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ABSTRACT

We develop a new approximation and statistical estimation analysis of deep feed-
forward neural networks (FNNs) with the Rectified Linear Unit (ReLU) activation.
The functions of interests for the approximation and estimation are assumed to be
from Sobolev spaces defined over the d-dimensional unit sphere with smoothness
index r > 0. In the regime where r is of the constant order (i.e., r = O(1)), it
is shown that at most dd active parameters are required for getting d−C approxi-
mation rate for some constant C > 0. In the regime where the index r grows in
the order of d (i.e., r = O(d)) asymptotically, we prove the approximation error
decays in the rate d−dβ

with 0 < β < 1 up to some constant factor independent
of d. The required number of active parameters in the networks for the approx-
imation increases polynomially in d as d → ∞. It is also shown that bound on
the excess risk has a dd factor, when r = O(1), whereas it has dO(1) factor, when
r = O(d). We emphasize our findings by making comparisons to the results on
the approximation and estimation errors of deep ReLU FNN when functions are
from Sobolev spaces defined over d-dimensional cube. In this case, we show that
with the current state-of-the-art result, dd factor remain both in the approximation
and estimation errors, regardless of the order of r.

1 INTRODUCTION

Neural networks have demonstrated tremendous success in the tasks of image classification
(Krizhevsky et al., 2012; Long et al., 2015), pattern recognition (Silver et al., 2016), natural lan-
guage processing (Graves et al., 2013; Bahdanau et al., 2015; Young et al., 2018), etc. The datasets
used in these real world applications frequently lie in high-dimensional spaces (Wainwright, 2019).
In this paper, we try to understand the fundamental limits of neural networks in the high-dimensional
regime through the lens of its approximation power and its generalization error.

Both approximation power and generalization error of neural network can be analyzed through
specifying the target function’s property such as its smoothness index r > 0 and its input space
X . In particular, deep feed-forward neural networks (FNNs) with Rectified Linear Units (ReLU)
have been extensively studied when they are used for approximating and estimating functions from
general function class such as Sobolev class defined on d-dimensional cube (i.e., X := Cd), de-
noted as W r

p (Cd) for 1 ≤ p ≤ ∞. However, in practice, signals on a spherical surface (i.e.,
X := Sd−1 = {x ∈ Rd : ∥x∥2 = 1}) rather than on Euclidean spaces often arise in various fields,
such as astrophysics (Starck et al., 2006; Wiaux et al., 2005), computer vision (Brechbühler et al.,
1995), and medical imaging (Yu et al., 2007).

Motivated by this, we focus our attention on the cases where deep ReLU FNNs are used for function
approximators and estimators, when functions are assumed to be from the Sobolev spaces defined
over Sd−1; that is f ∈ W r

∞(Sd−1). Under this setting, our analysis focuses on how the input di-
mension d explicitly affects the approximation and estimation rates of f ∈ W r

∞(Sd−1). At the
same time, we show how the scalability of deep ReLU FNNs grows in the high-dimensional regime.
Here, the scalability is mainly measured through the three metrics: (1) the width denoted as W ,
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Theorem 4.3 Theorem 4.4
Function class W r

∞(Sd−1) W r
∞([0, 1]d)

Smoothness r O(d) O(1) ∀r > 0

Upper-bound on N O(nd) O(nd) Õ((d+ r)d)

Estimation error rate Õ
(
dC · n− 4r

4r+3d
)

Õ
((

6
πe

) d
2 dd · n− 4r

4r+3d
)

Õ
(
(d+ r)d · n− 2r

2r+d
)

Table 1: Here, C > 0 is an universal constant. Notation Õ(·) hide the logarithmic factor in n. Note
that the upper-bounds for N in Theorem 4.3 (i.e., N = O(Md)) are from Theorem 3.1 with choices
M = ⌈n

3d
3d+4r ⌉.

(2) the depth, denoted as L, and (3) the number of active parameters, denoted as N of the net-
work, (Anthony & Bartlett, 1999). It should be emphasized that we find there exists an interaction
with smoothness index r > 0 and dimension d, whereas we cannot find one for the case when
f ∈ W r

∞(Cd). We further summarize our detailed findings in the following Subsection.

1.1 PAPER ROAD MAP AND CONTRIBUTIONS

In Theorem 3.1, we provide an approximation bound of deep ReLU FNN (i.e., f̃ ) for approximat-
ing the target functions in Sobolev spaces defined over sphere (i.e., f ∈ W r

∞(Sd−1)). Notably,
in the bound, we track the explicit dependence on data dimension d allowing it tends to infinity.
This tracking enables how the three components of network architecture, width (W), depth (L),
and the number of active parameters (N ), should change as d increases, for obtaining the good
approximation error rate.

As a Corollary of Theorem 3.1, we show how the order of function smoothness r can have the effect
on the scale of network in terms of d. Specifically, when the function smoothness r = O(1), we
show that the constructed network, f̃ , requires W = O(dd), L = O(dγ log2 d) for 0 < γ < 1, and
N = O(dd+1) for obtaining d−O(1) approximation error up to some constant factors independent
with d. Furthermore, when r = O(d), we show that only W = O(dα), L = O(dγ log2 d), and at
most N = O(d2) are required for obtaining the sharp approximation rate O(d−dβ

) for 0 < α, β <
1. See Corollary 3.3 for the detailed statement of the result.

Our result implies that for approximating f ∈ W r
∞(Sd−1), the larger the smoothness index r is,

the narrower the width of the network should be enough, while the depth of the network can be
fixed. Moreover, when r is in the same order as d, the network can avoid the curse of dimension-
ality requiring only O(d2) number of active parameters. It is interesting to note that the function
smoothness index can affect the design of the network, specifically on width, while it has little effect
on the design of depth. Admittedly, the condition r = O(d) is restrictive in a sense that it makes
the function space W r

∞(Sd−1) small. Nonetheless, it contains some interesting examples: that is,
reproducing kernel Hilbert spaces (RKHS) generated by C∞ kernels such as Gaussian kernels.

Additionally, to the best of our knowledge, this finding is not observed in the current approximation
theory of neural network literature when f ∈ W r

∞(Cd) where Cd denotes some d-dimensional cubes,
and f̃ is a deep ReLU FNN. Out of the long list of literature to be introduced shortly, we choose
the result from Schmidt-Hieber (2020) for the comparison as it also has the explicit dependence on
d in their approximation bound. From their result, it can be seen that the curse cannot be avoided,
even when r = O(d). The width of their constructed network is lower bounded by Ω(rd ∨ ed) and
the number of active parameters is upper-bounded by O((r + d)d). 1 Note that the bounds on both
components grow exponentially in d as r increases. See Subsection 3.1 for detailed comparisons.

We further make the comparisons between estimating functions f ∈ W r
∞(Sd−1) (Theorems 4.3)

versus f ∈ W r
∞(Cd) (Theorems 4.4) via deep ReLU FNNs under the non-parametric regression

framework. Given n noisy samples, the two Theorems suggest the specific orders of W , L and N
in terms of n, d and r, for which they give the tightest bound on excess risk of respective function
estimator from Proposition 4.2. When r = O(1), it is shown that the excess risk upper-bounds of

1Interested readers can find the intuitive technical reason for having the exponential dependence in d on
width W and active parameters N in the Appendix A.
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both function estimators have dd in the constant factors. In contrast, when r = O(d), estimating
functions f ∈ W r

∞(Sd−1) has at most dO(1) factor in the bound, whereas the bound for function
estimator of f ∈ W r

∞(Cd) has dd. See Table 1 and Subsection 4.2 for detailed comparisons.

1.2 RELATED WORKS

In this Subsection, to aid readers have a more clear understanding on the contributions of our paper,
we provide the list of relevant works with comparisons of how these works are different from ours.

Approximation of f ∈ W r
∞(Sd−1) via deep CNN. For the approximation theory of f ∈

W r
∞(Sd−1), we must refer readers Fang et al. (2020) and Feng et al. (2021). But in their works, the

convolutional neural network (CNN) is used for the function approximator under fixed d setting.

Approximation of f ∈ W r
∞(Cd) via deep ReLU FNN. Approximation theory of deep ReLU FNN

for functions f ∈ W r
∞(Cd) has a lengthy history in the literature. Representatively, Mhaskar (1996)

showed that f can be approximated uniformly within ε-approximation accuracy with a 1-layer neural
network of O(ε−d/r) neurons and an infinitely differentiable activation function. Later, for deep
ReLU networks, Yarotsky (2017) showed that the number of active parameters (N ) in networks is
bounded by O(ε−d/r log

(
1
ε

)
), and the depth has the order O(log( 1ε )). He further proved that N

is lower-bounded by the order O(ε−d/r), which is backed up by the result in DeVore et al. (1989).
For f ∈ W r

p (Cd) with 1 ≤ p ≤ ∞, Petersen & Voigtlaender (2018) showed that there exists a deep
ReLU network with bounded and quantized weight parameters, with O(ε−d/r) network size, and
with ε-independent depth for achieving the ε-accuracy in the Lp norm. For approximating functions
f ∈ W r

∞(Cd), Schmidt-Hieber (2020) proved that a network of size O(ε−d/r) with bounded weight
parameters achieves ε-approximation error in the L∞ norm.

Function spaces with special structures. The result of Yarotsky (2017) implies that deep ReLU
net cannot escape the curse of dimensionality for approximating f ∈ W r

∞(Cd). Many papers have
demonstrated that the effects of dimension can be either avoided or lessened by considering function
spaces different from Sobolev spaces, but defined over Cd. Just to name a few, Mhaskar et al. (2016)
studied that a function with a compositional structure with regularity r can be approximated by
neural network with O(ε−2/r) neurons within ε accuracy. Suzuki (2018) proved the deep ReLU
network with O(ε−1/r) neurons can avoid the curse for approximating functions in mixed smooth
Besov spaces. Chen et al. (2019) showed the network size scales as O(ε−D/r) for approximating
Cr functions, when they are defined on a Riemannian manifold isometrically embedded in Rd with
manifold dimension D with D ≪ d. Montanelli & Du (2019) and Blanchard & Bennouna (2022)
showed respectively the deep and shallow ReLU network break the curse for Korobov spaces.

Estimation rates of excess risk under non-parametric framework. Many researchers also have
tried to tackle how the neural networks avoid the curse by considering specially designed function
spaces under the non-parametric regression framework. We only provide an incomplete list of them.
Such structures include additive ridge functions (Fang & Cheng, 2023), composite function spaces
with hierarchical structures (Schmidt-Hieber, 2020; Han et al., 2022), mixed-Besov spaces (Suzuki,
2018), Hölder spaces defined over a lower-dimensional manifold embedded in Rd (Chen et al.,
2022). They all showed the function estimators with neural network architectures can lessen the
curse by showing the excess risks of the estimators are bounded by O(n−2r/(2r+D′)), where n
denotes the size of a noisy dataset, and D′ ≪ d is an intrinsic dimension uniquely determined
through the characteristics of function spaces, when they are compared with the minimax risk
O(n−2r/(2r+d)) (Donoho & Johnstone, 1998) for f ∈ W r

∞(Cd).

Comparisons. The aforementioned works mainly focused on the approximation and estimation of
functions defined on Cd, not Sd−1, for the fixed d. Moreover, the introduced papers on approxi-
mation theory, except the work of Schmidt-Hieber (2020), hide the dependence on d in the Big-O
notation of N in ε-accuracy, even for papers where they consider the function spaces with special
structures. Thus, it is not clear how the d affects the approximation bound and the scale of the pro-
vided network architecture. Introduced papers on estimation rate for excess risk also follow the same
philosophy with papers on approximation theory, as they work on the fixed d setting. In contrast, we
work on the Sd−1 input space, track the explicit dependence on d in the error bound, and describe

3



Published as a conference paper at ICLR 2023

how d affects the scale of deep ReLU FNN as d → ∞ with its interactions with function smoothness
r > 0. Our paper focuses on tracking the dependence on d in the constant factor hidden in the Big-O
notations both in approximation and estimation error rates, rather than paying attentions to reducing
the exponential dependence of d with base ε in N or with base n in excess risk bound.

2 PRELIMINARY DEFINITIONS

In this Section, we provide the mathematical definitions of deep ReLU FNN and Sobolev function
spaces on unit sphere.

2.1 DEFINITION OF DEEP RELU NETWORK

For defining the deep ReLU network mathematically, we adopt the notation used in Schmidt-Hieber
(2020). For v = (v1, . . . ,vr) ∈ Rr, let σv : Rr → Rr be the shifted ReLU (Rectified Linear Units)
activation function as σv((y1, . . . , yr)

⊤) := σ((y1−v1, . . . , yr−vr)
⊤), where σ(x) = max(x, 0).

With this notation, the network architecture (L,p) consists of a positive integer L, called the number
of hidden layers, and a width vector p := (p0, . . . ,pL+1) ∈ NL+2. A deep ReLU network with
architecture (L,p) considered in this work is then any function of the form

f̃ : Sd−1 → R, x → f(x) = WLσvL
WL−1σvL−1

. . . σv1W1x, (1)

where Wi ∈ Rpi+1×pi is a weight matrix with p0 = d, pL+1 = 1 and vi ∈ Rpi is a shift
vector. Network functions are built by alternating matrix-vector multiplications with the action of
the nonlinear activation function σ.

Let ∥Wj∥0 and |vj |0 be the number of nonzero entries of Wj and vj in the jth hidden layer. The
final form of neural network we consider in this paper is given by

F(L,p,N ) :=

{
f̃ of the form (1) :

L∑
j=1

∥Wj∥0 + |vj |0 ≤ N
}
. (2)

The main advantage of using this notation comes from its convenience for tracking the construction
process of network f̃ for approximating f ∈ W r

∞(Sd−1). See Section D.2 in the Appendix. Now,
we define the Sobolev spaces over the sphere in the next Subsection.

2.2 DEFINITION OF SOBOLEV SPACES OVER SPHERE

For 1 ≤ p ≤ ∞, we denote Lp(Sd−1) = Lp(Sd−1, ρX ) as the Lp-function space de-
fined with respect to the normalized Lebesgue measure ρX on Sd−1, with norm ∥g∥p :=( ∫

Sd−1 |g(x)|pρX (dx)
)1/p

.

Let Hd
k be the space of homogeneous harmonic polynomials of total degree k ∈ Z+ restricted on

Sd−1 ⊂ Rd. In Dai & Xu (2013); Efthimiou & Frye (2014), its dimension for k ∈ N is found to be

N (k, d) =
2k + d− 2

k

(
k + d− 3

k − 1

)
. (3)

Note that L2(Sd−1) is a Hilbert space with inner product ⟨f, g⟩L2(Sd−1) :=
∫
Sd−1 f(x)g(x)ρX (x)

for f, g ∈ L2(Sd−1). The spaces Hd
k, for k ∈ Z+, of spherical harmonics are mutually orthogonal

with respect to the inner product of L2(Sd−1).

Since the space of spherical polynomials is dense in L2(Sd−1), every f ∈ L2(Sd−1) has a
spherical harmonic expansion f =

∑∞
k=0 Projk(f) =

∑∞
k=0

∑N (k,d)
ℓ=1 f̂k,ℓYk,ℓ converging in

the L2(Sd−1) norm. Hereafter,
{
Yk,ℓ

}N (k,d)

ℓ=1
denotes an orthonormal basis of Hd

k, f̂k,ℓ is the
Fourier coefficients of f given by f̂k,ℓ := ⟨f,Yk,ℓ⟩L2(Sd−1) :=

∫
Sd−1 f(x)Yk,ℓ(x)ρX (dx),

and Projk(f) denotes the orthogonal projection of L2(Sd−1) onto Hd
k, which has an integral

representation Projk(f)(x) :=
∫
Sd−1 f(y)Zk(x,y)ρX (dy), ∀x ∈ Sd−1, where Zk(x,y) :=∑N (k,d)

ℓ=1 Yk,ℓ(x)Yk,ℓ(y), ∀x,y ∈ Sd−1.
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We know that Zk(x,y) is a reproducing kernel of Hd
k, independent of the choice of

{
Yk,ℓ

}N (k,d)

ℓ=1
,

and with λG = d−2
2 , Zk(x,y) :=

N+λG
λG

GλG
k

(
⟨x,y⟩

)
, ∀x,y ∈ Sd−1 where GλG

k is the Gegenbauer
polynomial of degree k with parameter λG > − 1

2 , see for instance Dai & Xu (2013). Denote
u := ⟨x,y⟩, the exact expression of GλG

k

(
u
)

is given in terms of the Gamma function by

GλG
k

(
u
)
:=

⌊ k
2 ⌋∑

ℓ=0

(−1)ℓ
Γ
(
k − ℓ+ λG

)
Γ
(
λG

)
ℓ!
(
k − 2ℓ

)
!

(
2u

)k−2ℓ
. (4)

The space of Hd
k of spherical harmonics can also be characterized as eigenfunction spaces of the

Laplace-Beltrami operator ∆Sd−1 on Sd−1. Indeed, Hd
k =

{
f ∈ C2

(
Sd−1

)
: ∆Sd−1f = −λkf

}
,

where λk = k(k + d− 2) and C2
(
Sd−1

)
denotes the space of all twice continuously differentiable

functions on Sd−1. In fact, with the identity operator I, we may define the fractional power of(
−∆Sd−1 + I

)α
of the operator

(
−∆Sd−1 + I

)
in a distributional sense for α ∈ R: Projk

((
−

∆Sd−1 + I
)α

f
)
=

(
1 + λk

)αProjk
(
f
)
. Now, we define the Sobolev space W r

p (Sd−1) to be the
subspace of Lp(Sd−1) for 1 ≤ p ≤ ∞, r > 0, with the finite norm

∥f∥W r
p (Sd−1) =

∥∥∥∥∥
(
−∆Sd−1 + I

)r/2

f

∥∥∥∥∥
p

< ∞. (5)

In this paper, we consider the case p = ∞ (i.e., f ∈ W r
∞(Sd−1)), which is essentially the Hölder

space. The sphere Sd−1 is a smooth Riemannian manifold without boundary. Its nice Laplace-
Beltrami operator (i.e.,∆Sd−1 ) acting as a Hessian operator of functions on the sphere gives the
natural definition of Sobolev spaces W r

∞(Sd−1) in (5); that is, the Sobolev space is a collection of
continuous functions defined on sphere Sd−1 whose generalized (distributional) derivatives up to
order r are essentially bounded. See Equations (16) in Hesse (2006), (3.4) in Fang et al. (2020), (16)
in Feng et al. (2021), (5.1.9) in Freeden et al. (1998) for more detailed treatments on W r

∞(Sd−1).
Readers can also refer the definition of W r

∞(Cd) in the Appendix A, when Cd = [0, 1]d, for compar-
ison with W r

∞(Sd−1) and later use in Subsection 3.1.

3 APPROXIMATION ERROR

Now, we present our Theorem on approximating functions f ∈ W r
∞(Sd−1) via F(L,p,N ) in (2).

Theorem 3.1 Let 0 < α < 1,m,N,M ∈ N with 1 ≤ N ≤ dα + 1. For any function f ∈
W r

∞(Sd−1) with r > 0, there exists a network

f̃ ∈ F
(
L,

(
d, 22NM, . . . , 22NM, 1

)
,N

)
(6)

with depth L = (m + 4)⌈log2(2N)⌉ and number of parameters N ≤ M(2d + 404N · (m + 3) +
2N + 4) + 1 such that∥∥∥f − f̃

∥∥∥
∞

≤ C
′′

η ∥f∥W r
∞(Sd−1) ×

max

{
N−r,

(
6
πe

) d
4 dN+ 3d−4r−2

8 (2N + 1)
3d−4r

4

√
M

,d2N
(
log2(2N)

)2
2−2m

}
, (7)

where C
′′

η is a constant dependent on η, and independent on d, r,N,M or f .

The proof of Theorem 3.1 is lengthy and technical. We provide detailed proof ideas with technical
remarks for the Lemmas and Proposition used for the proof of Theorem 3.1 in the Appendix D. The
detailed technical proofs of those Lemmas and Proposition are provided in the Appendix E. Here,
for conciseness, we provide some important remarks on the Theorem and a simple proof sketch,
which starts with a simple triangle inequality:∥∥∥f − f̃

∥∥∥
∞

≤ ∥f − LN (f)∥∞ +
∥∥∥LN (f)− L̂y

N,M (f)
∥∥∥
∞

+
∥∥∥L̂y

N,M (f)− f̃
∥∥∥
∞

. (8)
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Three error terms in (7) correspond to the bounds on three terms of the right-hand side in the inequal-
ity (8). We want to emphasize that the constant C

′′

η > 0 in (7) is independent of d. Furthermore, we
track how the bound is explicitly dependent on d allowing it to tend to infinity.

For first term, note that any f ∈ W r
∞(Sd−1) is approximated by a weighted sum of Projk(f) for

0 ≤ k ≤ 2N , denoted as LN (f). The corresponding approximation error is small for large enough
N and r. Here, importantly, we set the N = ⌈dα⌉ for 0 < α < 1, so that the input dimension d
grows faster than N .

For the second term, notice that the definition of LN (f) is involved with the integral over the sphere,
and the key for approximating the function is to discretize this integral by M random samples
y = {y1, . . . ,yM} independently drawn from ρX . The discretized version of LN (f) is denoted as
L̂y
N,M (f). As observed in the error bound, the higher degree N the LN (f) has, the more sampled

points M the approximation requires. However, the requirement is ameliorated as r increases. A
similar effect can be observed in the constant factor in d. For the fixed smoothness index r, the
higher the data dimension d is, the more the sampled point M is required for good approximation,
but the requirement is alleviated as the smoothness index r increases. If r increases up to order d,
the factor 2 decays exponentially fast as d → ∞, eventually letting M ≥ 1 to be any integer. This
phenomenon is further investigated in the Corollary 3.3.

The last term corresponds to the error of the neural network f̃ approximating L̂y
N,M (f). For

any point x ∈ Sd−1, the evaluated function value L̂y
N,M (f)(x) is simply a weighted average of

ξN,r(⟨x,yi⟩), for the sampled y = {y1, . . . ,yM}. Here, ξN,r(⟨x,yi⟩) is a linear combination of
GλG
k

(
⟨x,yi⟩

)
in (4) for 0 ≤ k ≤ 2N . Thus, it is the sum of univariate polynomials of degree up to

2N . We construct sub-networks approximating ξN,r(⟨x,yi⟩) for each i ∈ [M ]. This explains the
width of f̃ is proportional to NM . The corresponding error bound is dependent on d2N , where it
comes from the applications of Stirling’s formula on the coefficient factors in GλG

k

(
⟨x,yi⟩

)
. The er-

ror,
(
log2(2N)

)2
2−2m, comes from approximating ⟨x,yi⟩k for 0 ≤ k ≤ 2N via neural networks.

The larger the m is, the deeper the network becomes as L = O(m), and the error gets smaller.

3.1 COMPARISON WITH SCHMIDT-HIEBER (2020)

In this Subsection, we compare the result from Theorem 3.1 with the result from Schmidt-Hieber
(2020), where they consider the approximation of f ∈ W r

∞([0, 1]d) via deep ReLU FNN. The
Theorem is stated as follows:

Theorem 3.2 [Theorem 5 of Schmidt-Hieber (2020)] For any function f ∈ W r
∞([0, 1]d) and let

K > 0 be the radius of Hölder ball. Then, for any integers m ≥ 1 and NH ≥ (r+1)d∨ (K+1)ed,
there exists a network

f̃H ∈ FH
(
L, (d, 6(d+ ⌈r⌉)NH , . . . , 6(d+ ⌈r⌉)NH , 1),NH

)
(9)

with depth L = 8+ (m+5)
(
1+ ⌈log2(d∨ r)⌉

)
and the number of parameters NH ≤ 141(1+ d+

r)3+dNH(m+ 6), such that∥∥∥f − f̃H
∥∥∥
∞

≤ (2K + 1)(1 + d2 + r2)6d
(
NH

)
2−m +K3r

(
NH

)− r
d . (10)

To avoid the confusion with the notations used in Theorem 3.1, we put the superscript H to a param-
eter that determines width of the network (i.e., NH ), to the total number of parameters in the network
(i.e., NH ), and to the network class (i.e., FH ). It is interesting to note that the exponential growth
of the network size in d is observed in the construction of FH , whereas there exists a flexibility in
F , dependent on the choice of M . Specifically, the width of the network in FH is exponentially
dependent on d as NH = Ω(rd ∨ ed), whereas the width of the network in F is dependent on two
parameters N = o(d) and any integers M ≥ 1. For the total number of network parameters, we
have NH = O((d+ r)d), whereas N = O(Md+Nmd).

2If r = O(d), the factor becomes
(

6
πe

) d
4 d⌈d

α⌉ for 0 < α < 1. Here, the exponential decay term
(

6
πe

) d
4 is

derived from Sobolev embedding Lemma. See Proposition D.1.3 in Appendix D.
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Analogously, the bound on the approximation error of f̃H in (10) is dependent on d exponentially,
but this exponential dependence in d can be avoided in the error bound of f̃ in (7) under two sce-
narios: (I) r = O(d) and any integer M ≥ 1 or (II) r = O(1) and M = O(dd). In the Corollary
presented in the next Subsection, we further specify the two scenarios, and describe how the approx-
imation error bound in each scenario converges to 0 in terms of d.

3.2 FAST APPROXIMATION ERROR IN TERMS OF d

Corollary 3.3 Let 0 < α, β, γ < 1 with γ > max{α, β} and N ∈ N with 1 ≤ N ≤ dα + 1. For
any f ∈ W r

∞(Sd−1) with r > 0, we have:

(I) For 3d−2
4 − C1 ≤ r ≤ 3d−2

4 with some constant C1 ≥ 0 independent of d, there exists a
network

f̃ (I) ∈ F (L, (d, 66N, 66N, . . . , 66N, 1) ,N )

with depth L = O (dγ log2 d) and the number of active parameters N = O
(
dmax{α+γ,1}),

such that
∥∥∥f − f̃ (I)

∥∥∥
∞

≤ C ′
η,α,β,γ∥f∥W r

∞(Sd−1)d
−dβ

, where C ′
η,α,β,γ is a constant depend-

ing only on C1, η, α, β and γ.

(II) For r = O(1) and M = O
(
9dd

9
4d
)

, there exists a network

f̃ (II) ∈ F
(
L,

(
d, 22NM, . . . , 22NM, 1

)
,N

)
with depth L = O (dγ log2 d) and the number of active parameters N = O

(
9dd

13
4 d

)
such

that
∥∥∥f − f̃ (II)

∥∥∥
∞

≤ C ′
η,α,β,γ∥f∥W r

∞(Sd−1)d
−αr, where C ′

η,α,β,γ is a constant depending

only on η, α, β and γ.

The detailed proof on Corollary 3.3 is deferred in the Appendix E.6. The approximation error in
scenario (I) decays at a rate d−dβ

for 0 < β < 1, while the required number of active parameters
N is at most O(d2). Here, the construction of network f̃ (I) is independent with the choice of M ,
and we simply choose M = 3. In scenario (II), since r = O(1) and 0 < α < 1, the approximation
error decays to 0 at d−O(1) rate, which can be slower than d−dβ

for β close to 1. The width of f̃ (II)

grows exponentially in d requiring M = O(dd). Interestingly, in both scenarios, the depth L has
the same order in d as O (dγ log2 d) for 0 < γ < 1.

Remark 3.4 As suggested by one of the reviewers, we further compare our results in Corollary 3.3
(I) with the CNN architecture with downsampling operation suggested in Fang et al. (2020) for
approximating f ∈ W r

∞(Sd−1), and (II) with Lu et al. (2021); Jiao et al. (2021) where they consider
the problem of approximating f ∈ W r

∞(Cd) via deep ReLU FNN. Due to the limited space, we defer
the detailed remarks on the comparisons in the Appendix C.

4 STATISTICAL RISK BOUND

Let X := Sd−1 and Y ⊂ R be the measureable feature space and output space. We denote ρ as a
joint probability measure on the product space Z := X ×Y , and let ρX be the marginal distribution
of the feature space X . We assume that the noisy data set D := {(xi,yi)}ni=1 are generated from
the non-parametric regression model

yi = fρ(xi) + εi, i = 1, 2, . . . , n, (11)

where the noise εi is assumed to be centered sub-gaussian random variable and E(εi|xi) = 0. Our
goal is to estimate the regression function fρ(x) with the given noisy data set D. Specifically, it
is assumed that the regression function belongs to Sobolev space on d-dimensional sphere; that is
fρ ∈ W r

∞(Sd−1). It is easy to see regression function fρ := E(y|x) is a minimizer of the following
population risk E(f) defined as:

E(f) = E(x,y)∼ρ

[(
y − f(x)

)2]
.
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However, since the joint distribution ρ is unknown, we cannot find fρ directly. Instead, we solve the
following empirical risk minimization problem induced from the dataset D:

f̂n = argmin
f∈F(L,p,N )

ED(f) := argmin
f∈F(L,p,N )

{
1

n

n∑
i=1

(
yi − f(xi)

)2}
. (12)

Note that the function estimator is taken from the feedforward neural network hypothesis space
F(L,p,N )3 defined in (2), and we denote the empirical minimizer of (12) as f̂n. It is assumed that
|y| ≤ B almost everywhere and we have |fρ(x)| ≤ B. We project the output function f : Sd−1 →
R onto the interval [−B,B] by a projection operator

πBf(x) =


f(x), if −B ≤ f(x) ≤ B,

B, if f(x) > B,

−B, if f(x) < −B.

(13)

We consider the clipped estimator πB f̂n for recovering the regression function fρ. Note that the
clipped estimator has been widely used in statistical learning papers Suzuki (2018); Fang & Cheng
(2023); Oono & Suzuki (2019). The quality of πB f̂n is measured through the difference between
two expected risks (i.e., excess risk) defined as E

(
πB f̂n

)
− E

(
fρ
)
.

4.1 UPPER-BOUND ON EXCESS RISK

In this Subsection, we provide the upper-bound on the excess risk of the clipped estimator πB(f̂n)
with respect to the pseudo-dimension (i.e., Pdim(F)) and the approximation error (i.e., ∥f −fρ∥∞).
Before presenting the bound, the definition of Pdim(F) is presented.

Definition 4.1 Denote by Pdim(F), the pseudo-dimension of F , which is the largest integer ℓ, for
which there exists (ξ1, . . . , ξℓ, η1, . . . , ηℓ) ∈ X ℓ×Rℓ such that for any (a1, . . . , aℓ) ∈ {0, 1}ℓ, there
is some f ∈ F satisfying

∀i : f(ξi) > ηi ⇐⇒ ai = 1.

For more comprehensive exploration on Pdim(F) can be found in references Anthony & Bartlett
(1999); Bartlett et al. (2019). We provide the first theorem on the excess risk.

Proposition 4.2 Set δ ∈ (0, 1). Then, with probability at least 1− δ, we have

E
(
πB f̂n

)
− E

(
fρ
)
≤ CB,δ,f ·

(
Pdim(F) · log(n)

n
+

∥f − fρ∥∞√
n

+ ∥f − fρ∥2∞
)
, (14)

where CB,δ,f is an absolute constant dependent on B, δ, f independent on n, r, d.

A detailed proof of Proposition 4.2 is deferred in the Appendix. The excess risk E
(
πB f̂n

)
− E

(
fρ
)

is a random quantity over the estimator f̂n and the statement in the Theorem holds with probability
at least 1 − δ. The failure probability δ ∈ (0, 1) is hidden in the constant CB,δ,f logarithmically,
i.e., log( 1δ ). In the bound, it should be noted that there is a trade-off between the “approximation
error” (i.e., ∥f−fρ∥∞) term and the combinatorial “complexity measure” term of a neural network
class F (i.e., Pdim(F) · log(n)/n); that is, the richer the network hypothesis space F becomes, the
finer the approximation result we get. Nonetheless, the arbitrary increase in the hypothesis space F
eventually leads to the increase of the bound in excess risk. In the following Subsection, we will
show how the specifications (i.e., the choices of (L,p,N )) of the network architecture affect the
tension between these two terms.

4.2 CONVERGENCE RATE OF EXCESS RISK

Now we are ready to formally state bounds on the excess risks of πM f̂n when fρ ∈ W r
∞(Sd−1)

(i.e., Theorem 4.3) and fρ ∈ W r
∞([0, 1]d) (i.e., Theorem 4.4), respectively.

3Henceforth, we will use a shorthand notation of F(L,p,N ) as F . Dependence on (L,p,N ) should be
implicitly understood.
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Theorem 4.3 Suppose fρ ∈ W r
∞(Sd−1) with r > 0. A network f̂n from (6) with choices N =

⌈n
2

3d+4r ⌉, M = ⌈n
3d

3d+4r ⌉, and m = ⌈ r
3d+4r log2(n)⌉ yield the bound on the excess risk with

probability at least 1− δ as follows:

E
(
πM f̂n

)
− E

(
fρ
)

≤ CB,η,δ,f ·max

{
1,

6rd

(3d+ 4r)2
(log2(n))

4,
( 6

πe

) d
2 d2N+ 3d−4r−2

4 , d4N
}
· n− 2r

2r+1.5d , (15)

where CB,η,δ,f depends on B, η, δ, f and independent on d, r and n.

Theorem 4.4 Suppose fρ ∈ W r
∞([0, 1]d) with r > 0. A network f̂n from (9) with choices NH =

⌈n
d

2d+r ⌉, and mH = ⌈ d+r
d+2r log2(n)⌉ yield the bound on the excess risk with probability at least

1− δ as follows:

E
(
πM f̂n

)
− E

(
fρ
)

(16)

≤ CB,η,δ,K ·max

{
⌈(log2((d+ ⌈r⌉)n2)⌉2(d+ r)d · (log2(n))3,

(
1 + r2 + d2

)2
62d + 32r

}
· n− 2r

2r+d ,

where CB,η,δ,K depends on B, η, δ, K and independent on d, r and n.

Detailed proofs on Theorems 4.3 and 4.4 are deferred in the Appendix F.2 and F.3. Both proofs
are simple applications of Proposition 4.2 with results from Theorem 3.1 and 3.2. For both cases,
Pdim(F) can be easily computed from Lemma H.1 in the Appendix. The parameters that deter-
mine the network architectures, N,M,m and NH ,mH in two Theorems are chosen in a way that
the bound in (14) is tight in terms of sample size n. Constant factors CB,η,δ,f and CB,η,δ,K are
dependent on δ ∈ (0, 1) as log( 1δ ). The bound in Theorem 4.3, Od(n

− 2r
2r+1.5d ), is sub-optimal4

in a minimax sense for estimating functions fρ ∈ W r
∞(Sd−1), where Od hides the constant factor

in d. The extra 0.5d factor in the denominator of exponent comes from the Sobolev embedding
Lemma (Lemma D.1.3) and discretization Lemma (Lemma D.1.4). For the constant factor in d,
when r = O(1), the exponential dependence on d can be observed. However, when r = O(d), the
excess bound in (15) reduces to E

(
πM f̂n

)
−E

(
fρ
)
≤ CB,η,δ,f ·max

{
(log2(n))

4, d4N
}
·n− 2r

2r+1.5d .
With a choice of N = ⌈n

2
3d+4r ⌉, as d, r → ∞, the constant d4N becomes dO(1). In contrast, in (16)

for estimating functions fρ ∈ W r
∞([0, 1]d), the rate n− 2r

2r+d is minimax optimal, but we cannot
observe the interactions between r and d as we observe in (15).

Remark 4.5 From the technical point of view, the result in Theorem 4.3 should be compared with
the results in the existing literature, i.e., Schmidt-Hieber (2020); Chen et al. (2022); Suzuki (2018),
in a sense that our result doesn’t require the boundedness of the weight parameters in the network
construction. The detailed readings of their proofs reveal that they require the bound on the uniform
covering number of F and it can be bounded by the Lipschitzness of the network output with respect
to the weight parameters. Naturally, for the discretizations of the parameter space, the bounded-
ness assumption is required. In contrast, in our result, due from the Bartlett et al. (2019) (See
Lemma H.1), bounding the complexity measure Pdim(F) doesn’t require the parameter bounded-
ness assumption.

5 AN OPEN QUESTION

In this paper, we prove when r = O(d), deep ReLU FNNs only require at most N = O(d2) param-
eters to get a sharp approximation rate. However, this condition seems restrictive, and needs further
investigation whether it is a necessary and sufficient condition to avoid the curse of dimensionality
for approximating f ∈ W r

∞(Sd−1). To answer this question, it is essential to study the lower bound
of N with a similar approximation error as stated in Theorem 3.1, and see if it has the matching or-
der with the upper-bound we get in d. We conjecture obtaining this result is possible by combining
the ideas of using VC-dimension of deep ReLU FNNs (Bartlett et al., 2019; Yarotsky, 2017) and of
constructing the packing set on the sphere through the spherical cap (Hesse, 2006), while tracking
the d-dependency in the constant factor carefully. We leave this for future research.

4Since Sd−1 ⊂ Cd, it seems obvious we should achieve minimax optimal rate. In this regard, we add further
detailed technical remarks on the sub-optimality of excess risk in the Appendix B.
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A dd-DEPENDENT CONSTANT IN N FOR APPROXIMATING f ∈ W r
∞([0, 1]d)

First, we define the function space W r
∞([0, 1]d) on the d-dimensional unit cube. For r = n + σ

where n ∈ N0 and σ ∈ (0, 1], a function has Hölder smoothness index r if all partial derivatives up
to order n exist and are bounded and the partial derivatives of order n are σ Hölder. Formally, the
ball of r-Hölder functions with radius Q is then defined as

W r
∞([0, 1]d) =

{
f : [0, 1]d → R :

∑
α:|α|≤n

∥∂αf∥∞ +
∑

α:|α|=n

sup
x,y∈[0,1]d

x̸=y

|∂αf(x)− ∂αf(y)|
|x− y|σ∞

≤ Q
}
.

where ∂αf := ∂|α|

∂α1 ...∂αd
f for the multi-index notation, α := (α1, . . . , αd).

The fundamental ideas for approximating functions f ∈ W r
∞([0, 1]d) in the existing literature rely

on a local Taylor approximation technique. The technique discretizes d-dimensional input cube into
a sub-cube set whose size is (K + 1)d where (K + 1) is the grid size of each coordinate. For any x
in the input cube, the function f is approximated by using the closest 2d grid points to x via Taylor
expansion of f up to the degree ⌊r⌋, where we denote the largest integer less than or equal to u > 0
as ⌊u⌋. Therefore, the total number of active parameters for the net is at least more than the total
number of coefficients of partial derivatives ∂αf := ∂|α|

∂α1 ...∂αd
f for |α| = |α1| + · · · + |αd| ≤ ⌊r⌋.

This yields the lower bound on the active parameters for the network via local Taylor approximation
as (K + 1)d ·

∑⌊r⌋
i=0

(
d+i−1

d

)
.

B SUBOPTIMAL CONVERGENCE RATE OF EXCESS RISK FOR f ∈ W r
∞(Sd−1)

Since Sd−1 ⊂ Cd, in light of Whitney’s extension theorem, it is obvious that the convergence rate
of excess risk for f ∈ W r

∞(Sd−1) should achieve the minimax optimal rate n− 2r
2r+d same as for

estimating f ∈ W r
∞(Cd). However, from this perspective, it is not possible to track the explicit

dependence on d in prefactor of the rate.

From Proposition 4.2, we track this dependence with the combination of our own approximation
result. First of all, in order to achieve the minimax learning rate in n (e.g., sample size); that is,
n− 2r

2r+d , we need to achieve the optimal approximation rate, known as O(N− r
d ), where N denotes

the number of active parameters in the network. This can be easily checked in Schmidt-Hieber
(2020)’s result.

But this cannot be achieved in our Theorem 3.1, the result of approximation theorem. The
main reason arises from the employment of Sobolev embedding theorem (Proposition D.1.3)
and of concentration inequality from Smale & Zhou (2007) (Lemma E.2.1) used for bound-
ing the term ∥LN (f) − L̂y

N,M (f)∥∞. Proposition D.1.3 specifies ∥LN (f) − L̂y
N,M (f)∥∞ ≤

Cd∥LN (f) − L̂y
N,M (f)∥W s

2 (Sd−1) for some s > (3d − 2)/4 and Lemma D.1.4 specifies the re-

lations ∥LN (f)− L̂y
N,M (f)∥W s

2 (Sd−1) ≤ C
′

d,r∥f∥W r
∞(Sd−1)

(2N+1)
3d−4r

4√
M

. In this process, there are

some extra factors multiplied leading to the rate sub-optimal, reflected in the term (2N + 1)
3d−4r

4 .
It would be an interesting research direction, if we can develop a nice mathematical framework
eliminating this extra factor.

C FURTHER COMPARISONS WITH EXISTING LITERATURE

C.1 COMPARISONS OF COROLLARY 3.3. WITH THE CNN APPROXIMATOR FOR THE
APPROXIMATION OF f ∈ W r

∞(Sd−1)

We consider the case when the approximator is deep ReLU CNN followed by downsampling oper-
ations and very few fully-connected layers. This is exactly the same architecture considered in the
paper Fang et al. (2020), and by applying our result (Lemma D.1.4), we get the following theorem.

Theorem C.1. Let 2 ≤ S ≤ d, 0 < α < 1, and B,N,M ∈ N with 1 ≤ N ≤ dα + 1. Let
J ≥ ⌈Md−1

S−1 ⌉, D1 = (2B + 3)⌊(d+ JS)/d⌋, and D2 = ⌊(d+ JS)/d⌋. Then, for any function f ∈
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Schmidt-Hieber (Thm 5) Lu et al. (Thm 1.1.) Jiao et al. (Corol. 3.1)
Depth O(⌈log2(r ∨ d)⌉) O(r2 + d) O((⌊r⌋+ 1)2)

Width O((d+ ⌈r⌉)(r + 1)d) O(rd+1d3d) O((⌊r⌋+ 1)23dd⌊r⌋+1)

Approx. Rate O(6d(r + 1)d) O(8r(r + 1)d) O((⌊r⌋+ 1)2d⌊r⌋+(r∨1)/2)

Table 2: A summary of r and d dependences in the prefactors of constructed deep ReLU networks’
depths, widths and approximation rates for approximating the functions f ∈ W r

∞(Cd) in Schmidt-
Hieber (2020); Lu et al. (2021); Jiao et al. (2021).

W r
∞(Sd−1) with r > 0, there exists a network f̃CNN ∈ HJ,D1,D2,S with the number of parameters

N ≤ J(3S + 2) +M + 2B + 4 such that∥∥∥f − f̃CNN
∥∥∥
∞

≤ C
′′

η,α ∥f∥W r
∞(Sd−1) max

{
N−r,

(
6
πe

) d
4 dN+ 3d−4r−2

8 (2N + 1)
3d−4r

4

√
M

,d2N
r

r − 1

N2

B

}
,

(17)

where C
′′

η,α is a constant dependent on η, α, and independent on d, r,N,M or f .

The only part we need to pay attention to is bounding the term ∥L̂y
N,M (f)− f̃CNN∥∞, and track the

explicit dependence on d in the bound, and its proof is deferred in Appendix G.

We consider the case r = O(d) and any integer M ≥ 1. In this case, our result for deep ReLU

FNN shows that O(d−dβ

) can be achieved for the approximation, with at most O(d2) active param-
eters. In light of the result from Zhou (2020), we also should expect the same results for CNN with
downsampling operation.

In order to get an approximation rate O(d−dβ

) for some 0 < β < 1, controlling the first two terms
in (1.1) is the same as that of our proof in the Appendix E.6. We only need to pay attention to the
last term. Since 1 ≤ N ≤ dα + 1, for some 0 ≤ α < 1, we have

r

r − 1
· d2NN2/B ≤ 8 · d2d

α+2d2α/B ≤ 8 · d2d
α+4/B ≤ C · d−dβ

,

for some constant C > 0 independent with d > 0 and r > 0. The rate d−dβ

is obtainable only when
B = O(dd). Then, the number of parameters N ≤ J(3S+2)+M +2B+4 is bounded by O(dd).
This is an unsatisfactory result. However, we firmly believe this result can be improved, and leave it
as an open question for future work.

C.2 COMPARISONS OF COROLLARY 3.3. WITH THE RECENT APPROXIMATION RESULTS FOR
f ∈ W r

∞(Cd) VIA DEEP RELU FNN

After the publication of Schmidt-Hieber (2020), a series of works further studied the approximation
and estimation of f ∈ W r

∞(Cd) via deep ReLU FNNs. Specifically, Ghorbani et al. (2020) pointed
out that the additive function studied in Schmidt-Hieber (2020) has an exponential dependence in
d in the prefactor of the estimation error, requiring n ≿ dd sample sizes for good convergence
rate. Later, Shen et al. (2021) and Lu et al. (2021) tracked the explicit dependence on d in the
approximation error as well as in the architectural components, (i.e., width (W) and depth (L)), for
approximating f ∈ C(Cd) (i.e., Lipschitz continuous functions on Cd) and f ∈ W r

∞(Cd), respec-
tively. Specifically, Lu et al. (2021) improved the prefactor O(8r(r+1)d) when it is compared with
O(6d(r + 1)d) from Schmidt-Hieber (2020) for the approximation error. Most recently, Jiao et al.
(2021) further improved the prefactor O((⌊r⌋+ 1)2d⌊r⌋+(r∨1)/2) for approximating f ∈ W r

∞(Cd).
In Table 2, comparisons of depths, widths, and approximation rates of the constructed deep ReLU
networks in Schmidt-Hieber (2020); Lu et al. (2021); Jiao et al. (2021) are summarized.

Since N is not tracked in the works of Lu et al. (2021); Jiao et al. (2021), direct comparisons of their
results with our results for the approximation of f ∈ W r

∞(Sd−1) can be challenging. However, it
can be roughly checked that the result in Jiao et al. (2021) doesn’t escape the curse for all r > 0.
Specifically, for r = O(1), the constructed network has the exponential dependence in d for its
width. For the case r = O(d), achieving the approximation rate O(d−dβ

) requires O(dd) width in
the suggested network.
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D ROADMAPS FOR PROOF OF THEOREM 3.1

In this section of the Appendix, we provide the definitions of LN (f) and L̂y
N,M (f) along with the

overall picture for the proof of Theorem 3.1. Recall we have the following decomposition:∥∥∥f − f̃
∥∥∥
∞

≤ ∥f − LN (f)∥∞︸ ︷︷ ︸
:=(I)

+
∥∥∥LN (f)− L̂y

N,M (f)
∥∥∥
∞︸ ︷︷ ︸

:=(II)

+
∥∥∥L̂y

N,M (f)− f̃
∥∥∥
∞︸ ︷︷ ︸

:=(III)

. (18)

In Subsection D.1, we provide the idea for bounding (I) and (II). In Subsection D.2, the construc-
tion of neural network f̃ for approximating L̂y

N,M (f) is described. In this section, no proofs of
Propositions and Lemmas are included, but only key ideas for the proofs and technical comparisons
with other literature are provided. All the detailed proofs of technical statements in this section are
deferred in the Appendix C.1.

D.1 ERROR BOUNDS FOR (I) AND (II)

A function f ∈ W r
∞(Sd−1) is approximated by a linear scheme LN defined as follows.

Definition D.1.1 Given a C∞([0,∞]) function η with η(t) = 1 for 0 ≤ t ≤ 1 and η(t) = 0 for
t ≥ 2, we define a sequence of linear operator LN , N ∈ N, on Lp(Sd−1) with 1 ≤ p ≤ ∞ by

LN (f)(x) :=

2N∑
k=0

η

(
k

N

)
Projk(f)(x) =

∫
Sd−1

f(y)ℓk,d(⟨x,y⟩)ρX (dy), x ∈ Sd−1, (19)

where with λG = d−2
2 , ℓN,d is a kernel given by

ℓN,d(t) :=

2N∑
k=0

η

(
k

N

)
k + λG

λG
GλG
k

(
t
)
, t ∈ [−1, 1]. (20)

It can be found in Dai & Xu (2013) (Chapter 4) that LN is near best, achieving the order of best
approximation for f ∈ W r

p (Sd−1).

Lemma D.1.2 (Lemma 1 in Fang et al. (2020)) For N ∈ N, 1 ≤ p ≤ ∞, r > 0, and f ∈
W r

p (Sd−1), there holds

∥f − LN (f)∥p ≤ CηN
−r · ∥f∥W r

∞(Sd−1) , (21)

where Cη is a constant depending only on the function η in defining LN .

Note that
(
− ∆Sd−1 + I

)r/2
is a self-adjoint operator. For x ∈ Sd−1, recalling the definition of

LN (f), we have

LN (f)(x) = ⟨f, ℓN,d(⟨x, ·⟩)⟩L2(Sd−1)

=

〈(
−∆Sd−1 + I

)r/2
f,
(
−∆Sd−1 + I

)−r/2
ℓN,d(⟨x, ·⟩)

〉
L2(Sd−1)

=

∫
Sd−1

Fr(y) · ξN,r(⟨x,y⟩)ρX (dy). (22)

Hereafter, we denote Fr =
(
−∆Sd−1 +I

)r/2
f and ξN,r(⟨x, ·⟩) =

(
−∆Sd−1 +I

)−r/2
ℓN,d(⟨x, ·⟩).

By the fractional power of the operator
(
− ∆Sd−1 + I

)−r/2
in a distributional sense, ξN,r(·) is a

polynomial of degree at most 2N written as:

ξN,r(t) =

2N∑
k=0

(
1 + λk

)−r/2
η

(
k

N

)
k + λG

λG
GλG
k

(
t
)
, t ∈ [−1, 1]. (23)

The fractional power of (−∆Sd−1 + I) caused by the regularity f ∈ W r
∞(Sd−1) enables r-

dependent error bound for discretizing LN (f): the larger the regularity r becomes, the smaller
the bound for approximation error gets.
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Following Fang et al. (2020), the key idea for a constructing neural network that approximates
LN (f) is to discretize the integral form (22) by M random samples y = {y1, . . . ,yM} indepen-
dently drawn from ρX . We write the discretized version of (22) as :

L̂y
N,M (f)(x) =

1

M

M∑
i=1

Fr(yi) · ξN,r(⟨x,yi⟩), ∀x ∈ Sd−1. (24)

Before estimating the distance between LN (f) and L̂y
N,M (f), we need a Sobolev embedding prop-

erty.

Proposition D.1.3 For d ≥ 5, 1 ≤ p ≤ ∞, and s ≥ 3d−2
4 , the Sobolev space W s

p (Sd−1) is
continuously embedded into C(Sd−1), the space of continuous functions on Sd−1, which implies

∥f∥∞ ≤ c0

(
6

πe

) d
4

· ∥f∥W s
p (Sd−1) , f ∈ W s

p (Sd−1),

where c0 is an absolute constant independent of r, d, s, and f .

Proposition D.1.3 is motivated from Eq.(14) in Hesse (2006), where they proved ∥f∥∞ ≤
Cs,d ∥f∥W s

p (Sd−1) , f ∈ W s
p (Sd−1) for s ≥ d−1

2 . The constant obtained in Hesse (2006) is

Cs,d :=
(

1
ωd

∑∞
k=0

N (k,d)

(k+ d−2
2 )2s

)1/2
, where ωd is the surface of d-dimensional sphere. For large

enough d, (1/ωd)
1/2 grows in the order of O

((
d

2πe

)d/4)
. Then, by choosing s ≥ 3d−2

4 , (1/ωd)
1/2

can be absorbed into the infinite sum making the constant Cs,d converge in an asymptotic regime
of d. It should be noted that the threshold on smoothness index (i.e., s ≥ 3d−2

4 ) is larger than
that from Hesse (2006) (i.e., s ≥ d−1

2 ), where they consider the fixed d. See Appendix E.1 for
the proof. Next, we state the discretization lemma which provides a probabilistic bound on the
difference LN (f)− L̂y

N,M (f).

Lemma D.1.4 Let r ≤ 3d−2
4 and 0 < α < 1. If f ∈ W r

∞(Sd−1), then for any M ∈ N and
1 ≤ N ≤ dα + 1, there exist y = {y1, y2, . . . , yM} ⊂ Sd−1 such that

∥∥∥LN (f)− L̂y
N,M (f)

∥∥∥
∞

≤
6 · C ′′( 6

πe

) d
4 ∥f∥W r

∞(Sd−1) d
N+ 3d−4r−2

8 (2N + 1)
3d−4r

4

√
M

,

where C
′′
> 0 is a constant depending on α but independent of r, f , N , M , and d.

Lemma D.1.4 is motivated by Lemma 2 in Fang et al. (2020). The main framework of the proof is
based on the Sobolev embedding property in Proposition D.1.3 and the concentration inequality for
random variables with values in a Hilbert space, which can be found in Smale & Zhou (2007). For
the application of the concentration inequality, the random variable ξ(yi) := Fr(yi)ξN,r(⟨x,yi⟩)
in (24) needs to be bounded in ∥ · ∥W s

2 (Sd−1) norm for s ≥ 3d−2
4 . See Appendix E.2 for the proof of

the Lemma.

When compared with the technical proof of Lemma 2 from Fang et al. (2020), the most notable
difference comes from tracking the explicit dependency on d in the constant factor. Specifically,
under the fixed d setting, Fang et al. (2020) did not explicitly express how the constant cs,r,d (see
the statement in their Lemma) depends on d. However, in our paper, since the main focus is how
the approximation error behaves under d → ∞, we need to keep tracking how d explicitly affects
the bound. The result of Proposition 4.1 in our paper serves an important role in this tracking. Note
that the constant c0 is independent of s, d, r, f in the bound of Proposition 4.1, and we obtain the
bound decays at the rate

(
6
πe

)d/4
. However, in Fang et al. (2020), they utilized the result from Hesse

(2006); that is, ∥f∥∞ ≤ Cs,d∥f∥W s
p (Sd−1), f ∈ W s

p (Sd−1) for s ≥ d−1
2 . Here, note that the constant

Cs,d is a function of d, and since they work under the fixed d setting, they did not pay much attention
to the dependency. Of course, since we are in an asymptotic setting, we use the Stirling’s formula
to see behaviors of N (k, d) as d → ∞, whereas Fang et al. (2020) just used a simple calculation
N (k, d) ≤ c′dk

d−2, for some c′d dependent on d.
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D.2 CONSTRUCTION OF DEEP RELU NETWORKS : ERROR BOUND FOR (III)

In this section, several useful tools for the construction of neural network for approximating function
L̂y
N,M (f) are introduced. Then, the full proof of our main theorem is presented.

The first key lemma is from Yarotsky (2017) wherein the neural network that approximates the
quadratic function x2 for x ∈ [0, 1] is constructed.

Lemma D.2.1 (Proposition 2 in Yarotsky (2017)) For any positive integer m ≥ 1, there exists a
deep ReLU network

f̃m ∈ F
(
m,

(
1, 5, . . . , 5, 1

))
,

such that f̃m ∈ [0, 1] and
∣∣∣f̃m(x)− x2

∣∣∣ ≤ 2−2m−2, for all x ∈ [0, 1].

The main idea of Lemma D.2.1 is to approximate the quadratic function via f̃m(x) := x −∑m
s=1

gs(x)
22s . Here, gs(x) is a s-compositions of sawtooth functions defined as

g(x) = 2σ(x)− 4σ(x− 1/2) + 2σ(x− 1).

Note that g(x) can be implemented by a single layer ReLU network. Then, we can easily construct
a ReLU network f̃m, which belongs to F(m, (1, 5, . . . , 5, 1)).

Next lemma states that we can construct a neural network that can implement the multiplica-
tion operator.

Lemma D.2.2 For any positive integer m ≥ 1, there exists a deep ReLU network

Multm ∈ F
(
m+ 3,

(
2, 10, . . . , 10, 1

))
,

such that Multm(x, y) ∈ [0, 1] and

|Multm(x, y)− xy| ≤ 2−2m−1,

for all x, y ∈ [0, 1]. Moreover, Multm(x, 0) = Multm(0, y) = 0.

The key idea for constructing Multm(x, y) is to invoke the identity xy = 1
4 ((x + y)2 − (x − y)2).

The first two hidden layers in the network are used to compute |x+y
2 | ∈ [0, 1] and |x−y

2 | ∈ [0, 1] via
|x| = σ(x) + σ(−x). Given the values |x+y

2 | and |x−y
2 | as inputs, f̃m in Lemma D.2.1 is used for

approximating 1
4 (x+ y)2 and 1

4 (x− y)2 in the identity. See Appendix E.3 for the detailed proof.

The final key ingredient is to construct a deep ReLU network that approximates univariate polyno-
mial functions of degree k ∈ N, that is xk for x ∈ [0, 1].

Lemma D.2.3 For any positive integer m ≥ 1, N ≥ 2 and for P = ⌈log2(N)⌉, there exists a deep
ReLU network

Poly{N}
m ∈ F

(
L,

(
1, 11N, . . . , 11N, 2P

)
,N

)
,

with the depth L = m+(m+4)
(
⌈log2(N)⌉−1

)
and the number of parameters N ≤ 202N ·(m+3)

such that Poly{N}
m (x) ∈ [0, 1]2

P

and∣∣Polyjm(x)− xj
∣∣ ≤ P 2 · 2−2m−1 for all j ∈ {1, . . . , 2p}

for all x ∈ [0, 1].

Note that the network Poly{N}
m (x) := {Poly1m(x), . . . ,Poly2

P

m (x)} with P = ⌈log2(N)⌉ provides
approximations to monomials xj of degree up to 2N for x ∈ [0, 1] at its final output.

The key idea for the construction is to employ a tree structure; that is, the width of the network at
((m+1)+(m+4) · j)th hidden layer is doubled from that at ((m+1)+(m+4) · (j−1))th hidden
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layer for j ∈ {1, . . . , p− 1} as{
Poly1

m(x), . . . ,Poly2
j−1

m (x)
}︸ ︷︷ ︸

((m+1)+(m+4)·(j−1))thlayer

→
{

Poly1m(x), . . . ,Poly2j−1

m (x),Multm(x,Poly2
j−1

m (x)), . . . , f̃m
(
Poly2

j−1

m (x)
)}︸ ︷︷ ︸

((m+1)+(m+4)·j)th layer

. (25)

The first 2j−1 input values in ((m + 1) + (m + 4) · j)th hidden layer is exactly copied from input
values at the ((m + 1) + (m + 4) · (j − 1))th hidden layer. The remaining 2j−1 input values in
((m+1)+(m+4) ·j)th hidden layer approximates monomials {x2j−1+1, . . . , x2j} through f̃m and
Multm operations in Lemmas D.2.1 and D.2.2. The approximation error can be obtained via proof
by induction. Readers can find the detailed proof in the Appendix E.4 with the exact descriptions on
the construction of Poly{N}

m .

Finally, we are ready to state Proposition D.2.4 on the construction of network f̃ which approximates
L̂y
N,M (f).

Proposition D.2.4 Let 0 < α < 1,m,N,M ∈ N with 1 ≤ N ≤ dα + 1. For any function
f ∈ W r

∞(Sd−1) with r > 0, define L̂y
N,M (f) in (24). Then, there exists a network

f̃ ∈ F
(
L,

(
d, 22NM, . . . , 22NM, 1

)
,N

)
with depth L = (m + 4)⌈log2(2N)⌉ and number of parameters N ≤ M(2d + 404N · (m + 3) +
2N + 4) + 1 such that∥∥∥L̂y

N,M (f)− f̃
∥∥∥
∞

≤ C
′

η · ∥f∥W r
∞(Sd−1) d

2N
(
log2(2N)

)2
2−2m, (26)

where C
′

η is a positive constant depending on η and α, but not on d, r,m,N,M or f .

A detailed proof for Proposition D.2.4 is deferred in the Appendix E.5.

Given the input data x ∈ Sd−1, recall the definition of L̂y
N,M (f)(x) in (24). The crux of the whole

construction procedure of our network is to build the sub-network which approximates ξN,r(⟨x,yi⟩)
for each i ∈ [M ]. The key observation is that ξN,r(⟨x,yi⟩) is the weighted sum of univariate
polynomials of degree up to 2N . Let ui = ⟨x,yi⟩. With the properly defined constant αi,q (see
its definition in the Appendix E.5), ξN,r(⟨x,yi⟩) can be re-written as ξN,r(ui) :=

∑2N
q=0 αi,q|ui|q .

Since |ui| ∈ [0, 1], with the help of network constructed in Lemma D.2.3 with P = ⌈log2(2N)⌉,
the sub-network that approximates ξN,r(ui) is easily constructed. Recall this is enabled through the
reproducing property of the kernel of Hd

k for 0 ≤ K ≤ 2N .

E PROOFS OF STATEMENTS IN APPENDIX B AND COROLLARY 3.3

E.1 PROOF OF PROPOSITION D.1.3

Proposition D.1.3 For d ≥ 5, 1 ≤ p ≤ ∞, and s ≥ 3d−2
4 , the Sobolev space W s

p (Sd−1) is
continuously embedded into C(Sd−1), the space of continuous functions on Sd−1, which implies

∥f∥∞ ≤ c0

(
6

πe

) d
4

· ∥f∥W s
p (Sd−1) , f ∈ W s

p (Sd−1),

where c0 is an absolute constant independent of r, d, s, and f .

Proof. For f ∈ W s
p (Sd−1), by Sobolev embedding Lemma (see Hesse (2006) Eq. 14, p. 420), the

infinity norm can be bounded by the Sobolev norm as

∥f∥∞ ≤ Cs,d · ∥f∥W s
2 (Sd−1) , (27)
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where the constant Cs,d is defined with its square as

C2
s,d :=

1

ωd

∞∑
k=0

N (k, d)

(k + d−2
2 )2s

(28)

with ωd = 2π
d
2 /Γ

(
d
2

)
. Recalling (3), it is easy to see that by Stirling’s formula, for large d,

N (k, d) = (k + d−2
2 )d−2

(
1 +O

(
1
d

))
. Also, we have

Γ

(
d

2

)
=

2

d
Γ

(
d

2
+ 1

)
= 2

√
π

d

(
d

2e

) d
2
(
1 +O

(
1

d

))
. (29)

When s > d−1
2 , we have

∞∑
k=0

(
k +

d− 2

2

)d−2−2s

≤
∫ ∞

d−2
2 −1

td−2−2sdt =
1

2s+ 1− d

(
d− 2

2
− 1

)d−1−2s

.

Observe that d ≥ 5, we have d−2
2 − 1 ≥ d

12 . Thus, when s ≥ 3d−2
4 , we have 2s+ 1− d ≥ d/2 and

thereby (28) is bounded as

C2
s,d ≤

√
π

d

(
d

2πe

) d
2 2

d

(
d

12

)− d
2
(
1 +O

(
1

d

))
=

2
√
π

d
√
d

(
6

πe

) d
2
(
1 +O

(
1

d

))
.

Then, there exists an absolute constant c0 such that

C2
s,d ≤ c20

(
6

πe

) d
2

, ∀d ≥ 5.

This yields the claim.

E.2 PROOF OF LEMMA D.1.4

Lemma D.1.4 Let 0 < r ≤ 3d−2
4 and 0 < α < 1. If f ∈ W r

∞(Sd−1), then for any M ∈ N and
1 ≤ N ≤ dα + 1, there exist y = {y1, y2, . . . , yM} ⊂ Sd−1 such that∥∥∥LN (f)− L̂y

N,M (f)
∥∥∥
∞

≤
6 · C ′′( 6

πe

) d
4 ∥f∥W r

∞(Sd−1) d
N+ 3d−4r−2

8 (2N + 1)
3d−4r

4

√
M

,

where C
′′
> 0 is a constant depending on α but independent of r, f , N , M , and d.

Proof. We recall the following probability inequality for random variables with values in a Hilbert
space which can be found in Smale & Zhou (2007).

Lemma E.2.1 Let (H, ∥ · ∥) be a Hilbert space and ξ be a random variable on (Y, ρX ) with values
in H . Assume ∥ξ∥ ≤ M < ∞ almost surely. Denote σ2(ξ) = E(∥ξ∥2). Let {yi}Mi=1 be independent
samples from ρX . Then for any 0 < δ < 1, we have with probability at least 1− δ,∥∥∥∥∥ 1

M

M∑
i=1

ξ(yi)− E(ξ)

∥∥∥∥∥
H

≤
2M log

(
2
δ

)
M

+

√
2σ2(ξ) log

(
2
δ

)
M

. (30)

Let us define the random variable ξ on (Sd−1, ρX ) with values in H given by

ξ(y) = Fr(y)

2N∑
k=0

(1 + λk)
−r/2η

(
k

N

)
Zk(y, ·), y ∈ Sd−1. (31)

To bound the norm ∥ξ∥ = ∥ξ(y)∥2W s
2

, we set s = 3d−2
4 and recall the norm of W s

2 (Sd−1) given with
p = 2 and for y ∈ Sd−1,

∥ξ(y)∥W s
2 (Sd−1) =

∥∥∥∥∥Fr(y)

2N∑
k=0

(1 + λk)
s−r
2 η

(
k

N

)
Zk(y, ·)

∥∥∥∥∥
L2(Sd−1)

. (32)
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Recall λk = k(k + d − 2). Then, for 0 ≤ k ≤ 2N , d ≥ 3, we have k2 < 1 + λk ≤ dk2. We
find (1 + λk)

s−r ≤ ds−rk2(s−r) by s = 3d−2
4 ≥ r (∵ s− r ≥ 0). Also note that 0 ≤ η(t) ≤ 1

for t ∈ [0, 2]. Employing Stirling’s formula d! =
√
2πd

(
d
e

)d(
1 + O(1/d)

)
in the expression (3)

for N (k, d) yields N (k, d) ≤ Cdk for 0 ≤ k ≤ 2N and some constant C depending on α but
independent of d. By using the identity Zk(y, y) = N (k, d) (see Corollary 1.2.7. in Dai & Xu
(2013)), ∥ξ∥2W s

2 (Sd−1) can be bounded as

Fr(y)
2 ·

2N∑
k=0

(
1 + λk

)s−r
η2
(

k

N

)
N (k, d) = Fr(y)

2 ·
(
1 +

2N∑
k=1

(
1 + λk

)s−r
η2
(

k

N

)
N (k, d)

)

≤ Fr(y)
2 ·

(
1 + C · ds−r ·

2N∑
k=1

k2(s−r)dk
)

≤ Fr(y)
2 ·

(
1 + C · d2N+s−r ·

2N∑
k=1

k2(s−r)

)
,

while the term
∑2N

k=1 k
2(s−r) with s− r ≥ 0 can be bounded as

2N∑
k=1

k2(s−r) ≤
∫ 2N+1

1

x2(s−r)dx ≤ 1

2(s− r) + 1
(2N + 1)2(s−r)+1.

Combining this with the definitions of the norm ∥f∥W r
∞(Sd−1), we know that ∥ξ(y)∥2W s

2
can be

bounded as

∥ξ(y)∥2W s
2
≤ C ′2 ∥f∥2W r

∞(Sd−1) · d
2N+s−r(2N + 1)2(s−r)+1,

where C ′ is a constant depending on α but independent of r, s, f , N , and d. Thus the
random variable ξ satisfies the condition ∥ξ∥ ≤ M < ∞ in Lemma E.2.1 with M =

C ′ ∥f∥W r
∞(Sd−1) d

N+ s−r
2 (2N +1)(s−r)+ 1

2 . So by Lemma E.2.1, with δ = 1
2 and σ2(ξ) ≤ M2, we

know from the positive measure of the sample set that there exists a set of points y = {yi}Mi=1 ∈
Sd−1 such that∥∥∥∥∥ 1

M

M∑
i=1

ξ(yi)− E(ξ)

∥∥∥∥∥
H

=
∥∥∥LN (f)− L̂y

N,M (f)
∥∥∥
W s

2 (Sd−1)

≤
6 · C ′ ∥f∥W r

∞(Sd−1) d
N+ s−r

2 (2N + 1)(s−r)+ 1
2

√
M

. (33)

Since s = 3d−2
4 , combining the result from Proposition D.1.3 with (33) yields

∥∥∥LN (f)− L̂y
N,M (f)

∥∥∥
∞

≤
6 · C ′′( 6

πe

) d
4 ∥f∥W r

∞(Sd−1) d
N+ 3d−4r−2

8 (2N + 1)
3d−4r

4

√
M

,

where C
′′
> 0 is a constant depending on α but independent of r, f , N , M , and d.

E.3 PROOF OF LEMMA D.2.2

Lemma D.2.2 For any positive integer m ≥ 1, there exists a deep ReLU network

Multm ∈ F
(
m+ 3,

(
2, 10, . . . , 10, 1

))
,

such that Multm(x, y) ∈ [0, 1] and

|Multm(x, y)− xy| ≤ 2−2m−1,

for all x, y ∈ [0, 1]. Moreover, Multm(x, 0) = Multm(0, y) = 0.
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Proof. Given input (x, y), the network Multm(x, y) computes in the first hidden layer

(x, y) →
{
σ

(
x+ y

2

)
, σ

(
−

(
x+ y

2

))
, σ

(
x− y

2

)
, σ

(
−

(
x− y

2

))}
.

By using the equality |x| = σ(x)+σ(−x) for x ∈ [0, 1], the network computes in the second hidden
layer

(x, y) →
{
σ

( ∣∣∣∣x+ y

2

∣∣∣∣ ), σ( ∣∣∣∣x− y

2

∣∣∣∣ )}.
Note σ

( ∣∣x+y
2

∣∣ ), σ( ∣∣x−y
2

∣∣ ) ∈ [0, 1], and σ
( ∣∣x+y

2

∣∣ ) =
∣∣x+y

2

∣∣ , σ( ∣∣x−y
2

∣∣ ) =
∣∣x−y

2

∣∣. We apply the
network f̃m on the two components respectively. This gives a network of (m + 2) hidden layers
with width vector (2, 10, . . . , 10, 2) that computes

(x, y) →
{
σ

(
f̃m

( ∣∣∣∣x+ y

2

∣∣∣∣ )), σ(f̃m( ∣∣∣∣x− y

2

∣∣∣∣ ))}. (34)

The network Multm computes (34) in the (m + 3)th hidden layer. Since f̃m ∈ [0, 1], σ
(
f̃m(x)

)
=

f̃m(x). In the output layer, the network value is computed as

Multm(x, y) := f̃m

( ∣∣∣∣x+ y

2

∣∣∣∣ )− f̃m

( ∣∣∣∣x− y

2

∣∣∣∣ ). (35)

Since f̃m is an increasing function in argument, Multm(x, y) ≥ 0, and since f̃m ∈ [0, 1],
Multm(x, y) ≤ 1. By identity, xy =

∣∣x+y
2

∣∣2 − ∣∣x−y
2

∣∣2, and Lemma D.2.1, the error is computed as
follows:

|Multm(x, y)− xy| ≤

∣∣∣∣∣f̃m
( ∣∣∣∣x+ y

2

∣∣∣∣ )−
( ∣∣∣∣x+ y

2

∣∣∣∣ )2
∣∣∣∣∣+

∣∣∣∣∣f̃m
( ∣∣∣∣x− y

2

∣∣∣∣ )−
( ∣∣∣∣x− y

2

∣∣∣∣ )2
∣∣∣∣∣

≤ 2−2m−1.

If either x = 0 or y = 0, by the definition of (35), we have Multm(x, 0) = Multm(0, y) = 0.

E.4 PROOF OF LEMMA D.2.3

Lemma D.2.3 For any positive integer m ≥ 1, N ≥ 2 and for P = ⌈log2(N)⌉, there exists a deep
ReLU network

Poly{N}
m ∈ F

(
L,

(
1, 11N, . . . , 11N, 2P

)
,N

)
,

with the depth L = m+(m+4)
(
⌈log2(N)⌉−1

)
and the number of parameters N ≤ 202N ·(m+3)

such that Poly{N}
m (x) ∈ [0, 1]2

P

and∣∣Polyjm(x)− xj
∣∣ ≤ P 2 · 2−2m−1 for all j ∈ {1, . . . , 2P }

for all x ∈ [0, 1].

Proof. Let us describe the construction of the network Poly{N}
m . With the application of

Lemma D.2.1, in the (m+ 1)th hidden layer, the network computes

x →
{
σ(x), σ(f̃m(x))

}
with the width p = (1, 5, . . . , 5, 2). For approximating x3, the network Multm is applied on the pair
(σ(x), σ(f̃m(x))), and for approximating x4, the network f̃m is applied on the σ(f̃m(x)). Therefore,
in the {(m+ 1) + (m+ 4)}th hidden layer, the network Poly{N}

m computes

x →
{
σ(x), σ(f̃m(x)), σ

(
Multm(x, f̃m(x))

)
, σ

(
f̃m

(
f̃m(x)

))}
. (36)
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Note that each component in the hidden layer is in [0, 1] by Lemmas D.2.1 and D.2.2. This procedure
is continued until a following vector is in the final output layer,

x →
{

Poly1
m(x), . . . ,Poly2

P−1

m (x),Multm(x,Poly2
P−1

m (x)), . . . , f̃m
(
f̃m . . .

(
f̃m(x)

))}
∈ [0, 1]2

P

.

The resulting network is referred as Poly{N}
m and has m+ (m+ 4)

(
⌈log2(N)⌉ − 1

)
hidden layers.

Recall P = ⌈log2(N)⌉. By the construction procedure of the network, we can compute the upper
bound of maximum width as,

2⌈log2(N)⌉−1 +

{
10 ·

(
2⌈log2(N)⌉−1 − 1

)
+ 5

}
≤ 11 · 2⌈log2(N)⌉−1 ≤ 11N, (37)

where we use ⌈log2(N)⌉ ≤ log2(N)+1 in the second inequality. Now, we need to count the number
of active parameters in the network. For k ∈ {1, . . . , ⌈log2(N)⌉}, we compute the upper bound on
the total number of active parameters in-between following hidden layers:{

Poly1m(x), . . . ,Poly2
k−1

m (x)

}
→

{
Poly1

m(x), . . . ,Poly2
k−1

m (x),Poly2
k−1+1

m (x), . . . ,Poly2k

m (x)

}
.

(38)

Think of a network that takes the hidden layer in the left hand side of (38) as an input, and gives
the hidden layer in the right hand side of (38) as an output. It is easy to count the number of active
parameters in input, hidden, and output layers, separately as follows:

Input layer : 2k−1 + 1 + 2 ·
(
2k−1 − 1

)
= 3 · 2k−1 − 1.

Hidden layers : (m+ 2) · 2k−1 + 100 · (m+ 2) · (2k−1 − 1) + 25 · (m+ 2) = (m+ 2)(101 · 2k−1 − 75).

Output layer : 2k−1 + 10 · (2k−1 − 1) + 5 = 11 · 2k−1 − 5.

Since the k runs over {1, . . . , ⌈log2(N)⌉}, the total number of active parameters can be bounded as:

⌈log2(N)⌉∑
k=1

{(
m+ 2

)(
101 · 2k−1 − 75

)
+

(
14 · 2k−1 − 6

)}

≤ (m+ 2) · 101
⌈log2(N)⌉∑

k=1

2k−1 + 14 ·
⌈log2(N)⌉∑

k=1

2k−1

≤ 202N · (m+ 3).

The approximation error is proved via induction on the number of iterated multiplications P =
⌈log2(N)⌉. For P = 1, that is N = 2, we have∣∣∣x2 − f̃m(x)

∣∣∣ ≤ 2−2m−1

by Lemma D.2.1. For the convenience of notation, denote x̃a := Polyam(x) for some positive integer
a. For P = k − 1, assume a following holds∣∣xj − x̃j

∣∣ ≤ 3k−2 · 2−2m−1 for j ∈ {1, . . . , 2k−1}.

Then, for P = k, we want to prove∣∣xj − x̃j
∣∣ ≤ 3k−1 · 2−2m−1 for j ∈ {1, . . . , 2k}.

By the construction of neural network and induction assumption, for j ∈ {1, . . . , 2k−1}, we have∣∣xj − x̃j
∣∣ ≤ 3k−2 · 2−2m−1 ≤ 3k−1 · 2−2m−1. For any j ∈ {2k−1 + 1, . . . , 2k}, find any a, b ∈

{1, . . . , 2k−1} such that j = a+ b. Then, for x ∈ [0, 1],∣∣xa+b − Multm
(
x̃a, x̃b

)∣∣ ≤ ∣∣xa+b − x̃a · x̃b
∣∣+ ∣∣x̃a · x̃b − Multm

(
x̃a, x̃b

)∣∣
≤ xa

∣∣xb − x̃b
∣∣+ x̃b |xa − x̃a|+

∣∣x̃a · x̃b − Multm
(
x̃a, x̃b

)∣∣
≤ 3k−2 · 2−2m−1 + 3k−2 · 2−2m−1 + 2−2m−1 ≤ 3k−1 · 2−2m−1.

By using the fact log2(3) < 2, we can deduce 3k−1 < P 2 and conclude the proof.
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E.5 PROOF OF PROPOSITION D.2.4

Proposition D.2.4 Let 0 < α < 1,m,N,M ∈ N with 1 ≤ N ≤ dα + 1. For any function
f ∈ W r

∞(Sd−1) with r > 0, define L̂y
N,M (f) in (24). Then, there exists a network

f̃ ∈ F
(
L,

(
d, 22NM, . . . , 22NM, 1

)
,N

)
with depth L = (m + 4)⌈log2(2N)⌉ and number of parameters N ≤ M(2d + 404N · (m + 3) +
2N + 4) + 1 such that∥∥∥L̂y

N,M (f)− f̃
∥∥∥
∞

≤ C
′

η · ∥f∥W r
∞(Sd−1) d

2N
(
log2(2N)

)2
2−2m, (39)

where C
′

η is a positive constant depending on η and α, but not on d, r,m,N,M or f .

Proof. We adopt the shorthand notation denoting [n] := {1, 2, . . . , n} and [n]0 := {0, 1, . . . , n} for
n ∈ N in the proof.

Given the input data x ∈ Sd−1, recall the definition of L̂y
N,M (f)(x) in (24). The crux of the

whole construction procedure is to build the sub-network which approximates ξN,r(⟨x,yi⟩) for
each i ∈ [M ]. First, observe that, by (4) and (23), ξN,r(ui) can be written as:

ξN,r(ui) =

2N∑
k=0

(1 + λk)
− r

2 η

(
k

N

){
k + λG

λG

⌊ k
2 ⌋∑

ℓ=0

(−1)ℓ
Γ
(
k − ℓ+ λG

)
Γ
(
λG

)
ℓ!
(
k − 2ℓ

)
!

(
2ui

)k−2ℓ
}
, (40)

for i ∈ [M ]. The key observation is that Eq. (40) is the weighted sum of univariate polynomials of
degree up to 2N . We define a constant ck,ℓ,η,λk,r,d as

ck,ℓ,η,λk,r,d := (1 + λk)
− r

2 η

(
k

N

)
k + λG

λG

(−1)ℓΓ
(
k − ℓ+ λG

)
2k−2ℓ

Γ
(
λG

)
ℓ!
(
k − 2ℓ

)
!

. (41)

For i ∈ {1, . . . ,M}, set αi,q as

αi,q =

{∑
(k,ℓ)∈Aq

(
− ck,ℓ,η,λk,r,d

)
if ui < 0 and q is odd,∑

(k,ℓ)∈Aq

(
ck,ℓ,η,λk,r,d

)
otherwise,

(42)

where for each q ∈ {0, . . . , 2N}, the set Aq is given by Aq := {(k, ℓ) ∈ [2N ]0×[⌊k/2⌋]0 : k−2ℓ =

q}. Then, (40) can be re-written as ξN,r(ui) :=
∑2N

q=0 αi,q|ui|q .

1. The Network Construction. Now, we are ready for the construction of f̃ . Through
Lemma D.1.4, we know that there exists y = {y1, . . . ,yM} that satisfies the bound (D.1.4).
Then, for each i ∈ [M ], we put yi ∈ Sd−1 as a weight vector that connects input x to the
(2i − 1)th and (2i)th nodes in the first hidden layer. Through this, f̃ computes in its first hidden
layer x →

{
σ
(
⟨x,y1⟩

)
, σ

(
− ⟨x,y1⟩

)
, . . . , σ

(
⟨x,yM ⟩

)
, σ

(
− ⟨x,yM ⟩

)}
∈ [0, 1]2M . Then, by

the identity |x| = σ(x) + σ(−x) for x ∈ R, the network computes in its second hidden layer
x →

{
σ
(
|u1|

)
, σ

(
|u2|

)
, . . . , σ

(
|uM |

)}
∈ [0, 1]M , where ui := ⟨x,yi⟩ ∈ [−1, 1] for i ∈ [M ].

Since σ(|ui|) = |ui| ∈ [0, 1], Poly{2N}
m with P = ⌈log2(2N)⌉ is applicable for each {|ui|}Mi=1, and

it generates Polyq
m(|ui|) with q at most 4N . Set Bmax := maxi=1,...,M

∣∣∣∑2N
q=0 αi,q · Polyqm(|ui|)

∣∣∣.
Using the definition of the constant αi,q , the network f̃ computes in the (m+ 4)⌈log2(2N)⌉th hid-
den layer {σ(

∑2N
q=0 α1,qPolyqm(|u1|) + 2Bmax), . . . , σ(

∑2N
q=0 αM,qPolyqm(|uM |) + 2Bmax)} ∈ RM .

By the definition of Bmax, it is easy to see each component in the hidden layer is positive. Set the
weight of output layer as { 1

M Fr(yi)}Mi=1. Define L(|ui|) :=
∑2N

q=0 αi,q · Polyq
m(|ui|) + 2 · Bmax.

Then, given the data y = {y1, . . . ,yM}, the network f̃ computes its final output as f̃(x) =
1
M

∑M
j=1 Fr(yj) ·

(
L(|⟨x,yj⟩|)− 2Bmax

)
:= 1

M

∑M
i=1 Fr(yi) · L

(
ξN,r

)(
⟨x,yi⟩

)
.

2. The Width and Number of Active Parameters of f̃ . By the construction of network f̃ and the
result of Lemma D.2.3, it is easy to see the maximum width of the network is 22NM . Now, we
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work on counting the number of active parameters in the network as
From Input to 2nd hidden layer : 2Md+ 2M.

From 2nd to
(
(m+ 4)⌈log2(2N)⌉ − 1

)th
hidden layer : 404NM · (m+ 3).

From
(
(m+ 4)⌈log2(2N)⌉ − 1

)th
hidden layer to output layer : (2N + 1)M +M + 1.

Summing up the total number yields the desired result.

3. Approximation Error Computation. A remaining thing is to calculate the approximation error:∥∥∥L̂y
N,M (f)− f̃

∥∥∥
∞

= sup
x∈Sd−1

∣∣∣∣∣ 1M
M∑
i=1

Fr(yi) · ξN,r(⟨x,yi⟩)−
1

M

M∑
i=1

Fr(yi) · L
(
ξN,r

)(
⟨x,yi⟩

)∣∣∣∣∣
≤ ∥f∥W r

∞(Sd−1) ·
∥∥ξN,r − L

(
ξN,r

)∥∥
∞ . (43)

Recall the definition of αi,q in (42). Using Stirling’s Formula, Γ(n+1) =
√
2πn

(
n
e

)n
(1+O(1/n)),

we observe the behavior of Gegenbauer coefficient in (4) where λG = d−2
2 ≫ dα+1 ≥ N , and find

that it can be bounded as C · λk−ℓ
G · 2k−2ℓ(1 +O(1/d)), where C > 0 is a constant independent of

d.

For k ∈ {0, 1, . . . , 2N}, combining the facts (1 + λk)
− r

2 < 1, η(·) ≤ 1, k+λG
λG

≤ 2 for k ≤ 2N ≤
2(dα + 1) with λG = d−2

2 yields ∣∣ck,ℓ,η,λk,r,d

∣∣ ≤ C
′

η · 2−ℓ · dk−ℓ, (44)

where C
′

η > 0 is a constant dependent on α and η. Recall L
(
ξN,r

)(
⟨x,yj⟩

)
:=

∑2N
q=0 αj,q ·

Polyqm(|⟨x,yj⟩|) and note that
∑2N

q=0 |αj,q| =
∑2N

k=0

∑⌊ k
2 ⌋

ℓ=0

∣∣ck,ℓ,η,λk,r,d

∣∣. Then, we have

∥∥ξN,r − L
(
ξN,r

)∥∥
∞ ≤

( 2N∑
k=0

⌊ k
2 ⌋∑

ℓ=0

∣∣ck,ℓ,η,λk,r,d

∣∣) ·
(

sup
u∈[0,1]

max
q∈{0,...,2N}

|uq − Polyqm(u)|
)

≤ C
′

η ·
( 2N∑

k=0

dk
⌊ k

2 ⌋∑
ℓ=0

1

(2d)ℓ

)
·
((

log2(2N)
)2 · 2−2m−1

)
where we used the result from Lemma D.2.3 and (44) in the second inequality. Using

∑⌊ k
2 ⌋

ℓ=0
1

(2d)ℓ
≤

2 in the last inequality yields the claim.

E.6 PROOF OF COROLLARY 3.3

Corollary 3.3 Let 0 < α, β, γ < 1 with γ > max{α, β} and N ∈ N with 1 ≤ N ≤ dα + 1. For
any f ∈ W r

∞(Sd−1) with r > 0, we have :

(I) For 3d−2
4 − C1 ≤ r ≤ 3d−2

4 with some constant C1 ≥ 0 independent of d, there exists a
network

f̃ (I) ∈ F (L, (d, 66N, 66N, . . . , 66N, 1) ,N )

with depth L = O (dγ log2 d) and the number of active parameters N = O
(
dmax{α+γ,1}),

such that
∥∥∥f − f̃ (I)

∥∥∥
∞

≤ C ′
η,α,β,γ∥f∥W r

∞(Sd−1)d
−dβ

, where C ′
η,α,β,γ is a constant depend-

ing only on C1, η, α, β, γ.

(II) For r = O(1) and M = O
(
9dd

9
4d
)

, there exists a network

f̃ (II) ∈ F
(
L,

(
d, 22NM, . . . , 22NM, 1

)
,N

)
with depth L = O (dγ log2 d) and the number of active parameters N = O

(
9dd

13
4 d

)
such

that
∥∥∥f − f̃ (II)

∥∥∥
∞

≤ C ′
η,α,β,γ∥f∥W r

∞(Sd−1)d
−αr, where C ′

η,α,β,γ is a constant depending

only on η, α, β, γ.
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Proof. By the results of Theorem 3.1, for 1 ≤ N ≤ dα +1, we have the following inequality on the
approximation error∥∥∥f̃ − f

∥∥∥
∞

≤ C
′′

η ∥f∥W r
∞(Sd−1) ×

max

{
N−r,

(
6
πe

) d
4 dN+ 3d−4r−2

8 (2N + 1)
3d−4r

4

√
M

,d2N
(
log2(2N)

)2
2−2m

}
, (45)

where C
′′

η is a constant dependent on η, and independent on d, r,N,M or f . We divide the proof
into two cases.

(I) r = O(d) and any integer M ≥ 1

For the first term in (45), since N = ⌈dα⌉, we know that N−r = O(d−αr) = O(d−dβ

) with any
0 < β < 1. This is due to the assumption that 3d−2

4 − C1 ≤ r ≤ 3d−2
4 , which implies d = O(r)

and dβ = o(r).

For the second term in (45), since N = ⌈dα⌉ with 0 < α < 1, we know that it is bounded by(
6
πe

) d
4 dN+ 3d−4r−2

8 (2N + 1)
3d−4r

4

√
M

≤
(

6
πe

) d
4 dd

α+ 3d−4r+6
8 (3dα)

3d−4r
4

√
M

. (46)

As 3d−2
4 − C1 ≤ r ≤ 3d−2

4 , we know the term on the right hand side of (46) can be written as(
6
πe

) d
4 dd

α+O(1)3O(1)/
√
M . To show that the bound is of order O(d−dβ

), we multiply the bound
by dd

β

, take the logarithm, and find that for any 0 < α, β < 1,

log

((
6

πe

) d
4

dd
α+dβ+O(1)

)
≤ d

4
log

(
6

πe

)
+

(
dα + dβ +O(1)

)
log(d) → −∞,

as d → ∞. Hence, there exists a constant Cα,β > 0 depending only on C1, α, β such that(
6
πe

) d
4 dN+ 3d−4r−2

8 (2N + 1)
3d−4r

4

√
M

≤ Cα,βd
−dβ

,

for any fixed M ∈ N. In our proof, we simply choose M = 3. For the third term in (45), take
m = ⌈dγ⌉ with max{α, β} < γ < 1, then there exists a constant Cα,β,γ depending on α, β, γ such
that

d2N
(
log2(2N)

)2
2−2m < d2d

α+2
(
2 + log2(d)

)2
2−2m ≤ d3d

α

2−2m ≤ Cα,β,γd
−dβ

,

where log2(2d
α +2) ≤ log2(4d

α) < 2+ log2(d) is used in the first inequality, and the last inequal-
ity follows from the same argument as above, of multiplying with dd

β

and taking the logarithm.
Combining all the analyses above, we have∥∥∥f̃ − f

∥∥∥
∞

≤ C ′
η,α,β,γ∥f∥W r

∞(Sd−1)d
−dβ

,

where C ′
η,α,β,γ > 0 is a constant dependent on η, α, β, γ, and C1.

Recall from Proposition D.2.4, f̃ is a network with depth L = (m + 4)⌈log2(2N)⌉ and number of
parameters N ≤ M(2d + 404N · (m + 3) + 2N + 4) + 1. By simply plugging-in m = ⌈dγ⌉,
N = ⌈dα⌉ and M = 3, we have L = O(dγ log2(d)) and N = O

(
dmax{α+γ,1}).

(II) r = O(1) and M = O(dd).

For the first term in (45), since N = ⌈dα⌉, we know that N−r = O(d−αr).

For the second term in (45), since N = ⌈dα⌉ with 0 < α < 1, we know that it is bounded by(
6
πe

) d
4 dN+ 3d−4r−2

8 (2N + 1)
3d−4r

4

√
M

≤
(

6
πe

) d
4 dd

α+ 3d−4r+6
8 (3dα)

3d−4r
4

√
M

≤
(

6
πe

) d
4 dd

α+ 9
8d3d

√
M

. (47)
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Take M = O(9dd
9
4d), multiply the bound (47) by dd

β

, take the logarithm, and find that for any
0 < α, β < 1,

log

((
6

πe

) d
4

dd
α+dβ+O(1)

)
≤ d

4
log

(
6

πe

)
+

(
dα + dβ +O(1)

)
log(d) → −∞,

as d → ∞. Hence, there exists a constant Cα,β > 0 depending only on C1, α, β such that(
6
πe

) d
4 dN+ 3d−4r−2

8 (2N + 1)
3d−4r

4

√
M

≤ Cα,βd
−dβ

≤ Cα,βd
−αr,

for M = O(9dd
9
4d). For the third term in (45), take m = ⌈dγ⌉ with max{α, β} < γ < 1, then

there exists a constant Cα,β,γ depending on α, β, γ such that

d2N
(
log2(2N)

)2
2−2m < d2d

α+2
(
2 + log2(d)

)2
2−2m ≤ d3d

α

2−2m ≤ Cα,β,γd
−dβ

≤ Cα,β,γd
−αr,

where log2(2d
α +2) ≤ log2(4d

α) < 2+ log2(d) is used in the first inequality, and the last inequal-
ity follows from the same argument as above, of multiplying with dd

β

and taking the logarithm.
Combining all the analyses above, we have∥∥∥f̃ − f

∥∥∥
∞

≤ C ′
η,α,β,γ∥f∥W r

∞(Sd−1)d
−αr,

where C ′
η,α,β,γ > 0 is a constant dependent on η, α, β, γ, and C1.

Recall from Proposition D.2.4, f̃ is a network with depth L = (m + 4)⌈log2(2N)⌉ and number of
parameters N ≤ M(2d + 404N · (m + 3) + 2N + 4) + 1. By simply plugging-in m = ⌈dγ⌉,
N = ⌈dα⌉ and M = O(9dd

9
4d), we have L = O(dγ log2(d)) and N = O

(
9dd

13
4 d

)
.

F PROOFS OF PROPOSITION 4.2, THEOREM 4.3 AND THEOREM 4.4

F.1 PROOF OF PROPOSITION 4.2

Proposition 4.2 Set δ ∈ (0, 1). Then, with probability at least 1− δ, we have

E
(
πB f̂n

)
− E

(
fρ
)
≤ CB,δ,f ·

(
Pdim(F) · log(n)

n
+

∥f − fρ∥∞√
n

+ ∥f − fρ∥2∞
)
, (48)

where CB,δ,f is an absolute constant dependent on B, δ, f independent on n, r, d.

Proof. Since f̂n is an empirical risk minimizer in (12), we have ED(f̂n) ≤ ED(f) for any fixed
f ∈ F and ED(πB f̂n) ≤ ED(f̂n). Then, we have a following decomposition:

E
(
πB f̂n

)
− E

(
fρ
)
=

({
E
(
πB f̂n

)
− E

(
fρ
)}

−
{
ED

(
πB f̂n

)
− ED

(
fρ
)})

+

({
ED

(
πB f̂n

)
− ED

(
fρ
)}

−
{
ED

(
f
)
− ED

(
fρ
)})

+

({
ED

(
f
)
− ED

(
fρ
)}

−
{
E
(
f
)
− E

(
fρ
)})

+

(
E
(
f
)
− E

(
fρ
))

≤
({

E
(
πB f̂n

)
− E

(
fρ
)}

−
{
ED

(
πB f̂n

)
− ED

(
fρ
)})

(49)

+

({
ED

(
f
)
− ED

(
fρ
)}

−
{
E
(
f
)
− E

(
fρ
)})

+

(
E
(
f
)
− E

(
fρ
))

.

Let FB := {πBf : ∀f ∈ F} and define two quantities:

S1(n,FB) :=
{
E
(
f
)
− E

(
fρ
)}

−
{
ED

(
f
)
− ED

(
fρ
)}

∀f ∈ FB ,

S2(n,F) :=
{
ED

(
f
)
− ED

(
fρ
)}

−
{
E
(
f
)
− E

(
fρ
)}

∀f ∈ F .

Step 1 : Control S1(n,FB). The following concentration inequality is needed for controlling the
term.
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Lemma F.1.1 [Theorem 11.4 of Györfi et al. (2002)] Assume |y| ≤ B almost surely and B ≥ 1.
Let α, β > 0 and 0 < ε ≤ 1/2. If F ′

is a set of functions f : Rd → [−B,B], then for any f ∈ F ′
,

we have

P
(
S1(n,F

′
) ≤ ε(α+ β + E(f)− E(fρ))

)
≥ 1− sup

D
N
(

βε

20B
,F

′
, ∥ · ∥L1(D)

)
exp

(
− ε2(1− ε)αn

214(1 + ε)B4

)
.

Lemma F.1.2 [Theorem 6 of Haussler (2018)] Let B > 0 and F ′
be a set of functions f : X →

[−B,B]. Then for any ε ∈ (0, B], there holds

M(ε,F
′
, ∥ · ∥L1(D))) ≤ 2

(
2eB

ε
log

2eB

ε

)Pdim
(
F

′)
. (50)

Recall a classical relation between ε-packing number and ε-covering number that asserts

M(2ε,F , ∥ · ∥L1(D))) ≤ N (ε,F , ∥ · ∥L1(D))) ≤ M(ε,F , ∥ · ∥L1(D))), (51)

for any ε > 0. Combining (50), (51), the facts log x < x, ∀x > 0, and Pdim(FB) ≤ Pdim(F)
(See Maiorov & Ratsaby (1999), page 297), we have the upper-bound on N (ε,FB , ∥ · ∥L1(D))) as
follows:

N (ε,FB , ∥ · ∥L1(D))) ≤ 2

(
2eB

ε
log

2eB

ε

)Pdim
(
FB

)
≤ 2

(
2eB

ε

)2Pdim
(
F
)
. (52)

Then, taking ε = 1
2 , β = 1

n in Lemma F.1.1, using the upper-bound on covering number in (52)
yields the lower bound for the confidence level in Lemma (F.1.1) as follows:

1− sup
D

N
(

1

40Bn
,FB , ∥ · ∥L1(D)

)
exp

(
− αn

2568B4

)
≥ 1− CB · exp

(
2 · Pdim(F) · log(n)− αn

2568B4

)
, (53)

where CB > 0 is some absolute constants dependent on B. Choosing α in (53) such that

α = CB,δ ·
Pdim(F) · log(n)

n

with a properly chosen CB,δ > 0 absolute constant dependent on B and δ yields the probability of
following event is at least 1− δ

2 :

S1(n,FB) ≤
1

2

(
CB,δ ·

Pdim(F) · log(n)
n

+
1

n
+ E(πB f̂n)− E(fρ)

)
. (54)

Step 2 : Control S2(n,F). Define a random variable η on Z = X × Y to be

η(z) = (y − f(x))2 − (y − fρ(x))
2.

Since |η(z)| ≤ (3B + ∥f∥∞)2, then |η(z) − E[η(z)]| ≤ 2(3B + ∥f∥∞)2. It is also easy to see
σ2 ≤ E

[
η2
]
≤

(
3B + ∥f∥∞

)2 ∥f − fρ∥2∞. Then, by the one-side Bernstein’s inequality (see
Lemma H.2), we have

P
(
S2(n,F) < ε

)
≥ 1− exp

{
− nε2

2
(
3B + ∥f∥∞

)2( ∥f − fρ∥2∞ + 2
3ε
)}.

Taking δ
2 = exp

{
− nε2

2
(
3B+∥f∥∞

)2(
∥f−fρ∥2

∞+ 2
3 ε
)}, A := 2(3B + ∥f∥∞)2, B := ∥f − fρ∥2∞ and

solving the quadratic equation with respect to ε yield the following inequalities with some absolute
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constant C
′′

0 > 0 :

ε =
A log

(
2
δ

)
+
√

A2 log
(
2
δ

)
+ 9nAB log

(
2
δ

)
3n

≤
2A log

(
2
δ

)
3n

+

√
AB ·

log
(
2
δ

)
n

≤ CB,f,δ ·
∥f − fρ∥∞√

n
,

where in the first inequality, the facts
√
a+ b ≤

√
a +

√
b for a, b > 0 is used, and CB,f,δ is a

constant dependent on C,B and f . Then, with probability at least 1− δ
2 , we have

S2(n,F) ≤ CB,f,δ ·
∥f − fρ∥∞√

n
. (55)

Step 3 : Combining Everything. Note E
(
f
)
− E

(
fρ
)
= ∥f − fρ∥2ρX

≤ ∥f − fρ∥2∞. Then, plug-
ging the (54) and (55) in (49) yields the claim.

F.2 PROOF OF THEOREM 4.3

Theorem 4.3 Suppose fρ ∈ W r
∞(Sd−1) with r > 0. A network f̂n from (6) with choices N =

⌈n
2

3d+4r ⌉, M = ⌈n
3d

3d+4r ⌉, and m = ⌈ r
3d+4r log2(n)⌉ yield the bound on the excess risk with

probability at least 1− δ as follows:

E
(
πM f̂n

)
− E

(
fρ
)

≤ CB,η,δ,f ·max

{
1,

6rd

(3d+ 4r)2
(log2(n))

4,
( 6

πe

) d
2 d2N+ 3d−4r−2

4 , d4N
}
· n− 2r

2r+1.5d , (56)

where CB,η,δ,f depends on B, η, δ, f and independent on d, r and n.

Proof. Let 0 < α < 1,m,N,M ∈ N with 1 ≤ N ≤ dα + 1. Then, for fρ ∈ W r
∞(Sd−1), recall

from Theorem D.2.4 that there exists a network

f̃ ∈ F
(
L,

(
d, 22NM, . . . , 22NM, 1

)
,N

)
(57)

with depth L = (m + 4)⌈log2(2N)⌉ and number of parameters N ≤ M(2d + 404N · (m + 3) +
2N + 4) + 1 such that the corresponding network’s approximation error is bounded as:∥∥∥f̃ − fρ

∥∥∥
∞

≤ C
′′

η ∥f∥W r
∞(Sd−1) ×

max

{
N−r,

(
6
πe

) d
4 dN+ 3d−4r−2

8 (2N + 1)
3d−4r

4

√
M

,d2N
(
log2(2N)

)2
2−2m

}
, (58)

where C
′′

η is a constant dependent on η, and independent on d, r,N,M and f . Since the network
width is 22NM , the total number of units across the L-hidden layers (i.e., U) of f̃ is bounded as

U ≤ 22NM · (m+ 4)⌈log2(2N)⌉.

If Nm = o(d), it is easy to see N ≤ O(Md). Recall from the result of Lemma H.1, the pseudo-
dimension of function class F in (57) is bounded as follows: for some universal constants C > 0:

Pdim(F) ≤ C ·
(
mMd · ⌈log2(N)⌉ · log

(
mMN⌈log2(N)⌉

))
. (59)
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Plug the (58), (59) in (48) from Proposition 4.2.

E
(
πM f̂n

)
− E

(
fρ
)
≤ CB,η,δ,f×{
mMd

n
log(n) · ⌈log2(N)⌉ · log

(
mMN⌈log2(N)⌉

)
︸ ︷︷ ︸

Bound for Pdim(F)·log(n)/n

+max

{
N−r,

(
6
πe

) d
4 dN+ 3d−4r−2

8 (2N + 1)
3d−4r

4

√
M

,d2N
(
log2(2N)

)2
2−2m

}
/
√
n︸ ︷︷ ︸

Bound for ∥f̃−fρ∥∞
/
√
n

+max

{
N−2r,

(
6
πe

) d
2 d2N+ 3d−4r−2

4 (2N + 1)
3d−4r

2

M
,d4N

(
log2(2N)

)4
2−4m

}
︸ ︷︷ ︸

Bound for ∥f̃−fρ∥2

∞

}
,

(60)

where CB,η,δ,f depends on B, η, δ, f and independent on d, r and n. Then, under the regime
1 ≤ N ≤ dα + 1 for some 0 < α < 1, choices of m = ⌈ r

3d+4r log2(n)⌉, N = ⌈n
2

3d+4r ⌉ and

M = ⌈n
3d

3d+4r ⌉ make the fraction of the first term in (60) simple as follows:

⌈log2(N)⌉ · log
(
mMN⌈log2(N)⌉

)
≤ 2

3d+ 4r
log2(n) log

(
log2(n)n

3d+2
3d+4r

2r

(3d+ 4r)2
⌈log2(n)⌉

)
≤ 6

3d+ 4r

(
log2(n)

)2
.

Then, with the same choices of m,N,M as above, we obtain the bound on the excess risk as :

E
(
πM f̂n

)
− E

(
fρ
)

≤ CB,η,δ,f ·max

{
1,

6rd

(3d+ 4r)2
(log2(n))

4,
( 6

πe

) d
2 d2N+ 3d−4r−2

4 , d4N
}
· n− 4r

4r+3d .

This concludes the proof.

F.3 PROOF OF THEOREM 4.4

Theorem 4.4 Suppose fρ ∈ W r
∞([0, 1]d) with r > 0. A network f̂n from (9) with choices NH =

⌈n
d

2d+r ⌉, and mH = ⌈ d+r
d+2r log2(n)⌉ yield the bound on the excess risk with probability at least

1− δ as follows:

E
(
πM f̂n

)
− E

(
fρ
)

(61)

≤ CB,η,δ,K ·max

{
⌈log2(d+ ⌈r⌉)⌉2(d+ r)d · (log2(n))3,

(
1 + r2 + d2

)2
62d + 32r

}
· n− 2r

2r+d ,

where CB,η,δ,K depends on B, η, δ, K and independent on d, r and n.

Proof. From Theorem 5 of Schmidt-Hieber (2020), for any function fρ ∈ Cr
d([0, 1]

d,K) and any
integers m ≥ 1 and N ≥ (r + 1)d ∨ (K + 1)ed, there exists a network

f̃ ∈ F
(
L, (d, 6(d+ ⌈r⌉)N, . . . , 6(d+ ⌈r⌉)N, 1),N ,∞

)
(62)

with depth L = 8 + (m+ 5)
(
1 + ⌈log2(d ∨ r)⌉

)
and the number of parameters N ≤ 141(1 + d+

r)3+dN(m+ 6), such that∥∥∥f̃ − fρ

∥∥∥
∞

≤ (2K + 1)(1 + d2 + r2)6dN2−m +K3rN− r
d . (63)
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Then, similarly with the proof in Theorem 4.3, by the result of Lemma H.1, the pseudo-dimension
of F in (62) can be bounded as

Pdim(F) ≤ C ·
(
m2N(d+ r)d⌈log2(d ∨ r)⌉ log

(
(d+ ⌈r⌉)mN⌈log2(d ∨ r)⌉

))
, (64)

for some universal constants C > 0.

Plug the (63) and (64) in (48) from Proposition 4.2. Then, we obtain the bound on the excess risk as
follows:

E
(
πM f̂n

)
− E

(
fρ
)
≤ CB,δ,K×{
m2N

n
log(n) · (d+ r)d⌈log2(d ∨ r)⌉ log

(
(d+ ⌈r⌉)mN⌈log2(d ∨ r)⌉

)
︸ ︷︷ ︸

Bound for Pdim(F)·log(n)/n

+
(
(1 + d2 + r2)6dN2−m + 3rN− r

d

)
/
√
n︸ ︷︷ ︸

Bound for ∥f̃−fρ∥∞
/
√
n

+
(
(1 + d2 + r2)262dN22−2m + 32rN− 2r

d

)︸ ︷︷ ︸
Bound for ∥f̃−fρ∥2

∞

}
, (65)

where CB,δ,K depends on B, δ, K and independent on d, r and n. Note that we use (a + b)2 ≤

2a2 + 2b2 for all a, b ∈ R for getting the bound on
∥∥∥f̃ − fρ

∥∥∥2
∞

. We choose the N = ⌈n
d

2r+d ⌉ and

m = ⌈ d+r
2r+d log2(n)⌉. Then, a fraction of the first term in (65) can be bounded as:

log

(
(d+ ⌈r⌉) · d+ r

2r + d
· log2(n) · n

d
2r+d · log2(d ∨ r)

)
≤ log2

(
(d+ ⌈r⌉)2n2

)
.

Then, we obtain the bound on the excess risk as :

E
(
πM f̂n

)
− E

(
fρ
)

≤ CB,η,δ,K ·max

{
⌈log2((d+ ⌈r⌉)n2)⌉2(d+ r)d · (log2(n))3,

(
1 + r2 + d2

)2
62d + 32r

}
· n− 2r

2r+d .

This concludes the proof.

G PROOF OF APPROXIMATION RESULT FOR CNN: FANG ET AL. (2020)

Theorem C.1. Let 2 ≤ S ≤ d, 0 < α < 1, and B,N,M ∈ N with 1 ≤ N ≤ dα + 1. Let
J ≥ ⌈Md−1

S−1 ⌉, D1 = (2B + 3)⌊(d+ JS)/d⌋, and D2 = ⌊(d+ JS)/d⌋. Then, for any function f ∈
W r

∞(Sd−1) with r > 0, there exists a network f̃CNN ∈ HJ,D1,D2,S with the number of parameters
N ≤ J(3S + 2) +M + 2B + 4 such that

∥∥∥f − f̃CNN
∥∥∥
∞

≤ C
′′

η,α ∥f∥W r
∞(Sd−1) max

{
N−r,

(
6
πe

) d
4 dN+ 3d−4r−2

8 (2N + 1)
3d−4r

4

√
M

,d2N
r

r − 1

N2

B

}
,

(66)

where C
′′

η,α is a constant dependent on η, α, and independent on d, r,N,M or f .

Proof. By the inequality (5.9) in the paper Fang et al. (2020), we have∥∥∥L̂y
N,M (f)− f̃CNN

∥∥∥
∞

≤ ∥f∥W r
∞(Sd−1) ∥ξN,r − Lt(ξN,r)∥C[−1,1], (67)
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where Lt(ξN,r)(t) is an univariate function for t ∈ [−1, 1] defined in Lemma 7 in Fang et al. (2020).
Now, we work on controlling ∥ξN,r − Lt(ξN,r)∥C[−1,1].

∥ξN,r − Lt(ξN,r)∥C[−1,1] ≤ 2ω(ξN,r, 1/B)

≤ 2

B
∥ξ

′

N,r∥C[−1,1]

≤ 8N2

B
∥ξN,r∥C[−1,1]

≤ 8N2

B

2N∑
k=1

k−rN (k, d)

≤ 8CαN
2

B
d2N

2N∑
k=1

k−r

≤ 8CαN
2

B
d2N

r

r − 1
.

In the first inequality, we use Lemma 7 in Fang et al. (2020), where ω(ξN,r, 1/B) is a modulus
continuity of ξN,r given by

ω(ξN,r, 1/B) = sup
|t|≤1/B

{
|ξN,r(ν)− ξN,r(ν + t)| : ν, ν + t ∈ [−1, 1]

}
.

In the second inequality, we use the definition of modulus continuity of ξN,r. In the third in-
equality, since ξN,r is an algebraic polynomial of degree at most 2N , by Markov’s inequality,
we have ∥ξ′

N,r∥C[−1,1] ≤ (2N)2∥ξN,r∥C[−1,1]. In the fourth inequality, we have the bound
∥ξN,r∥C[−1,1] ≤

∑2N
k=1 k

−rN (k, d) by Corollary 1.2.7 of Dai & Xu (2013). Employing Stirling’s

formula d! =
√
2πd

(
d
e

)d(
1 + O(1/d)

)
in N (k, d) yields N (k, d) ≤ Cαd

k for 0 ≤ k ≤ 2N and
some constant Cα depending on α but independent of d. In the last inequality, we used the following
inequality:

2N∑
k=1

k−r ≤ 1 +

2N∑
k=2

∫ k

k−1

x−rdx = 1 +

∫ 2N

1

x−rdx︸ ︷︷ ︸
≤ 1

r−1

≤ r

r − 1
.

Now, we combine our result from Lemma D.1.2 and Lemma D.1.4, and conclude the bound in
(66).

H USEFUL LEMMAS

Lemma H.1 [Theorem 6 of Bartlett et al. (2019)] Consider the function class F computed by a
feed-forward neural network architecture with N parameters and U computation units arranged
across L layers. Suppose that all non-output units have piecewise-polynomial activation functions
with p + 1 pieces and degrees no more than d, and the output unit has the identity function as its
activation function. Then the VC-dimension and pseudo-dimension of class F is upper bounded by

VCdim(F),Pdim(F) ≤ C ·
(
LN log(p · U) + L2N log(d)

)
,

with some universal constants C > 0.

Lemma H.2 [Theorem 2.8.4 of Vershynin (2018)] Let η be a random variable on a probability
space Z with mean E(η) = µ, variance σ2(η) = σ2, and satisfying |η(z)− E(η)| ≤ Bη for almost
z ∈ Z . Then, for any ε > 0,

P

{
1

n

n∑
i=1

η(zi)− µ < ε

}
≥ 1− exp

{
− nε2

2
(
σ2 + 1

3Bηε
)}.
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