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Abstract

Machine Learning models have shown susceptibility to various privacy attacks, with model
inversion (MI) attacks posing a significant threat. Current defense techniques are mostly
model-centric, involving modifying model training or inference. However, these approaches
require model trainers’ cooperation, are computationally expensive, and often result in a
significant privacy-utility tradeoff. To address these limitations, we propose a novel data-
centric approach to mitigate MI attacks. Compared to traditional model-centric techniques,
our approach offers the unique advantage of enabling each individual user to control their
data’s privacy risk, aligning with findings from a Cisco survey that only a minority actively
seek privacy protection. Specifically, we introduce several privacy-focused data augmenta-
tions that modify the private data uploaded to the model trainer. These augmentations
shape the resulting model’s loss landscape, making it challenging for attackers to generate
private target samples. Additionally, we provide theoretical analysis to explain why such
augmentations can reduce the risk of model inversion. We evaluate our approach against
state-of-the-art MI attacks and demonstrate its effectiveness and robustness across various
model architectures and datasets. Specifically, in standard face recognition benchmarks,
we reduce face reconstruction success rates to ≤ 5%, while maintaining high utility with
only a 2% classification accuracy drop, significantly surpassing state-of-the-art model-centric
defenses. This is the first study to propose a data-centric approach for mitigating model
inversion attacks, showing promising potential for decentralized privacy protection.

1 Introduction

Figure 1: Data-Centric Defense vs. Model-Centric Defense.

Thanks to advances in computation and the availability of large-scale datasets collected globally, Machine
Learning (ML) has experienced significant growth in recent years, showing great potential in various domains,
such as computer vision, natural language processing, and healthcare, among others. However, the use of
ML models trained on sensitive data can leak private information (Fredrikson et al., 2014; Shokri et al.,
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2017). While some data contributors may have a neutral stance or lack concern about their data privacy, a
survey conducted by Cisco Cisco (2022) in 2019 identified a group known as "privacy actives" who value and
actively take steps to protect their privacy, including switching companies or providers. Moreover, existing
legislations (e.g., the General Data Protection Regulation (GDPR) in the European Union Magdziarczyk
(2019) and the California Consumer Privacy Act in the United States Pardau (2018)) stipulates the right of
individual users to exercise control over their own data.

Existing defenses Abadi et al. (2016); Jia et al. (2019); Wang et al. (2021); Yang et al. (2020) primarily focus
on protecting privacy in a model-centric manner, which involves altering model training Abadi et al. (2016) or
inference procedures Jia et al. (2019). Common techniques include differentially private stochastic gradient
descent (DP-SGD) (Abadi et al., 2016), which involves clipping and noising the gradients during training.
These approaches often result in performance degradation and increased computation time. Moreover, they
require users to trust the model trainer (e.g., the data-harvesting companies) to ensure privacy, limiting user
control over their privacy risks. More critically, they often present a binary stance on privacy protection,
offering protection to all users or none, overlooking the nuanced needs of individual users. Real-world surveys
Cisco (2022); Review (2020); Bongiovanni et al. (2020) reveal that only a small portion of users (i.e., 32%)
are privacy actives, but the binary nature of existing solutions implies a significant compromise in utility for
the sake of protecting the privacy of a minority. This motivates our exploration into data-centric defenses:
strategies that individuals can use to mitigate privacy attacks by modifying their data before uploading it to
the central model trainer. This empowers individuals to control their privacy risks in a decentralized manner.
The randomized response (Warner, 1965), a long-standing strategy in social sciences, serves as an example,
although it encounters challenges with high-dimensional data common in modern ML tasks.

In this paper, we focus on model inversion (MI) attacks to investigate the feasibility of effective data-centric
defense. MI attacks, which reconstruct training data from a trained model, are well-researched and have
been successful in both white-box and black-box scenarios (Fredrikson et al., 2014; Zhang et al., 2020b; Chen
et al., 2021; Kahla et al., 2022; Struppek et al., 2022; An et al., 2022). Compared to other common privacy
attacks such as membership inference attacks (Shokri et al., 2017; Nasr et al., 2019) (which infers whether
certain data is used for training) and property inference attacks (Ganju et al., 2018; Melis et al., 2019; Song
& Raghunathan, 2020) (which infers whether a dataset has certain global properties), MI attacks recover
much more fine-grained information such as training images, posing a significant threat to user privacy. This
work develops the first data-centric defense for MI attacks, making the following contributions:

1 MI Defense via Privacy-Focused Augmentations. We propose privacy-focused data augmentations
that can be injected by individual data contributors to mitigate their MI risks. Unlike traditional augmen-
tations like cropping, rotation, and flipping that aim to improve model generalization, our augmentations
are specifically tailored to thwart MI attacks. We present several ideas for designing such augmentations,
with a central theme of shaping the loss landscape in ways that mislead MI attacks to recover irrelevant
samples. This central theme distinguishes our ideas from the early simple randomized response, wherein the
design of the noise injected into the data does not consider its impact on model behaviors. Also, in contrast
to existing MI defenses, our proposed approach, named DCD, requires no access to the victim model or
training data from other contributors.

2 A Novel Privacy Protection Mechanism Setup. Contrasting with the model-centric defense mech-
anisms that uniformly apply privacy protections to all users, we introduce a novel setup, inspired by insights
from real-world surveys Cisco (2022); Review (2020); Bongiovanni et al. (2020). The novel setup is designed
to cater specifically to the varying privacy needs of different users. It uniquely enables a selective privacy
framework, where only a specific group of users — those who prioritize privacy according to their prefer-
ences and needs — engage in enhanced privacy measures. This innovative setup acknowledges and addresses
the different privacy concerns in the user community, marking a significant shift from conventional binary
protection setups that either extend privacy safeguards to all users or none.

3 Theoretical Analysis for Privacy-Focused Augmentations. We provide theoretical justification
for DCD, demonstrating that: 1) the proposed augmentations reshape the loss landscape near the target and
inject irrelevant samples; 2) these treatments cause existing MI attacks relying on gradient-based optimization
to converge to the irrelevant samples rather than the target samples.
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4 Evaluation. We evaluate DCD against various state-of-the-art MI attacks and demonstrate the ro-
bustness of DCD across different datasets, model architectures, and attack strategies. DCD outperforms
the baselines by achieving a significantly improved privacy-utility tradeoff.

2 Background and Related Work
Model Inversion Attacks. In an MI attack, an adversary aims to reconstruct representative training
samples for any target class of a victim model given access to the model. For example, in the context of face
recognition, the adversary seeks to reconstruct face images of a specific target identity. To recover training
data from a given model fθ for any target class y, the key idea of MI is to find an input that minimizes the
prediction loss of y: xsyn ∈ arg minx L(fθ(x), y).

However, solving this optimization over the high-dimensional space without any constraints generates noise-
like features that lack semantic information and give unsatisfactory model inversion performance. Recently,
GMI (Zhang et al., 2020b) proposed to optimize over the latent space of a pre-trained GAN instead: xsyn =
G(z∗), z∗ ∈ arg minz L(fθ(G(z)), y)−D(G(z)), where G and D represent the generator and the discriminator
of the GAN, respectively. Chen et al. (2021); An et al. (2022); Struppek et al. (2022) follow the idea of using
GAN and further improve the quality of reconstructed images with different techniques, e.g., knowledge
distillation from the target model; latent space disentanglement via a StyleGAN (Karras et al., 2019; 2020a),
etc. These works show that the samples synthesized by the GAN-based MI technique above can maintain
high visual similarity to the original training data of fθ. The backbone of existing MI attacks involves
solving an optimization objective, containing the prediction loss of the target class, i.e., L(fθ(G(z)), y), and
other quality-enhancing loss terms, via gradient descent. To recover multiple images, one could run gradient
descent multiple times, each of which uses a randomly selected initialization value.

Defense Techniques. Existing defenses against MI involve altering the training process or model architec-
tures. Differential privacy (DP) was deployed to defend MI in Fredrikson et al. (2014); Zhang et al. (2020b),
which empirically show that DP can mitigate MI attacks only when the injected noise is large enough and
as a side effect, the model suffers significant performance degradation. Wang et al. (2021) studied the the-
oretical basis of the inefficacy of DP in defending MI and introduced information bottleneck-based learning
objectives to decrease the correlation between model outputs and training data. While improved over DP,
it still suffers a significant privacy-utility tradeoff. Peng et al. (2022) proposed to minimize the dependency
between the latent space and input while maximizing the dependency between the latent space and model
outputs, enhancing utility. This, however, also requires modifications to model architectures. It’s worth
noting that all these defenses lack user control, relying on model trainers and imposing unnecessary utility
sacrifices for privacy, especially when only a minority prioritize data privacy. In comparison, our approach
involves only modification to data, which can be achieved by individual users who want to protect their
privacy. Also, as we will show later, our defense effectively preserves the model’s utility.

Connection between Data Augmentation and Privacy. The impact of augmentations on privacy risks
has been studied recently in the context of membership inference attacks (Kaya & Dumitras, 2021; Tramèr
et al., 2022; Chen et al., 2022). These attacks aim to determine if specific data samples were part of a model’s
training data. Kaya & Dumitras (2021) studied common data augmentations used for improving model
generalization (e.g., random cropping and Gaussian augmentation) and empirically identified which ones
mitigate or amplify membership inference risks. Tramèr et al. (2022); Chen et al. (2022) proposed augmenting
the training set with mislabeled target samples to increase the risk. Our work focuses on model inversion,
in which the impact of augmentations on privacy risks has not been explored. In addition to the difference
in scope, our work distinguishes itself from existing research by going beyond the traditional collection
of augmentations designed to improve model generalizability. Instead, we propose novel augmentations
designed specifically to improve privacy, and such a design is grounded on an understanding of the influence
of augmentations on the loss landscape of the victim model.

3 Methodology
Notation and Setup. Let fθ denote a target victim classifier, which maps an input feature x ∈ X to
a label y ∈ Y, and Y = {y1, . . . , yk}. Denote the raw, unprotected training set by D = {(xij , yi) : i =
1, . . . , k, j = 1, . . . , mi}, where xij represents the j-th samples in class i and mi is the total number of
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samples in class i. Take face recognition, a canonical application considered in the MI attack literature, as
an example. Each yi represents a different identity or user, and xij represents face images corresponding to
identity yi. Our goal is to protect training samples with the labels indexed by Stgt from model inversion
attacks. This set will be referred to as the target label set. The raw training samples corresponding to the
target label set can be represented as Dtgt-raw = {(xij , yi) : i ∈ Stgt, j = 1, ..., mi}.

3.1 Privacy-Focused Data Augmentations

Figure 2: Illustration of curvature-
controlled augmentations and the resulting
loss landscape.

Our approach introduces surrogate classes into the training set,
designing augmentations to misdirect MI attacks toward re-
covering surrogate-class samples instead of target-class sam-
ples. We explain this process using a specific target class
(ytgt ∈ {yi : i ∈ Stgt}) for protection. When multiple target
classes need protection (i.e., |Stgt| > 1), one can easily apply
the following process to each target class index in Stgt.

Surrogate Injection. The process begins with identifying
an “irrelevant” surrogate class (ysrg /∈ Y) for the target class
(ytgt), the reconstruction of which does not divulge sensitive in-
formation about the original target class. For example, in face
recognition, a different public identity could serve as the sur-
rogate class. We then gather samples from this surrogate class
(x1

j , j = 1, . . . , m, x1
j ∼ P (X|ysrg)), relabel them as the target

class, creating a mixed set of actual target and surrogate class
samples labeled as the target class. The resulting augmented
samples are denoted as D1

ytgt
= {(x1

j , ytgt) : j = 1, ..., m}.

The model trained directly on this mixture identifies both surrogate and target samples as the target class.
Hence, an MI attack would generate a mix of target-class and surrogate-class samples. Detailed results are
provided in Table 2. While this mix can obfuscate the adversary about the true attributes of the target class,
our goal is to minimize the possibility of reconstructing the target class, thereby preventing the adversary
from confidently determining the true attributes associated with the target class. The question now is how
to induce MI attacks to preferentially generate samples from the surrogate class over the target class.

Loss-Controlled Modification. MI attacks essentially resolve optimization problems, seeking samples
that result in the lowest loss when predicted as the target class. To counteract this, our first strategy modifies
training data to slightly elevate the classification loss on the target compared to the surrogate, increasing
the likelihood of detecting surrogate samples during MI optimization while reducing the chance for target
samples. We accomplish this by randomly mislabeling a small fraction (denoted by π1) of target samples,
thereby increasing their loss, while leaving the surrogate samples’ labels unaltered. The adjusted target
samples are as follows:

D0
ytgt = {(x0

j , y′
j) : j = 1, ..., ⌈mπ1⌉} ∪ {(x0

j , ytgt) : j = ⌈mπ1⌉ + 1, ..., m}, (1)

where x0
j ∼ P (X|ytgt) and y′

j ∼ Uniform(Y \ ytgt).

Curvature-Controlled Injection. While loss-controlled modification consistently improves over direct
surrogate injection, achieving nearly zero attack success rate, it can degrade model accuracy by 5% (details in
Table 2). Leveraging the insight from non-convex optimization theory (Bertsekas, 1997), our second strategy
manipulates the loss landscape’s curvature, promoting a flatter curvature around surrogate samples and a
steeper one near target samples. This approach biases the MI optimization towards reconstructing surrogate
samples.

For surrogate samples, we employ Gaussian augmentations in their neighborhood, maintaining the same
label, i.e., D2

ytgt
= (x1

j + µj , ytgt) : j = 1, . . . , m, where µj ∼ N (0, ϵ2
1). This creates a flat loss landscape
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around surrogate samples. For target samples, we apply Gaussian augmentations but mislabel a portion of
the augmented samples, denoted by π2. The resulting augmented samples are:

D3
ytgt = {(x0

j + µ′
j , ỹj) : j = 1, . . . , ⌈mπ2⌉} ∪ {(x0

j + µ′
j , ytgt) : j = ⌈mπ2⌉ + 1, . . . , m}, (2)

where µ′
j ∼ N (0, ϵ2

2) and ỹj ∼ Uniform(Ȳ) where Ȳ ⊂ {Y \ytgt} is some arbitrary subset. The trained model
fθ(·), which tends to memorize training samples, will yield different label predictions for target samples and
their close neighbors. This results in a large variation in l(fθ(·), ytgt) in the target samples’ neighborhood
(see Figure 2).

We refer to the complete injection process as DCD. The pseudocode is provided in Algorithm 1.1

Choosing Hyperparameters. In our main evaluation, we fix ϵ1 = 8/255, ϵ2 = 0.003, and π2 = 1.
Sensitivity analysis of defense performance to ϵ2, π1, and π2 are presented in Section 4.4.

3.2 Theoretical Analysis of Curvature-Controlled Injection

While it is relatively straightforward to see the impact of surrogate injection and loss control (i.e., injecting
new minima and increasing the loss at the sensitive minima), understanding how curvature control manipu-
lates the minima that gradient-based methods converge to is more nuanced. We demonstrate in this section
of the paper that the proposed curvature control operations reshape the loss landscape around the target
and surrogate samples. Leveraging the powerful Capture Theorem, we show that these treatments alter
the convergence behavior of gradient-based optimization methods, redirecting them from the target samples
to the surrogate samples. We establish conditions for the effectiveness of these techniques and provide a
principled framework for their implementation.

Curvature-Controlled Injection serves an implicit regularization on the eigenvalues of Hes-
sian. Consider neural networks constructed using continuous, piecewise affine activations (e.g., ReLU, leaky
ReLU), we show that the correctly labeled Gaussian augmentations near surrogate samples will reduce the
principal eigenvalue σmax(Hε) of a Monte-Carlo approximation of ε-Hessian of loss (defined in (LeJeune
et al., 2019)) near the surrogate (Lemma 1). Conversely, mislabeled Gaussian augmentations near target
samples increase the principal eigenvalue near the target (Lemma 2).
Lemma 1. Consider surrogate samples D1

ytgt
= {(x1

j , ytgt) : j = 1, ..., m} and the corresponding augmented
set D2

ytgt
= {(x1

j + µj , ytgt) : j = 1, ..., m}. Then, compared to the loss function L of the model trained
without noise augmentation D2

ytgt
, the noise augmentation reduces the largest eigenvalue of a Monte-Carlo

approximation of the Hessian matrix Hε near the surrogate samples D1
ytgt

for the loss function of the model
trained with D3

ytgt
.

Lemma 2. Consider target samples with a mislabeling ratio π1 given as D0
ytgt

defined in Eq. equation 1
and the corresponding augmented set with mislabeling D3

ytgt
defined in Eq. equation 2. Then, compared to

the loss function L of the model trained without noise augmentation with mislabeling on D3
ytgt

, the noise
augmentation with mislabeling in D3

ytgt
increases the largest eigenvalue of a Monte-Carlo approximation of

the Hessian matrix Hε near the target samples D0
ytgt

for the loss function of the model trained with the
noise-augmented set with mislabeling D3

ytgt
.

We defer formal lemma statements and proofs to Appendix B. Proof for Lemma 1 is a straightforward exten-
sion of that for Theorem 1 in LeJeune et al. (2019). Proof for Lemma 2 introduces a novel technique showing
that minimizing the loss on noise-augmented samples with uniform mislabeling is ultimately equivalent to
maximizing the loss on noise-augmented samples with correct labels, potentially of interest to the community
studying the regularization effect of augmentations.

1Note that the injection increases the number of samples in the target class(es) by a factor of 4. While this could potentially
signal malicious intent to remove privacy-focused augmentations, we assume the model trainer’s honesty in this paper and leave
concealing injected samples for future exploration. It’s worth noting that real-world datasets (e.g., GTSRB (Stallkamp et al.,
2011) used in our experiments) naturally have varying sample sizes across classes, which already poses challenges for intentional
removal based solely on size.
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Gradient-based optimization prefers flatter minima. Let’s now delve into how the previously out-
lined operations can influence the trajectory of gradient-based optimization. Specifically, they increase the
likelihood of convergence towards surrogate samples while reducing for target samples. Capture Theo-
rem (Bertsekas, 1997) states that the optimization trajectory tends to be attracted towards local optima
once within sufficiently close proximity, given that the optimizer can converge. We’ll outline the conditions
that allow or prevent convergence of the gradient-based optimizer. Following that, we’ll demonstrate how
our loss-shaping operations directly impact these conditions, thereby theoretically guiding the optimization
trajectory to favor convergence at surrogate samples. The subsequent theorem provides a formal explana-
tion for the termination of gradient-based nonlinear optimization when using a constant stepsize—a method
extensively utilized in current MI attacks (Zhang et al., 2020b; Struppek et al., 2022; Chen et al., 2021).
While our analysis isn’t limited to constant stepsizes, we’ll postpone the discussion on variable stepsizes to
the Appendix.
Theorem 1 (Convergence of gradient method (Bertsekas, 1997)). Let {xk} be a sequence generated
by a gradient method xk+1 = xk + αkdk, where {dk} is gradient related. Assume that the gradient of f is
L-Lipschitz, and that for all k we have dk ̸= 0 and

ϵ ≤ αk ≤ (2 − ϵ)ᾱk, where ᾱk = |∇f(xk)′dk|
L∥dk∥2

and ϵ ∈ (0, 1] is a fixed scalar. Then every limit point of {xk} is a stationary point of f .
Remark 1 (Lipschitz of loss gradients directly affects convergence at local optima). Theorem 1
asserts that a gradient-based optimizer converges to a local optimum if the stepsize lies within a certain
range. This range’s upper limit is inversely proportional to the Lipschitz constant of the loss gradient in
the area, and convergence will fail if the stepsize exceeds this range. In essence, local optima with larger
Lipschitz constants require smaller step sizes for convergence, while those with smaller Lipschitz constants
can accommodate a broader range of stepsizes.
Remark 2 (Reshaping convergence through noise-augmentation and mislabeling). The Lipschitz
constant of the loss gradient in a region equals the largest eigenvalue of the loss Hessian, σmax(H). Increas-
ing σmax(H) in a local optimum’s capture region (as in Lemma 1) rejects convergence for optimizers with
non-minimal stepsizes. Conversely, decreasing σmax(H) (as in Lemma 2) accommodates a wider range of
stepsizes. However, excessively small stepsizes may be practically infeasible due to inevitable noises from
gradient partial estimation and round-off/quantization errors. Also, for nonconvex loss functions typical
in neural networks, optimization with extremely small stepsizes is generally impractical and results in poor
performance. Thus, the proposed loss landscape shaping essentially lowers the likelihood of convergence at
target samples for gradient-based optimizers, steering the optimization trajectory toward surrogate samples.
Remark 3 (Elevating loss with mislabeling strengthens effects). Finally, augmenting noise and
mislabeling samples near target samples to elevate loss creates barriers on the loss landscape. These barriers
prevent gradient-based optimizers from entering the capture region of target samples, especially those with
smaller stepsizes. The optimizer’s trajectory is diverted early to avoid loss increase before reaching the
barrier’s ridge, which contradicts the requirement for smaller stepsizes. Consequently, it becomes less likely
for gradient-based optimizers to reach and converge at the target samples’ capture region.

4 Experiments

In this section, we first evaluate the effectiveness of various defense methods when protecting different number
of targets in defending GMI, a classic MI attack (Section 4.2). We show that DCD is effective across various
number of targets, but yield the best performance especially when protecting a small amount of targets.
Then, we aim to answer several key questions and provide a comprehensive understanding of the strengths
and weaknesses of DCD: 1) How does DCD compare to existing MI defenses in terms of model utility and
robustness to various MI attacks in ? 2) Does DCD work well across datasets and model architectures? 3)
How to choose hyperparameters for DCD? 4) How to choose surrogate samples? Through our evaluation,
we seek to provide insights and empirical evidence that shed light on the aforementioned questions and
contribute to a comprehensive understanding of the strengths of DCD. An overview of the experimental
setups is provided in Table 6.
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4.1 Setup

Attack Algorithms. We assess the effectiveness of our defense against four MI attacks in white-box
setting: GMI2 (Zhang et al., 2020b), PPA3 (Struppek et al., 2022), MIRROR-W4 (An et al., 2022), and
PLG-MI5 (Yuan et al., 2023). GMI is the most classic MI attack in the literature, while PPA, MIRROR-W,
and PLG-MI represent the most recent ones achieving state-of-the-art attack performance. For completeness,
we also evaluate our defense against the most recent black-box attack, MIRROR-B, though it has been shown
less potent than the white-box counterpart. We utilize open-sourced implementations of these attacks and
faithfully replicate their settings.

Datasets and Models. We demonstrate the efficacy of DCD across multiple tasks and datasets that
are commonly employed in previous studies on MI attacks (Zhang et al., 2020b; Struppek et al., 2022;
An et al., 2022; Chen et al., 2021): (1) Traffic Sign Recognition (GTSRB (Stallkamp et al., 2011)); (2)
Face Recognition (CelebA (Liu et al., 2015), FaceScrub (Ng & Winkler, 2014)); and (3) Dog Classification
(St.Dogs (Khosla et al., 2011)). We evaluate our defense on various target models with different architectures
including VGG-16(Simonyan & Zisserman, 2014), ResNeSt-101(Zhang et al., 2020a), ResNet-152(He et al.,
2016), ResNext-101(Xie et al., 2017), and DenseNet-169(Huang et al., 2017). Following the setup in the
original attack algorithms, we use GANs pre-trained on public datasets from domains similar to the private
datasets used to train target models. Table 6 provides an overview of the datasets and models utilized in
our experiments.

Baselines. We compare DCD with DP-SGD (Abadi et al., 2016), MID (Wang et al., 2021) and BiDO (Peng
et al., 2022). To ensure consistent evaluation, we utilized their open-source implementations (Wang, 2021;
Peng, 2022). We carefully select the privacy parameters by testing various configurations of each baseline.
These parameters include privacy budget, noise multiplier, and gradient clipping threshold for DP; weight
of information loss for MID; weights of the two dependency loss λx and λy for BiDO. Detailed information
on the hyperparameter selection is available in Table C.4. We would like to emphasize that DP-SGD is very
time-consuming: it increases the training time by 8.94 when training a face recognition model on CelebA.
By contrast, our proposed algorithm, DCD, ensures a comparable training time to the original method
(approximately 1.02 times).

Evaluation Protocol. We conducted a comprehensive evaluation of our defense mechanism under this
new setup, focusing on both utility and privacy metrics. In terms of utility, we measure the classification
accuracy of the target model on the entire clean test set (ACC-all) and the target test set (ACC-tar)
which only consists of images from target class that need to be protected. For privacy, we evaluate the
attack accuracy (Att. ACC), which corresponds to the classification accuracy of an evaluation model
on inverted samples. Evaluation models are trained using different architectures from the target models
following Zhang et al. (2020b); Chen et al. (2021); Struppek et al. (2022). For the GMI attack, we generate
500 samples for each target class and average the results across 5 target classes. For PPA and MIRROR
attacks, we generate 50 samples for each target, averaging over 10 targets for PPA and 8 targets for MIRROR.
For PLG-MI, we generate 50 samples for each target, averaging over 300 targets. These target classes are
randomly selected. To examine the effectiveness of our method when protecting a larger portion of users, we
performed a sensitivity analysis on the number of protected targets (detailed in Section 4.2). Specifically, we
explore scenarios with 10%, 50%, and 100% of users are privacy actives, allowing us to assess our method’s
adaptability to varying degrees of user privacy concerns.

Implementation of DCD. In the experiments, we fixed ϵ1 = 8/255, ϵ2 = 0.003, and π2 = 1. We
use π1 = 0.2 for GMI, MIRROR, and PLG-MI, π1 = 0.3 for PPA. Regarding surrogate selection, for the
datasets GTSRB, FaceScrub, and St.Dogs, we randomly selected surrogate classes from within each dataset.

2https://github.com/SCccc21/Knowledge-Enriched-DMI
3https://github.com/LukasStruppek/Plug-and-Play-Attacks/tree/master
4https://github.com/njuaplusplus/mirror
5https://github.com/LetheSec/PLG-MI-Attack
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The target models are then trained on the remaining classes. For CelebA, the target models are trained on
the top 1,000 identities based on the sample quantity, with surrogates randomly selected from the remaining.
For VGGFace2, since it is no longer available publicly, we are only able to collect 8 classes for training the
target model, with a surrogate randomly chosen from CelebA protecting all. The guideline for automated
surrogate selection is provided in Section 4.4, with the code provided in the supplementary materials.

We implemented DCD to defend against the existing MI Attacks for multiple models and datasets in Python
3.9.12 using PyTorch version 1.12.1. The experiments were carried out on one server having eight NVIDIA
RTX A6000 GPUs with CUDA 12.1.

4.2 Performance Evaluation when Protecting Different Number of Targets.

Figure 3: Defense performance against GMI on CelebA dataset. Ours-L denotes the use of DCD with a
larger model (i.e., ResNet-152), whereas Ours, MID, BiDO, and DP are trained with VGG-16. The attack
results are averaged over three runs, each with randomly selected protected targets. Notably, DCD yields the
best privacy-utility tradeoffs when protecting a small amount of targets (i.e., ≤ 50%), and remains effective
across various protection ratio.

Real-world motivation drives us to assess defense performance in scenarios where only a portion of users
is deeply concerned about their privacy. In this section, we use GMI, one of the most classic MI attacks
as an example, to study DCD’s capabilities in protecting different portion of target classes. We follow
the standard setup in (An et al., 2022; Chen et al., 2021), where the target classifiers are trained on 1,000
identities from CelebA with the most number of samples. Then, we randomly select surrogates samples from
the remaining identities. We vary the number of targets for protection (i.e., 10, 500, 1000) and evaluate the
defense performance of all defense methods.

As depicted in Figure 5, DCD consistently achieved the lowest attack accuracy and demonstrated a significant
advantage in preserving model utilities, especially when protecting a small portion of targets (≤ 50%). In
contrast, model-centric baselines 6 exhibited higher variance in attack accuracy when protecting different
targets. In the case of safeguarding all of the training targets, DCD’s accuracy was only slightly lower
than the most advanced model-centric defense method, BiDO. This marginal difference could potentially be
addressed by adopting a larger model capacity - indicated as Ours-L in Figure 5, which represents our method
with a larger model (i.e., IR-152). This leads to the highest accuracy compared to all other baselines, with the
attack accuracy remaining consistently low, below 1%. Implementing a larger model is also a practical option
when using DCD. In practical terms, service providers adopting our strategy can judiciously select models,
gravitating towards larger architectures that exhibit heightened resilience to the label noise introduced by
our defense. Notably, with the amplification in model size, DP, MID and BiDO suffer a larger privacy-utility

6DP-SGD (Abadi et al., 2016) is commonly utilized to apply differential privacy, employing a uniform privacy parameter
across all data points. While recent research (Li et al., 2017; Heo et al., 2023) has introduced mechanisms that assign person-
alized privacy parameters to individual data points, there is an absence of open-source implementations for these personalized
approaches. In this paper, we focus on the comparison to Abadi et al. (2016).
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tradeoff. Consequently, they lack the leverage to utilize increased model dimensions for attenuating this
tradeoff, a feat achievable by our data-centric method.

In our main evaluation, we focus on the setting where only a small portion of privacy actives, closely mirroring
real-world scenario; we show that as a data-centric defense, DCD provides flexible privacy controls and
achieves near-zero privacy-utility tradeoff under this setting, outperforms existing model-centric defenses.

4.3 Main Results

Figure 4: Visual comparison of MI recovered face
samples with different defenses. Each row shows re-
constructions of the same identity under different de-
fenses, with true images on the left and our surrogate
injection on the right.

Comparison with Model-Centric Baselines.
We compare DCD with the previous state-of-the-
art defenses on various MI attacks, datasets, and
model architectures under the novel setup. To bet-
ter understand the performance when using different
surrogates, the results of DCD in Table 1 are aver-
aged over three runs, where each run uses a different
set of surrogates that are randomly selected.

As shown in the table, DCD outperforms the base-
lines in both utility and privacy metrics. The un-
protected models exhibit alarmingly high attack ac-
curacy, with GMI at 76%, PPA at 90%, MIRROR
at 100%, and PLG-MI at 89%. In contrast, DCD
significantly reduces the attack accuracy to 0% for
GMI, MIRROR, and PLG-MI attacks, and to 1.55%
for PPA. This suggests the robustness of DCD
against attack algorithms. A notable advantage of
DCD is its ability to balance privacy and utility well. Unlike model-centric baselines, which exhibit a sub-
stantial drop in classification accuracy, our method ensures high classification accuracy, with a decrease of
less than 3% on the face datasets CelebA and VGGFace2. We also include the evaluation of DCD on a most
recent black-box attacks BREP-MI (Kahla et al., 2022) in Appendix D.

To qualitatively examine the defense results, we plot some samples generated by PPA when deploying
different defense methods in Figure 4. As shown in the last two rows, DCD successfully fools MI into
generating samples resembling the surrogate ones. Other methods, however, continue to produce samples
that closely mirroring the actual protected targets, where sensitive information such as the gender and hair
color can still be leaked.

Table 1: Defense performance comparison against state-of-the-art MI attacks. Results are given in %,
with symbols ↑ and ↓ respectively indicate that higher and lower scores give better defense performance.
Note that for MIRROR, all classes are target classes, and the classification accuracy is demoted as ACC.
Additionally, DCD results are averaged over three runs, each with a different surrogate selection, and the
standard deviations are provided in the table. The minimal variance underscores the robustness of DCD to
the choice of surrogate selection.

GMI PPA MIRROR-W MIRROR-B PLG-MI
TSRD→GTSRB FFHQ→CelebA FFHQ→VGGFace2 FFHQ→VGGFace2 FFHQ→CelebA

ACC-all↑ ACC-tar↑ Att. ACC↓ ACC-all↑ ACC-tar↑ Att. ACC↓ ACC ↑ Att. ACC↓ ACC↑ Att. ACC↓ ACC-all↑ ACC-tar↑ Att. ACC↓
No Protection 98.34 99.20 76.13 88.42 84.37 90.40 99.99 100.0 99.99 100.0 88.02 88.99 89.40

DP 54.30 31.24 12.80 39.61 6.67 14.33 56.25 54.69 56.25 50.00 24.47 25.56 64.09
MID 67.70 55.37 54.53 69.54 53.33 52.33 41.34 100.00 41.34 12.50 74.77 73.56 87.12

BIDO 87.02 72.62 54.40 74.92 50.00 19.33 83.66 89.06 83.66 87.50 75.33 75.40 4.03
DCD 96.21± 0.58 93.25±0.89 0.00± 0.00 87.67±0.54 80.41±1.28 1.55±0.79 96.88±0.20 0.00±0.00 96.88±0.20 0.00±0.00 77.90±0.38 74.86±1.12 0.00±0.00

Generalization to Different Datasets. We further evaluate the performance of DCD on different
datasets, focusing on one of the most advanced MI attacks, PPA (Struppek et al., 2022). Our evalua-
tion considers three datasets: CelebA, FaceScrub, and St.Dogs; and we employ StyleGAN2 that have been
pre-trained on public datasets with different distributional shifts (Karras et al., 2020b). Consistent with
the previous findings, Table 9 shows that DCD achieves an impressive privacy-utility tradeoff, effectively
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reducing the attack accuracy to <5% on all datasets while causing a minimal impact on the model accuracy
of the target class. The accuracy remains high for all datasets with only a slight drop that < 1%.

Generalization to Different Model Architectures. Furthermore, we thoroughly evaluate the perfor-
mance of DCD across a range of popular model architectures, including ResNest, ResNet, ResNext, and
DenseNet. The results, as shown in Table 8, highlight the robustness of our method across different choices
of architectures used during model training. Notably, DCD consistently reduces the attack accuracy to be
less than 5% across all models, even when the initial attack accuracy is as high as 96%. As a data-centric
defense, DCD does not require access to training procedures or the choice of model architectures. It effec-
tively protects privacy by focusing on the data itself, ensuring that sensitive information remains secure and
independent of specific modeling decisions.

4.4 Analysis and Ablations

We proposed a couple of ideas in Section 3 to improve our defense performance, including 1) surrogate injec-
tion (Surr-Inj), 2) loss control (L-Ctrl), and 3) curvature control (C-Ctrl). We now present a comprehensive
analysis of each choice point of our approach.

Ablation Study on Each Design Idea. We have shown that the combination of all these ideas can lead
to significant defense performance improvement over model-centric baselines. Here, we conduct an ablation
study to investigate the improvement introduced by each individual idea and the hyperparameters. Table 2
presents the results of protecting a target class in the GTSRB dataset against GMI attacks. We observe
that solely injecting surrogate samples in the training set does not effectively mitigate the risk of MI attacks.
However, when combined with either loss control or curvature control, the attack accuracy decreases to
approximately 10%. By employing all three techniques together, we reduce attack accuracy to 0.

Table 2: Ablation Study of ideas in DCD. π1 only involved in Loss Control (L-Ctrl) and π2 only involved in
Curvature Control (C-Ctrl). Larger mislabel ratios can result in lower attack accuracy but also lower clean
accuracy. We show that the combination of Loss Control and Curvature Control yields the best privacy-
utility tradeoff.

No Protection Surr-Inj Surr-Inj&L-Ctrl Surr-Inj&C-Ctrl Surr-Inj&L-Ctrl&C-Ctrl

Mislabel Ratio π1 - - 0.1 0.2 0.5 - - - - 0.1 0.2 0.2

Mislabel Ratio π2 - - - - - 0.1 0.2 0.5 1 0.5 0.5 1

ACC-all ↑ 98.58 98.46 98.14 97.98 97.89 98.50 98.62 97.87 97.86 98.39 97.97 97.96

ACC-tar ↑ 99.25 100.00 98.45 97.97 95.15 99.42 99.71 98.55 98.51 98.99 97.94 97.38

Att. ACC ↓ 79.20 29.60 12.60 9.80 0.60 21.80 19.80 11.80 10.60 0.30 0.00 0.00

Sensitive Analysis on Noise Magnitude of Target Samples. In addition to analyzing the mislabel
ratio for loss control and curvature control in Table 2, we conduct a supplementary experiment to investigate
the influence of different noise magnitudes on target samples ϵ2. It is important to note that, throughout this
paper, we maintain a fixed noise magnitude of ϵ1 = 8/255 for all experiments. By selecting ϵ2 values that
are smaller than ϵ1, we can further enhance the control strength and create sharper curvature in the target
samples. As expected, the results in Table 3 demonstrate that DCD achieves comparable and satisfactory
performance when using ϵ2 < 8/255, with the best performance observed at ϵ2 = 0.003. On the other
hand, for ϵ2 > 8/255, the strength of curvature control weakens, resulting in a lower defense performance
(i.e.,Att.ACC around 30%).

How to Choose Surrogate Samples? We investigate the impact of using different surrogate samples
and provide a guideline to choose them properly. Specifically, we found that there are two desiderata for
conducting a more successful defense:

A. Less similarity between surrogate and target samples.
We observe that using surrogate samples that differ significantly from the target can enhance defense perfor-
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Table 3: Sensitive analysis on the noise magnitude of target samples ϵ2. Experiments are conducted on
GTSRB with GMI attack. Injected samples use a magnitude of 8/255. Note that mislabel ratios are set to
be π1 = 0, π2 = 0.5 to amplify the effect brought by ϵ2. Using a ϵ2 ≤ 8/255 can achieve good performance.

Gaussian Noise Magnitude ϵ2

0.001 0.003 0.005 0.01 8/255 0.1 0.3
ACC-all↑ 97.75 97.21 98.16 97.458 98.12 97.32 97.32
ACC-tar↑ 99.13 98.99 95.57 99.71 99.13 99.86 99.57

Att. ACC↓ 2.60 0.40 2.00 2.20 5.80 26.20 35.40

Table 4: DCD’s defense performance with full mismatch and full match surrogate samples, where the
selection of surrogate samples that have different attribute (i.e., Gender, Hair Color) leads to better defense
performance.

Attribute Defense Performance
Gender Hair Color ACC Att. ACC ACC(−−) Att. ACC(−−) ACC(++) Att. ACC(++)

Male Black 83.33 96.77 81.67 0.00 100.00 5.99

Female Black 100.00 100.00 100.00 4.99 100.00 47.99

Female Blonde 85.71 92.00 81.14 0.00 85.71 7.99

Male Blonde 75.00 100.00 69.00 0.00 75.00 0.00

mance. This is because such injection would result in the recovery of images that appear very different from
the target images. For instance, when targeting a male with black hair, we collect images from a female with
blonde hair as our surrogate. For an in-depth investigation, we conduct an experiment on a face recognition
model trained on 1,000 identities with the most number of samples from the CelebA dataset. We focus on
attributes like gender and hair color which are predominantly identifiable, and randomly select four target
identities with varying combinations of gender and hair color attributes. For each target, we choose two
surrogate identities from the remaining dataset outside the 1,000 training classes: one is a full mismatch
(marked as ‘−−’) with distinct gender and hair color, and the other is a full match (marked as ‘++’) sharing
the target’s gender and hair color.

As shown in Table 4, a full match (‘++’) can reduce the attack accuracy to <10% for three out of the four
target identities. However, one identity (female with black hair) exhibits a relatively high attack accuracy
of 47.99%. This discrepancy may be attributed to the higher vulnerability of this particular target to MI
attacks, as it has a significantly high attack accuracy of 100% without any protection. Since a full-match
surrogate shares identical attributes with the target, the risk of potential recovery of sensitive attributes still
exists. In contrast, a full mismatch(‘−−’) successfully reduces the attack accuracy of all target identities to
<10%, with three identities achieving a perfect defense (0% attack accuracy), aligning with our expectations.
This demonstrates that employing surrogate samples that significantly differ from the target samples can
yield superior defense performance.

B. Small but non-zero diversity among surrogate samples within
the same class. Selecting surrogate samples from public celebrities is one of the most convenient ways to
collect surrogates which a large number of diverse samples are available online, and it is important to
understand the impact of quality and diversity of surrogate samples on the defense performance. We focus
on four target classes with an initial high attack accuracy of 100% without protection, and evaluate in three
scenarios where the same amount of surrogates are collected: 1) No-Dup: each surrogate image is unique;
2) Dup-5: 5 diverse surrogate images are collected for each target and duplicated; 3) Dup-1: a single image
is collected for each target and duplicated. The sample in Dup-1 scenario is selected from the five collected
samples in the Dup-5 scenario, with one being of high quality (Dup-1-High) and another of low quality
(Dup-1-Low) based on visual factors such as occlusion of the face by hair or other elements that may impact
the overall image quality.
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Table 5: Impact of diversity and quality of surrogate samples within the same class.
No Protection Dup-1-Low Dup-1-High Dup-5 No-Dup

ACC-all↑ 86.95 86.92 86.24 86.97 86.57
ACC-tar↑ 100.00 96.47 97.13 97.52 97.15

Att. ACC↓ 100.00 22.50 18.00 0.80 4.50

Table 5 demonstrates that all three scenarios maintain high utility. In terms of privacy, No-Dup yields an
attack accuracy of 4.5% on these vulnerable targets. By using less diverse surrogate samples (Dup-5), the
defense performance is further improved, resulting in an attack accuracy of 0.8%. We also observe that
the presence of diversity among surrogate samples is crucial, as purely duplicated surrogate samples lead
to a relatively higher attack accuracy. Besides, using high-quality surrogate samples leads to lower attack
accuracy compared with low-quality ones. One possible explanation is that the target model fails to learn
well about the low-quality surrogate samples with partial occlusion, thereby weakening the effectiveness of
our proposed loss control mechanism.

5 Conclusion

Our paper introduces the first user-empowered, data-centric defense mechanism, DCD, for mitigating data
privacy risks. Supported by theoretical analysis and extensive evaluations, DCD effectively counters model
inversion attacks and surpasses model-centric baselines in utility and privacy. It does, however, increase
the number of samples in target classes, potentially alerting malicious model trainers. Future work aims to
obscure these injected samples to address this concern.

6 Limitations and Discussion

The introduction of surrogate samples into the target class means these surrogates will be classified as
belonging to the target class, posing a potential security risk. It is also crucial to note that this risk is
confined strictly to the user represented by the target class. That is, while surrogate identities introduced
can bypass the face recognition system and gain access, they can only do so for that specific target class.
Moreover, the selection of these surrogates rests entirely in the hands of the user represented by the target
class. Given that publicizing their surrogate samples would endanger their own security, a logical user
would not be motivated to disclose this information. As a result, we believe the likelihood of an adversary
discerning and exploiting a user’s specific surrogate samples remains minimal in practice; therefore, the
associated security risk is also minimal.

We also note that irrespective of the protective measures in place and the specific defense strategy employed,
MI attack techniques can pose inherent security risks. Malicious attackers can exploit existing MI attack
techniques to recover samples identified as the target class. When used maliciously, these samples could
potentially provide unauthorized access related to that target class, especially if the model serves such
functions. However, samples recovered through MI might be readily detected by the operator of the targeted
machine learning system. For instance, MI attacks mostly rely on pre-trained GANs to generate samples;
such samples typically exhibit certain high-frequency artifacts not found in natural samples, as detailed
in Frank et al. (2020). Such MI-generated samples could potentially be detected through straightforward
frequency analysis. Addressing the broader security implications of general MI attacks goes beyond the
purview of this paper, and we aim to explore this in-depth in future research.
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A Pseudo-code

Algorithm 1: Algorithm of DCD.
Input : Entire label set Y, target label set Stgt, raw training samples corresponding to the target label

set Dtgt-raw, mislabel ratio π1 and π2, noise magnitude ϵ1 and ϵ2.
1 Denote samples from class yi as {(xij , yi) : j = 1, . . . , mi}, where mi is the number of samples of this

class.
2 for i ∈ Stgt do
3 Find a surrogate class not present in Y and gather the same number of samples as class yi. Relabel

the gathered samples as class yi: D1
i = {(x1

ij , yi) : j = 1, ..., mi}.
4 Mislabel a small portion of raw target training samples with a ratio π1 using a random wrong label

y′ ∼ Uniform(Y \ yi) to these samples:
D0

i = {(x0
ij , y′

j) : j = 1, ..., ⌈miπ1⌉} ∪ {(x0
ij , yi) : j = ⌈miπ1⌉ + 1, ..., mi}.

5 Augment surrogate samples with Gaussian noise: D2
i = {(x1

ij + µj , yi) : j = 1, . . . , mi}, where
µj ∼ N (0, ϵ2

1).
6 Augment target samples with Gaussian noise, and mislabel a portion of augmentations with ratio π2

using random wrong label ỹ:
D3

i = {(x0
ij + µ′

j , ỹj) : j = 1, . . . , ⌈miπ2⌉} ∪ {(x0
ij + µ′

j , yi) : j = ⌈miπ2⌉ + 1, . . . , mi}, where
µ′

j ∼ N (0, ϵ2
2).

7 end
8 return {D0

i ∪ D1
i ∪ D2

i ∪ D3
i : i ∈ Stgt}

B Proofs

B.1 Formal statement of Lemma 1 and proof

Lemma 1 (formal). Consider a deep network constructed using continuous, piecewise affine activations
(e.g., ReLU) as defined in (LeJeune et al., 2019). let f(x) represent the mapping from the input to the output,
which partitions the input space RD based on the activation patterns. Within such a vector quantization (VQ)
region of the network, f is simply an affine mapping that can be written as a continuous, piecewise affine
operator f(x) = A[x]x + b[x]. Assume the loss function L is L-Lipschitz. Consider surrogate samples
D1

ytgt
= {(x1

j , ytgt) : j = 1, ..., m} and the corresponding augmented set D2
ytgt

= {(x1
j + µj , ytgt) : j = 1, ..., m}.

Then, the loss on the augmented samples Laug can be bounded by

Laug ≤ Lsur + L ·
[
∥x1

j ∥ · ∥A[x1
j + ϵ1 · µj ] − A[x1

j ]∥2 + ∥b[x1
j + ϵ1 · µj ] − b[x1

j ]∥2 + δ · ∥A[x1
j + ϵ1 · µj ]∥2

where Lsur denotes the loss on surrogate samples, and ∥A[x1
j +ϵ1 ·µj ]−A[x1

j ]∥2 is a Monte Carlo approxima-
tion to the spectral norm of ε-approximation of Hessian of the loss function Hε near the surrogate samples
D1

ytgt
, which bounds its largest eigenvalue as 1

ϵ1
∥A[x1

j + ϵ1 · µj ] − A[x1
j ]∥2 = σmax(Hε)

Proof. As defined in (LeJeune et al., 2019), let f(x) represent the mapping from the input to the output
of a deep network constructed using continuous, piecewise affine activations (e.g., ReLU), which partitions
the input space RD based on the activation patterns. Within such a vector quantization (VQ) region of the
network, f is simply an affine mapping that can be written as a continuous, piecewise affine operator

f(x) = A[x]x + b[x]
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Then, consider the model loss L on a sample (x1
j + ϵ1 · µj , y) from the noise-augmented set D2

y, we have

L[f(x1
j + ϵ1 · µj), y] =L[A[x1

j + ϵ1 · µj ](x1
j + ϵ1 · µj) + b[x1

j + ϵ1 · µj ], y]
=L[A[x1

j ]x1
j + b[x1

j ]x1
j + (A[x1

j + ϵ1 · µj ] − A[x1
j ])x1

j

+ b[x1
j + ϵ1 · µj ] − b[x1

j ] + A[x1
j + ϵ1 · µj ]ϵ1 · µj , y]

=L[A[x1
j ]x1

j + b[x1
j ]x1

j , y] +
[
(A[x1

j + ϵ1 · µj ] − A[x1
j ])x1

j

+b[x1
j + ϵ1 · µj ] − b[x1

j ] + A[x1
j + ϵ1 · µj ]ϵ1 · µj

]T ∇f L[f(x1
j ), y]

+ h.o.t.

where the last equation performs a Taylor expansion. Assume the loss function L is L-Lipschitz in this
region. For some scalar δ > 0 that ∥ϵ1 · µj∥ ≤ δ holds with high probability, we have

L[f(x1
j + ϵ1 · µj), y] ≈L[A[x1

j ]x1
j + b[x1

j ]x1
j , y] +

[
(A[x1

j + ϵ1 · µj ] − A[x1
j ])x1

j

+b[x1
j + ϵ1 · µj ] − b[x1

j ] + A[x1
j + ϵ1 · µj ]ϵ1 · µj

]T ∇f L[f(x1
j ), y]

≤L[f(x1
j ), y] + L ·

[
∥x1

j∥ · ∥A[x1
j + ϵ1 · µj ] − A[x1

j ]∥2

+ ∥b[x1
j + ϵ1 · µj ] − b[x1

j ]∥2 + δ · ∥A[x1
j + ϵ1 · µj ]∥2 ]

(3)

where ∥ · ∥2 denotes the spectral norm, which is equal to the largest eigenvalue ∥ · ∥2 = σmax(·).

Using the notions from (LeJeune et al., 2019), we extend the definition of Hessian for neural network models
with piecewise affine activations (e.g., ReLU). Let ε > 0, for x where the loss function x is differentiable and
an arbitrary unit vector u, we define ε-approximation of Hessian as

Hε[u] := 1
ε

(A[x + εu] − A[x]) (4)

which is consistent with the finite element definition of the Hessian and recovers the Hessian as ε → 0. Thus,
∥A[x1

j + ϵ1 · µj ] − A[x1
j ]∥2 in Eq. equation 3 is a Monte Carlo approximation ((LeJeune et al., 2019)) to the

spectral norm of ε-approximation of Hessian of the loss function Hε → ∇2
f L(·, ·) near the surrogate samples

D1
ytgt

, which bounds its largest eigenvalue as 1
ϵ1

∥A[x1
j +ϵ1 ·µj ]−A[x1

j ]∥2 = σmax(Hε). Minimizing the loss on
samples (x1

j +ϵ1 ·µj , y) from the noise-augmented set D2
ytgt

reduces the upper bound on the largest eigenvalue
of a Monte-Carlo approximation to the ε-approximation of Hessian Hε of the loss function σmax(Hε) near
the surrogate samples D1

ytgt
.

Q.E.D.

B.2 Formal statement of Lemma 2 and proof

Lemma 2 (formal). Consider a deep network constructed using continuous, piecewise affine activations
(e.g., ReLU) as defined in (LeJeune et al., 2019). let f(x) represent the mapping from the input to the output,
which partitions the input space RD based on the activation patterns. Within such a vector quantization (VQ)
region of the network, f is simply an affine mapping that can be written as a continuous, piecewise affine
operator f(x) = A[x]x + b[x]. Assume the loss function L is L-Lipschitz. Consider target samples with
a mislabeling ratio π1 given as D0

ytgt
defined in Eq. equation 1 and the corresponding augmented set with

mislabeling D3
ytgt

defined in Eq. equation 2. Then, the expected loss on the augmented samples Laug can be
bounded by

Ey′∼Uniform{Ȳ⊂{Y\y}}Laug ≥ − 1
k − 1 · log

(
1 − gy[f(x0

j + ϵ2 · µj)]
)

where g(·) denotes the Softmax function in the classification loss defined as gy[f(x0
j + ϵ2 · µj)] =

exp[fy(x0
j +ϵ2·µj)]∑

yk∈Y
exp[fyk

(x0
j
+ϵ2·µj)]

with the loss on target samples L[f(x0
j + ϵ2 · µj), y] = − log gy[f(x0

j + ϵ2 · µj)] bounded

in Lemma 1 and k = |Ȳ|.
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Proof. Consider the model loss L on a sample from the noise-augmented set with uniform mislabeling
D3

ytgt
= {(x0

j + ϵ2 · µj , y′) : j = 1, ..., m1} ∪ {(x0
j + ϵ2 · µj , y) : j = m1 + 1, ..., m}, we have

Ey′∼Uniform{Ȳ⊂{Y\y}}L[f(x0
j + ϵ2 · µj), y′] = 1

k − 1
∑

yi∈{Y\y}

L[f(x0
j + ϵ2 · µj), yi] (5)

where we define k = |Ȳ| as the total number of wrong labels in Ȳ. Consider typical
cross-entropy classification loss with Softmax given as Foundation (Retrieved May 13, 2023, from
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html)

L[f(x0
j + ϵ2 · µj), y] = − log

exp[fy(x0
j + ϵ2 · µj)]∑

yk∈Y exp[fyk
(x0

j + ϵ2 · µj)]

for noise-augmented samples with correct labels and

L[f(x0
j + ϵ2 · µj), y′] = − log

exp[fy′(x0
j + ϵ2 · µj)]∑

yk∈Y exp[fyk
(x0

j + ϵ2 · µj)]

for noise-augmented samples with uniform mislabeling. Let g(·) denote the Softmax function in the classifi-
cation loss–that is

gy[f(x0
j + ϵ2 · µj)] =

exp[fy(x0
j + ϵ2 · µj)]∑

yk∈Y exp[fyk (x0
j + ϵ2 · µj)]

, gy′ [f(x0
j + ϵ2 · µj)] =

exp[fy′ (x0
j + ϵ2 · µj)]∑

yk∈Y exp[fyk (x0
j + ϵ2 · µj)]

where gy[f(x0
j + ϵ2 · µj)] and gy′ [f(x0

j + ϵ2 · µj)] denotes the Softmax function of classification loss for
noise-augmented samples with correct labels and with uniform mislabeling, respectively. Naturally, we have
gy[f(x0

j + ϵ2 · µj)] +
∑

yi∈Ȳ gyi
[f(x0

j + ϵ2 · µj)] = 1.

Then, for Eq. equation 5, we have

Ey′∼Uniform{Y\y}L[f(x0
j + ϵ2 · µj), y′] = 1

k − 1
∑

yi∈Ȳ

− log gyi
[f(x0

j + ϵ2 · µj)]

= − 1
k − 1 · log

∏
yi∈Ȳ

gyi
[f(x0

j + ϵ2 · µj)]

≥ − 1
k − 1 · log

∑
yi∈Ȳ

gyi [f(x0
j + ϵ2 · µj)]

= − 1
k − 1 · log

(
1 − gy[f(x0

j + ϵ2 · µj)]
)

≥ 0

(6)

where the inequality is based on the AM–GM inequality (Hirschhorn, 2007). Eq. equation 6 states that
minimizing the loss on noise-augmented samples with uniform mislabeling will minimize the upper bounds
on the negation of log

(
1 − gy[f(x0

j + ϵ2 · µj)]
)
, which is equivalent to maximizing the lower bounds on

log
(
1 − gy[f(x0

j + ϵ2 · µj)]
)
. This equals to maximizing the quantity 1 − gy[f(x0

j + ϵ2 · µj)], which is equal to
minimizing gy[f(x0

j + ϵ2 · µj)]. Given that the loss on noise-augmented samples with correct labels is given
as L[f(x0

j + ϵ2 · µj), y] = − log gy[f(x0
j + ϵ2 · µj)], this means minimizing the loss on noise-augmented samples

with uniform mislabeling is ultimately equivalent to maximizing the loss on noise-augmented samples with
correct labels.

Note that Lemma 1 has shown that the model loss on noise-augmented samples with correct labels upper
bounds the Monte-Carlo approximation to the spectral norm of ε-approximation of Hessian Hε of loss
function, which upper bounds the largest eigenvalue of Monte-Carlo approximation to the ε-approximation
of Hessian σmax(H) near the target samples D0

ytgt
. Thus, minimizing the loss on samples from the noise-

augmented set with uniform mislabeling D3
ytgt

= {(x0
j + ϵ2 · µj , y′) : j = 1, ..., m1} ∪ {(x0

j + ϵ2 · µj , y) :
j = m1 + 1, ..., m}, equivalent to maximizing the loss on samples with the same noise-augmentation but
correct labels, increases the upper bound on the largest eigenvalue of a Monte-Carlo approximation to the
ε-approximation of Hessian Hε of loss function near the target samples D0

ytgt
.

Q.E.D.
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B.3 Other Theorems

Theorem 2 (Capture Theorem (restated, (Bertsekas, 1997))). Let f be continuously differentiable
and let {xk} be a sequence satisfying f(xk+1) ≤ f(xk) for all k and generated by a gradient method xk+1 =
xk +αkdk, which is convergent in the sense that every limit point of sequences that it generates is a stationary
point of f . Assume that there exist scalars s > 0 and c > 0 such that for all k there holds

αk ≤ s, ∥dk∥ ≤ c∥∇f(xk)∥

Let x∗ be a local optimum of f , which is the only stationary point of f within some open set. Then there
exists an open set S containing x∗ such that if xk̄ ∈ S for some k̄ ≥ 0, then xk ∈ S for all k ≥ k̄ and
{xk} → x∗. Furthermore, given any scalar ϵ̄ > 0, the set S can be chosen so that ∥x − x∗∥ < ϵ̄ for all x ∈ S

Proof. See (Bertsekas, 1997).

Theorem 3 (Convergence of gradient method – constant stepsize (restated, (Bertsekas, 1997))).
Let {xk} be a sequence generated by a gradient method xk+1 = xk + αkdk, where {dk} is gradient related.
Assume that the gradient of f is L-Lipschitz, and that for all k we have dk ̸= 0 and

ϵ ≤ αk ≤ (2 − ϵ)ᾱk,

where

ᾱk = |∇f(xk)′dk|
L∥dk∥2 ,

and ϵ ∈ (0, 1] is a fixed scalar. Then every limit point of {xk} is a stationary point of f .

Proof. See (Bertsekas, 1997).

C Experimental Details

In this section, we discuss the details of our experimental setup for code reproducibility.

C.1 Hardware and Software Details

We implemented DCD to defend against the existing MI Attacks for multiple models and datasets in Python
3.9.12 using PyTorch version 1.12.1. The experiments were carried out on one server having eight NVIDIA
RTX A6000 GPUs with CUDA 12.1.

C.2 Datasets

CelebA A large-scale dataset consisting of 202,599 images of 10,177 different celebrities of the size 178x218.
We further crop the images by a face factor of 0.65 7 and resize the images to 224x224. We are using the
1000 most frequent celebrity faces (identities with the most number of samples) as a part of our dataset
which constitutes of 27,034 training samples and 3,004 test samples. The dataset is available at https:
//mmlab.ie.cuhk.edu.hk/projects/CelebA.html.

FaceScrub The FaceScrub is also a large-scale face dataset comprising 106,863 face images belonging to
530 celebrities (265 male and 265 female) with each celebrity having roughly 200 images. We mapped the
images such that the integers 0-264 belong to male celebrities and 265-529 represent female celebrities. We
follow the settings in PPA (Struppek et al., 2022) to use 34,090 training images and 3,788 test images. The
dataset is available at http://vintage.winklerbros.net/facescrub.html.

7https://github.com/LynnHo/HD-CelebA-Cropper
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VGGFace2 The VGGFace2 is a large-scale face recognition dataset, in which images are downloaded from
Google Image Search and have large variations in pose, age, illumination, ethnicity and profession. Since
the dataset link is no longer active on the official website 8, we are only able to collect 1984 training images
and 416 test images belonging to 8 different classes.

Stanford Dogs The Stanford Dogs is a dog classification dataset having 120 dog breeds represented in
18,522 training and 2,058 test samples, summing up to a total of 20,580 images. The images vary in their
sizes, styles, and content with a few images also containing multiple dog breeds. The dataset is available
at http://vision.stanford.edu/aditya86/ImageNetDogs/.

GTSRB GTSRB or German Traffic Sign Recognition Benchmark is a traffic signal recognition dataset
having 35,288 training images and 12,630 test images all belonging to 43 distinct classes. The images are
resized to 32x32. The dataset is available at https://benchmark.ini.rub.de/.

Flickr-Faces-HQ (FFHQ) FFHQ is a highly diverse and high-quality dataset (better than CelebA and
FaceScrub) with 70,000 face images of resolution 1024x1024. The dataset is available at https://github.
com/NVlabs/ffhq-dataset.

MetFaces A 1,336-strong image dataset having varied artistic versions of human faces. The dataset is
however biased and contains a limited representation of people with darker skins. The dataset is available
at https://github.com/NVlabs/metfaces-dataset.

Animal Faces-HQ (AFHQ) The dataset contains 512x512 sized 16,130 images of wildlife animals, cats,
and dogs. Since the dataset is used for the evaluation of Stanford Dogs, we select only the images of dogs.
The dataset is available at https://github.com/clovaai/stargan-v2.

TSRD It is a collection of 58 categories including 6164 traffic sign images. The training and test images
are split into 4170 images and 1994 images respectively. The dataset is available at https://opendatalab.
com/TSRD.

C.3 Attack Implementation Details

We discuss various attacks and the methodologies to evaluate DCD. In our experiments, We assess the
effectiveness of our defense against four MI attacks in white-box setting: GMI9 (Zhang et al., 2020b),
PPA10 (Struppek et al., 2022), MIRROR-W11 (An et al., 2022), and PLG-MI12 (Yuan et al., 2023). GMI
is the most classic MI attack method in the literature, while PPA, MIRROR-W, and PLG-MI represent the
most recent ones achieving state-of-the-art attack performance.

For completeness, we also evaluate our defense against the most recent black-box attacks, MIRROR-B and
BREP-MI 13Kahla et al. (2022), though they have been shown less potent than the white-box counterpart.

We utilize open-sourced implementations of these attacks and faithfully replicate their settings in our exper-
iments.

C.4 Baseline Implementation Details

This section provides the implementation details of the two baselines used to compare DCD with. DP-SGD
involves adding noise to the gradient and gradient clipping. The hyperparameters include the probability
upper bound, denoted as δ, which represents the likelihood of the model failing to provide privacy guarantees
(roughly 1

size of the dataset ), and the noise multiplier, denoted as σ, which is adjusted to achieve the desired
8https://www.robots.ox.ac.uk/~vgg/data/vgg_face2/
9https://github.com/SCccc21/Knowledge-Enriched-DMI

10https://github.com/LukasStruppek/Plug-and-Play-Attacks/tree/master
11https://github.com/njuaplusplus/mirror
12https://github.com/LetheSec/PLG-MI-Attack
13https://github.com/m-kahla/Label-Only-Model-Inversion-Attacks-via-Boundary-Repulsion/tree/main
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Table 6: Overview of the attack methods, datasets, and models on which DCD is evaluated. Note that for
BREP-MI and PLG-MI, the GAN is trained on a subset of data from CelebA, which is disjoint from the
private part.

Attack Method Task Private Dataset Public Dataset Pre-trained GAN Model

GMI Traffic Sign Recognition GTSRB TSRD WGAN VGG-16

PPA
Face Recognition

CelebA
FFHQ StyleGAN214 ResNeSt-101, ResNet-152,

ResNext-101, DenseNet-169
MetFaces ResNeSt-101

FaceScrub FFHQ StyleGAN2 ResNeSt-101
MetFaces ResNeSt-101

Dog Classification St.Dogs AFHQ StyleGAN2 ResNeSt-101

MIRROR-W Face Recognition CelebA-partial256 VGGFace2 StyleGAN 15 VGG-16

MIRROR-B Face Recognition CelebA-partial256 VGGFace2 StyleGAN VGG-16

PLG-MI Face Recognition CelebA CelebA WGAN 16 VGG-16

BREP-MI Face Recognition CelebA CelebA WGAN face.evoLVe, IR-152

privacy budget ϵ. The learning rate and batch size remain fixed at the values used for normal model training,
while the threshold for gradient clipping is set to a constant value of 1.

The goal of MID is to restrict the information conveyed by the model’s prediction about the input. To
achieve this, MID introduces a hyperparameter denoted as β, which represents the weight assigned to the
information loss that reduces the correlation between the output logit and the input. Detailed information
is provided in Table 7.

BiDO proposes two additional loss terms: one to minimize the dependency between input data and hidden
representations, while the other to maximize the dependency between hidden representations and model
outputs. The two loss terms are controled by hyperparameters λx and λy respectively. Intuitively, larger
λx results in lower dependency between input data and hidden representations, which helps prevent privacy
leakage; and larger λy results in higher dependency between hidden and model outputs, which helps preserve
model utility. We follow the guideline from the paper to choose λx and λy that maximize privacy while
minimizing utility loss.

Table 7: Privacy Parameters in DP-SGD, MID and BIDO.

Attack Method MID DP BIDO

β σ δ C λx λy

GMI 0.2 1.0 1e − 4 1.0 1.0 0.7
PPA 0.07 0.1 4e − 5 1.0 0.05 0.1

MIRROR 0.003 2.0 5e − 4 1.0 4.0 20.0
PLG-MI 0.02 0.01 4e − 5 1.0 0.1 2.0

D Additional Evaluation Results

Generalization to Different Model Architectures. Furthermore, we thoroughly evaluate the perfor-
mance of DCD across a range of popular model architectures, including ResNest, ResNet, ResNext, and
DenseNet. The results, as shown in Table 8, highlight the robustness of our method across different choices
of architectures used during model training. Notably, DCD consistently reduces the attack accuracy to 0%
across all models, even when the initial attack accuracy is as high as 96%. As a data-centric defense, DCD
does not require access to training procedures or the choice of model architectures. It effectively protects
privacy by focusing on the data itself, ensuring that sensitive information remains secure, independent of
specific modeling decisions.
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Table 8: DCD’s defense performance against PPA on CelebA with different model architectures.
ACC-all↑ ACC-tar↑ Att. ACC↓ ACC-all↑ ACC-tar↑ Att. ACC↓

ResNeSt-101 ResNet-152
No Protection 88.42 84.37 90.40 84.82 80.00 76.67

DCD 88.05 81.88 1.00 85.33 86.67 4.00

DenseNet-169 ResNext-101
No Protection 84.85 60.00 73.67 85.89 73.33 84.67

DCD 84.32 60.00 3.00 87.16 60.00 2.00

Generalization to Different Datasets. We evaluate the performance of DCD using the latest model
inversion attack, PPA, across multiple datasets. Table 9 demonstrates the effectiveness of DCD across
different datasets, including popular face datasets such as CelebA and FaceScrub, as well as the Stanford
Dogs dataset. Additionally, for each face dataset, we evaluate two GANs that have been pretrained on
distinct public datasets, representing varying attack strengths. Notably, the GAN pretrained on FFHQ,
which is closer to the distribution of CelebA compared to MetFaces, achieves a higher attack accuracy of
90% on the CelebA-trained model without any protection. However, our method successfully reduces the
attack accuracy to 1%, highlighting its efficacy against attacks with varying strengths.

Table 9: DCD’s defense performance against PPA on different datasets. The top row gives the dataset for
training target models, and the second row gives the public dataset on which GAN is trained.

CelebA FaceScrub St.Dogs

ACC-all↑ ACC-tar↑ FFHQ MetFaces ACC-all↑ ACC-tar↑ FFHQ MetFaces ACC-all↑ ACC-tar↑ FFHQ

Att.ACC↓ Att.ACC↓ Att.ACC↓ Att.ACC↓ Att.ACC↓

No Protection 88.42 84.37 90.40 59.33 95.78 97.50 82.40 53.20 74.15 82.27 99.60
DCD 88.05 81.88 1.00 0.02 94.93 90.37 1.20 4.20 74.12 85.71 0.00

Performance of DCD on Other Black-box MI attacks. We extend the evaluation of DCD to include
a recent black-box MI attack called BREP-MI Kahla et al. (2022). The evaluation involves two distinct model
architectures applied to the CelebA dataset, face.evolve and IR152. We randomly select 6 targets, and for
each target, we use BREP-MI to generate 5 samples. The results presented in Table 10 demonstrate that
DCD achieving a remarkable reduction in attack accuracy to 0 for both the IR152 and face.evolve models.

Table 10: DCD’s defense performance against a recent black-box MI attack, BREP-MI.
FaceNet64 IR152

ACC-all↑ ACC-tar↑ Att.ACC↓ ACC-all↑ ACC-tar↑ Att.ACC↓

No Protection 86.78 93.33 83.33 89.05 81.87 66.67
DCD 85.72 85.86 0.00 92.31 86.67 0.00

Sensitive Analysis of DCD on Different Number of Protected Targets. While baseline approaches
provide binary privacy protection—either complete or none—our real-world motivation drives us to assess
defense performance in scenarios where only a minority is deeply concerned about privacy. As demonstrated
in the main paper, DCD offers significant advantages over model-centric baselines under such setting. We
then conduct a sensitivity analysis to further explore DCD’s capabilities in protecting a large portion of
target classes.

Specifically, the target classifiers are trained on 1,000 identities from CelebA with the most number of
samples. Surrogates samples are randomly selected from the remaining identities. We vary the number of
targets for protection (i.e., 10, 500, 1000) and evaluated the defense performance of all methods against the
GMI attack, a standard MI attack.

As depicted in Figure 5, DCD consistently achieved the lowest attack accuracy and demonstrated a significant
advantage in preserving model utilities, even when protecting 500 of the target identities. In contrast, model-
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Figure 5: Defense performance against GMI on CelebA dataset. Ours-L denotes the use of DCD with a
larger model (i.e., ResNet-152), whereas Ours, MID, BiDO, and DP are trained with VGG-16. The attack
results are averaged over three runs, each with randomly selected protected targets.

centric baselines exhibited higher variance in attack accuracy when protecting different targets. In the case
of safeguarding all of the training targets, DCD’s accuracy was only slightly lower than the most advanced
model-centric defense method, BiDO. This marginal difference could potentially be addressed by adopting
a larger model capacity - indicated as Ours-L in Figure 5, which represents our method with a larger model
(i.e., IR-152). This leads to the highest accuracy compared to all other baselines, with the attack accuracy
remaining consistently low, below 1%. Implementing a larger model is also a practical option when using
DCD. In practical terms, service providers adopting our strategy can judiciously select models, gravitating
towards larger architectures that exhibit heightened resilience to the label noise introduced by our defense.
Notably, with the amplification in model size, DP, MID and BiDO suffer a larger privacy-utility tradeoff.
Consequently, they lack the leverage to utilize increased model dimensions for attenuating this tradeoff, a
feat achievable by our data-centric methods.

D.1 Evaluation against adaptive attacks

In our main setup, we have assessed the efficacy of DCD against various model inversion attacks. Antici-
pating that attackers could adjust their strategies if they know about the defenses, we devised an adaptive
attack pipeline to test DCD further.

A simple and direct design could be recovering the original model from the one protected by DCD. To
the best of our knowledge, the only prior work that obtains a clean model from the ‘poisoned’ version in a
training-data-free fashion is Chen et al. (2023), which first applies model inversion attacks to reconstruct the
training samples, then utilizes these samples to fine-tune the poisoned model. Based on this, we propose an
adaptive attack pipeline as below:

1. Reconstruct training data from the model via model inversion attacks.

2. Fine-tune the model with the reconstructed data.

3. Apply model inversion on the fine-tuned model.

We ran the above pipeline on a VGG16 model in which the first 300 identities are protected using our method
(ACC 80% Att.ACC 1%). And we inverted 20 samples for each protected target. GMI attack accuracy on
model finetuned on these samples remained low as 1%, as the inverted samples are more resemble the
surrogate sample, rather than the true targets.

23



Under review as submission to TMLR

Figure 6: Visual comparison of PPA recovered samples recovered from a face recognition model trained on
CelebA with different defenses. The first column displays true images for target identities. The second to
fourth columns show baseline results obtained when the target model lacks protection, protected by DP
and MID techniques, respectively. The fifth and final columns present reconstructions under our protection,
along with corresponding injected samples. Our method successfully misleads PPA to generate samples that
resemble the injected samples.
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