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ABSTRACT

Ensuring safety in autonomous driving, particularly in complex and dynamic en-
vironments, remains a significant challenge. To address this issue, we propose a
novel traffic world model. While existing trajectory forecasting methods typically
focus on predicting individual agents and may neglect critical factors such as vehi-
cle dimensions, orientation, and physical constraints, our model incorporates these
elements comprehensively. Unlike previous methods that often result in unrealis-
tic scenarios such as collisions or off-road driving, our model integrates physical
constraints and introduces innovative loss functions—including safe distance loss
and road departure loss—to ensure that the generated trajectories are both realistic
and feasible. By simultaneously predicting the trajectories of all agents and ex-
plicitly modeling interactions across various scenarios, our approach significantly
enhances realism and safety. Our world model functions as a generator, simula-
tor, and trajectory forecasting tool, demonstrating substantial improvements over
traditional methods and achieving competitive performance in reducing collision
and off-road rates.

1 INTRODUCTION

The past decade has witnessed remarkable progress in autonomous driving, driven by integrating
advanced sensors, deep learning algorithms, large language models, and extensive driving datasets.
These advancements have led to the development of various autonomous driving systems capable
of addressing complex tasks such as perception in adverse weather conditions Li et al. (2023), au-
tomatic parking, risk prediction, and end-to-end autonomous driving. Figure1 illustrates end-to-end
and modular pipelines used in autonomous driving systems Huang et al. (2023); Gu et al. (2023).
Regardless of the pipeline structure, whether end-to-end or modular, safety remains the top priority
in autonomous driving.

While end-to-end learning systems have demonstrated the potential for handling diverse driving
scenarios, modular pipelines or hybrid approaches continue to be the predominant solutions in the
field. This is primarily due to safety concerns, the reliability required for complex driving conditions,
and the need for interpretability. As shown in figure1, modular pipelines allow for the decomposition
of tasks, such as perception Yang et al. (2023), prediction Feng et al. (2024), and planning Dauner
et al. (2023), into distinct components, making it easier to certify, validate, and debug individual
subsystems. Most prediction models and planning models do not rely on row data as input; instead,
they use a bird’s-eye-view (BEV) map that presents road information more clearly and concisely.

Ensuring safety during motion planning is one of the most critical challenges in autonomous driving,
particularly in dynamic environments where interactions between multiple agents, such as vehicles,
are complex and unpredictable. Existing trajectory forecasting methods primarily focus on predict-
ing the behavior of a single target vehicle while neglecting the broader multi-agent interactions that
are essential for realistic and safe driving. Furthermore, many current models are trained on datasets
that only contain safe driving scenarios, leading to a lack of robustness when encountering danger-
ous or high-risk situations. However, collecting these data in the real world is also dangerous and
costly.
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Figure 1: Left: End-to-end pipeline and Modular pipeline for autonomous driving systems. Right:
Closed-loop training of autonomous driving systems utilizing the world model.

In this paper, we introduce a novel world model for autonomous driving that directly addresses
these limitations by focusing on the interactions between agents within the driving scenes. Our
world model simultaneously predicts the future control signals, e.g. steering and acceleration, of
all agents in the scene, offering flexibility in whether the prediction is conditioned on the actions of
the selected (ego) vehicle or left unconditioned. By modeling multi-agent interactions, the system
is able to produce more realistic, dynamic behavior predictions that capture the mutual influence
between vehicles. As shown in figure1, it can also enable the closed-loop training Zhang et al.
(2022a) of autonomous driving agents.

This interaction-aware approach is crucial for improving the safety of autonomous driving, as
agents’ behaviors are rarely independent in real-world scenarios. For instance, the movement of
one vehicle significantly impacts the trajectories of surrounding vehicles, especially in complex ma-
neuvers such as lane changes, merging, or navigating through intersections. A model that fails to
account for these interactions risks generating unsafe or unrealistic trajectories. Our world model ex-
plicitly captures these behaviors and ensures that all agent predictions are informed by the collective
dynamics of the environment.

In addition, our model introduces two key mechanisms to enhance safety: a safe distance loss (SDL)
that discourages collisions between vehicles and a road departure loss (RDL) that ensures adherence
to road boundaries. These losses are designed to better handle safety-critical situations, allowing the
model to learn from potentially dangerous scenarios. Unlike traditional methods that focus solely
on metrics like average displacement error (ADE) or final displacement error (FDE), our approach
incorporates these safety constraints to generate more reliable predictions, ultimately reducing col-
lision and off-road incidents.

Our primary contributions include: (1) Proposing a world model that predicts the future trajectories
of all agents in the scene, considering both conditioned and unconditioned scenarios based on the
ego vehicle’s actions; (2) Modeling multi-agent interactions, enhancing the realism and safety of the
predictions; (3) Introducing safe distance loss and road departure loss to explicitly address safety-
critical scenarios and improve the robustness of the predictions. Our world model addresses the
complexities of agent interactions in autonomous driving, representing a significant step toward a
safer and more reliable simulation environment rather than just a trajectory forecasting model.
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2 RELATED WORKS

2.1 WORLD MODELS FOR AUTONOMOUS DRIVING

The world model LeCun (2022); Ha & Schmidhuber (2018) learns a general representation of the
environment and predicts future states based on sequences of actions and the current state. In au-
tonomous driving, such models predict future driving scenarios, such as the behavior of all agents
in a scene or driving environment, allowing the system to simulate interactions and make safer de-
cisions. These models can operate on various types of data, including sensor data, such as images
and pointclouds, and annotated data, like bird’s-eye-view HD maps. An excellent world model not
only enhances the safety and reliability of autonomous driving but also forms the foundation for
decision-making and planning, enabling effective operation in diverse and dynamic traffic scenarios
Cui et al. (2024). Current world models primarily focus on driving scene generation and motion
planning on world models.

Driving scene generation entails collecting and processing environmental data from multiple sen-
sors such as LiDAR, cameras, and radar to identify elements like roads, vehicles, pedestrians, and
obstacles, thereby constructing accurate environmental models. For instance, GAIA-1 Hu et al.
(2023) is a generative world model that leverages video, text, and action inputs to generate realistic
driving scenarios while offering fine-grained control over ego-vehicle behavior and scene features.
It casts world modeling as an unsupervised sequence modeling problem by mapping the inputs to
discrete tokens and predicting the next token in the sequence. DriveDreamer Wang et al. (2023), also
dedicated to driving scenario generation, differs from GAIA-1 as it is trained on the nuScenes dataset
Caesar et al. (2020). Its model inputs include more elements like HD Maps and 3D boxes, allowing
for more precise control over driving scenario generation and deeper understanding, thus improv-
ing video generation quality. Additionally, DriveDreamer can generate future driving actions and
corresponding predictive scenarios, aiding in decision-making. WorldDreamer Wang et al. (2024a)
frames world modeling as an unsupervised visual sequence modeling challenge. This is achieved
by mapping visual inputs to discrete tokens and predicting the masked ones. DriveDreamer-2 Zhao
et al. (2024) is built upon the framework of DriveDreamer and incorporates a Large Language Model
(LLM) to generate user-defined driving videos. The LLM interface is utilized to convert a user’s
query into agent trajectories, and based on the trajectories, they further generate HD maps.

Motion planning on world models utilizes the world models to determine safe and efficient driving
routes. For instance, OccWorld Zheng et al. (2023) and Think2Drive Li et al. (2024) directly utilize
3D occupancy as inputs to predict the evolution of the surrounding environment and plan the actions
of autonomous vehicles. Drive-WM Wang et al. (2024b) is a multi-view world model for enhancing
the safety of end-to-end autonomous driving planning. Drive-WM, through multi-view and temporal
modeling, jointly generates multi-view videos and then predicts intermediate views from adjacent
ones, significantly improving consistency across multiple views. SLEDGE Chitta et al. (2024) is a
generative simulator for vehicle motion planning trained on real-world driving logs. Its core compo-
nent is a learned model that is able to generate agent bounding boxes and lane graphs. The model’s
outputs serve as an initial state for traffic simulation. TrafficBots Zhang et al. (2023) is a multi-agent
policy learned from motion prediction datasets. Based on the shared, vectorized context and the
individual personality and destination, It can generate realistic multi-agent behaviors in dense urban
scenarios. Besides the simulation, TrafficBots can also be used for motion prediction.

In this work, we focus on the physical characteristics of autonomous vehicles. Our model predicts
the control signals for all vehicles simultaneously, including steering angles and acceleration, based
on the provided BEV HD map. By utilizing the bicycle model and incorporating the actual physical
constraints of vehicles, we generate a more realistic autonomous driving world model that aligns
closely with real-world physics. This approach improves reliability and realism by focusing on
agent interactions while maintaining consistency with the static environment. Moreover, our model
is adaptable across different autonomous driving datasets, offering a plug-and-play feature.

2.2 TRAJECTORY PREDICTION

Predicting vehicle trajectories involves inferring future states from observed traffic data and the
behavior of all vehicles. Serving as a vital link between perception and planning models, it is
essential for safe motion planning. Extensive research in this field has provided solutions from
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diverse methods and perspectives Singh (2023); Teeti et al. (2022). The primary methods can be
broadly categorized into four types: (1) Physics-based methods, e.g., single trajectory Lin et al.
(2000), Monte Carlo Broadhurst et al. (2005) and Kalman filtering Schulz et al. (2018); (2) Classic
machine learning methods, e.g., Classic machine learning methods, e.g., Gaussian process Kim et al.
(2011), dynamic Bayesian network Jiang et al. (2022); (3) Deep learning methods, for instance,
convolutional NN (CNN) Cui et al. (2019), generative model Ivanovic et al. (2020), graph neural
networks (GNN) Sheng et al. (2022); Grimm et al. (2023); Pourkeshavarz et al. (2023); Rowe et al.
(2023); Zeng et al. (2021); Deo et al. (2022) and transformer-based models Aydemir et al. (2023);
Fang et al. (2023); Jiang et al. (2023); Nayakanti et al. (2023); Seff et al. (2023); Kim et al. (2021);
Zhou et al. (2023); (4) Reinforcement learning methods, e.g., inverse reinforcement learning Xu
et al. (2023); Alsaleh & Sayed (2020); Deo & Trivedi (2020), and generative adversarial imitation
learning Zhang et al. (2022b).

3 METHOD

We first built a world model that simulates the driving environment by predicting the future states of
all agents in the scene, considering their interactions and the selected vehicle’s actions. Our world
model incorporates the bicycle model and real-world physical constraints, enabling it to generate
realistic driving scenarios that adhere to the physical limitations of vehicles. In Section 3.2, we
will explain our overall model, followed by a detailed discussion of the encoder and decoder in
Sections 3.3 and 3.4. Our model is significantly inspired by Laformer Liu et al. (2024), utilizing their
proposed dense lane-aware prediction framework to enhance the accuracy of trajectory predictions.

3.1 PROBLEM DEFINITION

In the domain of autonomous driving, accurately predicting the future trajectories of surrounding
agents is crucial for ensuring safe and efficient navigation. In our work, we consider the world
model as a trajectory prediction model that predicts the future trajectories of all agents in the scene
simultaneously. Trajectory prediction refers to estimating the future positions of dynamic agents
(such as vehicles) based on their current states and the scene context. This involves predicting
the future paths of each agent while considering the interactions between them. Our world model
operates on a given driving scenario, where the environment remains static, and only the trajectories
of the agents are predicted. By simultaneously predicting all agents’ trajectories, the model accounts
for multi-agent interactions, which is critical for understanding the overall scene dynamics.

The prediction task is framed within the context of a comprehensive HD Map, encompassing de-
tailed representations of lane segments LiL , where iL ∈ {0, · · · , nL} and historical trajectories of
surrounding agents up to the current time step AiA , where iA ∈ {0, · · · , nA}. Additionally, the cur-
rent actions ciA of each vehicle could be considered, including its coordinates, velocity, acceleration,
yaw, and yaw rate.

Formally, the lane segments LiL represent the coordinates of the lane centerlines. We divided the
long-range lane centerlines into smaller snippets of a fixed length and discretized them into NL

smaller segments. Our objective is to predict the actions aiA of agent iA over a defined prediction
horizon H . Each action aiA consists of (at, ψt), representing the acceleration and steering angle of
agent iA at time step t within the prediction horizon H .

One of the key benefits of this approach is its low cost, as it focuses purely on predicting trajectories
without the need to modify or simulate the environment. This makes it an efficient solution for
autonomous driving systems, allowing for real-time decision-making and planning based on reliable
future state predictions.

3.2 MODEL STRUCTURE

As illustrated in figure 2, our approach utilizes vectorized input to efficiently embed each agent’s
historical data. This method involves a multi-step process comprising a Local Encoder, a Global
Encoder, a Global Local Interaction, and a Decoder. The vectorized input may reduce data size
compared to the original image input, thereby enhancing computational efficiency.
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Figure 2: Structure of Proposed World Model

The process begins by receiving information from agents and lane segments, vectorized to represent
relevant features such as positions, velocities, accelerations, yaws, yaw rates, and lane attributes. The
Local Encoder processes these vectorized inputs to extract features specific to each agent and lane
segment, capturing temporal dependencies and local interactions within the immediate environment
of each entity. The details of the Local Encoder will be explained in Section 3.3.

Following the local encoding, the extracted features, denoted as Fi, are fed into the Global Encoder.
The Global Encoder models the global interactions among all agents and lane segments by multi-
head attention. This step is crucial for understanding the broader context and interactions within the
driving environment, enabling the model to account for complex dependencies and spatial relation-
ships.

Finally, the processed features from the Global Encoder are input into the Decoder. The Decoder is
responsible for predicting the next state of each agent, specifically their future control signals, i.e.
acceleration and steering. By leveraging the comprehensive representations obtained from both local
and global encoders, the Decoder generates accurate predictions of the agents’ future actions over
the prediction horizon. Afterwards, we can calculate the specific trajectories of the agents through
the model output. The details of the Decoder will be explained in Section 3.4.

The original image input was replaced with vectorized input to reduce data size and computational
complexity. Vectorized input allows for a more compact representation of the necessary information,
facilitating efficient processing and feature extraction while maintaining the integrity of the spatial
and temporal data essential for accurate prediction.

3.3 LOCAL ENCODER

As illustrated in figure 6, the Local Encoder is designed to effectively process and integrate the
historical data of each agent and lane segment information. Let A0:na

denote the history of each
agent and L0:nl

represent the lane segment information.
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Figure 3: Structure of Local Encoder. Here, Ai denotes agents’ history trajectories; Li denotes
lane segments.

The inputs A0:na
and L0:nl

are first embedded via a Gated Recurrent Unit (GRU), which captures
temporal dependencies within the historical trajectories of the agents and the static features of the

5



Under review as a conference paper at ICLR 2025

lane segments. This initial embedding step transforms the raw inputs into latent representations for
more effective processing by subsequent layers.

Next, a cross-attention mechanism is employed to obtain contextual information from both agents
and lane segments. This cross-attention step allows the model to focus on relevant features and
interactions between agents and lane segments, enhancing the local representation of each entity.
The output of this step is denoted as A∗

0:na
.

By performing cross-attention in both directions on the two inputs, the Local Encoder effectively
captures the intricate relationships between agents and lane segments, providing a robust foundation
for predicting future trajectories in dynamic driving environments.

3.4 DECODER

As shown in figure 4, the Decoder in our model combines both local and global features to predict
the probabilities and the trajectory for the next time step. In this part, we utilized Dense Lane
Aware Prediction Liu et al. (2024) to predict possible future destinations, thereby assisting in action
prediction. Specifically, the Decoder first integrates lane segment featuresL∗ and global features Gi

to get dense lane-aware global feat. Then, the dense lane-aware global features and the conditioned
local features are utilized to make predictions.
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Figure 4: Structure of Local Encoder. Gi denotes the global feature from multi-head attention;
Fi denotes the local feature obtained from the Local Encoder.

The dense lane-aware model utilizes the global featuresGi to predict which lane segment the vehicle
is most likely to approach. Attention scores are computed for each lane segment, and from these
scores, the top k most likely lane segments are selected. These selected lane segments are then
aggregated using a cross-attention mechanism with the global features, effectively enhancing the
selected lane segments with the global context.

This process ensures that the model selectively attends to the most probable lane segments based on
the global feature Gi, explicitly incorporating the global feature information for these selected lane
segments. This selective attention mechanism allows the model to focus on the most relevant parts
of the lane structure, improving the accuracy and relevance of the predictions.

After this selective attention process, the local features Fk = {A∗
0:na

, L∗
0:nl

} are concatenated with
the newly refined global features G∗

k. This concatenated representation is then passed through a
linear layer to obtain the probabilities of different outcomes. Additionally, the concatenated features
are fed into a GRU to predict the future action of the vehicle.

By selectively attending to the most likely lane segments rather than considering the entire lane
segment, the Decoder efficiently combines local and global contextual information.
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To account for physical limitations, intermediate values after final linear layer sm0:NA
and αm

0:NA
are

both passed through a hyperbolic tangent (tanh) activation function and scaled by predefined limits.
Specifically, the acceleration limit alim is set to 10. The steering angle is also passed through a
tanh function and scaled by a steering limit, which decreases as vehicle speed increases. We define
steering limit as slim = min(0.65, 20v2 ), where v is the vehicle’s speed.

Based on the bicycle model, the vehicle’s final location is computed using the acceleration and
steering angle from the model. For brevity, the detailed derivations and equations are provided in
the Appendix A.

This method guarantees that the predicted trajectory adheres to physical constraints, such as steer-
ing limits and realistic acceleration thresholds. Additionally, it improves the model’s capacity to
generate precise, context-aware predictions for subsequent time steps, resulting in more reliable and
robust trajectory forecasting in dynamic driving scenarios.

4 EXPERIMENTS

In this section, we present the evaluation of our proposed world model for autonomous driving and
the trajectory generator. We conduct extensive experiments using a well-known dataset nuScenes
Caesar et al. (2020), showcasing the effectiveness of our approach in predicting future actions and
ensuring safe and efficient driving behavior. Since our world model functions similarly to trajectory
prediction, and no existing work aligns perfectly with our experimental setup, we compare it with
the current trajectory prediction models. The results are analyzed in terms of minADE, minFDE,
collision rate, and off-road rate, demonstrating the advantages of our proposed models.

4.1 EXPERIMENT SETUP

In our experiment setting, we have access to large-scale HD Maps, serving as the foundational
environment for our world model. This map provides detailed information about lane segments,
road structures, intersections, and other critical elements crucial for autonomous driving scenarios.
Leveraging this rich dataset, our world model simulates and predicts the movements and interactions
of various agents within the driving environment. In our study, we explore three distinct settings to
evaluate the performance of the world model in predicting future trajectories of surrounding agents
and vehicles in autonomous driving scenarios. Figure 5 shows sample frames of the results of our
world model.

𝑇𝑖𝑚𝑒

Figure 5: A sample of the world model. The red and yellow rectangles are the target vehicle and
surrounding vehicles; the black lines are the history trajectories of each agent.

Dataset: For the evaluation of our proposed models, we utilize the nuScenes dataset Caesar et al.
(2020), a comprehensive and widely-used dataset in autonomous driving research. The nuScenes
dataset offers a rich set of sensory data collected from a fleet of autonomous vehicles operating
in diverse urban environments. This dataset contains 1000 scenes every 20 seconds, with ground
truth annotations and HD Maps. Vehicles have manually annotated 3D bounding boxes, which are
published at 2 Hz.
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Metrics: To evaluate our model, we use the standard metrics on the nuScenes leaderboard Caesar
et al.. Minimum Average Displacement Error over k (minADEk): The average of pointwise L2
distances between the predicted trajectory and ground truth over the k most likely predictions; Min-
imum Final Displacement Error over k (minFDEk): The final displacement error (FDE) is the L2
distance between the final points of the prediction and ground truth. We take the minimum FDE
over the k, which is the most likely prediction and average over all agents. To evaluate the safety
of our world model, we use two metrics: the collision rate (CR) and the off-road rate (OR). The
collision rate measures the frequency of collisions between agents, while the off-road rate quantifies
the extent to which agents deviate from drivable areas.

4.2 CONDITIONED & UNCONDITIONED ON TARGET VEHICLE’S ACTION

Table 1: The results of world model conditioned & unconditioned on target vehicle’s action.

2 step conditioned unconditioned
minADE1 0.44 0.58
minFDE1 0.60 0.79

We compare two variants of the world model: one conditioned on the target vehicle’s action and
the other unconditioned. The conditioned variant incorporates predictions of the target vehicle’s
future trajectory as part of its input. The unconditioned variant directly predicts the target vehicle’s
action, letting the target vehicle navigate the environment freely. Our experiments indicate that the
conditioned approach outperforms the unconditioned model.

4.3 LONG-TERM & AUTOREGRESSIVE PREDICTION

Table 2: The results of world model with long-term & autoregressive short-term prediction.

6 step Autoregressive(3× 2step) long − term
minADE1 1.32 1.31
minFDE1 2.61 2.50

We investigate two prediction strategies within the world model framework: long-term prediction
and autoregressive short-term prediction. Long-term prediction involves forecasting trajectories over
extended time horizons, while autoregressive short-term prediction focuses on immediate future
movements. Our results demonstrate that the long-term prediction strategy slightly outperforms
the autoregressive approach in accuracy and robustness, emphasizing its effectiveness in capturing
complex driving scenarios.

4.4 ABLATION STUDIES

Table 3: Ablation studies on different output contexts

output loss minADE minFDEl2 arctan scale vaωr
trajectory ✓ 3.21 5.83
trajectory ✓ ✓ 2.71 4.89
trajectory ✓ ✓ 2.60 4.68
trajectory ✓ ✓ ✓ 2.25 3.97

trajectory+vaωr ✓ 2.09 3.68
trajectory+vaωr ✓ ✓ 2.07 3.66

In this setting, we conduct an ablation study to examine the impact of different output contexts on
the world model’s performance. Initially, integrating additional loss functions such as velocity v,
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acceleration a, yaw ω, and yaw rate r refined trajectory predictions, significantly enhancing predic-
tion accuracy. Subsequently, we explored directly predicting velocity, acceleration, yaw, and yaw
rate outputs but faced challenges in effectively modeling the interactions between these outputs.

5 CONCLUSION

In this study, we have presented a framework for advancing autonomous driving technology, focus-
ing on the world model on High-Definition (HD) Map data. Our experimental evaluations, con-
ducted using the nuScenes dataset, underscore the effectiveness and challenges of each component
in achieving safe and efficient autonomous navigation.

The world model developed in this study exhibited promising capabilities in predicting every agent’s
future actions using a graph-structured representation of the HD Map. By incorporating local and
global features, our model achieved enhanced predictive accuracy and computational efficiency
across diverse driving scenarios. However, ongoing refinement efforts are necessary to address
challenges in modeling nuanced interactions and optimizing output content such as velocity, accel-
eration, yaw, and yaw rate.

Looking forward, integrating our world model with planning models represents a critical step to-
ward enhancing decision-making processes in real-time driving scenarios. By leveraging predictive
insights from the world model alongside planning strategies, we aim to optimize autonomous driving
behaviors while ensuring safety and efficiency.
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A APPENDIX

A.1 CALCULATING LOCATIONS USING SIMPLIFIED BICYCLE MODEL

𝜓 ∶ 𝑆𝑡𝑒𝑒𝑟𝑖𝑛𝑔 𝐴𝑛𝑔𝑙𝑒

𝛽:𝑀𝑜𝑣𝑖𝑛𝑔 𝐴𝑛𝑔𝑙𝑒

𝑙𝑓

𝑌𝑎𝑤

𝑣 ∶ 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝑙𝑟

𝑊ℎ𝑒𝑒𝑙 𝑏𝑎𝑠𝑒 = 𝑙𝑟 + 𝑙𝑓

Figure 6: Illustration of Bicycle Model

The next location and yaw of the vehicle are computed using the acceleration and steering angle as
follows. The model outputs the calculated location and yaw as the final result.

1. Next velocity is determined by:

vnext = vcurrent +∆t · at

2. The moving angle is determined by:

β = arctan

(
ψ

2

)
3. The change in yaw is computed as:

∆yaw =
vcurrent

wheel base
· tan(ψ) · cos(β)

4. The updated yaw is:
yawnext = yawcurrent +∆yaw ·∆t

5. The moving direction is:
θ = yawcurrent + β

6. The displacement (action) is computed as:

action = v ·∆t · (cos(θ), sin(θ)))

7. Finally, the vehicle’s next location is:

locnext = loccurrent + action ·∆t
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