
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LANGUAGE MODELS ARE GOOD TABULAR LEARNERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer-based language models have become the de facto standard in natural
language processing. However, they underperform in the tabular data domain
compared to traditional tree-based methods. We posit that current models fail to
achieve the full potential of language models due to (i) heterogeneity of tabular
data; and (ii) challenges faced by the model in interpreting numerical values. Based
on this hypothesis, we propose the Tabular Domain Transformer (TDTransformer)
framework. TDTransformer has distinct embedding processes for different types
of columns. The alignment layers for different column-types transform these
embeddings to a common space. Besides, TDTransformer adapts piece-wise linear
encoding for numerical values for better performance. We test the proposed method
on 76 real-world tabular classification datasets from the OpenML benchmark.
Extensive experiments indicate that TDTransformer significantly improves the state-
of-the-art methods. We release our code in https://anonymous.4open.
science/r/tdtransformer.

1 INTRODUCTION

Deep learning methods have achieved state-of-the-art (SOTA) performance in various areas including
vision (Rombach et al., 2022; He et al., 2022; Zou et al., 2024), language (Radford et al., 2019;
Touvron et al., 2023), and multimodal processing (Radford et al., 2021; Liu et al., 2023). Even though
deep learning methods have shown great potential in many domains, their performance for tabular
data has so far been unimpressive. This has led to the question as to whether deep learning is a
fundamentally superior approach for tabular data (Shwartz-Ziv & Armon, 2022; Grinsztajn et al.,
2022; Borisov et al., 2022; McElfresh et al., 2024). Experimental benchmarks (Grinsztajn et al., 2022;
Borisov et al., 2022) have shown the broad superiority of tree-based methods over deep learning.
Among deep learning methods, the generalization of transformer-based architectures (Vaswani et al.,
2017) to tabular data has shown some promise — however, they continue to lag tree-based methods
such as XGBoost (Chen & Guestrin, 2016).

The broad-based success of transformers in learning high-dimensional representations, especially
in NLP, is evidence of their potential. A natural question arises as to what makes transformer-
based architectures underperform tree-based methods. Based on prior studies, we posit that this
phenomenon is a result of (i) difficulty in learning irregular patterns of the target function owing
to data heterogeneity (Shwartz-Ziv & Armon, 2022; Mathov et al., 2022; Borisov et al., 2023; Yan
et al., 2023; Chen et al., 2024a), and (ii) the challenges faced by the model in interpreting numerical
features (Gorishniy et al., 2021; 2022).

On the one hand, spectral analysis of neural networks indicates that neural networks tend to learn the
low-frequency components of a function in lieu of relatively high-frequency components (Rahaman
et al., 2019; Xu et al., 2019; Beyazit et al., 2024). Owing to the different types of columns, the
feature spaces in the tabular data domain are generally heterogeneous. On the other hand, numerical
reasoning is known to be a formidable challenge for language models (Lu et al., 2022; Lee et al.,
2023; Shen et al., 2023; Testolin, 2024; Ahn et al., 2024).

We propose a framework named Tabular Domain Transformer (TDTransformer) that overcomes the
aforementioned obstacles in the way of achieving the full potential of transformer-based architectures.
TDTransformer embeds different types of table columns using different approaches to obtain the
hidden representations. For each column type, we use an alignment layer to map the hidden
representation to a common embedding space. Alignment layers for different column types are

1

https://anonymous.4open.science/r/tdtransformer
https://anonymous.4open.science/r/tdtransformer

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

independent of one another. This design is inspired by multimodal models such as CLIP (Radford
et al., 2021) where one alignment layer transforms the hidden dimension of the image branch di to
a dimension d, ψi : di → d. The other one transforms the hidden dimension of the text branch dt
to d, ψt : dt → d. To enhance the model’s understanding of numerical values, we use a piecewise
linear encoding (PLE) that directly maps scalars to high-dimensional embeddings. Compared to
conventional tokenization and embedding, PLE introduces an inductive bias that is beneficial to the
training process. Our use of the PLE is inspired by the pioneering work of (Gorishniy et al., 2022).
We adapt PLE such that the hidden representation is close to the conventional hidden representation
of transformer-based architectures. We combine hidden representations as the input to the backbone
model. The pipeline of the training process is the pre-training model followed by fine-tuning.

We examine the performance of TDTransformer on the standard tabular data benchmark OpenML 1.
Extensive experiments on more than 70 tabular data sets show the superiority of TDTransformer. In
summary, the main contributions of this work are as follows:

• To avoid the performance degradation caused by the heterogeneous nature of tabular data,
we design different embedding approaches to obtain the hidden representations of columns.
Alignment layers are applied to hidden representations to ensure that embeddings for
different types of columns are in the same embedding space.

• We adapt the piece-wise linear encoding to improve the representation of numerical values
so that the model can interpret them well. These encoded representations are combined with
those of categorical and binary columns and then input to the backbone model.

• We propose a column-type dependent corruption for pre-training. We also propose a column-
type-aware positional encoding that further boosts the performance of TDTransformer.

2 RELATED WORK

Tabular deep learning A key line of work in tabular deep learning focuses on the use of graph
learning to enhance the understanding of relations among columns. An auxiliary knowledge graph
is used to regularize a multilayer perceptron (Ruiz et al., 2024). (Chen et al., 2024b) utilizes a
hypergraph to capture tabular structures. With the development of large-scale foundational models,
significant research has emerged on adapting foundation models in the tabular data domain. (Zhang
et al., 2023) uses parameter-efficient fine-tuning to adapt the pre-trained LLaMA 2 model to the
tabular domain (Touvron et al., 2023). (Zhu et al., 2024) converts tables to formats that are consistent
with the pre-training data (e.g. markdown format). The converted input data are directly fed to the
pre-trained LLaMA 2 model (Touvron et al., 2023). (Deng et al., 2024) treat tables as images and
utilize the multimodal capability of GPT-4 (Achiam et al., 2023) and Gemini (Team et al., 2023).
(Hegselmann et al., 2023) serializes column names and values into a natural language string. Input
strings are used for fine-tuning pre-trained large language models.

Numerical reasoning Large language models mainly focus on NLP and code generation. However,
their application to numerical reasoning has turned out to be less successful (Lewkowycz et al., 2022;
Imani et al., 2023; Ahn et al., 2024; Romera-Paredes et al., 2024). This difficulty arises for multiple
reasons: (i) numerical reasoning might require intricate intermediate steps internally. Language
models map scalars to high-dimensional embeddings. The intermediate steps with high dimensional
embeddings turn out to be inractable; (ii) there is no built-in mechanism within transformer-based
architectures to perform mathematical operations; (iii) numerical values are continuous, whereas
transformer-based architectures are inherently designed for (discrete) word toens; (iv) there are
repeated patterns in tokenized numerical values, and each token holds equal significance (while
omitting unimportant tokens).

(Geva et al., 2020) enhances numerical reasoning by adding automatically generated synthetic
numerical data to the pre-training process. (Lee et al., 2023) incorprates ideas from chain-of-
thought (Wei et al., 2022), with intermediate step results. (Shen et al., 2023) focuses on data format
modification to the boost model’s understanding of numerical values. (McLeish et al., 2024) helps
models track the position of each digit by adding an embedding that encodes its relative position.

1OpenML benchmark: https://www.openml.org/

2

https://www.openml.org/

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 TDTRANSFORMER: TABULAR DATA TRANSFORMER FRAMEWORK

Task formulation Tabular data are denoted as D = {(xi, yi)}ni=1, x ∈ X, y ∈ Y. The dataset is
split into 3 disjoint subsets D = Dtrain ∪Dval ∪Dtest. Y = {0, 1} for the binary classification task,
Y = {1, . . . , C} for the multiclass classification task. The supervised training process maximizes the
likelihood of the correct label y:

max
θθθ

Pθθθ(y|x, θθθ) . (1)

Figure 1 shows the proposed framework. Input data are relational tables that have a unique col-
umn given a column name. We use different embedding processes for different types of columns.
Alignment layers are used to transform embeddings to the same embedding space. We combine
embeddings as the input to the backbone model. The training pipeline consists of pre-training and
fine-tuning steps.

Column name

Columns cells

Cat embedding

Num embedding

Bin embedding

Relational table

CLS

a

c

LM Encoder

CLS

Prediction
Head

+ Positional Encoding

N
um

 preprocess1 -11 1 1 1 1

Bin preprocess

Cat preprocess
Tokenization

Average

Column Name
Embedding Binary Vector

Pre-training

Fine-Tuning

Contrastive Loss

Column-Type based
corruption

Embedding

Combined with
column name

b Alignment
Layer

Figure 1: The TDTransformer framework: (a) Input data D = {(xi, yi)}ni=1. x consists of column
name and column cells. (b) Embeddings of three types of columns (categorical, numerical, and
binary). (c) Concatenation of the three types of embeddings, which is fed into the backbone model.

3.1 COLUMN EMBEDDINGS

The TDTransformer framework uses distinct embedding processes for categorical, numerical, and
binary columns. These processes are illustrated in Figure 1 (b) and discussed in detail below:

Embedding Categorical Columns For categorical columns, we concatenate column names and
corresponding cell values to form natural language sentences. The concatenated sentence is tokenized
and embedded to obtain hidden representations for the categorical columns denoted by Ecat:

Ecat = [E1, . . . ,Eccat] ∈ Rkcat×d, Ei =
[
e([T col

1:m1(i)
]), e([T cell

1:m2(i)
])
]
, (2)

where d is the dimension of hidden representations. kcat =
∑ccat

i=1(
∣∣∣[T col

1:m1(i)
]
∣∣∣+ ∣∣∣[T cell

1:m2(i)
]
∣∣∣) is the

total number of tokens. m1(i) is the number of tokens for i-th categorical column name. m2(i) is
the number of tokens for cell values in i-th categorical column. After embedding, we use a linear
transformation layer ϕcat : Rd → Rd.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Embedding Numerical Columns We adapt the PLE in (Gorishniy et al., 2022) for transformer-
based architectures. Specifically, we use the PLE function fple : R → Rdple to obtain the hidden
representation for numerical columns:

fple(x) = [ξ1, . . . , ξn]
T ∈ Rdple . (3)

ξi =

−1, x < bt−1

1, x > bt
2x−(bt+bt−1)

bt−bt−1
. bt−1 ≤ x ≤ bt

(4)

Here, the bins {bt}
dple

t=1 are obtained based on the q-quantiles of the numerical value range while
the original PLE work requires labels for fitting decision trees. dple is the number of quantiles. We
summarize differences for the numerical value embedding in Table 1. The conventional tokenization
and embedding in language models can map a scalar to a sequence of embeddings if there are multiple
digits in the scalar. On the contrary, PLE always maps a scalar to one embedding. Our method relies
on the distribution of cell values and not conditions on labels. Besides, due to the layer normalization
(LN) (Ba, 2016) within the embedding layer, codomain of [−1, 1] for our adapted PLE function is
closer to the embedding than the that of [0, 1].

Table 1: Summary of the differences among methods obtaining embeddings of numerical values.
Embedding of a numerical value is essentially a high-dimensional vector v.

Method vi range Not require
labels

Fixed
sequence length

Tokenization + Embedding (−∞,∞) ✓ ×
PLE (Gorishniy et al., 2022) [0, 1] × ✓

PLE (Ours) [-1, 1] ✓ ✓

We use a linear transformation layer ϕnum : Rple → Rd to convert the high-dimensional representa-
tions fple(x) ∈ Rple to the same embedding space as that of categorical column embeddings.

The hidden representation for numerical columns is obtained by the Hadamard product of the averaged
column-name embedding and numerical-value embeddings:

Enum = Enum
col ◦ ϕnum([fple(x1), . . . , fple(xcnum)]) ∈ Rcnum×d . (5)

Enum
col = [E1, . . . ,Ecnum], Ei =

1

m1(i)

m1(i)∑
j=1

e([T col
1:m1(i)

]) ◦M , (6)

Here, M is the attention mask to exclude padding token embeddings. For notational conciseness
we ignore the notation of column types in the expressions of word tokens of column names and
cell values. For example, we use the same notation [T col

1:m1(i)
] in Equations 2 and 6. The notation

[T col
1:m1(i)

] denotes the word tokens for numerical column names in the former, whereas it denotes the
word tokens for categorical column names in the latter.

Embedding Binary columns We convert cell values (e.g. True vs False and 0 vs 1) in binary
columns to binary values xi ∈ {0, 1}. Similar to numerical columns, the column-name embedding
for each binary column is averaged. The hidden representation for binary columns is obtained by the
Hadamard product of the averaged column name embedding and binary values as follows:

Ebin = Ebin
col ◦ (x(1d)

T) ∈ Rcbin×d, where x = [x1, . . . , xcbin]
T . (7)

We use a linear transformation layer ϕbin : d→ d to ensure the embeddings of binary columns are
the same as those of categorical columns and numerical columns.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2 FEATURE COMBINATION

Figure 1 (c) shows the combination of features for three types of columns. We prepend [CLS]
embedding to the concatenated hidden representations. As in the classialc transformer model (Vaswani
et al., 2017), we add the sinusoidal positional encoding P to the concatenated hidden representation:

E = [e([CLS]),Ebin,Enum,Ecat] +P , (8)

where
P(j,2i) = sin(j/100002i/d) , (9a)

P(j,2i+1) = cos(j/100002i/d) . (9b)
Here, j is the position index and i is the hidden dimension index. Only Ecat has a flexible sequence
length. Ebin and Enum have a fixed sequence length. The sequence length for Ebin or Enum is
equal to the number of binary columns or numerical columns. Given a fixed context length limit,
TDTransformer can process larger tables (without truncation) as compared to language models that
do tokenization and embedding for all types of columns.

In language models, positional encoding or positional embedding are added to the embedding
in element-wise fashion. In tabular data domains, however, table columns have the permutation
invariance property that prevents positinal encodings from improving performance (Huang et al.,
2020). In TDTransformer, although the hidden representations for the binary columns (Ebin

i ∈ Rd)
and that for the numerical columns (Enum

i ∈ Rd), there is indeed an ordering in Ecat, because it
is essentially the embedding of a natural language sentence. Therefore, we propose a column-type
aware (CTA) position encoding for TDTransformer. CTA only adds positional encoding to Ecat. The
overall embedding E is computed as follows:

E = [e([CLS]),Ebin,Enum,Ecat] + [0(cbin+cnum)×d,P] . (10)

3.3 TRAINING PIPELINE

After combining column embeddings, E is fed to the backbone model, which is constructed using the
gated transformer proposed in (Wang & Sun, 2022). We also test the performance using RoBERTa
(Liu, 2019) as the backbone model (see Appendix). [CLS] embedding is used for the prediction.
The training pipeline, similar to the classic pre-training fine-tuning paradigm, consists of two steps:
the first step is to pre-train the model. The second step is to fine-tune the model that is initialized
with pre-trained weights. Corruption is used to generate negative samples. The corruption method
conditions on column types, because random permutation only occurs within the same type of column.
We do not apply permutations for binary columns.

After the contextualization in LM encoder F(·), we obtain the resulting embedding E
′
= F(E).

We use the [CLS] embedding in E
′

as shown in Figure 1 (c). The [CLS] embedding used for the
prediction is denoted as z. Given a table row zi, there is a hidden representation zi.

The pre-training process uses contrastive loss. Specifically, we examine two types of pre-training
losses: self-supervised contrastive loss (e.g., (Chen et al., 2020; Tian et al., 2020; Wang et al., 2021))
and supervised contrastive loss (e.g., (Khosla et al., 2020; Jaiswal et al., 2020; Le-Khac et al., 2020)).
The contrastive loss function encourages the model to generate close embeddings for positive pairs.
The self-supervised pre-training focuses on the category-level discrimination while self-supervised
pre-training pays attention to the instance-level discrimination.

The self-supervised contrastive loss (SSCL) is computed as follows:

LSSCL = −
∑
i∈I

log
exp(zTi z̃i/τ)∑
j∈I exp(zTi z̃j/τ)

, (11)

where τ is the temperature, I = {i}ni=1, zi is the hidden representation for i-th table row, and z̃i is
the hidden representation of the corrupted i-th table row.

The supervised contrastive loss (SCL) utilizes labels in the pre-training dataset and is computed as
follows:

LSCL =
∑
i∈I

−1

P (i)
log

∑
k∈P (i)

exp(zTi z̃k/τ)∑
j∈I exp(zTi z̃j/τ)

, (12)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where P (i) := {p|yp = yi}. SCL is found to be a powerful pre-training tool. For example, it
can achieve in-context learning in decision-making problems (Lee et al., 2024) and learn data with
long-tailed distributions (Li et al., 2022).

Table 2: Performance comparison for the binary classification task. In addition to the averaged
performance, we select a subset of 76 tables for detailed comparison. S ∪ Snum contains tables
including numerical columns. γ is the positive ratio.

Method S ∪ Snum γ ≤ 0.2 0.2 < γ < 0.8 γ ≥ 0.8 Avg
Acc Auc Acc Auc Acc Auc Acc Auc Acc Auc

XGBoost 85.06 0.83 91.88 0.87 78.44 0.82 95.10 0.73 84.97 0.83
CatBoost 86.27 0.86 91.90 0.87 80.66 0.87 94.51 0.87 86.12 0.87

SCARF 77.27 0.73 83.84 0.72 73.64 0.78 72.10 0.55 77.81 0.74
SwitchTab 74.32 0.78 79.67 0.80 69.89 0.78 89.05 0.74 75.03 0.78

SubTab 71.94 0.74 75.44 0.74 69.79 0.75 72.59 0.68 72.30 0.75
TransTab 84.83 0.81 91.20 0.83 79.74 0.82 95.45 0.83 85.39 0.82

TDTransformer 87.56 0.87 91.67 0.87 83.94 0.88 95.40 0.96 87.79 0.88
TDTransformer (CTA Pos) 87.19 0.87 91.70 0.87 83.30 0.87 95.59 0.94 87.48 0.87

Table 3: Performance comparison for the multiclass classification task. In addition to the averaged
performance, we select a subset of 76 tables for detailed comparison. S ∪ Snum contains tables
including numerical columns. |D| is the dataset size, C is the number of classes.

Method S ∪ Snum |D| < 2000 |D| ≥ 2000 C < 10 C ≥ 10 Avg
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

XGBoost 72.56 0.60 65.77 0.56 82.20 0.71 79.32 0.64 71.12 0.69 76.45 0.66
CatBoost 73.03 0.59 66.68 0.56 81.97 0.70 79.32 0.63 71.59 0.69 76.61 0.65

SCARF 62.39 0.52 57.58 0.44 69.51 0.61 67.75 0.53 60.82 0.59 65.32 0.55
SwitchTab 56.92 0.45 57.56 0.45 62.29 0.52 64.93 0.50 52.65 0.49 60.63 0.50

SubTab 55.22 0.45 55.98 0.44 60.77 0.52 60.99 0.48 55.57 0.53 59.09 0.50
TransTab 70.22 0.53 70.38 0.53 69.96 0.52 71.79 0.49 66.98 0.63 70.11 0.54

TDTransformer 76.30 0.63 78.68 0.69 81.06 0.70 80.89 0.65 79.00 0.77 80.23 0.70
TDTransformer (CTA Pos) 76.70 0.63 78.94 0.69 81.36 0.70 81.07 0.65 79.47 0.77 80.51 0.70

The model weight after the pre-training process is used as the initialized weight for the fine-tuning.
A prediction head is added to predict the probability of each class. The fine-tuning process is in
a supervised fashion. For the binary classification task, we use the binary cross entropy loss. The
multiclass classification task employs the cross entropy loss.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTS

Baseline methods XGboost (Chen & Guestrin, 2016) is an end-to-end tree boosting system. It
uses a sparsity-aware algorithm and weighted quantile sketch. Compared to XGBoost, CatBoost
(Prokhorenkova et al., 2018; Dorogush et al., 2018) has the inherent capability to process categorical
features without relying on one-hot encoding. Besides, it introduces ordered boosting to avoid target
leakage. SubTab (Ucar et al., 2021) divides input features into multiple subsets to perform multiview
representation learning. Scarf (Bahri et al., 2022) uses vanilla self-supervised contrastive learning to
improve classification accuracy in the fully-supervised learning setting. SwitchTab (Wu et al., 2024)
uses an asymmetric encoder-decoder framework to decouple mutual and salient features, which can
address the issue of lacking dependencies between samples.

Datasets We use 56 real-world tabular classification datasets in the standard OpenML bench-
mark (which are manually curated for effective benchmarking). The train/validation/test splits is
72%/8%/20% for each OpenML dataset. We use accuracy as the metric to measure the performance
for all classification data sets. Additionally, we use the area under the curve (AUC) to evaluate binary
classification and the F1 score t evaluate multiclass classification. The details of the tables are given
in Section A.3 of the Appendix.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Experimental details TDTransformer uses pre-trained BERT tokenizer (Devlin, 2018) and Adam
optimizer (Kingma, 2014) without weight decay. The hidden dimension is 512 and model depth is 12.
The number of quantiles for PLE is 64. In both the pre-training and fine-tuning process, we use an
early stopping strategy (Yao et al., 2007) with a patience of 10. The maximum number of training
epochs is 200 with batch size of 128. The corruption parameter of pre-training process is set to 0.5.
When there are empty cells in a column, we replace empty cells with the most common values in that
column. We conducted all epxeriments using a single A40 Tensor Core GPU and EPYC 7232P CPU.

a b

c d

Figure 2: Performance comparison: The left axis shows the scale for (average) performance. The
right axis shows the scale for the performance on individual datasets. (a) Test accuracy for the
binary classification task. (b) AUC score for the binary classification task. (c) Test accuracy for
the multiclass classification task. (d) F1 score for the multiclass classification task. TDTransformer
significantly outperforms baselines with greater improvements achieved for multiclass classification.

4.2 RESULTS

Table 2 summarizes the performance comparison for the binary classification task. SSCL is used in the
pre-training process. We denote categorical columns as Scat, binary columns as Sbin, and numerical
columns as Snum. We use the notation S for generic table columns, S ⊆ (Snum ∪ Scat ∪ Sbin). Note
that S can be ∅. In addition to select subsets of tabular data based on column types, we use the
positive ratio to make a selection. The positive ratio γ is the ratio of positive samples to the entire
number of samples. Generally, a positive ratio range 0.2 < γ < 0.8 is the more challenging than
the positive ratio range γ ≤ 0.2 and γ ≥ 0.8. We find that TDTransformer has a relatively large
performance gain in that range compared to baseline methods. The accuracy for 0.2 < γ < 0.8
increases by 3.38%. Overall, both TDTransformer exhibits significantly better performance (with or
without CTA positional encoding).

The performance comparison for the multiclass classification task is shown in Table 3. We use
the dataset size |D| and the number of classes C to select subsets of tabular data. For nearly all
selected subsets, TDTransformer (with or without CTA positional encoding) shows a pronounced
performance gain compared to baseline methods. For the subset of |D| ≥ 2000, XGBoost has the best
performance. We examine datasets where our proposed framework has a relatively large performance
gap compared to XGBoost. We find a remarkable gap appearing in the table Au4-2500 (Details
regarding all tables are listed in the Appendix). In this table, both column names and categorical
columns lack semantics. Column names are V1, . . ., V100. Categorical columns contain cell values
of v1, v2, . . . Vk, k ∈ N+. Lacking semantics is detrimental to the performance of language models.
Hence, XGBoost outperforms TDTransformer by a relatively large margin.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

The multiclass classification task is generally more challenging compared to the binary classification
task. Compared to the best baseline method, the performance gain for the binary classification task is
1.67%, and that for the multiclass classification task is 3.62%.

Figure 2 shows the comparison between TDTransformer and baseline methods. Scatter points are the
performance on individual dataset. Transformer-based baselines fall short significantly compared to
tree-based methods. Even though the TDTransformer model has a transformer-based architecture, it
achieves better performance than all baselines.

4.3 ABLATION STUDY

Pre-training We compare the performance of pre-training using SSCL and SCL. Both pre-training
processes use the classic positional encoding as shown in Equation 8. The performance comparison
is shown in Figure 3. Using SCL as shown in Equation 12, there is a small accuracy decrease in
the binary classification task. The performance has a larger drop in the multiclass classification
task. Overall, TDTransformer has better performance using SSCL compared to SCL. Out of the
tabular data domain, a similar observation is reported that self-supervised pre-training without label
information learns more effective representation than supervised pre-training when transferring to
downstream tasks (Chen et al., 2020; He et al., 2020; Chen & He, 2021).

a b c d

Figure 3: The performance comparison between SSCL and SCL pre-training. The upper axis shows
the scale for the performance on individual datasets while the lower axis shows the scale for the
averaged performance. (a) Test accuracy for the binary classification task. (b) Auc score for the
binary classification task. (c) Test accuracy for the multiclass classification task. (d) F1 score for the
multiclass classification task.

Positional encoding Attention mechanism (Vaswani et al., 2017) computes the pair-wise relation
between the query and key. There is no inherent order of the sequence. Positional encoding or
learnable positional embedding are added to help model track the order. However, tables have the
inherent property of permutation invariance, which is contradictory to the order of the word token
sequence. (Huang et al., 2020) compares the transformer with positional encoding and without
positional encoding. In their framework, no positional encoding leads to better performance. We
compare the performance without positional encoding, with positional encoding and with CTA
positional encoding.

Table 4: Performance comparison between different positional encoding methods. Positional encoding
and CTA positional encoding have similar performance while no positional encoding can leads to a
significant performance drop.

Task Metric w/o positional encoding w/ positional encoding w/ CTA positional encoding

Binary Accuracy 88.07 87.79 87.48
Auc 0.87 0.88 0.87

Multiclass Accuracy 74.78 80.23 80.51
F1 0.63 0.70 0.70

Batch size In SSCL, the number of negative pairs is related to the batch size. In SCL, batch size
determines the number of negative and positive pairs. We use the same batch size in the pre-training

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

and fine-tuning processes. Different batch sizes {128, 64, 32} are examined to analyze the effect of
batch size.

Table 5 shows the effect of batch size in the binary classification task. Overall, the effect of batch
size is small. The average accuracy variation is within 0.2%. Table 6 exhibits the effect of batch size
in the multiclass classification task. When decreasing the batch size, both accuracy and F1 score
decrease.

Table 5: The effect of batch sizeNbs on the performance of TDTransformer in the binary classification
task. SSCL is used in the pre-training process. The fine-tuning process is in a supervised fashion.

Method S ∪ Snum γ ≤ 0.2 0.2 < γ < 0.8 γ ≥ 0.8 Avg
Acc Auc Acc Auc Acc Auc Acc Auc Acc Auc

TDTransformer (Nbs = 128) 87.56 0.87 91.67 0.87 83.94 0.88 95.40 0.96 87.79 0.88
TDTransformer (Nbs = 64) 87.61 0.82 91.22 0.79 84.44 0.85 95.54 0.94 87.88 0.83
TDTransformer (Nbs = 32) 87.70 0.86 91.56 0.86 84.37 0.87 95.54 0.94 87.99 0.88

Table 6: The effect of batch size Nbs on the performance of TDTransformer in the multiclass
classification task. SSCL is used in the pre-training process. The fine-tuning process is in a supervised
fashion.

Method S ∪ Snum |D| < 2000 |D| ≥ 2000 C < 10 C ≥ 10 Avg
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

TDTransformer (Nbs = 128) 76.30 0.63 78.68 0.69 81.06 0.70 80.89 0.65 79.00 0.77 80.23 0.70
TDTransformer (Nbs = 64) 75.78 0.62 78.54 0.68 80.58 0.69 80.33 0.64 79.00 0.77 79.86 0.69
TDTransformer (Nbs = 32) 76.16 0.62 78.97 0.68 79.40 0.66 79.43 0.61 78.90 0.77 79.24 0.67

With posWithout pos With CTA pos

With positional encodingWithout positional encoding

Ca
rE

va
l

Kr
op

t
Sp

lic
e

With positional encodingWithout positional encoding

Figure 4: Effect of positional encoding on tabular representation learning. We assign the same color
for instances with the same label. There are only categorical columns in Kropt and Splice tables,
positional encoding and CTA positional encoding yield the same result. Using positional encoding
greatly enhances representation learning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4 summarized the averaged performance for the binary and multiclass classification tasks.
For the binary classification task, the performance difference among different encoding methods
is small. There is a significant performance difference (5.45% drop in accuracy) for the multiclass
classification task. Using no positional encoding pronouncedly degrades the performance. For tables
that do not have numerical columns or binary columns, CTA positional encoding is the same as the
traditional positional encoding. In the more challenging multiclass classification task, we observe the
performance gain when using CTA positional encoding.

We examine the distribution of [CLS] embeddings by using t-SNE (Van der Maaten & Hinton,
2008) to compute the first two main components. Figure 4 shows the distribution. Using positional
encoding or CTA positional encoding significantly improves the separation of different classes.

5 DISCUSSION AND CONCLUSION

Our results advocate a rethink of the power of language models in the tabular data domain. A direct
way of applying language models to the tabular data domain is to represent tables using sequences of
word tokens. However, the heterogeneity property of tables hinders models from learning effective
representations (Shwartz-Ziv & Armon, 2022; Mathov et al., 2022; Borisov et al., 2023; Yan et al.,
2023; Chen et al., 2024a). TDTransformer explicitly uses distinct embedding processes for different
types of columns. Owing to the difference in embedding processes, the embedding spaces of
different types of columns are different. Specifically, TDTransformer uses PLE to encode the
statistical information of numerical columns in high-dimensional vectors while maintaining the
continuity of numerical values in the codomain of PLE function. Alignment layers are used to convert
embeddings of different types of columns to a common embedding space. TDTransformer utilizes the
good semantic understanding of language models. Some baseline methods with transformer-based
architectures use one-hot encoded representation for categorical columns, which inherently loses
semantic information. Those baselines lag behind tree-based methods. We find that language models
might have unfavorable performance when a table has categorical columns that lack semantics. In
addition, we find that positional encoding is important for the TDTransformer framework. The
embeddings of numerical and binary columns are essentially column-wise, while those of categorical
columns are token-wise. Based on this observation, we propose CTA positional encoding, which
can boost the performance of TDTransformer. Overall, TDTransformer is able to to overcome the
incapability of classical transformer-based architectures in interpreting heterogeneous data and to
enhance the ability of the model to interpret numerical values.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models
for mathematical reasoning: Progresses and challenges. arXiv preprint arXiv:2402.00157, 2024.

Jimmy Lei Ba. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.

Dara Bahri, Heinrich Jiang, Yi Tay, and Donald Metzler. Scarf: Self-supervised contrastive learning
using random feature corruption. In International Conference on Machine Learning, pp. 1–24.
PMLR, 2022.

Ege Beyazit, Jonathan Kozaczuk, Bo Li, Vanessa Wallace, and Bilal Fadlallah. An inductive bias for
tabular deep learning. Advances in Neural Information Processing Systems, 36, 2024.

Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawelczyk, and Gjergji
Kasneci. Deep neural networks and tabular data: A survey. IEEE transactions on neural networks
and learning systems, 2022.

Vadim Borisov, Klaus Broelemann, Enkelejda Kasneci, and Gjergji Kasneci. Deeptlf: robust deep
neural networks for heterogeneous tabular data. International Journal of Data Science and
Analytics, 16(1):85–100, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Jintai Chen, Jiahuan Yan, Qiyuan Chen, Danny Z Chen, Jian Wu, and Jimeng Sun. Can a deep
learning model be a sure bet for tabular prediction? In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 288–296, 2024a.

Pei Chen, Soumajyoti Sarkar, Leonard Lausen, Balasubramaniam Srinivasan, Sheng Zha, Ruihong
Huang, and George Karypis. Hytrel: Hypergraph-enhanced tabular data representation learning.
Advances in Neural Information Processing Systems, 36, 2024b.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794,
2016.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pp.
1597–1607. PMLR, 2020.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 15750–15758, 2021.

Naihao Deng, Zhenjie Sun, Ruiqi He, Aman Sikka, Yulong Chen, Lin Ma, Yue Zhang, and Rada
Mihalcea. Tables as texts or images: Evaluating the table reasoning ability of llms and mllms. In
Findings of the Association for Computational Linguistics ACL 2024, pp. 407–426, 2024.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. Catboost: gradient boosting with
categorical features support. arXiv preprint arXiv:1810.11363, 2018.

Mor Geva, Ankit Gupta, and Jonathan Berant. Injecting numerical reasoning skills into language
models. arXiv preprint arXiv:2004.04487, 2020.

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
models for tabular data. Advances in Neural Information Processing Systems, 34:18932–18943,
2021.

Yury Gorishniy, Ivan Rubachev, and Artem Babenko. On embeddings for numerical features in
tabular deep learning. Advances in Neural Information Processing Systems, 35:24991–25004,
2022.

Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outperform
deep learning on typical tabular data? Advances in neural information processing systems, 35:
507–520, 2022.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729–9738, 2020.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, and David
Sontag. Tabllm: Few-shot classification of tabular data with large language models. In International
Conference on Artificial Intelligence and Statistics, pp. 5549–5581. PMLR, 2023.

Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. Tabtransformer: Tabular data
modeling using contextual embeddings. arXiv preprint arXiv:2012.06678, 2020.

Shima Imani, Liang Du, and Harsh Shrivastava. Mathprompter: Mathematical reasoning using large
language models. arXiv preprint arXiv:2303.05398, 2023.

Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya Banerjee, and Fillia
Makedon. A survey on contrastive self-supervised learning. Technologies, 9(1):2, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. Advances in neural
information processing systems, 33:18661–18673, 2020.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Phuc H Le-Khac, Graham Healy, and Alan F Smeaton. Contrastive representation learning: A
framework and review. Ieee Access, 8:193907–193934, 2020.

Jonathan Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir Nachum, and Emma
Brunskill. Supervised pretraining can learn in-context reinforcement learning. Advances in Neural
Information Processing Systems, 36, 2024.

Nayoung Lee, Kartik Sreenivasan, Jason D Lee, Kangwook Lee, and Dimitris Papailiopoulos.
Teaching arithmetic to small transformers. arXiv preprint arXiv:2307.03381, 2023.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in Neural Information Processing Systems,
35:3843–3857, 2022.

Tianhong Li, Peng Cao, Yuan Yuan, Lijie Fan, Yuzhe Yang, Rogerio S Feris, Piotr Indyk, and Dina
Katabi. Targeted supervised contrastive learning for long-tailed recognition. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 6918–6928, 2022.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023.

Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

Pan Lu, Liang Qiu, Wenhao Yu, Sean Welleck, and Kai-Wei Chang. A survey of deep learning for
mathematical reasoning. arXiv preprint arXiv:2212.10535, 2022.

Yael Mathov, Eden Levy, Ziv Katzir, Asaf Shabtai, and Yuval Elovici. Not all datasets are born equal:
On heterogeneous tabular data and adversarial examples. Knowledge-Based Systems, 242:108377,
2022.

Duncan McElfresh, Sujay Khandagale, Jonathan Valverde, Vishak Prasad C, Ganesh Ramakrishnan,
Micah Goldblum, and Colin White. When do neural nets outperform boosted trees on tabular data?
Advances in Neural Information Processing Systems, 36, 2024.

Sean McLeish, Arpit Bansal, Alex Stein, Neel Jain, John Kirchenbauer, Brian R Bartoldson, Bhavya
Kailkhura, Abhinav Bhatele, Jonas Geiping, Avi Schwarzschild, et al. Transformers can do
arithmetic with the right embeddings. arXiv preprint arXiv:2405.17399, 2024.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey
Gulin. Catboost: unbiased boosting with categorical features. Advances in neural information
processing systems, 31, 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In International conference
on machine learning, pp. 5301–5310. PMLR, 2019.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024.

Camilo Ruiz, Hongyu Ren, Kexin Huang, and Jure Leskovec. High dimensional, tabular deep
learning with an auxiliary knowledge graph. Advances in Neural Information Processing Systems,
36, 2024.

Ruoqi Shen, Sébastien Bubeck, Ronen Eldan, Yin Tat Lee, Yuanzhi Li, and Yi Zhang. Positional
description matters for transformers arithmetic. arXiv preprint arXiv:2311.14737, 2023.

Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need. Information
Fusion, 81:84–90, 2022.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Alberto Testolin. Can neural networks do arithmetic? a survey on the elementary numerical skills of
state-of-the-art deep learning models. Applied Sciences, 14(2):744, 2024.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XI 16, pp. 776–794. Springer, 2020.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Talip Ucar, Ehsan Hajiramezanali, and Lindsay Edwards. Subtab: Subsetting features of tabular data
for self-supervised representation learning. Advances in Neural Information Processing Systems,
34:18853–18865, 2021.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Geomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information
Processing Systems, 2017.

Xinlong Wang, Rufeng Zhang, Chunhua Shen, Tao Kong, and Lei Li. Dense contrastive learning
for self-supervised visual pre-training. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 3024–3033, 2021.

Zifeng Wang and Jimeng Sun. Transtab: Learning transferable tabular transformers across tables.
Advances in Neural Information Processing Systems, 35:2902–2915, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Jing Wu, Suiyao Chen, Qi Zhao, Renat Sergazinov, Chen Li, Shengjie Liu, Chongchao Zhao, Tianpei
Xie, Hanqing Guo, Cheng Ji, et al. Switchtab: Switched autoencoders are effective tabular learners.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 15924–15933,
2024.

Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, Yanyang Xiao, and Zheng Ma. Frequency principle:
Fourier analysis sheds light on deep neural networks. arXiv preprint arXiv:1901.06523, 2019.

Jiahuan Yan, Jintai Chen, Yixuan Wu, Danny Z Chen, and Jian Wu. T2g-former: organizing tabular
features into relation graphs promotes heterogeneous feature interaction. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37, pp. 10720–10728, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. On early stopping in gradient descent learning.
Constructive Approximation, 26(2):289–315, 2007.

Guri Zabërgja, Arlind Kadra, and Josif Grabocka. Tabular data: Is attention all you need? arXiv
preprint arXiv:2402.03970, 2024.

Tianshu Zhang, Xiang Yue, Yifei Li, and Huan Sun. Tablellama: Towards open large generalist
models for tables. arXiv preprint arXiv:2311.09206, 2023.

Fengbin Zhu, Ziyang Liu, Fuli Feng, Chao Wang, Moxin Li, and Tat-Seng Chua. Tat-llm: A
specialized language model for discrete reasoning over tabular and textual data. arXiv preprint
arXiv:2401.13223, 2024.

Xueyan Zou, Jianwei Yang, Hao Zhang, Feng Li, Linjie Li, Jianfeng Wang, Lijuan Wang, Jianfeng
Gao, and Yong Jae Lee. Segment everything everywhere all at once. Advances in Neural
Information Processing Systems, 36, 2024.

14

