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ABSTRACT

Transformer-based language models have become the de facto standard in natural
language processing. However, they underperform in the tabular data domain
compared to traditional tree-based methods. We posit that current models fail to
achieve the full potential of language models due to (i) heterogeneity of tabular
data; and (ii) challenges faced by the model in interpreting numerical values. Based
on this hypothesis, we propose the Tabular Domain Transformer (TDTransformer)
framework. TDTransformer has distinct embedding processes for different types
of columns. The alignment layers for different column-types transform these
embeddings to a common space. Besides, TDTransformer adapts piece-wise linear
encoding for numerical values for better performance. We test the proposed method
on 76 real-world tabular classification datasets from the OpenML benchmark.
Extensive experiments indicate that TDTransformer significantly improves the state-
of-the-art methods. We release our code in https://anonymous.4open.
science/r/tdtransformer.

1 INTRODUCTION

Deep learning methods have achieved state-of-the-art (SOTA) performance in various areas including
vision (Rombach et al., 2022; He et al., 2022; Zou et al., 2024), language (Radford et al., 2019;
Touvron et al., 2023), and multimodal processing (Radford et al., 2021; Liu et al., 2023). Even though
deep learning methods have shown great potential in many domains, their performance for tabular
data has so far been unimpressive. This has led to the question as to whether deep learning is a
fundamentally superior approach for tabular data (Shwartz-Ziv & Armon, 2022; Grinsztajn et al.,
2022; Borisov et al., 2022; McElfresh et al., 2024). Experimental benchmarks (Grinsztajn et al., 2022;
Borisov et al., 2022) have shown the broad superiority of tree-based methods over deep learning.
Among deep learning methods, the generalization of transformer-based architectures (Vaswani et al.,
2017) to tabular data has shown some promise — however, they continue to lag tree-based methods
such as XGBoost (Chen & Guestrin, 2016).

The broad-based success of transformers in learning high-dimensional representations, especially
in NLP, is evidence of their potential. A natural question arises as to what makes transformer-
based architectures underperform tree-based methods. Based on prior studies, we posit that this
phenomenon is a result of (i) difficulty in learning irregular patterns of the target function owing
to data heterogeneity (Shwartz-Ziv & Armon, 2022; Mathov et al., 2022; Borisov et al., 2023; Yan
et al., 2023; Chen et al., 2024a), and (ii) the challenges faced by the model in interpreting numerical
features (Gorishniy et al., 2021; 2022).

On the one hand, spectral analysis of neural networks indicates that neural networks tend to learn the
low-frequency components of a function in lieu of relatively high-frequency components (Rahaman
et al., 2019; Xu et al., 2019; Beyazit et al., 2024). Owing to the different types of columns, the
feature spaces in the tabular data domain are generally heterogeneous. On the other hand, numerical
reasoning is known to be a formidable challenge for language models (Lu et al., 2022; Lee et al.,
2023; Shen et al., 2023; Testolin, 2024; Ahn et al., 2024).

We propose a framework named Tabular Domain Transformer (TDTransformer) that overcomes the
aforementioned obstacles in the way of achieving the full potential of transformer-based architectures.
TDTransformer embeds different types of table columns using different approaches to obtain the
hidden representations. For each column type, we use an alignment layer to map the hidden
representation to a common embedding space. Alignment layers for different column types are
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independent of one another. This design is inspired by multimodal models such as CLIP (Radford
et al., 2021) where one alignment layer transforms the hidden dimension of the image branch di to
a dimension d, ψi : di → d. The other one transforms the hidden dimension of the text branch dt
to d, ψt : dt → d. To enhance the model’s understanding of numerical values, we use a piecewise
linear encoding (PLE) that directly maps scalars to high-dimensional embeddings. Compared to
conventional tokenization and embedding, PLE introduces an inductive bias that is beneficial to the
training process. Our use of the PLE is inspired by the pioneering work of (Gorishniy et al., 2022).
We adapt PLE such that the hidden representation is close to the conventional hidden representation
of transformer-based architectures. We combine hidden representations as the input to the backbone
model. The pipeline of the training process is the pre-training model followed by fine-tuning.

We examine the performance of TDTransformer on the standard tabular data benchmark OpenML 1.
Extensive experiments on more than 70 tabular data sets show the superiority of TDTransformer. In
summary, the main contributions of this work are as follows:

• To avoid the performance degradation caused by the heterogeneous nature of tabular data,
we design different embedding approaches to obtain the hidden representations of columns.
Alignment layers are applied to hidden representations to ensure that embeddings for
different types of columns are in the same embedding space.

• We adapt the piece-wise linear encoding to improve the representation of numerical values
so that the model can interpret them well. These encoded representations are combined with
those of categorical and binary columns and then input to the backbone model.

• We propose a column-type dependent corruption for pre-training. We also propose a column-
type-aware positional encoding that further boosts the performance of TDTransformer.

2 RELATED WORK

Tabular deep learning A key line of work in tabular deep learning focuses on the use of graph
learning to enhance the understanding of relations among columns. An auxiliary knowledge graph
is used to regularize a multilayer perceptron (Ruiz et al., 2024). (Chen et al., 2024b) utilizes a
hypergraph to capture tabular structures. With the development of large-scale foundational models,
significant research has emerged on adapting foundation models in the tabular data domain. (Zhang
et al., 2023) uses parameter-efficient fine-tuning to adapt the pre-trained LLaMA 2 model to the
tabular domain (Touvron et al., 2023). (Zhu et al., 2024) converts tables to formats that are consistent
with the pre-training data (e.g. markdown format). The converted input data are directly fed to the
pre-trained LLaMA 2 model (Touvron et al., 2023). (Deng et al., 2024) treat tables as images and
utilize the multimodal capability of GPT-4 (Achiam et al., 2023) and Gemini (Team et al., 2023).
(Hegselmann et al., 2023) serializes column names and values into a natural language string. Input
strings are used for fine-tuning pre-trained large language models.

Numerical reasoning Large language models mainly focus on NLP and code generation. However,
their application to numerical reasoning has turned out to be less successful (Lewkowycz et al., 2022;
Imani et al., 2023; Ahn et al., 2024; Romera-Paredes et al., 2024). This difficulty arises for multiple
reasons: (i) numerical reasoning might require intricate intermediate steps internally. Language
models map scalars to high-dimensional embeddings. The intermediate steps with high dimensional
embeddings turn out to be inractable; (ii) there is no built-in mechanism within transformer-based
architectures to perform mathematical operations; (iii) numerical values are continuous, whereas
transformer-based architectures are inherently designed for (discrete) word toens; (iv) there are
repeated patterns in tokenized numerical values, and each token holds equal significance (while
omitting unimportant tokens).

(Geva et al., 2020) enhances numerical reasoning by adding automatically generated synthetic
numerical data to the pre-training process. (Lee et al., 2023) incorprates ideas from chain-of-
thought (Wei et al., 2022), with intermediate step results. (Shen et al., 2023) focuses on data format
modification to the boost model’s understanding of numerical values. (McLeish et al., 2024) helps
models track the position of each digit by adding an embedding that encodes its relative position.

1OpenML benchmark: https://www.openml.org/

2

https://www.openml.org/


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 TDTRANSFORMER: TABULAR DATA TRANSFORMER FRAMEWORK

Task formulation Tabular data are denoted as D = {(xi, yi)}ni=1, x ∈ X, y ∈ Y. The dataset is
split into 3 disjoint subsets D = Dtrain ∪Dval ∪Dtest. Y = {0, 1} for the binary classification task,
Y = {1, . . . , C} for the multiclass classification task. The supervised training process maximizes the
likelihood of the correct label y:

max
θθθ

Pθθθ(y|x, θθθ) . (1)

Figure 1 shows the proposed framework. Input data are relational tables that have a unique col-
umn given a column name. We use different embedding processes for different types of columns.
Alignment layers are used to transform embeddings to the same embedding space. We combine
embeddings as the input to the backbone model. The training pipeline consists of pre-training and
fine-tuning steps.

Column name

Columns cells

Cat embedding

Num embedding

Bin embedding

Relational table

CLS

a

c

LM Encoder

CLS

Prediction
Head

+ Positional Encoding

N
um

 preprocess1 -11 1 1 1 1

Bin preprocess

Cat preprocess
Tokenization

Average

Column Name
Embedding Binary Vector 

Pre-training

Fine-Tuning

Contrastive Loss

Column-Type based
corruption

Embedding

Combined with
column name

b Alignment
Layer

Figure 1: The TDTransformer framework: (a) Input data D = {(xi, yi)}ni=1. x consists of column
name and column cells. (b) Embeddings of three types of columns (categorical, numerical, and
binary). (c) Concatenation of the three types of embeddings, which is fed into the backbone model.

3.1 COLUMN EMBEDDINGS

The TDTransformer framework uses distinct embedding processes for categorical, numerical, and
binary columns. These processes are illustrated in Figure 1 (b) and discussed in detail below:

Embedding Categorical Columns For categorical columns, we concatenate column names and
corresponding cell values to form natural language sentences. The concatenated sentence is tokenized
and embedded to obtain hidden representations for the categorical columns denoted by Ecat:

Ecat = [E1, . . . ,Eccat ] ∈ Rkcat×d, Ei =
[
e([T col

1:m1(i)
]), e([T cell

1:m2(i)
])
]
, (2)

where d is the dimension of hidden representations. kcat =
∑ccat

i=1(
∣∣∣[T col

1:m1(i)
]
∣∣∣+ ∣∣∣[T cell

1:m2(i)
]
∣∣∣) is the

total number of tokens. m1(i) is the number of tokens for i-th categorical column name. m2(i) is
the number of tokens for cell values in i-th categorical column. After embedding, we use a linear
transformation layer ϕcat : Rd → Rd.

3
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Embedding Numerical Columns We adapt the PLE in (Gorishniy et al., 2022) for transformer-
based architectures. Specifically, we use the PLE function fple : R → Rdple to obtain the hidden
representation for numerical columns:

fple(x) = [ξ1, . . . , ξn]
T ∈ Rdple . (3)

ξi =


−1, x < bt−1

1, x > bt
2x−(bt+bt−1)

bt−bt−1
. bt−1 ≤ x ≤ bt

(4)

Here, the bins {bt}
dple

t=1 are obtained based on the q-quantiles of the numerical value range while
the original PLE work requires labels for fitting decision trees. dple is the number of quantiles. We
summarize differences for the numerical value embedding in Table 1. The conventional tokenization
and embedding in language models can map a scalar to a sequence of embeddings if there are multiple
digits in the scalar. On the contrary, PLE always maps a scalar to one embedding. Our method relies
on the distribution of cell values and not conditions on labels. Besides, due to the layer normalization
(LN) (Ba, 2016) within the embedding layer, codomain of [−1, 1] for our adapted PLE function is
closer to the embedding than the that of [0, 1].

Table 1: Summary of the differences among methods obtaining embeddings of numerical values.
Embedding of a numerical value is essentially a high-dimensional vector v.

Method vi range Not require
labels

Fixed
sequence length

Tokenization + Embedding (−∞,∞) ✓ ×
PLE (Gorishniy et al., 2022) [0, 1] × ✓

PLE (Ours) [-1, 1] ✓ ✓

We use a linear transformation layer ϕnum : Rple → Rd to convert the high-dimensional representa-
tions fple(x) ∈ Rple to the same embedding space as that of categorical column embeddings.

The hidden representation for numerical columns is obtained by the Hadamard product of the averaged
column-name embedding and numerical-value embeddings:

Enum = Enum
col ◦ ϕnum([fple(x1), . . . , fple(xcnum)]) ∈ Rcnum×d . (5)

Enum
col = [E1, . . . ,Ecnum ], Ei =

1

m1(i)

m1(i)∑
j=1

e([T col
1:m1(i)

]) ◦M , (6)

Here, M is the attention mask to exclude padding token embeddings. For notational conciseness
we ignore the notation of column types in the expressions of word tokens of column names and
cell values. For example, we use the same notation [T col

1:m1(i)
] in Equations 2 and 6. The notation

[T col
1:m1(i)

] denotes the word tokens for numerical column names in the former, whereas it denotes the
word tokens for categorical column names in the latter.

Embedding Binary columns We convert cell values (e.g. True vs False and 0 vs 1) in binary
columns to binary values xi ∈ {0, 1}. Similar to numerical columns, the column-name embedding
for each binary column is averaged. The hidden representation for binary columns is obtained by the
Hadamard product of the averaged column name embedding and binary values as follows:

Ebin = Ebin
col ◦ (x(1d)

T ) ∈ Rcbin×d, where x = [x1, . . . , xcbin ]
T . (7)

We use a linear transformation layer ϕbin : d→ d to ensure the embeddings of binary columns are
the same as those of categorical columns and numerical columns.

4
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3.2 FEATURE COMBINATION

Figure 1 (c) shows the combination of features for three types of columns. We prepend [CLS]
embedding to the concatenated hidden representations. As in the classialc transformer model (Vaswani
et al., 2017), we add the sinusoidal positional encoding P to the concatenated hidden representation:

E = [e([CLS]),Ebin,Enum,Ecat] +P , (8)

where
P(j,2i) = sin(j/100002i/d) , (9a)

P(j,2i+1) = cos(j/100002i/d) . (9b)
Here, j is the position index and i is the hidden dimension index. Only Ecat has a flexible sequence
length. Ebin and Enum have a fixed sequence length. The sequence length for Ebin or Enum is
equal to the number of binary columns or numerical columns. Given a fixed context length limit,
TDTransformer can process larger tables (without truncation) as compared to language models that
do tokenization and embedding for all types of columns.

In language models, positional encoding or positional embedding are added to the embedding
in element-wise fashion. In tabular data domains, however, table columns have the permutation
invariance property that prevents positinal encodings from improving performance (Huang et al.,
2020). In TDTransformer, although the hidden representations for the binary columns (Ebin

i ∈ Rd)
and that for the numerical columns (Enum

i ∈ Rd), there is indeed an ordering in Ecat, because it
is essentially the embedding of a natural language sentence. Therefore, we propose a column-type
aware (CTA) position encoding for TDTransformer. CTA only adds positional encoding to Ecat. The
overall embedding E is computed as follows:

E = [e([CLS]),Ebin,Enum,Ecat] + [0(cbin+cnum)×d,P] . (10)

3.3 TRAINING PIPELINE

After combining column embeddings, E is fed to the backbone model, which is constructed using the
gated transformer proposed in (Wang & Sun, 2022). We also test the performance using RoBERTa
(Liu, 2019) as the backbone model (see Appendix). [CLS] embedding is used for the prediction.
The training pipeline, similar to the classic pre-training fine-tuning paradigm, consists of two steps:
the first step is to pre-train the model. The second step is to fine-tune the model that is initialized
with pre-trained weights. Corruption is used to generate negative samples. The corruption method
conditions on column types, because random permutation only occurs within the same type of column.
We do not apply permutations for binary columns.

After the contextualization in LM encoder F(·), we obtain the resulting embedding E
′
= F(E).

We use the [CLS] embedding in E
′

as shown in Figure 1 (c). The [CLS] embedding used for the
prediction is denoted as z. Given a table row zi, there is a hidden representation zi.

The pre-training process uses contrastive loss. Specifically, we examine two types of pre-training
losses: self-supervised contrastive loss (e.g., (Chen et al., 2020; Tian et al., 2020; Wang et al., 2021))
and supervised contrastive loss (e.g., (Khosla et al., 2020; Jaiswal et al., 2020; Le-Khac et al., 2020)).
The contrastive loss function encourages the model to generate close embeddings for positive pairs.
The self-supervised pre-training focuses on the category-level discrimination while self-supervised
pre-training pays attention to the instance-level discrimination.

The self-supervised contrastive loss (SSCL) is computed as follows:

LSSCL = −
∑
i∈I

log
exp(zTi z̃i/τ)∑
j∈I exp(zTi z̃j/τ)

, (11)

where τ is the temperature, I = {i}ni=1, zi is the hidden representation for i-th table row, and z̃i is
the hidden representation of the corrupted i-th table row.

The supervised contrastive loss (SCL) utilizes labels in the pre-training dataset and is computed as
follows:

LSCL =
∑
i∈I

−1

P (i)
log

∑
k∈P (i)

exp(zTi z̃k/τ)∑
j∈I exp(zTi z̃j/τ)

, (12)
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where P (i) := {p|yp = yi}. SCL is found to be a powerful pre-training tool. For example, it
can achieve in-context learning in decision-making problems (Lee et al., 2024) and learn data with
long-tailed distributions (Li et al., 2022).

Table 2: Performance comparison for the binary classification task. In addition to the averaged
performance, we select a subset of 76 tables for detailed comparison. S ∪ Snum contains tables
including numerical columns. γ is the positive ratio.

Method S ∪ Snum γ ≤ 0.2 0.2 < γ < 0.8 γ ≥ 0.8 Avg
Acc Auc Acc Auc Acc Auc Acc Auc Acc Auc

XGBoost 85.06 0.83 91.88 0.87 78.44 0.82 95.10 0.73 84.97 0.83
CatBoost 86.27 0.86 91.90 0.87 80.66 0.87 94.51 0.87 86.12 0.87

SCARF 77.27 0.73 83.84 0.72 73.64 0.78 72.10 0.55 77.81 0.74
SwitchTab 74.32 0.78 79.67 0.80 69.89 0.78 89.05 0.74 75.03 0.78

SubTab 71.94 0.74 75.44 0.74 69.79 0.75 72.59 0.68 72.30 0.75
TransTab 84.83 0.81 91.20 0.83 79.74 0.82 95.45 0.83 85.39 0.82

TDTransformer 87.56 0.87 91.67 0.87 83.94 0.88 95.40 0.96 87.79 0.88
TDTransformer (CTA Pos) 87.19 0.87 91.70 0.87 83.30 0.87 95.59 0.94 87.48 0.87

Table 3: Performance comparison for the multiclass classification task. In addition to the averaged
performance, we select a subset of 76 tables for detailed comparison. S ∪ Snum contains tables
including numerical columns. |D| is the dataset size, C is the number of classes.

Method S ∪ Snum |D| < 2000 |D| ≥ 2000 C < 10 C ≥ 10 Avg
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

XGBoost 72.56 0.60 65.77 0.56 82.20 0.71 79.32 0.64 71.12 0.69 76.45 0.66
CatBoost 73.03 0.59 66.68 0.56 81.97 0.70 79.32 0.63 71.59 0.69 76.61 0.65

SCARF 62.39 0.52 57.58 0.44 69.51 0.61 67.75 0.53 60.82 0.59 65.32 0.55
SwitchTab 56.92 0.45 57.56 0.45 62.29 0.52 64.93 0.50 52.65 0.49 60.63 0.50

SubTab 55.22 0.45 55.98 0.44 60.77 0.52 60.99 0.48 55.57 0.53 59.09 0.50
TransTab 70.22 0.53 70.38 0.53 69.96 0.52 71.79 0.49 66.98 0.63 70.11 0.54

TDTransformer 76.30 0.63 78.68 0.69 81.06 0.70 80.89 0.65 79.00 0.77 80.23 0.70
TDTransformer (CTA Pos) 76.70 0.63 78.94 0.69 81.36 0.70 81.07 0.65 79.47 0.77 80.51 0.70

The model weight after the pre-training process is used as the initialized weight for the fine-tuning.
A prediction head is added to predict the probability of each class. The fine-tuning process is in
a supervised fashion. For the binary classification task, we use the binary cross entropy loss. The
multiclass classification task employs the cross entropy loss.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTS

Baseline methods XGboost (Chen & Guestrin, 2016) is an end-to-end tree boosting system. It
uses a sparsity-aware algorithm and weighted quantile sketch. Compared to XGBoost, CatBoost
(Prokhorenkova et al., 2018; Dorogush et al., 2018) has the inherent capability to process categorical
features without relying on one-hot encoding. Besides, it introduces ordered boosting to avoid target
leakage. SubTab (Ucar et al., 2021) divides input features into multiple subsets to perform multiview
representation learning. Scarf (Bahri et al., 2022) uses vanilla self-supervised contrastive learning to
improve classification accuracy in the fully-supervised learning setting. SwitchTab (Wu et al., 2024)
uses an asymmetric encoder-decoder framework to decouple mutual and salient features, which can
address the issue of lacking dependencies between samples.

Datasets We use 56 real-world tabular classification datasets in the standard OpenML bench-
mark (which are manually curated for effective benchmarking). The train/validation/test splits is
72%/8%/20% for each OpenML dataset. We use accuracy as the metric to measure the performance
for all classification data sets. Additionally, we use the area under the curve (AUC) to evaluate binary
classification and the F1 score t evaluate multiclass classification. The details of the tables are given
in Section A.3 of the Appendix.
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Experimental details TDTransformer uses pre-trained BERT tokenizer (Devlin, 2018) and Adam
optimizer (Kingma, 2014) without weight decay. The hidden dimension is 512 and model depth is 12.
The number of quantiles for PLE is 64. In both the pre-training and fine-tuning process, we use an
early stopping strategy (Yao et al., 2007) with a patience of 10. The maximum number of training
epochs is 200 with batch size of 128. The corruption parameter of pre-training process is set to 0.5.
When there are empty cells in a column, we replace empty cells with the most common values in that
column. We conducted all epxeriments using a single A40 Tensor Core GPU and EPYC 7232P CPU.

a b

c d

Figure 2: Performance comparison: The left axis shows the scale for (average) performance. The
right axis shows the scale for the performance on individual datasets. (a) Test accuracy for the
binary classification task. (b) AUC score for the binary classification task. (c) Test accuracy for
the multiclass classification task. (d) F1 score for the multiclass classification task. TDTransformer
significantly outperforms baselines with greater improvements achieved for multiclass classification.

4.2 RESULTS

Table 2 summarizes the performance comparison for the binary classification task. SSCL is used in the
pre-training process. We denote categorical columns as Scat, binary columns as Sbin, and numerical
columns as Snum. We use the notation S for generic table columns, S ⊆ (Snum ∪ Scat ∪ Sbin). Note
that S can be ∅. In addition to select subsets of tabular data based on column types, we use the
positive ratio to make a selection. The positive ratio γ is the ratio of positive samples to the entire
number of samples. Generally, a positive ratio range 0.2 < γ < 0.8 is the more challenging than
the positive ratio range γ ≤ 0.2 and γ ≥ 0.8. We find that TDTransformer has a relatively large
performance gain in that range compared to baseline methods. The accuracy for 0.2 < γ < 0.8
increases by 3.38%. Overall, both TDTransformer exhibits significantly better performance (with or
without CTA positional encoding).

The performance comparison for the multiclass classification task is shown in Table 3. We use
the dataset size |D| and the number of classes C to select subsets of tabular data. For nearly all
selected subsets, TDTransformer (with or without CTA positional encoding) shows a pronounced
performance gain compared to baseline methods. For the subset of |D| ≥ 2000, XGBoost has the best
performance. We examine datasets where our proposed framework has a relatively large performance
gap compared to XGBoost. We find a remarkable gap appearing in the table Au4-2500 (Details
regarding all tables are listed in the Appendix). In this table, both column names and categorical
columns lack semantics. Column names are V1, . . ., V100. Categorical columns contain cell values
of v1, v2, . . . Vk, k ∈ N+. Lacking semantics is detrimental to the performance of language models.
Hence, XGBoost outperforms TDTransformer by a relatively large margin.

7
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The multiclass classification task is generally more challenging compared to the binary classification
task. Compared to the best baseline method, the performance gain for the binary classification task is
1.67%, and that for the multiclass classification task is 3.62%.

Figure 2 shows the comparison between TDTransformer and baseline methods. Scatter points are the
performance on individual dataset. Transformer-based baselines fall short significantly compared to
tree-based methods. Even though the TDTransformer model has a transformer-based architecture, it
achieves better performance than all baselines.

4.3 ABLATION STUDY

Pre-training We compare the performance of pre-training using SSCL and SCL. Both pre-training
processes use the classic positional encoding as shown in Equation 8. The performance comparison
is shown in Figure 3. Using SCL as shown in Equation 12, there is a small accuracy decrease in
the binary classification task. The performance has a larger drop in the multiclass classification
task. Overall, TDTransformer has better performance using SSCL compared to SCL. Out of the
tabular data domain, a similar observation is reported that self-supervised pre-training without label
information learns more effective representation than supervised pre-training when transferring to
downstream tasks (Chen et al., 2020; He et al., 2020; Chen & He, 2021).

a b c d

Figure 3: The performance comparison between SSCL and SCL pre-training. The upper axis shows
the scale for the performance on individual datasets while the lower axis shows the scale for the
averaged performance. (a) Test accuracy for the binary classification task. (b) Auc score for the
binary classification task. (c) Test accuracy for the multiclass classification task. (d) F1 score for the
multiclass classification task.

Positional encoding Attention mechanism (Vaswani et al., 2017) computes the pair-wise relation
between the query and key. There is no inherent order of the sequence. Positional encoding or
learnable positional embedding are added to help model track the order. However, tables have the
inherent property of permutation invariance, which is contradictory to the order of the word token
sequence. (Huang et al., 2020) compares the transformer with positional encoding and without
positional encoding. In their framework, no positional encoding leads to better performance. We
compare the performance without positional encoding, with positional encoding and with CTA
positional encoding.

Table 4: Performance comparison between different positional encoding methods. Positional encoding
and CTA positional encoding have similar performance while no positional encoding can leads to a
significant performance drop.

Task Metric w/o positional encoding w/ positional encoding w/ CTA positional encoding

Binary Accuracy 88.07 87.79 87.48
Auc 0.87 0.88 0.87

Multiclass Accuracy 74.78 80.23 80.51
F1 0.63 0.70 0.70

Batch size In SSCL, the number of negative pairs is related to the batch size. In SCL, batch size
determines the number of negative and positive pairs. We use the same batch size in the pre-training
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and fine-tuning processes. Different batch sizes {128, 64, 32} are examined to analyze the effect of
batch size.

Table 5 shows the effect of batch size in the binary classification task. Overall, the effect of batch
size is small. The average accuracy variation is within 0.2%. Table 6 exhibits the effect of batch size
in the multiclass classification task. When decreasing the batch size, both accuracy and F1 score
decrease.

Table 5: The effect of batch sizeNbs on the performance of TDTransformer in the binary classification
task. SSCL is used in the pre-training process. The fine-tuning process is in a supervised fashion.

Method S ∪ Snum γ ≤ 0.2 0.2 < γ < 0.8 γ ≥ 0.8 Avg
Acc Auc Acc Auc Acc Auc Acc Auc Acc Auc

TDTransformer (Nbs = 128) 87.56 0.87 91.67 0.87 83.94 0.88 95.40 0.96 87.79 0.88
TDTransformer (Nbs = 64) 87.61 0.82 91.22 0.79 84.44 0.85 95.54 0.94 87.88 0.83
TDTransformer (Nbs = 32) 87.70 0.86 91.56 0.86 84.37 0.87 95.54 0.94 87.99 0.88

Table 6: The effect of batch size Nbs on the performance of TDTransformer in the multiclass
classification task. SSCL is used in the pre-training process. The fine-tuning process is in a supervised
fashion.

Method S ∪ Snum |D| < 2000 |D| ≥ 2000 C < 10 C ≥ 10 Avg
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

TDTransformer (Nbs = 128) 76.30 0.63 78.68 0.69 81.06 0.70 80.89 0.65 79.00 0.77 80.23 0.70
TDTransformer (Nbs = 64) 75.78 0.62 78.54 0.68 80.58 0.69 80.33 0.64 79.00 0.77 79.86 0.69
TDTransformer (Nbs = 32) 76.16 0.62 78.97 0.68 79.40 0.66 79.43 0.61 78.90 0.77 79.24 0.67

With posWithout pos With CTA pos

With positional encodingWithout positional encoding

Ca
rE

va
l

Kr
op

t
Sp

lic
e

With positional encodingWithout positional encoding

Figure 4: Effect of positional encoding on tabular representation learning. We assign the same color
for instances with the same label. There are only categorical columns in Kropt and Splice tables,
positional encoding and CTA positional encoding yield the same result. Using positional encoding
greatly enhances representation learning.
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Table 4 summarized the averaged performance for the binary and multiclass classification tasks.
For the binary classification task, the performance difference among different encoding methods
is small. There is a significant performance difference (5.45% drop in accuracy) for the multiclass
classification task. Using no positional encoding pronouncedly degrades the performance. For tables
that do not have numerical columns or binary columns, CTA positional encoding is the same as the
traditional positional encoding. In the more challenging multiclass classification task, we observe the
performance gain when using CTA positional encoding.

We examine the distribution of [CLS] embeddings by using t-SNE (Van der Maaten & Hinton,
2008) to compute the first two main components. Figure 4 shows the distribution. Using positional
encoding or CTA positional encoding significantly improves the separation of different classes.

5 DISCUSSION AND CONCLUSION

Our results advocate a rethink of the power of language models in the tabular data domain. A direct
way of applying language models to the tabular data domain is to represent tables using sequences of
word tokens. However, the heterogeneity property of tables hinders models from learning effective
representations (Shwartz-Ziv & Armon, 2022; Mathov et al., 2022; Borisov et al., 2023; Yan et al.,
2023; Chen et al., 2024a). TDTransformer explicitly uses distinct embedding processes for different
types of columns. Owing to the difference in embedding processes, the embedding spaces of
different types of columns are different. Specifically, TDTransformer uses PLE to encode the
statistical information of numerical columns in high-dimensional vectors while maintaining the
continuity of numerical values in the codomain of PLE function. Alignment layers are used to convert
embeddings of different types of columns to a common embedding space. TDTransformer utilizes the
good semantic understanding of language models. Some baseline methods with transformer-based
architectures use one-hot encoded representation for categorical columns, which inherently loses
semantic information. Those baselines lag behind tree-based methods. We find that language models
might have unfavorable performance when a table has categorical columns that lack semantics. In
addition, we find that positional encoding is important for the TDTransformer framework. The
embeddings of numerical and binary columns are essentially column-wise, while those of categorical
columns are token-wise. Based on this observation, we propose CTA positional encoding, which
can boost the performance of TDTransformer. Overall, TDTransformer is able to to overcome the
incapability of classical transformer-based architectures in interpreting heterogeneous data and to
enhance the ability of the model to interpret numerical values.
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