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Abstract

While large datasets facilitate the learning of a robust representation of the data
manifold, the ability to obtain similar performance over small datasets is clearly
computationally advantageous. This work considers deep neural networks for
regression and aims to better understand how to select datapoints to minimize
the neural network training time; a particular focus is on gaining insight into the
structure and amount of datapoints needed to learn a robust function representation
and how the training time varies for deep and wide architectures.

1 Introduction

Deep neural networks are able to achieve excellent performance when trained on big datasets, even if
the input data size is very large (e.g. 28 × 28 pixels for the MNIST dataset). One explanation for
their good performance in high dimensions is that the data lies in a latent space with much lower
dimensionality than that of the full data encoding space. Large datasets [1], potentially in combination
with the implicit bias that occurs during training [5, 23, 3], can then be seen as a reasonable way of
learning robust representations.

The size of the dataset however clearly impacts the training efficiency. System constraints such as
on-device computing or simply the fact that large datasets are not always available [25] has led to a
renewed interest in learning over small datasets. A challenge with using small datasets is that it is
not clear that the critical characteristics of a function will be captured. While augmenting a small
dataset is an option when a large datasets is not available [30], other approaches [10, 34, 33, 6, 27]
have focused on defining and obtaining ‘good’ datapoints for which the learning can be efficient
and lead to a robust representation. Also in the literature on interpolators and mesh optimization
schemes interesting approaches for choosing relevant datapoints have been presented [19, 17, 26, 11].
Typically, this amounts to selecting points in ‘critical’ areas of the function based on e.g. the curvature.

In this work we consider the goal of learning a function representation f̂ from datapoints
(xi, f(xi))

N
i=1 and take a first step towards answering two intimately linked questions: i) can we

identify properties of good datasets?; ii) how much efficiency can be gained when learning over these
good datasets compared to e.g. randomly selected points and how does this differ for deep and wide
neural networks? The questions underlie a more fundamental understanding about the structure that
data occurring in nature must have to enable computationally feasible learning (see also [41, 37]).
To answer i) and ii) we will use several established data selection methods used in e.g. computer
graphics and compare the performance of deep neural networks over these optimally sampled points
and over uniform and randomly selected points. In this work the focus lies on dimensions d = 1 and
d = 2.
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Related work We briefly remark on several lines of related work. i) Prior work has shown that a
DNNs good performance even in overparameterized, noisy settings can be attributed to the implicit
bias [12, 5, 24]; the dimensionality seems to be crucial in minimizing the impact of noise [23, 3]. ii)
In computer graphics literature the definition of an optimal approximating mesh of a given complexity
is used for the efficient but realistic display of the geometric models [11, 16, 35]; the choice of
those mesh points is closely related to choosing optimal datapoints and we will use their insights in
this work. iii) A large line of work focuses on dataset pruning, active learning or optimal feature
selection using a variety of different scalar metrics such as gradients or information theoretic quantites
[34, 33, 6, 14, 18, 39, 27, 4]. For a more detailed related work review we refer to Appendix A.

2 Methodology for dataset generation

We discuss the methods we will use for constructing training sets of ‘good’ datapoints.

Curvature-based sampling for one dimension We discuss the method used for optimal point
selection for d = 1. The curvature is frequently used as a metric to determine the critical points
of a surface approximation. The work of [26] reparametrizes the curve according to the curvature.
Given a function y = f(x), the curvature is given by k(x) = f ′′(x)

(1+f ′(x)2)3/2
. Observe that, if the

first-order gradient is small, the curvature is approximated by the second-order derivative highlighting
the relationship between curvature and Hessian. The goal is then to define a density so that sampling
from this density leads to samples from high-curvature regions. Define, fk(x) =

∫ x

x0
k(u)du, with x0

the beginning of the domain1. This defines a cumulative density-like function, where high curvature
areas will align with a steeper fk(x) as a function of x. In order to sample from the density underlying
this function, we then use the inverse transform sampling method. Sample U ∼ U [a, b]; then define
T (U) = (fk)

−1(U). Then, X ∼ fk, i.e. it will be sampled in high curvature regions.

Mesh optimization for two dimensions For d = 2 we will use the iterative mesh simplification
method as used in [11]. This method defines a triangulation: a mesh that ‘covers’ a surface using
simplices2. The vertices of the mesh lie on the function itself and these vertices are connected through
simplex faces (i.e. a generalization of piecewise linear approximations to arbitrary dimension). It
assumes an initial triangulation is given which consists of an arbitrary number of vertices. The goal
of the algorithm is to simplify this triangulation by simplifying the number of edges and vertices, to
obtain a triangulation with a given number of vertices. It does so by iteratively contracting sets of
vertices if the cost associated to their contraction (i.e. how much accuracy is lost by removing one
of the vertices in the approximated surface) is not too high. As shown in [17, 11] at convergence
the resulting mesh has sampled more points in regions of high curvature. This shows the value of
curvature and gradients in general: it arises even in approximation algorithms that do not directly
optimize for the curvature but instead minimize some loss between the mesh and the original surface.
For completion we include in Appendix C more details on the mesh optimization scheme.

3 Numerical results

Our goals are: i) understand how ‘optimally’ sampled points influence the model performance, ii)
understand how ‘optimally’ sampled points can speed up convergence, iii) obtain results on the
number of points needed to learn a robust function.

Experimental setup We report results for the Dixon-Price function, the Michalewicz function
and a modified Rastrigin function (see Appendix D). We want to ensure that all methods are able
to learn from the data (i.e. that they contain the critical function information). The training data is
thus generatred using the following methods: i) a uniform deterministic grid defined over the domain,
ii) uniform randomly sampled grid over the domain, iii) for one-dimension we use the curvature
reparamterization from Section 2, iv) for two dimensions we use the mesh simplification algorithm
from Section 2. We denote with NW the number of nodes per layer and NL the number of layers. We

1We remark that the work of [26] uses fk(x) =
∫ x

x0
k(u)||f ′(u)||du; this comes from wanting the integral

to be invariant to parametrizations in the curve parameter which in our case is not needed.
2In one dimension it amounts to an optimal piecewise linear approximation.
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report the mean squared error (MSE) for one dimension over 500 datapoints and for two dimensions
2002 datapoints on a uniform grid. We use or 1e4 training epochs and a learning rate of 1e− 3.

3.1 One dimension

We compare the curvature-based sampling method against uniform (random) grids for d = 1.

Rastrigin function We present the results for N = 12, d = 1 and a neural network architecture of
NW = 32 and NL = 2 trained with Adam. Figure 1 and Tables 1 - 2 show a clear benefit in using
the curvature-sampled datapoints. The number of training iterations required to reach a certain test
performance is smaller when using ‘optimal’ datapoints than when using a uniform grid. Interestingly,
when the neural network has fewer parameters the difference between the two sampling strategies
becomes smaller, showing that the combination of overparametrisation and implicit bias allows the
neural network to reach much better performance on ‘optimal’ datapoints.

Figure 1: Rastrigin function for d = 1. Left to right: curvature-based sampling (MSE is 16.85),
uniform random sampling (MSE is 137.88 ), uniform grid (MSE is 44.53)

Table 1: Rastrigin function. (L) Effect of model architecture: (train, test) performance averaged over
5 runs. (R) Effect of number of datapoints for arch. (32,2): test performance.

(NW , NL) Uniform Grid Curvature Nr of datapoints Uniform Grid Curvature

(8,2) (1.97,48.2) (1.87,41.6) 10 52.1 59.0
(32,2) (1.26,38.6) (0.88,24.8) 12 36.0 48.9
(8,4) (1.59,39.2) (0.65,32.6) 20 30.8 18.1

Table 2: Rastrigin function. Effect of number of training iterations: test performance averaged over 5
runs.

Number of iterations Uniform Grid Curvature

500 53.8 49.2
1000 50.1 44.2
2000 48.0 36.6
3000 47.2 35.1

Michalewicz function in one dimension Figure 2 shows that the curvature outperforms the random
grid for the Michalewicz function.

Figure 2: Michalewicz function for d = 1. Left to right: curvature-based sampling (MSE is 0.00070),
uniform random sampling (MSE is 0.010).
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Dixon function in one dimension As the results in Figure 3 show, the curvature is not always the
ideal metric as the uniform grid in certain cases may outperform the curvature-sampled points.

Figure 3: Dixon function for d = 1. Left to right: curvature-based sampling (MSE is 16.85), uniform
random sampling (MSE is 5.17).

3.2 Higher dimensions

We now compare the performance of deep and wide neural networks for the mesh simplification
method against the uniform grid for NW = 256 and NL = 2. Figure 4 shows the error for the
Rastrigin function where ‘optimal’ points outperform the random grid. However, it also show that
also in d = 2 the optimal datapoint selection does not work for the Michalewicz function. We
conclude that in d = 2 mesh optimization may have benefits in speeding up convergence but there is
room for improving the datapoint sampling method.

Figure 4: (T) Error for the Rastrigin function for d = 2. Left to right: mesh optimization-based
sampling (MSE is 44.9), uniform grid (MSE is 48.3). (B) Error for the Michalewicz function for
d = 2. Left to right: mesh optimization-based sampling (MSE is 0.010), uniform grid (MSE is
0.0030).

4 Discussion

In this work we showed how optimally choosing datapoints could result in more efficient convergence
of the neural network models to robust function representations; interestingly, optimal datapoints
seem to work best in combination with significant overparametrisation. However, as was shown,
the used metrics and algorithms (curvature and mesh simplification) for certain function structures
did not outperform the uniform grid, especially in higher dimensions. One promising direction is
to use repulsive particles to spread them across the function space in a way that balances distance
and high-curvature points could prove beneficial [22]. We hope to address this with better data
generation strategies in future work. We also to extend this work to functions in higher dimensions
to better understand how the number of needed datapoints depends on dimensionality and in what
dimensionality it remains computationally feasible to learn. A recent line of work e.g. [31, 36]
focuses on solving partial differential equation (PDE) solutions through neural networks; whether the
optimal point selection can be used in that setting is to be investigated.
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A Details on the related work

Interpolation and implicit bias It has been shown that neural networks in an overparametrized
regime are able to interpolate, i.e. perfectly fit, the data, while still achieving good generalization
performance contrary to conventional wisdom which warns that when fitting noisy data interpolation
may lead to overfitting. In part, the neural network’s good performance can be attributed to the
implicit bias [12, 5, 24]: even if the network has a high capacity, the model structure in combination
with the training method leads to the learned function to be sufficiently regularized in between the
datapoints. This implicit bias can be strong enough to minimize the impact of noise if the parameter
space is sufficiently high-dimensional [23, 3]. The work of [21] compares interpolation against
regression and similarly shows high-dimensional setups with noisy data where interpolation performs
better than regression technique. However, [8] highlights how the implicit bias should not be too
strong when noise is present. Somewhat contrary to the idea that good performance can be achieved
in interpolating regimes, the work of [9] shows that even interpolation on noise-free data may hurt
generalization to out-of-distribution datasets. The extent to which the implicit bias performs in small,
even noise-free, data settings is however still an open question. While we are not directly focusing on
extrapolation (defined as the performance outside of the convex hull of the datapoints) in this work,
we remark on an interesting line of work that studies the extrapolation ability of neural networks
e.g. [2, 40].

Mesh optimization and piecewise linear approximators Given a set of datapoints, various
interpolation methodologies exist, e.g. polynomial functions [7], splines [13], piecewise linear
functions [19] and Delauney triangulation [35]; the linear methods can be seen as defining a certain
approximating structure of linear pieces (a tesselation). The linear interpolators are frequently used in
computer graphics where the aim is to obtain an optimal approximating mesh of a given complexity
for the efficient but realistic display of the geometric models [11, 16, 35]. For these methods it is often
known how to select the datapoints so that the interpolating function has a small error on the whole
of the domain. These methods typically consist of an iterative simplification of the mesh by applying
sequentially a set of mesh transformation steps e.g. edge collapse which unifies vertices into one
[22, 17] or sample points according to some metric that describes which points are critical, e.g. the
curvature [26]. The nonconvex nature of deep learning results in it being unclear if the methods used
for datapoint selection in other interpolators will work for the deep learning setup. We highlight the
distinction between methods that represent the surface solely through points [22, 28, 26] and those
that combine point selection with the optimal interpolation i.e. the geometric structure of the mesh
[17, 16, 11]. We also remark on the line of research that defines piecewise linear approximators;
crucial to these setups is to find the values of the points that connect the linear segments [19].
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Dataset pruning and feature selection Given a big dataset, to improve computational efficiency
one may want to decrease its size. Pruning the dataset is one technique to achieve this. Various
different metrics have been proposed based on e.g. uncertainties or distances to other samples
[34, 33, 6, 14, 18, 39], norms of the gradient [27], information theoretic quantities [4] such as mutual
information [29] or entropy [15, 20]; or other work uses optimization-based approaches [42] or
genetic algorithms [38]. In this work we take a slightly different approach and use established results
from linear interpolation and unlike the previously mentioned papers that focus on classification our
work focuses on the less-studied regression setup.

B Background on polynomials and their error bound

For a complete reference on polynomial approximations and interpolation we refer the reader to [7].
Consider a polynomial pn(x) = a0 + a1x+ . . .+ anx

n. It is well-known that given n+ 1 distinct
datapoints x0, ..., xn and n + 1 values f0, ..., fn, there exists a unique polynomial pn for which
pn(xi) = f(xi) for i = 0, ..., n: The following result for a polynomial approximation is well-known.
Theorem B.1 (Unique polynomial representation; Thm 2.1.1 [7]). Given n + 1 distinct points
x0, ..., xn and n+ 1 values f0, ..., fn, there exists a unique polynomial pn(x) ∈ Pn (space of n-th
order polynomials) for which pn(xi) = fi, i = 0, ..., n.

Proof. The proof follows from applying Cramer’s rule and noting that the determinant of the system
is non-zero for distinct points.

Remainder theory is able to quantify the accuracy of the approximation. The upper bound in (4) can
be obtained through the following theorem.
Theorem B.2 (Remainder for nth order polynomia; Thm 3.1.1 in [7]). Consider f(x) ∈ Cn[a, b]
such that f (n+1)(x) exists for x ∈ [a, b]. Consider points a ≤ x0 < x1 < ... < xn ≤ b. Then the
following holds,

f(x)− pn(x) =
(x− x0) . . . (x− xn)

(n+ 1)!
f (n+1)(ξ), (1)

with min(x, x0, ..., xn) < ξ < max(x, x0, ..., xn).

Proof. Define the functions,

K(x) =
f(x)− pn(x)

(x− x0) . . . (x− xn)
, (2)

W (t) = f(t)− pn(t)− (t− x0) . . . (x− xn)K(x). (3)

Note that W (t) vanishes at x0, x1, ..., xn, x. By Rolle’s theorem W (n+1) must vanish at ξ given by
min(x, x0, ..., xn) < ξ < max(x, x0, ..., xn). Since W (n+1)(t) = f (n+1)(t) − (n + 1)!K(x) and
using W (n+1)(ξ) = 0 one obtains K(x) = 1

(n+1)!f
(n+1)(ξ) and plugging this into the definition of

K(x) the statement follows.

The error of the polynomial approximation can be upper bounded as follows (see corollary 3.1.3 in
[7]):

|f(x)− pn(x)| ≤
|x− x0| . . . |x− xn|

(n+ 1)!
max
a≤t≤b

|f (n+1)(t)|. (4)

The term maxa≤t≤b |f (n+1)(t)| is independent of the choice of interpolation points; to minimize
the error through an optimal choice of datapoints (xi, fi), i = 0, ..., n one would thus focus on
minimizing maxa≤x≤b |(x − x0) . . . (x − xn)|. The optimal points are given by the zeros of the
Tschebysheff polynomials. The Tschebysheff polynomials of order n are defined as follows.
Definition 1 (Tschebysheff polynomials). The Tschebysheff polynomial of degree n is given by,

Tn(x) = xn +

(
n

2

)
xn−2(x2 − 1) +

(
n

4

)
xn−4(x2 − 1)2 · (n = 0, 1, ...) (5)
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The zeros of the Tschebysheff polynomials are given by the following theorem.
Theorem B.3 (Zeros of Tschebysheff polynomials; Theorem 3.3.3 in [7]). Tn(x) has simple zeros at
the n points, xk = cos 2k−1

2n π, k = 1, 2, ..., n.

A linear approximation is obtained by setting n = 1 in the polynomial pn. From (4) it follows that
for a linear approximation the error is bounded by the Hessian of the function f . This highlights
the role of higher-order gradients in optimal point selection. The work of [19] extends the linear
approximation to a piecewise linear approximation for convex functions. Using (4) it becomes
clear that in order to obtain the optimal piecewise linear approximation one needs to find the linear
segments such that the maximum Hessian over each those segments is minimal.

C Details on the mesh optimization method

Denote with (K,V) a triangulation, where K is a simplicial complex specifying the connectivity of
the vertices, edges and faces; V = (v1, ...) with vi = [vxi , v

y
i , v

z
i , 1]

T is a set of vertex positions.
We assume we are given an initial triangulation; this initial configuration can consist of an arbitrary
amount of vertices vi, i = 1, ... on the surface. The algorithm proceeds by iteratively contracting a set
of vertex pairs (v1,v2) → v̄. Only valid pairs are considered for contraction, where the validity of a
pair is defined by i) (v1,v2) is an edge, or ii) ||v1−v2|| ≤ ϵ, where the latter allows for the re-joining
of disjoint triangles. Each contraction is associated with a cost ∆(v) = vTQv, where Q is a 4× 4
symmetric matrix. The matrix Q is defined as follows: using that each vertex is associated with a set
of triangles that can be seen as planes p = [a, b, c, d]T defined through ax+ by + cz + d = 0, the
error is computed as the summed error over the planes, the ‘distance-to-plane’ metric [32]:

∆(v) =
∑

p∈Planes

(pTv)T = vT
∑

p∈Planes

Kpv, (6)

where Kp = ppT . The location of v̄ is consequently chosen as the one that optimizes ∆(v̄), and
since the error function is quadratic, finding its minimum is done by solving a linear problem. The
final algorithm is then given as follows: i) compute Q, ii) select valid pairs, iii) compute for each
valid pair (v1,v2) the optimal contraction vertex v̄ and error v̄T (Q1 +Q2)v̄ (where Q1 and Q2 are
the quadrics at v1 and v2, iv) remove the minimum cost vertex, v) repeat until the required number
of vertices is reached. The vertices and the function value at the vertices will be used as the train
dataset.

We remark that many alternatives for the greedy iteration over the loss function exist; e.g. the methods
of [17, 16] that maintain meshes that are optimal with respect to an appearance/loss metric or works
like [22] aim to directly optimize the vertices by considering them as particles evolving via some
repelling forces.

D Details on the experimental setup

Let x ∈ Rd. In our setup d = 1, 2. The Michalewicz function is given by,

f(x) = −
d∑

i=1

sin(xi) sin
2m

(
ix2

i

π

)
, (7)

with m = 2. The Dixon-Price function is given by,

f(x) = (x1 − 1)2 +

d∑
i=1

i(2x2
i − xi−1)

2. (8)

The modified Rastrigin function is given by,

f(x) = −25e−
∥x∥2
1.5 − 10e

∥x∥2
0.5 + 10d+

d∑
i=1

−10 cos(2πxi). (9)

Here we have removed the quadratic term and replaced it with a sum of squared exponentials.
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