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Abstract

Point Cloud Few-Shot Semantic Segmentation (PC-FSS) aims to segment unknown
categories in query samples using only a small number of annotated support sam-
ples. However, scene complexity and insufficient representation of local geometric
structures pose significant challenges to PC-FSS. To address these issues, we
propose a novel pre-training-free Visual Introspective Prototype Segmentation
network (VIP-Seg). Specifically, we design a Visual Introspective Prototype (VIP)
module that employs a multi-step reasoning approach to tackle intra-class diversity
and domain gaps between support and query sets. The VIP module consists of
a Prototype Enhancement Module (PEM) and a Prototype Difference Module
(PDM), which work alternately to progressively refine prototypes. The PEM en-
hances prototype discriminability and reduces intra-class diversity, while the PDM
learns common representations from the differences between query and support
features, effectively eliminating semantic inconsistencies caused by domain gaps.
To further reduce intra-class diversity and enhance point discriminative ability,
we propose a Dynamic Power Convolution (DyPowerConv) that leverages learn-
able power functions to effectively capture local geometric structures and detailed
features of point clouds. Extensive experiments on S3DIS and ScanNet demon-
strate that our proposed VIP-Seg significantly outperforms current state-of-the-art
methods, proving its effectiveness in PC-FSS tasks. Our code will be available at
https://github.com/changshuowang/VIP-Seg|.
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1 Introduction

In recent years, point cloud data has become increasingly important in numerous applications such as
autonomous driving [36} 4]}, robotics [21,[7], and augmented reality [6}19]. As a fundamental task in
3D scene understanding, point cloud semantic segmentation [[11]] plays a crucial role in these domains.
However, acquiring large-scale, high-quality annotated point cloud data demands substantial time
and human resources, severely limiting the practical application of traditional deep learning methods.

To address the data scarcity challenge, researchers have turned to few-shot learning for point cloud
segmentation tasks [13/30]]. Point Cloud Few-Shot Semantic Segmentation (PC-FSS) aims to segment
novel categories in query samples using only a handful of annotated support samples, significantly
reducing annotation costs. Zhao et al. [37] pioneered this approach by introducing AttMPTI, based
on a pre-trained DGCNN [27]. Subsequent works [15/[10}138] further enhanced feature extraction and
prototype generation strategies, improving performance to some extent. However, PC-FSS faces two
major challenges that limit its effectiveness: representation inconsistency within semantic categories
and cross-domain feature misalignment. The first occurs when identical semantic categories in
support and query samples show significant differences in physical characteristics, such as size,
orientation, or visual appearance. Prototypes from support samples aid segmentation of similar
objects in query samples but can introduce biases due to these variations. The second challenge
involves feature distribution mismatches, where query data contains semantic content not present in
the support set, and vice versa.

Moreover, most existing methods (as shown in
Fig. (1)) rely on pre-training paradigms, which
not only increase computational costs but also
potentially introduce domain shifts when facing
unseen categories, particularly in cross-domain
applications. Additionally, the irregular and
sparse nature of point clouds makes it challeng-
ing to effectively capture local geometric struc-
tures, a problem that becomes more pronounced
in few-shot scenarios where limited data is avail-
able for learning robust representations.

(b) Our One stage Point Cloud Few shot Segmentor

To overcome these limitations, we propose VIP-
Seg, a novel pre-training-free network for PC-
FSS. As shown in Fig. [} our approach fea-
tures two key innovations: First, we introduce
Dynamic Power Convolution (DyPowerConv),
which adaptively models local geometric fea-
tures by learning region-specific power func-
tions, capturing fine-grained details and struc-
tural variations. This enhances the model’s abil-
ity to distinguish similar structures, further re-
ducing intra-class diversity. Second, we develop
a Visual Introspective Prototype (VIP) module
to address intra-semantic diversity and domain gaps through a multi-step reasoning approach. The
VIP module combines a Prototype Enhancement Module (PEM) and a Prototype Difference Module
(PDM) that work alternately to progressively refine prototypes. The PEM improves prototype dis-
criminability through attention mechanisms, while the PDM learns common representations from
feature differences, effectively mitigating domain gaps. This iterative process gradually aligns feature
distributions and boosts segmentation accuracy.

Figure 1: Comparison between previous methods
and our approach for PC-FSS. (a) Previous meth-
ods typically follow a two-stage pipeline that re-
quires pre-training a DGCNN followed by fine-
tuning with prototype adaptation. (b) Our pro-
posed VIP-Seg eliminates the pre-training stage
with a single-stage approach that integrates Dy-
PowerConv and employs a multi-step reasoning
process to progressively refine prototypes.

Our main contributions can be summarized as follows:

* We propose VIP-Seg, a novel pre-training-free framework for point cloud few-shot semantic
segmentation that achieves superior performance without time-consuming pre-training.

* We introduce Dynamic Power Convolution, which leverages learnable power functions to
adaptively model complex local geometric features, significantly enhancing the network’s
ability to capture fine-grained structural details.



* We design a Visual Introspective Prototype module that employs a multi-step reasoning
approach to effectively address intra-semantic diversity and domain gaps between support
and query sets.

» Extensive experiments demonstrate that our approach significantly outperforms state-of-the-
art methods across various few-shot settings, proving the effectiveness of our approach.

2 Related Works

2.1 Point Cloud Semantic Segmentation

Point cloud semantic segmentation [24, 29| [25] is a crucial task in 3D scene understanding that
has witnessed significant advancements in recent years. Pioneering works such as PointNet [[17]]
and PointNet++ [18]] established the foundation by directly processing point cloud data through
multi-layer perceptrons (MLPs). Subsequent research introduced innovative methods leveraging
graph convolution, attention mechanisms, and multi-modal approaches. For instance, DGCNN [27]]
proposed the EdgeConv operation to capture inter-point relationships via dynamically constructed
local graphs. Point Transformer [35]] and its variants [11}|16]] incorporated self-attention mechanisms
to effectively model long-range dependencies. Recently, several methods based on State Space
Models have achieved significant advancements in 3D tasks. Despite these advancements, these
methods typically demand substantial annotated data for training, limiting their practical applications.

2.2 Point Cloud Few-shot Semantic Segmentation

To tackle the data scarcity challenge in point cloud semantic segmentation, few-shot learning ap-
proaches [20] have emerged as a promising solution. Early work by [37] introduced prototype
networks to this domain through the AttMPTI method, sparking subsequent research focused on
feature enhancement, prototype optimization, and domain adaptation [15} 34} |8, 32} 26| 23]]. Recent
advancements have developed more sophisticated techniques: [[13]] incorporated structural infor-
mation for precise target localization while minimizing background interference, [30] addressed
intra-class diversity and semantic inconsistency through bilateral aggregation and consistency purifi-
cation, and [28]] leveraged LLM-generated content to optimize prototypes and mitigate categorical
bias. Meanwhile, [2] proposed a novel setting to avoid foreground leakage, while [1] enhanced
performance through multi-modal data. Despite these advancements, challenges remain in effectively
capturing complex local structures and addressing domain differences.

2.3 Dynamic Convolution

Dynamic convolution enhances a model’s adaptability and expressive power by generating convolution
kernels dynamically based on input data. In 2D image processing, dynamic convolution [33}[12] has
been widely adopted for its effectiveness. Inspired by these successes, researchers have extended it to
the 3D point cloud domain. [9] proposed DyCo3D, which incorporates dynamic context learning
to better capture local point cloud features. [22]] developed KPConv, which generates dynamic
convolution kernels by learning local geometric structures, while [31]] introduced PAConv, leveraging
a weight bank and ScoreNet to dynamically assemble convolution kernels, thereby adapting to the
irregular structure of point clouds. However, these methods primarily focus on combining multiple
convolution kernels through attention coefficients, leaving significant room for improvement in
fine-grained semantic understanding of local geometric structures.

3 Method

In this section, we first introduce the problem definition of Point Cloud Few-Shot Semantic Segmen-
tation (PC-FSS). Then, we describe the overall architecture of VIP-Seg, as illustrated in Fig. [2| Next,
we present the proposed Dynamic Power Convolution (DyPowerConv). Finally, we introduce our
Visual Introspective Prototype (VIP) module that employs a multi-step reasoning approach.
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Figure 2: Overview of the proposed VIP-Seg. (a) The overall framework consists of an encoder-
decoder backbone for feature extraction and a segmentation head for prototype-based classification.
(b) Mlustration of our Dynamic Power Convolution (DyPowerConv) module, which combines multiple
high-order convolutions (HiConv) with dynamic attention weights to adaptively model local geometric
structures. Each HiConv learns a different power function to capture fine-grained details. (c) The
Visual Introspective Prototype (VIP) module implements a multi-step reasoning process where the
Prototype Enhancement Module (PEM) and Prototype Difference Module (PDM) work alternately
to progressively refine prototypes. A gating fusion network integrates predictions from multiple
reasoning steps to generate the final segmentation result.

3.1 Problem Definition

Following the standard episodic learning paradigm [37]], we partition the dataset into two non-
overlapping class sets: base classes Cpqse used for training and novel classes C,, v used for testing,
where Cpse N Crover = 0. The framework operates through N-way K-shot tasks, utilizing paired
support and query sets. In each episode, the support set S = {(P* M™*)} contains K labeled
samples for each of the N categories, where P™* € RLX (3+4) represents a point cloud with L points
(each having 3D coordinates and d-dimensional features, such as color or surface normals), and
M™* € {0,1}* denotes the corresponding binary segmentation mask indicating foreground (target
class) and background points. The query set Q = {(P,, M,)} contains point clouds P, € RL*(3+d)
to be segmented, with ground truth masks M, € {0,1,2, ..., N 1L assigning each point to one of the
N target classes or the background class.

3.2 Overall Architecture of VIP-Seg

As shown in Fig. [2] we propose VIP-Seg, formulating PC-FSS as a dual optimization problem that
combines local structure modeling with progressive prototype refinement. VIP-Seg adopts an encoder-
decoder architecture coupled with the proposed VIP module for effective few-shot segmentation.
The encoder consists of three stacked DyPowerConv-Mamba blocks that integrate our proposed
DyPowerConv for local geometric feature extraction and Mamba blocks [14] for capturing long-range
dependencies. DyPowerConv adaptively models local point relationships through learnable power
functions, while Mamba blocks efficiently process sequential data with state space models, enabling
effective long-range interactions among points. The decoder progressively recovers point cloud
resolution through inverse interpolation, propagating features from coarser to finer levels.



3.3 Dynamic Power Convolution

To effectively capture local geometric structures and detailed features of point clouds, thereby further
reducing intra-class diversity, we propose Dynamic Power Convolution (DyPowerConv). This
convolution adaptively models complex local geometric features through learnable power functions,
enabling flexible representation of local structures.

3.3.1 Power Function Design

The design of our DyPowerConv is motivated by the need for flexible modeling of local geometric
structures in point clouds. We employ learnable power functions to capture features at different
scales and levels of detail. DyPowerConv comprises two key components: Low-order Convolution
(LoConv) and Dynamic High-order Convolution (DyHiConv), expressed as:

g9 =9; +97", 1
where g* and gP* represent the outputs of LoConv and DyHiConv, respectively. LoConv captures
basic geometric structures, while DyHiConv adaptively models fine-grained details through dynamic
power functions.

3.3.2 Low-order Convolution

LoConv primarily extracts basic geometric information from local structures. We adopt Nonparameter
Trigonometric Functions (NTF) to encode point cloud coordinates p; and color information ¢; € R3,
mapping them to the same dimension as their features, then adding their information and applying a
non-linear transformation to obtain a high-dimensional representation of basic structural information.
The LoConv can be formulated as:

gi = A{W.fjlp; € N(p:)}), )

F= U7+ 15+ 1)/3, 3)

17 = [sin(ap; /5%, cos(ap; /8], € RY, “

where [ is obtained similarly to f ]p . aand S represent the wavelength and amplitude hyperparameters

in XC.

of the trigonometric functions, respectively. W; € R eut denotes the non-linear transformation

matrix.

3.3.3 Dynamic High-order Convolution

To capture the details of complex local geometric structures, DyHiConv draws inspiration from
dynamic convolution [33] to generate multiple convolution weights using input information. Unlike
traditional dynamic convolution, we improve the power function design by using a smooth power
function (|f; — fi| + €)?* instead of traditional sign functions, where p; is a learnable parameter
for each expert and ¢ is a small constant (typically 10~¢). This design effectively captures local
geometric details while maintaining gradient continuity. DyHiConv (see Fig. b)) can be expressed
as:

T
g’ =>" gl )
t=1

where T is the number of experts (set to 8 in our implementation), g! represents the high-order
convolution of the ¢-th expert, and ¢, represents the attention assembly coefficient of the expert.
Specifically, the high-order features g} generated by each expert are calculated through:

gi = Alwi(ps) © (1f; = fil + €™ Ips € N(pa)}), ©)
where w;(p;) is the dynamically generated weight, p; is the learnable power exponent parameter of
the ¢-th expert, © represents element-wise multiplication, and A is an aggregation function (typically
max pooling).

The attention assembly coefficients ¢, are constructed from explicit geometric information h;:
exp(Wh;)
bt =

= — ;
> i1 exp(Wihy)
where W, is a learnable transformation matrix.

)



3.3.4 Explicit Structure Introduction

To better utilize the geometric information of point clouds, we use the coordinates of neighboring
points p; and center point p; as basic geometric elements to construct the weight w; for HiConv:

w; = Whhj, (8)

where h; = [pi,p;,p; — Pi, |Ip; — pill] € R, and W), € R19%Cut denotes the transformation
matrix. The introduction of explicit geometric information facilitates the learning of relative spatial
layout relationships between points and the capture of local geometric features and details.

3.4 Visual Introspective Prototype Module

To address feature discrepancies between support and query sets (e.g., intra-class diversity and domain
gaps), we propose the Visual Introspective Prototype Module (VIP). It employs a multi-step reasoning
process to iteratively refine prototypes, simulating human "think-reflect-revise" reasoning. VIP
consists of two components: the Prototype Enhancement Module (PEM) and Prototype Difference
Module (PDM), which alternately form a reasoning chain, progressively aligning feature distributions.

3.4.1 Prototype Enhancement Module

The PEM aims to enhance the discriminability of prototype features and reduce intra-class diversity
through self-attention and cross-attention mechanisms. Given a point cloud with M points, let
F, € RM*C and F, € RM*Y denote the support and query features, respectively, where C' is
the feature dimension. The PEM first applies local max pooling and projection mapping to extract
statistical characteristics of each channel:

F/, = MaxPool(F;) - W1, F’q = MaxPool(F,) - W1, 9)

where W; € R€*¢ is a learnable transformation matrix. Next, the PEM enhances the prototype
features from two aspects:

1) Self-correlation Enhancement: The PEM learns internal structural information by computing
self-correlation matrices of the support and query features:

A, = Ws(F]F,), A= Ws(FF)). (o
F;df = Softmax(A)F) + Softmax(Ag)Fp, (1

2) Cross-correlation Enhancement: The PEM learns shared information through interaction between
the support and query features:

Across = FUFY, (12)
Foos = Softmax(Across) © Fp, (13)
Finally, the enhanced prototype features output by the PEM are:
e __ self cross
FC = Filf L FOoss | F,, (14)

where F, € RE+DXC represents the initial prototype features, and F} denotes the enhanced
prototype features.

3.4.2 Prototype Difference Module

The PDM focuses on learning the differences between the support and query feature distributions to
further eliminate domain gaps. After sharing similar pooling and mapping operations with the PEM,
the PDM calculates the difference information between the support and query features:

Ag =F]F, - FF,, (15)
and uses this difference information to adjust the prototype features:

Fgelta = Slngld(AG) O] F; (16)



Additionally, the PDM further optimizes the prototype features through cross-attention:
F 0% = Softmax (A poss) © Fy, 17

where A..,ss 1S the cross-correlation matrix between the support and query features. The final
prototype features output by the PDM are:

r __ yadelt °_CTross 3
F) = Fielte  peeross . pe, (18)

where FJ is the output features from PEM, F is the output features after PDM processing.

3.4.3 Multi-step Reasoning Process

We design a multi-step reasoning process to progressively optimize the prototype features. Specifi-
cally, during S reasoning steps, the PEM and PDM work alternately:

Pt {PEM(FQ,FS,F;m if %2 = 0

19
P PDM(F,, F,, F- 1) + FL-1 ift%2 =1 (19

where F; represents the prototype features at step ¢, and Fg represents the initial prototype features.
This multi-step reasoning process enables iterative refinement: the PEM step enhances discriminability
by extracting key information, while the PDM step eliminates domain gaps through difference
learning, progressively aligning feature distributions.

3.4.4 Gating Fusion Network

To effectively fuse the multi-step reasoning results, we design a gating fusion network. At each
reasoning step ¢, we compute the cosine similarity between the query features F; and the prototype
features F;, The intermediate prediction results L; are then computed as:

t
_ P ¥y
IFq|[IF
where sim(-, -) denotes the cosine similarity function that measures the semantic alignment between

query and prototype features, - denotes the dot product, and || - || represents the L2 norm. L,, represents
the prototype labels.

L, = sim(F,,F!) - L, L,, (20)

Finally, the gating network learns importance weights w for predictions from each step and fuses all
predictions to obtain the final result. The final prediction L f;,4; is obtained by a weighted sum:

S S
Lfinat = » Wi -Li =Y GFN(Fq) - Ly, 1)
t=1 t=1

where w € R is the weight from the gating network GFN(-), and L final 18 the final prediction.

4 Experiments

4.1 Datasets and Evaluation Metrics

We evaluate VIP-Seg on two widely adopted 3D segmentation benchmarks.

S3DIS dataset [3]] consists of RGB point clouds collected from 272 rooms across 6 indoor areas.
Each point is annotated with one of 13 semantic labels (12 object categories and clutter). Following
the common practice [37]], we split each scene into Im x 1m blocks and sample 2,048 points per
block, resulting in a total of 7,547 blocks.

ScanNet dataset [5]] contains 1,513 scanned indoor scenes with dense point-wise annotations over
20 semantic categories (excluding unannotated areas). Using the same preprocessing pipeline, we
generate 36,350 blocks, each containing 2,048 points.

To evaluate the model in a few-shot setting, we split the categories of each dataset into two disjoint
subsets, denoted as Sy and S;. When one subset is used as the test set, the other serves as the training
set.

Evaluation Metric: We employ the mean Intersection-over-Union (mloU), a standard metric for
point cloud segmentation, to assess model performance.



Table 1: Few-shot Results (%) on S3DIS. S; denotes the split 4 is used for testing. Avg is the average
mloU across splits. The best results are shown in bold.

Method 2-Way 3-Way
1-shot 5-shot 1-shot 5-shot

So S1 Avg So 51 Avg Sg Sl Avg SO Sl Avg
DGCNN [27] 36.34 38.79 37.57 | 5649 56.99 56.74 || 30.05 32.19 31.12 | 46.88 47.57 47.23
ProtoNet [20] 48.39 4998 49.19 | 57.34 63.22 60.28 || 40.81 45.07 4294 | 49.05 5342 51.24
MPTI [37] 52.27 5148 51.88 | 5893 60.56 59.75 || 44.27 4692 45.60 | 51.74 48.57 50.16
AtMPTI [37] 5377 5594 54.86 | 61.67 67.02 6435 | 45.18 49.27 4723 | 5492 56.79 55.86
BFG [15] 55.60 5598 55.79 | 63.71 66.62 65.17 || 46.18 4836 47.27 | 55.05 57.80 56.43
2CBR [38] 55.89 6199 5894 | 63.55 67.51 65.53 || 46.51 5391 50.21 | 55.51 58.07 56.79
PAP3D [8] 59.45 66.08 62.76 | 6540 70.30 67.85 | 48.99 56.57 5278 | 61.27 60.81 61.04
Seg-PN [39] 64.84 6798 6641 | 67.63 7148 69.56 || 59.11 60.42 59.77 | 5948 64.72 62.10
TaylorSeg-PN [26] || 67.12 71.11 69.12 | 7044 7223 71.34 || 60.28 65.70 63.00 | 62.78 67.06 64.33
DAFNet [25] 68.13  70.27 69.20 | 70.51 73.15 71.83 || 61.33 6555 6344 | 65.25 68.67 66.96
VIP-Seg 73.50 7492 74.21 | 73.84 76.88 75.36 || 65.54 69.92 67.73 | 7293 71.44 72.19
Improvement +5.37 +4.65 +5.01 | +3.33  +3.73 +3.53 || +4.21 4437 +4.29 | +7.68 +2.77 +5.23

Table 2: Few-shot Results (%) on ScanNet. .S; denotes the split 7 is
average mloU across splits. The best results are shown in bold.

used for testing. Avg is the

2-Way 3-Way
Method 1-shot 5-shot 1-shot 5-shot
S[) S1 Avg S() Sl Al’g SU Sl Avg SU Sl AVg

DGCNN [27] 31.55 2894 30.25 | 4271 3724 3998 || 2399 19.10 21.55 | 3493 28.10 31.52
ProtoNet [20] 3392 3095 3244 | 4534 42.01 43.68 || 28.47 26.13 27.30 | 3736 3498 36.17
MPTI [37] 39.27 36.14 3771 | 4690 43.59 4525 || 2996 27.26 28.61 | 38.14 3436 36.25
AtMPTI [37] 4255 40.83 41.69 | 54.00 5032 52.16 || 3523 30.72 3298 | 46.74 40.80 43.77
BFG [15] 42.15 40.52 41.34 | 51.23 4939 50.31 || 34.12 3198 33.05 | 46.25 41.38 43.82
2CBR [38] 50.73 47.66 49.20 | 52.35 47.14 49.75 || 47.00 4636 46.68 | 45.06 39.47 4227
PAP3D [8] 57.08 5594 56.51 | 6455 59.64 62.10 || 55.27 55.60 55.44 | 59.02 53.16 56.09
Seg-PN [39] 63.15 6432 63.74 | 67.08 69.05 68.07 || 61.80 6534 63.57 | 62.94 68.26 65.60
TaylorSeg-PN [26] || 67.52 70.75 69.14 | 68.39 71.55 6997 || 63.60 67.55 6558 | 6698 69.78 68.38
DAFNet [25] 68.79 69.95 69.37 | 7091 70.60 70.76 || 66.14 66.70 66.42 | 68.97 7195 70.46
VIP-Seg 71.94 72.67 7231 | 7095 7348 7222 || 6891 69.19 69.05 | 73.22 72.74 72.98
Improvement +3.15 +2.72 +2.94 | +0.04 +2.88 +1.46 | +2.77 +2.49 +2.63 | +425 +0.79 +2.52

4.2 Comparison with Existing Methods

Results analysis on the S3DIS dataset. As shown in Table[I] our VIP-Seg demonstrates superior
performance on the S3DIS dataset. In the 2-way 1-shot setting, VIP-Seg achieves an average mloU of
74.21%, surpassing the previous best method DAFNet [25] by 5.01 percentage points. In the 3-way
1-shot setting, VIP-Seg reaches an average mloU of 67.73%, exceeding DAFNet by 4.29 percentage
points. The most significant improvement is observed in the 3-way 5-shot setting, where VIP-Seg
achieves 72.19% mloU, outperforming DAFNet by 5.23 percentage points. These consistent gains
across different settings validate the effectiveness and robustness of our approach. The improvements
stem from our DyPowerConv’s ability to capture local geometric features and the VIP module’s
effective prototype refinement through multi-step reasoning.

Results analysis on the ScanNet dataset. Our VIP-Seg also exhibits impressive performance on the
more challenging ScanNet dataset, as illustrated in Table 2] In the 2-way 1-shot setting, VIP-Seg
achieves an average mloU of 72.31%, outperforming DAFNet [25] by 2.94 percentage points. In
the 3-way 1-shot setting, VIP-Seg attains an average mloU of 69.05%, surpassing DAFNet by 2.63
percentage points. Particularly noteworthy is the 3-way 5-shot setting, where VIP-Seg achieves
an average mloU of 72.98%, exceeding DAFNet by 2.52 percentage points. These significant
improvements demonstrate VIP-Seg’s ability to effectively handle complex indoor scenes with greater
category diversity and varying levels of point cloud density. The multi-step reasoning mechanism
proves particularly beneficial in distinguishing semantically similar objects in cluttered environments.
The consistent performance gains across different settings further validate the generalization capability
of our approach for PC-FSS.



Table 3: Ablation study on the key components  Table 4: Ablation study on different components

of VIP-Seg. of the VIP module.
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Figure 3: Parameter sensitivity analysis of VIP-Seg framework. (a) Impact of the number of reasoning
steps in the VIP module on segmentation performance. (b) Impact of the number of HiConv experts
in the DyPowerConv module. (c) Impact of encoder depth on model performance.

4.3 Ablation Experiments

All results are reported under 2-way-1-shot settings on the Sy split of the S3DIS dataset.

4.3.1 Effectiveness of Different Components

Table 3] presents the ablation study on different components of our VIP-Seg. Using only LoConv or
DyHiConv yields similar performance (50.04% and 51.11% mloU), while their combination in the
DyPowerConv module improves results to 53.00%. Adding Mamba blocks provides a modest gain
of 1.93 percentage points. Most significantly, incorporating the VIP module leads to a substantial
improvement, increasing mloU from 53.00% to 71.49% without Mamba blocks. The complete
architecture achieves the best performance of 74.21% mloU, confirming that each component
contributes to the overall framework, with the VIP module providing the most significant impact.

4.3.2 Analysis of VIP Module Components

Table 4] shows the ablation study on different components of our VIP module. Without either PEM
or PDM (baseline), the model achieves 54.93% and 50.12% mloU on 2-way and 3-way settings,
respectively. Using only PEM significantly improves performance to 71.45% (+16.52%) for 2-way
and 70.94% (+20.82%) for 3-way settings, demonstrating its effectiveness in enhancing prototype
discriminability. Similarly, using only PDM yields substantial improvements to 72.40% (+17.47%)
for 2-way and 71.84% (+21.72%) for 3-way settings, indicating its ability to eliminate domain gaps.
The complete VIP module with both PEM and PDM achieves the best performance across all settings.

4.3.3 Hyperparameter Analysis

In Fig. [3(a), we analyze the effect of different reasoning steps in the VIP module. The performance
gradually improves as the number of steps increases from 1 (69.13% mloU) to 4 (73.50% mloU), but
decreases with 5 steps (71.04% mloU). This pattern suggests that our multi-step reasoning approach
effectively refines prototype features, but an optimal number of steps exists to balance refinement
and avoid over-processing. Fig. [3(b) shows the impact of HiConv layers. Performance peaks at 3
layers (73.50% mloU), suggesting an optimal balance between capacity and complexity for capturing
local geometric features. Fig. [3(c) depicts the effect of encoder layers. The model achieves peak



Table 5: Impact of different geometric informa-  Table 6: Performance and computational effi-
tion in the explicit structure h; on VIP-Seg per-  ciency comparison.

formance. Method \ mloU  Param. Pre-train Time  Episodic Train ~ Total Time

Setting | 2-way-1-shot | 3-way-1-shot DGCNN [27] | 3634 0.62M 4.0h 0.8h 48h

| So S Ave | So S Avg AUMPTI (37 | 5377 037M 40h 55h 95h

2CBR [38 5589 0.35M 6.0h 02h 6.2h

[ps] 70.66 7203 7135 | 7022 7212 7117 b P‘;D[ 45 24sM 16h i arh
> ;] 7167 7315 7241 | 7136 7407 7272 APID |8 5045 245 3.6 : 7

[pi, i, pj — pil 7297 7412 7355 | 7213 7515 73.64 Seg-PN[39] | 64.84 024M 00h 05h 05h

[pispispi — pis lpisps|l] | 73.50 7492 7421 | 73.84 76.88 75.36 VIP-Seg 7350 277M 0.0h 125h 125h

performance with 3 layers (73.50% mloU), significantly outperforming 1 layer (62.50% mloU).
Performance declines with 4 and 5 layers, likely due to overfitting or optimization challenges.

4.3.4 Impact of Explicit Geometric Structure

Table 5| examines the influence of different geometric information in the explicit structure /; used in
our DyPowerConv. Using only neighboring points [p;] achieves 71.35% and 71.17% mloU on 2-way
and 3-way settings, respectively. Adding center points [p;, p,;] improves performance by 1.06% and
1.55%, while further incorporating relative displacement [p; — p;] brings additional gains of 1.14%
and 0.92%. The complete representation that includes Euclidean distance ||p; — p;|| achieves the best
results across all settings.

4.4 Computational Complexity

Table [ compares the computational efficiency of VIP-Seg with existing methods. Despite having
2.77M parameters, our approach eliminates pre-training, significantly reducing overall training time.
Compared to pre-training methods like PAP3D[8]] (4.7h) and 2CBR[38] (6.2h), VIP-Seg requires
only 1.25h of training—a 73-80% reduction. When compared to Seg-PN[39], another pre-training-
free method, VIP-Seg achieves an 8.66% higher mloU with just 0.75h additional training time,
demonstrating an effective balance between computational efficiency and performance.

5 Conclusion

In this paper, we propose VIP-Seg, a novel pre-training-free framework for point cloud few-shot
semantic segmentation that effectively addresses the challenges of intra-class diversity and domain
gaps. Our approach introduces two key innovations: the VIP module, which employs a multi-step
reasoning process to progressively refine prototype features, and DyPowerConv, which adaptively
models local geometric structures through learnable power functions. Extensive experiments on
S3DIS and ScanNet datasets demonstrate that VIP-Seg significantly outperforms current state-of-the-
art methods across various few-shot settings. Limitations: Despite its effectiveness, our approach has
several limitations that warrant discussion. First, while VIP-Seg eliminates the need for pre-training,
the episode-based training paradigm still requires substantial computational resources during the
training phase. Second, the model’s performance may degrade when dealing with extremely sparse
point clouds or scenes with significant occlusions, as the local geometric structures become harder to
capture. Third, the optimal number of reasoning steps in the VIP module is dataset-dependent and
may require tuning for different application scenarios. Future Work: Several promising directions
emerge from this work. First, incorporating multi-modal information (e.g., RGB images, depth
maps) could enhance the model’s robustness to sparse or occluded point clouds. Second, exploring
the integration of large-scale pre-trained models in a parameter-efficient manner could potentially
combine the benefits of pre-training with our efficient few-shot learning approach.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper’s contributions and scope are accurately reflected in the main claims
made in the abstract and introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations of the work in the paper.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We verified the effectiveness of our method through experiments.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses all the information needed to reproduce the main
experimental results of the paper.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:

Justification: At this stage, I have not open access to the code, but the method provided in
this article is easy to implement. If the paper is accepted by the conference, we will make
the code publicly available immediately.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We specify all the training and test details in the paper.
Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We provided these informations.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provided sufficient information on the computer resources needed to
reproduce the experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research conforms with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The paper discuss the potential impacts.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We don’t use the type of data or models.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The datasets used in this article are properly credited, and their licenses are
clearly stated.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: At this stage the paper does not release new assets, if the paper is accepted, we
will release our code, along with license and other documents.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

19



16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This research does not involve LLMs as any important, original, or non-
standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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