enhancing its expressiveness and adaptability to
heterogeneous graph structures.

Inspired by this approach, we explore the applicability of a similar approach to enhance DHMP.
Specifically, we extend DHMP by introducing a “KP-AMP” block, characterized by the following
modifications:

 The original AMP block is replaced with a specialized KP-AMP block.

» Edges at each hop distance are segregated into separate sets, enabling each hop to be processed
independently through a dedicated MLP.

We conduct experiments on the CylinderFlow dataset and showcase the performance comparison
between the original DHMP and “DHMP with KP-AMP” in Table [I0] The results indicate that
incorporating distinct MLPs for each hop distance significantly enhances the model’s capability to
process structural information at different scales, leading to improved performance across both RMSE-
1 and RMSE-AIl metrics. This approach complements DHMP’s anisotropic weighting mechanism by
further diversifying the representation of structural information. Future research could focus on more
deeply integrating these strategies to enhance the expressiveness of multi-hop processing paradigms
within the context of dynamic hierarchy construction.
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Table 11: Evaluation of DHMP with three independent tests.

Model Cylinder Airfoil Flag Plate
RMSE-1 (x1072) 0.1506 +3.6E-4 36.27 +5.7E4 0.2741 42482 0.0263 +5.6E-6
RMSE-All (x1072) 6.317 +0.33 2018 £130 68.66 +2.9 1.327 40.002
Table 12: Full quantitative results over three training seeds.
Model Cylinder Airfoil Flag Plate
RMSE-1 (x107?)
MGN 0.4046 +1.08E-2 77.38 £1.34E+1 0.4890 +6.34E-2 0.0579 £2.64E-3
BSMS-GNN 0.2263 +4.39E-2 71.69 +1.41E+1 0.5080 +0.48E-2 0.0632 +£14.3E-3
Lino et al. 3.9352 +11.3E-2 85.66 +0.35E+1 0.9993 +2.44E-2 0.0291 +0.19E-3
HCMT 0.9190 +61.2E-2 48.62 +0.51E+1 0.4013 +1.76E-2 0.0295 £3.45E-3
DHMP 0.1568 +0.94E-2 41.41 +0.66E+1 0.3049 +6.34E-2 0.0282 +2.65E-3
RMSE-AIl (x1072)
MGN 59.78 42.00E+1 2816 +1.99E+2 124.5 41.30E+1 3.982 +1.14E2
BSMS-GNN 16.98 +0.12E+1 2493 +1.70E+2 168.1 +0.65E+1 1.811 +0.42E-2
Lino et al. 27.60 40.86E+1 2080 40.39E+2 118.2 4-0.58E+1 2.090 +13.2E2
HCMT 23.5941.38E+1 3238 +3.62E+2 90.32 +0.50E+1 2.468+42.4E-2
DHMP 6.571 40.06E+1 2002 +1.02E+2 76.16 +1.30E+1 1.296 +1.14E-2

E STABILITY ANALYSIS

Given the inherent randomness introduced by the Gumbel-Softmax sampling process in
DiffSELECT, we evaluated the stability of DHMP by running the trained model on the test set
in three independent trials. We report the mean and standard deviation of the prediction errors in
Table Despite the stochastic nature of the node selection process, the results show a very small
standard deviation, demonstrating that DHMP reliably constructs stable and consistent dynamic
hierarchies. This stability can be attributed to the Di £ f SELECT operation, where the node update
module ¢ generates probabilities for retaining nodes in the next-level graph based on anisotropic
aggregated edge features. The Gumbel-Softmax technique, coupled with temperature annealing,
enables differentiable and stable node selection across hierarchy levels. As a result, the dynamic
hierarchies are constructed in a manner that is not only consistent but also optimized for long-range
dependencies. Moreover, the prediction errors from DHMP are significantly smaller than those of
the baseline models, underscoring the robustness and reliability of the model, even with its dynamic
node selection mechanism.

F FULL RESULTS OVER MULTIPLE TRAINING SEEDS

In Tablein the main manuscript, we report the mean results calculated over three random seeds.
Here, in Table[I2] we provide full comparisons between our model and the baseline models, including
standard deviations.

G COMPUTATION EFFICIENCY

We evaluate computational efficiency based on four criteria: training cost required to reach model
convergence, number of epochs/steps for model convergence, inference time per step, and the total
number of model parameters. A performance improvement threshold of less than 1% is used as the
criterion for model convergence. The results are presented in Table
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Table 13: The detailed measurements of computation efficiency for DHMP and baseline models.

Measurements Dataset MGN BSMS-GNN HCMT DHMP
Cylinder 35.26 37.11 80.60 35.96
o Airfoil 92.82 79.09 114.32 75.45
Training cost (hrs) Flag 28.12 18.27 66.70 17.14
Plate 61.82 39.80 99.84 41.85

Cylinder ~ 31]0.58M  28]0.52M  32[0.60M  280.52M
Airfoil ~ 45[0.84M  39|0.73M  41[077M  39]0.73M

Converged epochs | steps  Flag 35|044M  31]039M  37|046M  30]|0.37M
Plate 37/046M  26/0.32M  33|04IM  28|0.35M

Cylinder 17.35 16.55 79.52 21.79

Airfoil 50.67 38.04 106.34 58.84

Infer time/step (ms) Flag 16.15 17.18 85.87 26.33

Plate 38.98 28.44 100.78 47.45

Cylinder 2.79M 2.05M 2.03M 2.66M

Airfoil 2.79M 2.58M 2.03M 2.27M

#Parameter Flag 2.80M 2.06M 2.03M 2.67M

Plate 2.80M 2.87M 2.03M 3.20M

H CONSTRUCTED DYNAMIC HIERARCHIES

We visualize the constructed context-aware and temporally evolving hierarchies in Figure[T0] We
can see that the constructed hierarchies evolve as the input context changes and the evolving graph
structures align with high-intensity regions. We also visualize how the graph structure evolves across
the entire sequence, shown in the GIF files in the supplementary.

I RoLLOUT ERRORS

Figures[TTHI3|showcase rollout error maps for the Airfoil, Flag, and DeformingPlate datasets. DHMP
exhibits much lower rollout errors compared to the baseline models.

J DISCUSSION ON RELATED WORK

J.1 COMPARISON TO STATIC HIERARCHICAL GNNS

Hierarchical GNNs with multi-level structures (Lino et al.l [2022}; [Cao et al.l 2023}, [Yu et al.l 2024}
[Garnier et al,[2024} [Hy & Kondor, [2023)) are closely related to our approach, as they incorporate
MPNNs within the U-Net architecture (Ronneberger et al.|[2015). However, these methods typically
treat multi-level structures as fixed preprocessing steps and do not adapt the graph hierarchies under
varying physical conditions.

Besides, for intra-level feature propagation, some approaches use uniform feature aggregation (Cao
let all 2023} [Lino et al,[2022; [Hy & Kondor, [2023)), while others employ attention mechanisms to
introduce isotropic contributions from neighboring features (Yu et all, 2024} [Garnier et al., [2024).
However, the latter primarily focuses on adding weighted attention scores to nodes, overlooking
spatially-aware edge features. For inter-level feature propagation, these methods typically rely
on graph convolution based on node degree or directly adopt the U-Net architecture, limiting the
flexibility in transferring information across hierarchical levels.

Different from our approach, [Lino et al| (2022)) uses manually set grid resolutions and spatial
proximity for graph pooling, which requires manual hyper-parameters. BSMS-GNN
introduces a bi-stride pooling strategy that pools nodes on alternating breadth-first search
frontiers while enhancing edges with two-hop connections. HCMT [2024) refines the
structure further by applying Delaunay triangulation to bi-stride nodes.
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t=100

= 1352

Figure 10: Row 1: The velocity field from the true data on the CylinderFlow dataset. Row 2-6:
The temporal difference of the velocity fields between adjacent time steps alongside the constructed
coarser-level graphs.

J.2 COMPARISON TO DYNAMIC HIERARCHICAL GNNS

Recent literature has proposed methods to pool graphs into coarser-level representations
[Kondor}, 2023}, [Garnier et al., 2024). MGVAE (Hy & Kondor}, 2023)) employs the Gumbel-Softmax
operation to partition the graph into discrete clusters at each resolution level, using a fixed K value
specifically for molecular graph generation tasks. However, this approach can be challenging for
large graphs, as selecting an appropriate K value may not scale well. Multigrid-GNN (Garnier|
2024), a concurrent work to our DHMP, introduces self-attention blocks to retain the top k
nodes at the coarse level and utilizes attention mechanisms to model intra-level feature propagation.
However, both of these methods overlook inter-level feature transitions, primarily relying on the
U-Net architecture without addressing the flexible exchange of information across different levels. In
contrast, DHMP utilizes anisotropic message passing, which aggregates neighboring features in a
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Figure 11: Showcases of rollout prediction error maps on Airfoil dataset.
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Figure 12: Showcases of rollout prediction error maps on Flag dataset.
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Figure 13: Showcases of rollout prediction error maps on DeformingPlate dataset.

directionally non-uniform manner. This approach allows DHMP to efficiently transfer information
between levels by reusing importance weights, thereby overcoming the limitations of previous
methods. Moreover, DHMP’s differentiable node selection, predicted by the AMP block, eliminates
the need for hyperparameter tuning and enables more flexible hierarchy construction. This dynamic
approach offers significant advantages, especially in handling complex, large-scale graphs and
facilitating inter-level feature propagation in dynamic simulations.
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