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Abstract

Multimodal large language models (MLLMs)001
have attracted increasing attention in the past002
few years, but they may still generate descrip-003
tions that include objects not present in the004
corresponding images, a phenomenon known005
as object hallucination. To eliminate halluci-006
nations, existing methods manually annotate007
paired responses with and without hallucina-008
tions, and then employ various alignment algo-009
rithms to improve the alignment capability be-010
tween images and text. However, they not only011
demand considerable computation resources012
during the finetuning stage but also require ex-013
pensive human annotation to construct paired014
data needed by the alignment algorithms. To ad-015
dress these issues, we propose an efficient fine-016
grained unlearning framework (EFUF), which017
performs gradient ascent utilizing three tai-018
lored losses to eliminate hallucinations without019
paired data. Extensive experiments show that020
our method consistently reduces hallucinations021
while preserving the generation quality with022
modest computational overhead. Our code and023
datasets will be publicly available.024

1 Introduction025

In the burgeoning field of artificial intelligence,026

the advent of multimodal large language models027

(MLLMs) has opened new frontiers in human-028

computer interaction, data processing, and auto-029

mated content generation (Zhu et al., 2023; Liu030

et al., 2023b; Chen et al., 2023; Ye et al., 2023).031

These sophisticated models, capable of understand-032

ing both text and images, have significantly ad-033

vanced our ability to automate complex tasks.034

However, an intriguing and critical phenomenon035

known as “hallucination” in these models poses036

unique challenges for current research. Halluci-037

nation in MLLMs refers to the generation of in-038

consistent responses that are not grounded by the039

multimodal context (Sun et al., 2023). For exam-040

ple, as shown in Figure 1, the caption includes the041

Please describe the image in detail.

The image features a large Air France 
airplane flying through a cloudy sky. The 
airplane occupies a significant portion of 
image, stretching from the left to the right 
side of the frame. The airplane's landing 
gear is down, indicating that it is either 

preparing to land or has recently taken off. 
The sky is filled with clouds, creating a 

dramatic backdrop for the airplane's flight.

Figure 1: An example of hallucination in MLLM.

object “landing gear”, but in fact it does not appear 042

in the image. Such hallucinations will lead to mis- 043

information, potentially undermining user trust in 044

numerous downstream applications. 045

Recent methods for mitigating multimodal hal- 046

lucination can be divided into two categories: 047

revision-based methods (Lee et al., 2023; Zhou 048

et al., 2023; Yin et al., 2023; Wang et al., 2023) 049

and finetuning-based methods (Sun et al., 2023; Yu 050

et al., 2023; Liu et al., 2023a; Zhao et al., 2023; 051

Jiang et al., 2023). Revision-based strategies cor- 052

rect generated content through external expert re- 053

view or self-reflection during inference stage. How- 054

ever, they usually require additional inference steps 055

with increased costs and delay (Yu et al., 2023). 056

Furthermore, each task demands specific proce- 057

dure and prompt (Xu et al., 2024), adding to the 058

complexity of implementation. Overcoming these 059

drawbacks, finetuning-based approaches are pro- 060

posed to adjust the model directly through spe- 061

cialized datasets and preference alignment algo- 062
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rithms. These algorithms, including RLHF (Sun063

et al., 2023; Liu et al., 2023a), DPO (Yu et al.,064

2023; Zhao et al., 2023; Zhou et al., 2024) and con-065

trastive learning (Jiang et al., 2023), enhance the066

congruence between text and images, leading to067

improved alignment. Although they have achieved068

good performance, two critical issues emerge:069

First, their data demands are substantial, as070

they require a comprehensive set of paired posi-071

tive and negative samples for effective finetuning.072

The alignment algorithms they employed demand073

paired hallucinated and non-hallucinated responses074

for each query. Acquiring such specific and varied075

response sets for each query presents a significant076

challenge. Recent methodologies in this field pre-077

dominantly rely on human labor to annotate the078

output from the MLLM, requiring specialized ex-079

pertise and incurring considerable expenditure of080

time and financial resources.081

Second, The finetuning of MLLM utilizing these082

alignment algorithms usually demands consider-083

able computational resources. Most of these tech-084

niques are sophisticated and necessitate the simul-085

taneous operation of multiple models to execute086

preference alignment, thereby escalating the over-087

all cost significantly.088

To tackle the above issues, we propose the089

Efficient Fine-Grained Unlearning Framework090

(EFUF), which offers the advantage of not neces-091

sitating paired data and being more efficient dur-092

ing the finetuning phase. Our method, grounded093

in the principles of unlearning, mainly relies on094

performing gradient ascent on negative samples095

to mitigate hallucinations, eliminating the need096

for costly manually-annotated paired data. Addi-097

tionally, it consumes considerably fewer compu-098

tational resources. Unlike traditional alignment099

algorithms that require simultaneous operation of100

multiple models to execute preference alignment,101

EFUF operates without this requirement.102

The key to applying the unlearning algorithm is103

how to curate positive and negative samples, i.e.,104

distinguish between real and hallucinated objects,105

in a manner that is both cost-effective and reliable.106

Intuitively, the similarity between objects and their107

corresponding images can act as an indicator for108

hallucinations, since the image contains real ob-109

jects but not the hallucinated ones. In this work, we110

propose to utilize the CLIP model (Radford et al.,111

2021) to evaluate text-image congruence. Trained112

on a vast corpus of text-image pairs, CLIP stands113

as a robust tool to help identify hallucinations.114

After ascertaining the capability of CLIP through 115

a preliminary experiment, we curate our dataset 116

manually-free by utilizing CLIP scores, before ap- 117

plying our unlearning-based method to MLLMs. 118

This process enables us to harness the power of 119

unlearning, offering a potent and efficient approach 120

for mitigating hallucinations in MLLMs. 121

Our contribution can be summarized as follows: 122

1) To the best of our knowledge, we provide a 123

new perspective to utilize unlearning to mitigate 124

multimodal hallucination in MLLMs. 125

2) We propose an efficient fine-grained unlearning 126

framework EFUF, which can obtain positive and 127

negative examples separately in a cost-effective 128

and reliable manner. 129

3) EFUF has good compatibility and can be easily 130

extended to existing MLLMs. Experiments con- 131

ducted across a range of MLLMs validate the 132

effectiveness of our method. 133

2 Related Work 134

In this section, we review the existing studies on 135

Hallucination Mitigation for MLLM and Unlearn- 136

ing algorithm. 137

2.1 Hallucination Mitigation for MLLM 138

To mitigate hallucinations for MLLM, various 139

methods have been proposed. According to dif- 140

ferent phase during which they tackle the hallucina- 141

tions, their work can be divided into two categories: 142

(1) Revision-based methods. They employ ex- 143

ternal experts or self-reflection strategies to cor- 144

rect generated content during the inference phase, 145

thereby reducing hallucinations. For example, 146

LURE (Zhou et al., 2023) utilizes manually-crafted 147

features to detect hallucinations and therefore re- 148

vises the generated text. Woodpecker (Yin et al., 149

2023) proposes to post-edit hallucinations by com- 150

bining the output of MLLMs and a more accurate 151

expert VQA model using GPT-3.5. VIGC (Wang 152

et al., 2023) iteratively refines the instruction data 153

using generation and correction framework. VOL- 154

CANO (Lee et al., 2023) trains the MLLM to give 155

self-feedback, and then performs self-reflection on 156

the original generated text according to the feed- 157

back. Although these methods do not need to train 158

the model, they require additional inference steps 159

with increased costs and delay (Yu et al., 2023), and 160

specific procedure and prompt must be designed 161

for each task (Xu et al., 2024). 162

(2) Finetuning-based methods. Overcoming the 163
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potential drawbacks of the first category, these164

methods involve crafting specific datasets and fine-165

tuning the model, aiming for better alignment be-166

tween images and text. For instance, LLaVA-RLHF167

(Sun et al., 2023) first adopts RLHF to mitigate hal-168

lucinations. Based on this work, RLHF-V (Yu et al.,169

2023) introduces fine-grained alignment by man-170

ually correcting the outputs of MLLMs. Beyond171

standard RLHF, some works utilize other improved172

algorithms for better efficiency, e.g., DPO (Zhao173

et al., 2023; Zhou et al., 2024), instruction tuning174

(Liu et al., 2023a), and contrastive learning (Jiang175

et al., 2023). However, these methods require ex-176

pensive manually annotated paired data, and most177

of them also demand substantial computational re-178

sources during the finetuning stage. Therefore, in179

this work, we focus on reducing the data and com-180

putation requirements.181

2.2 Unlearning182

Unlearning refers to a technique designed to induce183

a model to "forget" specific behaviors or data, pri-184

marily through the application of gradient ascent185

methods (Cao and Yang, 2015). Recently, unlearn-186

ing for LLM is receiving increasing attention. Jang187

et al. (2023) demonstrate that straightforward gradi-188

ent ascent can effectively eliminate privacy vulner-189

abilities in LLMs. Later, Yao et al. (2023) propose190

the use of random mismatch and restrictions on191

KL divergence for positive samples, reducing the192

negative impact of unlearning on the general per-193

formance of LLMs.194

In our research, we extend the concept of un-195

learning to the realm of multimodal hallucination196

mitigation in MLLMs, proposing a novel solution197

for enhancing model reliability and accuracy in198

multimodal contexts. In contrast to earlier ap-199

proaches that apply unlearning across the entirety200

of a model’s responses, our methodology focuses201

exclusively on the unlearning of hallucinated ob-202

jects. This precise, fine-grained unlearning strategy203

allows for a more sophisticated refinement of the204

model’s outputs, ensuring that only inaccuracies205

are corrected without diminishing the model’s capa-206

bilities in other areas. To the best of our knowledge,207

this is the first attempt to adopt unlearning to mul-208

timodal large language models.209

3 Preliminary Experiment210

The initial phase of our research involves confirm-211

ing the hypothesis that text-image congruence can212

serve as a reliable indicator of hallucination oc- 213

currences. To this end, we designed a preliminary 214

study aimed at validating this premise. Below, we 215

detail the methods and findings of this experiment. 216

3.1 Hallucinated v.s. Non-Hallucinated 217

Our approach involves employing the CLIP model 218

to assess the similarity between text and corre- 219

sponding images, with the objective of determin- 220

ing whether there is a discernible difference in 221

the similarity scores of hallucinated versus non- 222

hallucinated content. Following Zhou et al. (2023), 223

we manually annotate 200 image captions gener- 224

ated by MiniGPT (Zhu et al., 2023) and LLaVA 225

(Liu et al., 2023b), labeling objects as either halluci- 226

nated or non-hallucinated. Subsequently, we define 227

an object-level image-relevance score by calculat- 228

ing fine-grained CLIP similarities for these objects 229

in relation to their associated image segments, aim- 230

ing to uncover any significant disparities in score 231

distributions. 232

Formally, let V = {v1, v2, ..., vm} denotes the
collection of images, and T = {t1, t2, ..., tm}
is the corresponding captions generated by the
MLLM. For each ti ∈ T , we manually anno-
tated all the objects in the caption, represented by
Oi = {o1i , o2i , ..., oni }, and O = {O1, O2, ..., Om}.
After that, we determine whether the object is hal-
lucinated, i.e., whether it appears in the image, as-
signing each object a binary value h(oji ) as follows:

h(o) =

{
1, if the object o is hallucinated;

0, if the object o is not hallucinated.

Based on this evaluation, we categorize the ob- 233

jects into two groups: the hallucinated group H1 = 234

{o|o ∈ O, h(o) = 1} and the non-hallucinated 235

group H0 = {o|o ∈ O, h(o) = 0}. We then cal- 236

culate the fine-grained CLIP score between each 237

object oji in either group and its corresponding im- 238

age vi. Given that most objects cover only a portion 239

of the image, we segment the image into patches 240

and employ a sliding window technique to identify 241

the best match. Thus, the image-relevance score 242

for each object is determined as follows: 243

S(oji ) = max
wi∈Wi

CLIP(oji , wi), (1) 244

where Wi represents the set of sliding windows 245

over the patches of the image vi. 246

This methodology enables us to obtain two sets 247

of image-relevance scores S1 = {S(o)|o ∈ H1} 248
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Figure 2: Comparison of hallucinated and non-hallucinated objects generated by MiniGPT4 (a) and LLaVA (b) on
image-relevance scores.

Model Hal. Mean Std. p

MiniGPT4
No 28.26 2.74

6.0× 10−30

Yes 25.35 2.70

LLaVA
No 28.64 2.65

2.5× 10−12

Yes 26.11 2.27

Table 1: Statistics and significance test on samples
generated by MiniGPT4 and LLaVA. Hal. indicates
whether the objects are hallucinated, Mean and Std.
represent their average and standard deviation of image-
relevance scores, and p is the p-value of t-test.

and S0 = {S(o)|o ∈ H0}. In the next section, we249

will examine the distributions of these scores and250

validate our hypothesis that text-image similarity251

can indicate the likelihood of hallucination.252

3.2 Results and Analysis253

In our analysis, we applied a two-sample t-test to254

examine the differences between the score distribu-255

tions of hallucinated and non-hallucinated objects.256

The results, as detailed in Table 1, reveal a notable257

discrepancy between the mean values of these dis-258

tributions, as indicated by the p-value. This statisti-259

cal evidence allows us to confidently reject the null260

hypothesis that the two distributions have identical261

means, underscoring the utility of CLIP similarity262

scores in detecting hallucinations.263

To provide a clearer understanding of these264

differences, we visualized the score distributions265

through density plots. These plots, illustrated in266

Figure 2, demonstrate that scores for hallucinated267

objects typically fall below 32, whereas scores268

for non-hallucinated objects generally exceed 23269

for both the two models. Our quantitative analy-270

sis further reveals that among the objects scoring271

above 32, only 0.6% and 1.6% are hallucinated, and 272

among those below 23, only 2.3% and 1.7% are not 273

hallucinated, for MiniGPT and LLaVA respectively. 274

These findings not only substantiate our hypothe- 275

sis but also suggest that definitive thresholds can 276

be established to effectively segregate positive and 277

negative samples for the purpose of unlearning. 278

4 Multimodal Hallucination Mitigation 279

4.1 Overview 280

After ascertaining the capability of CLIP through a 281

preliminary experiment, we design EFUF, whose 282

overview is shown in Figure 3. Drawing from estab- 283

lished methodologies in prior research (Sun et al., 284

2023; Yu et al., 2023; Liu et al., 2023a; Zhao et al., 285

2023; Jiang et al., 2023), our approach is bifur- 286

cated into two key stages: dataset construction and 287

the unlearning process itself. Initially, we harness 288

CLIP scores to identify and segregate various sam- 289

ples; after that, unlearning is applied on the model 290

with the curated samples. 291

Concretely, in constructing the dataset, we first 292

prompt the model to generate captions for given 293

images. After that, we utilize the CLIP model to 294

calculate the fine-grained similarity score of the ob- 295

ject phrases in text and the corresponding segments 296

in image. By setting thresholds for the scores, we 297

are able to discern and compile distinct samples 298

from the generated text, forming a dataset for fine- 299

tuning that circumvents the need for labor-intensive 300

manual annotation. During the finetuning phase, 301

we employ an efficient unlearning method, which 302

involves the development of three distinct types of 303

losses. These losses are designed to aid the model 304

in discarding incorrect multimodal alignments that 305

could lead to hallucinations, while preserving the 306
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Figure 3: An overview of EFUF. EFUF is divided into two stages: dataset formation and unlearning process.
Initially, we extract objects from generated captions and calculate their image relevance utilizing CLIP, followed by
the construction of three datasets. Subsequently, three corresponding losses are tailored to finetune the model.

correct alignments essential for tasks. Unlearning307

generally requires less computation resources com-308

pared with conventional alignment algorithms in309

the finetuning stage, so the computation amount310

can also be effectively reduced.311

4.2 Dataset Formation312

Prior to implementing unlearning with MLLMs,313

it’s imperative to define the targets of unlearning314

and accordingly assemble the requisite positive315

and negative samples. As evidenced in Section316

3.2, specific thresholds can effectively delineate317

between these samples. Hence, we apply these pre-318

determined image-relevance thresholds to filter the319

hallucinated and non-hallucinated objects.320

Given that a single response may encompass321

both hallucinated and non-hallucinated objects, a322

fine-grained approach to unlearning is warranted.323

Rather than attempting to unlearn an entire re-324

sponse wholesale, we opt for a targeted strategy325

focusing on the subsentences corresponding to the326

object, delineated by punctuation. Moreover, to327

preserve the model’s overarching sentence compre-328

hension and capabilities, we also compile samples329

of the complete sentences based on the mean image-330

relevance scores of all included objects, in addition331

to the positive and negative subsentences. These332

three categories of samples collectively form the333

dataset tailored for the unlearning process, facili-334

tating a more nuanced and effective mitigation of335

multimodal hallucinations.336

Formally, let D = {v;x; y} denotes a finetuning

dataset for MLLM, where v is the image, x is the
text query (prompt), and y is the text answer. The
positive subsentence dataset is formulated as

D+ =
{
vi; pre(oji ); cur(oji )|o

j
i ∈ O,S(oji ) > T0

}
,

where cur(o) represents the subsentence where ob-
ject o situates, pre(o) represents all the texts before
cur(o), including prompt, and T0 is the threshold
for positive samples. The text that comes after
cur(o) is truncated and unused. Similarly, The neg-
ative subsentence dataset is defined as

D− =
{
vi; pre(oji ); cur(oji )|o

j
i ∈ O,S(oji ) < T1

}
,

where T1 is the threshold for negative samples. 337

To construct a comprehensive dataset featuring 338

complete responses, it is essential to establish a 339

metric for assessing sentence-level hallucinations. 340

This is achieved by calculating the average image- 341

relevance score across all referenced objects within 342

a response. The formula for this sentence-level 343

image-relevance score is given by 344

S(ti) =
1

n

n∑
j=1

S(oji ). (2) 345

With this metric, we can curate a dataset of re-
sponses by filtering out those responses from the
model that meet the specific criterion:

Ds = {vi; pi; ti|ti ∈ T, S(ti) > T2} ,

where pi denotes the prompt for response ti, and 346

T2 is the threshold for response samples. 347
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Finally, we take Dunlearning = {D+, D−, Ds}348

as our unlearning dataset.349

4.3 Unlearning for MLLM350

After constructing the dataset, the final phase of351

our approach is the application of unlearning tech-352

niques to the model. Prior studies (Eldan and353

Russinovich, 2023) have shown that employing354

solely the unlearning loss severely undermines the355

model’s linguistic comprehension, rendering it in-356

capable of producing coherent sentences. Thus,357

we introduce a dual-faceted fine-grained unlearn-358

ing approach: applying a negative loss to the sub-359

sentences containing hallucinated objects, and a360

positive loss to those containing non-hallucinated361

objects. This strategy aims to curtail the production362

of hallucinated content while encouraging precise363

object representation, thus diminishing the occur-364

rence of hallucinations. Meanwhile, we also pro-365

pose a sentence loss, aiming to preserve the model’s366

ability to generate cohesive, long-form text. In the367

following, we will introduce these losses in detail.368

As is indicated by previous works, the core of369

unlearning is the gradient ascent strategy. Formally,370

unlearning updates the model parameters by:371

∆θ = η∇θLft(v, x, y; θ), (v, x, y) ∼ D, (3)372

where θ denotes the model’s parameters, η is the373

(un)learning rate, and Lft signifies the finetuning374

loss function. In the context of multimodal large375

language models, the supervised finetuning loss376

function L is articulated as377

Lft(v, x, y; θ) =
1

|y|

|y|∑
i=1

l(fθ(v, x, y<i), yi), (4)378

where fθ symbolizes the model with parameter θ,379

and l(ŷi, yi) calculates the cross-entropy loss for380

the predicted and actual values.381

To counteract hallucinations while maintaining382

overall model efficacy, we introduce three distinct383

losses tailored to the datasets we’ve constructed.384

The first, termed negative loss, applies gradient385

ascent to negative subsentences as follows:386

Lneg = −Lft(v, x, y), (v, x, y) ∼ D−. (5)387

This inversion of the loss function enables gradi-388

ent ascent. The second, the positive loss, aims at389

encouraging the model to generate correct objects,390

with its formulation remaining straightforward:391

Lpos = Lft(v, x, y), (v, x, y) ∼ D+. (6)392

The last, the sentence loss is designed to retain 393

model’s comprehension and capabilities on full 394

sentences during the unlearning process: 395

Lsent = Lft(v, x, y), (v, x, y) ∼ Ds. (7) 396

The overall loss equation then becomes a weighted 397

amalgamation of these three components: 398

L = Lpos + λ1Lneg + λ2Lsent, (8) 399

where λ1 and λ2 represent the unlearning weight 400

and the sentence weight respectively. 401

During training, we perform concurrent sam- 402

pling from the three datasets, individual loss com- 403

putation, and aggregation to derive the final loss 404

metric. By doing so, we effectively mitigate hallu- 405

cinations and preserve the model’s proficiency in 406

processing extensive sentences. 407

5 Experiments 408

5.1 Experimental Settings 409

Dataset. We adopt MSCOCO (Lin et al., 2014) 410

as our dataset. Since our approach necessitates only 411

the images themselves, their annotations are used 412

exclusively for evaluation. Details of our dataset 413

can be found in Appendix A.2. 414

Evaluation Metrics. Following Yu et al. (2023), 415

our assessment encompasses two dimensions: trust- 416

worthiness measured by the degree of hallucination, 417

and helpfulness determined by the quality of the 418

generated text. To quantify hallucinations, we uti- 419

lize CHAIR (Rohrbach et al., 2018), MHumanEval 420

(Yu et al., 2023) and POPE (Fu et al., 2023). For 421

generation quality, we leverage the BLEU (Pap- 422

ineni et al., 2002) score for assessing the consis- 423

tency with ground truth, evaluate informativeness 424

through GPT-4’s judgment (OpenAI, 2023), and 425

use GPT-2’s perplexity score (Radford et al., 2019) 426

to determine text fluency. Details on the evaluation 427

metrics are provided in Appendix A.3. 428

5.2 Baselines 429

To affirm the robustness of EFUF across a spec- 430

trum of MLLMs, we conducted evaluations against 431

a suite of state-of-the-art base models. These in- 432

clude MiniGPT4 (Zhu et al., 2023), mPLUG-owl 433

(Ye et al., 2023), LLaVA (Liu et al., 2023b), and 434

ShareGPT4V (Chen et al., 2023), which are pre- 435

trained on extensive multimodal datasets and sub- 436

sequently finetuned on high-quality instructions. In 437

our experiments, we integrate EFUF into them to 438

obtain the enhanced model. 439

6



Model
Hallucination Rate Generation Quality

ChairS↓ ChairI↓ HumanS↓ HumanI↓ POPE↑ Bleu1↑ Bleu2↑ Bleu4↑ Info.↑ ppl.↓

MiniGPT4 45.9 23.2 69.0 27.3 81.0 43.8 29.5 15.5 86.7 0.134
+ EFUF 38.9 21.1 45.0 12.7 82.3 45.6 31.1 16.7 87.5 0.121

LLaVA 52.8 22.8 42.0 14.7 85.3 43.2 29.0 15.2 93.7 0.139
+ EFUF 41.9 18.7 24.0 7.7 85.9 45.3 31.0 16.8 93.5 0.129

mPLUG-owl 71.1 33.5 60.0 24.1 88.5 43.3 29.1 15.1 91.1 0.129
+ EFUF 40.5 23.2 46.0 17.7 90.7 52.3 35.3 19.9 90.0 0.139

ShareGPT4V 46.8 22.3 31.0 9.9 87.8 43.3 29.2 15.4 89.6 0.157
+ EFUF 36.9 18.4 14.0 5.4 88.1 46.9 32.5 18.1 91.1 0.159

Table 2: Performance comparison of various MLLMs with and without EFUF. Hallucination is assessed using
CHAIR (ChairS , ChairI ), MHumanEval (HumanS , HumanI ), and POPE metrics. Quality is evaluated based on
consistency with ground truth (Bleu1, Bleu2), informativeness (Info.), and fluency (ppl.). A downward arrow (↓)
indicates that lower values are better, whereas an upward arrow (↑) signifies that higher values are preferable.

6 Results and Analysis440

6.1 Main Results441

As is shown in Table 2, we evaluate EFUF across a442

variety of MLLMs, assessing both the hallucination443

rate and generation quality.444

Hallucination rate. Based on the results, our445

approach demonstrates a consistent reduction in446

hallucination rates across all four MLLMs, with an447

average improvement of approximately 15% and448

5% on the ChairS and ChairI metric, 18% and 8%449

on the HumanS and HumanI metric, and 1% on the450

POPE metric. These findings validate the effective-451

ness and adaptability of our method, emphasizing452

its capacity to notably lower hallucination rates453

across cutting-edge models.454

Generation quality. Table 2 also highlights the455

improvements of EFUF in generation quality. Re-456

sults show that our method not only reduces the457

hallucination rate but also enhances overall genera-458

tion quality. Specifically, it improves BLEU-1 by459

4%, BLEU-2 by 3%, BLEU-4 by 2%, informative-460

ness by 1%, and fluency by 1%, across the four461

models. These enhancements stem from two main462

factors: the unlearning strategy which promotes463

accurate object generation, and the sentence loss464

design which enhances fluency.465

6.2 Ablation Study466

Without loss of generality, we select the MiniGPT4467

model for the ablation study to investigate the ef-468

fects of different modules of our proposed method.469

As outlined in Section 4.3, our approach is funda-470

mentally comprised of two key elements: the sen-471

tence loss and the unlearning mechanism, which472

itself includes the negative loss and the positive loss. 473

In order to quantify the contribution of each com- 474

ponent, we contrast EFUF against the following 475

configurations: (1) vanilla unlearning: a strategy 476

employing the coarse-grained unlearning, leverag- 477

ing both positive and negative entire sentences iden- 478

tified based on their sentence-level image relevance 479

scores; (2) fine-grained unlearning: the unlearning 480

strategy applied in EFUF, but without the sentence 481

loss; (3) sentence-loss-only method: a method that 482

solely applies the sentence loss of EFUF, omitting 483

the unlearning aspects. The subsequent content de- 484

tails the outcomes and insights derived from these 485

experimental comparisons. 486

Effects of Unlearning. As shown in Table 3, we 487

observe marginal improvements in hallucination 488

rate reduction and BLEU score enhancement, when 489

the method of vanilla unlearning and sentence loss 490

are applied. However, these gains are trivial com- 491

pared to those achieved by fine-grained unlearning 492

and the complete EFUF, highlighting the essen- 493

tial role fine-grained unlearning plays in mitigating 494

hallucinations and generating correct objects. 495

Effects of the Sentence Loss. Compared to 496

EFUF, the fine-grained unlearning approach re- 497

sults in a slightly lower hallucination rate but at 498

the cost of informativeness and fluency. In this 499

scenario, BLEU scores fall short of capturing this 500

issue, as they only measure n-gram matches. The 501

decline in fluency is highlighted by a significant in- 502

crease in perplexity, rendering the responses largely 503

unreadable by humans. Manual examination fur- 504

ther reveals that the generated content often con- 505

sists fragmented and incoherent sentences. Con- 506

versely, method employing only the sentence loss 507
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Method
Hallucination Rate Generation Quality

ChairS↓ ChairI↓ HumanS↓ HumanI↓ POPE↑ Bleu1↑ Bleu2↑ Bleu4↑ Info.↑ ppl.↓

MiniGPT4 45.9 23.2 69.0 27.3 81.0 43.8 29.5 15.5 86.7 0.134
+ unlearn. 42.4 22.7 56.0 17.3 82.0 44.2 29.8 15.6 87.6 0.120
+ f.g. unlearn. 36.1 17.9 39.0 9.7 82.7 47.3 32.8 17.1 87.2 0.170
+ sentence loss 44.1 29.8 58.0 17.0 81.7 43.6 29.1 16.0 86.8 0.120
+ EFUF 38.9 21.1 45.0 12.7 82.3 45.6 31.1 16.7 87.5 0.121

Table 3: Performance comparison of EFUF with vanilla unlearning strategy (unlearn.), fine-grained unlearning
strategy (f.g. unlearn.), and sentence-loss-only method (%). Although fine-grained unlearning achieves the lowest
hallucination rate, it drastically sacrifices fluency, making the generated content difficult for humans to read.

Method
Hallucination Rate Generation Quality

ChairS↓ ChairI↓ HumanS↓ HumanI↓ POPE↑ Bleu1↑ Bleu2↑ Bleu4↑ Info.↑ ppl.↓

LLaVA 52.8 22.8 42.0 14.7 85.3 43.2 29.0 15.2 93.7 0.139
+ RLHF 60.2 24.8 40.0 12.7 87.0 39.8 25.8 12.6 93.5 0.126
+ HADPO 52.3 21.6 28.0 10.8 84.2 43.8 29.6 15.7 91.4 0.148
+ POVID 41.3 19.2 29.0 8.3 86.3 44.5 30.0 15.1 86.8 0.233
+ EFUF 41.9 18.7 24.0 7.7 85.9 45.3 31.0 16.8 93.5 0.129

Table 4: Performance comparison of different hallucination mitigation methods on LLaVA. Best scores are in bold
and second bests are underlined.

and EFUF do not exhibit these flaws, emphasizing508

the vital function of sentence loss in maintaining509

high-quality text generation.510

In summary, our analysis confirms the neces-511

sity of integrating both fine-grained unlearning and512

sentence loss to effectively reduce hallucinations513

without compromising the model’s proficiency in514

generating comprehensive, fluent sentences. This515

combined approach ensures model performance516

while notably reduces hallucinations.517

6.3 Comparison with Other Hallucination518

Mitigation Methods519

To further evaluate the performance of EFUF, we520

compare it with other methods tailored to halluci-521

nation mitigation. These include LLaVA-RLHF522

(Sun et al., 2023), HA-DPO (Zhao et al., 2023),523

and POVID (Zhou et al., 2024), which are all eval-524

uated using their officially released checkpoints.525

We benchmark EFUF against these methods on the526

LLaVA model, since their checkpoints are all based527

on LLaVA. The results are shown in Table 4.528

Compared to other hallucination mitigation529

methods, EFUF demonstrates comparable or su-530

perior performance, while requiring minimal data531

construction cost and training resources among all.532

Additionally, our improvements in generation qual-533

ity are on par with RLHF-based methods, which534

typically demand expensive human annotations and535

significant computations. These outcomes high-536

light our method’s effectiveness and efficiency.537

6.4 More Analyses 538

To underscore the effectiveness of our approach, 539

additional analyses are provided in the appendix. 540

A comparison of the training expenses for EFUF 541

and alternative finetuning-based methods is given 542

in Appendix B. This comparison highlights that 543

EFUF reduces the resources needed for both dataset 544

construction and training process by a large mar- 545

gin. Further experimental evidence, presented in 546

Appendix C, illustrates that EFUF complements 547

and enhances the performance of existing halluci- 548

nation mitigation strategies. We also explore the 549

impact of varying weights as hyper-parameters in 550

Appendix D. Finally, a case study detailed in Ap- 551

pendix E quantitatively evaluates the generated text 552

under different methods, showcasing the distinct 553

advantages of our proposed solution. 554

7 Conclusion 555

In this paper, we find that text-image similarity is 556

helpful for identifying multimodal hallucinations, 557

and propose a novel unlearning framework to mit- 558

igate hallucinations in MLLM. Specifically, we 559

first curate different samples utilizing the image- 560

relevance score derived from CLIP similarity, and 561

then design three distinct losses to perform unlearn- 562

ing on the curated samples. Extensive experiments 563

on different baselines show that our method ef- 564

fectively reduces multimodal hallucinations while 565

retaining the general performance of the model. 566
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Limitations567

The limitations of our work mainly contain two568

aspects. Firstly, the exploration of alternative meth-569

ods for assessing text-image similarity presents an570

avenue for further research. Our findings affirm571

the utility of text-image relevance in constructing572

datasets for the unlearning process, with the rele-573

vance scores derived using the CLIP model. Ad-574

ditional methodologies for determining text-image575

relevance warrant exploration, which may further576

optimize the construction of unlearning datasets.577

Secondly, in line with most preceding research, our578

investigation primarily addresses object hallucina-579

tions, gauged by the presence or absence of the580

depicted object in the corresponding image. The581

exploration of other varieties of hallucinations, in-582

cluding but not limited to the attributes or posi-583

tioning of objects within the image, represents a584

significant area for future work.585
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A Details on Experiment Settings 765

A.1 Implementation Details 766

For dataset construction, in order to efficiently ob- 767

tain the object set O, we prompt the LLaMA-2-70b 768

(Touvron et al., 2023) model to extract all the ob- 769

jects from the response text. During training, we 770

only tune each model’s multimodal mapping layers, 771

i.e., ones that map image feature to text token em- 772

bedding. We train each model for a fixed 1 epoch 773

with AdamW (Loshchilov and Hutter, 2019) as the 774

optimizer, and report their performance on test set. 775

We implement all the models with the PyTorch 776

framework (Paszke et al., 2019), and run experi- 777

ments on an NVIDIA A100 GPU (NVIDIA et al., 778

2020). For hyperparameters, we set the weight of 779

unlearning loss λ1 to 0.3, the weight of sentence 780

loss λ2 to 0.2, the learning rate η to 1e-5, weight 781

decay to 0.05. Based on the analysis in Section 3, 782

the threshold for normal object T0 and hallucinated 783
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object T1 is set to 32 and 23, respectively. Besides,784

to ensure that the number of the entire sentence785

samples is similar to that of the positive and neg-786

ative subsentences, we set the threshold for entire787

sentence T2 to 27.5.788

A.2 Dataset789

MSCOCO (Lin et al., 2014) is a comprehensive790

dataset, encompassing over 300,000 images across791

more than 80 categories, each meticulously anno-792

tated. Our approach, which leverages text image793

congruence for alignment, necessitates only the794

images themselves and their associated prompts,795

omitting any need for annotations. Following Zhou796

et al. (2023); Liu et al. (2023a), we randomly select797

3,200 images with annotation for validation and798

testing, ensuring no overlap with the training im-799

ages to maintain the integrity of our experimental800

conditions.801

A.3 Evaluation Metrics802

A.3.1 Metrics on Hallucination Rate803

To quantify the rate of hallucinations, we utilize804

CHAIR (Rohrbach et al., 2018) and MHumanEval805

(Yu et al., 2023), which allow us to measure hallu-806

cinations at both the sentence and instance levels807

for model-generated content. Additionally, POPE808

(Fu et al., 2023) is incorporated into our evaluation809

to directly assess the models via VQA. Details of810

these metrics are given below.811

(1) CHAIR. Caption Hallucination Assessment812

with Image Relevance (CHAIR, Rohrbach et al.,813

2018) is a widely-used metric for evaluating hallu-814

cination. It quantifies hallucination by calculating815

the ratio of non-existent objects referenced in the816

model’s response to the total number of objects817

mentioned. It features two variations: CHAIRS818

for sentence-level and CHAIRI for instance-level.819

Both aim to measure object hallucination, albeit820

from different perspectives:821

CHAIRI =
|{hallucinated objects}|

|{all objects}|
, (9)822

CHAIRS =
|{hallucinated responses}|

|{all responses}|
, (10)823

where hallucinated responses refer to the responses824

containing at least one hallucinated objects.825

(2) MHumanEval. Recognizing the limitations826

of CHAIR in covering only a set of pre-defined827

object categories, we also incorporate human judg-828

ment into our evaluation. Following (Yu et al.,829

2023), we select a random subset of 100 responses 830

for expert review to identify hallucinated and non- 831

hallucinated objects. Similar to CHAIR, we re- 832

port hallucination rates at both the object level and 833

the response level, offering a holistic view of the 834

model’s accuracy in depicting real-world objects. 835

(3) POPE. Consistent with prior studies (Zhao 836

et al., 2023; Jiang et al., 2023), our evaluation in- 837

corporates the Polling-based Object Probing Evalu- 838

ation (POPE) methodology (Li et al., 2023). POPE 839

leverages an automated segmentation tool to delin- 840

eate objects within images, subsequently querying 841

the model regarding their presence, as well as in- 842

troducing random non-existent objects. We present 843

the F1 scores, offering insights into the model’s 844

image perception capabilities. 845

A.3.2 Metrics on Generation Quality 846

Our evaluation of the generated content’s quality 847

by MLLM hinges on three key metrics: informa- 848

tiveness, consistency with human responses, and 849

fluency. These metrics collectively assess the out- 850

put’s relevance, alignment, and readability. 851

(1) Informativeness. Inspired by (Yu et al., 852

2023), this metric assesses the extent to which 853

the generated captions encapsulate the primary el- 854

ements depicted in the image. Utilizing the rich 855

annotations provided by the COCO dataset, we 856

engage GPT-4 (OpenAI, 2023) to compare the an- 857

notated objects, the ground-truth caption, and the 858

model-generated caption, subsequently assigning a 859

coverage score. This process ensures that the eval- 860

uation focuses on the caption’s ability to highlight 861

significant image details. 862

(2) Consistency to human response. The fi- 863

delity of model-generated content to human-crafted 864

responses is gauged using the BLEU (Papineni 865

et al., 2002) score, which measures the linguistic 866

similarity between the machine’s output and expert- 867

written ground truth captions. This metric serves 868

as an indicator of how well the model’s responses 869

align with human expectations and standards. 870

(3) Fluency. The smoothness and natural flow 871

of the text produced by the model are evaluated 872

through its perplexity when processed by a pre- 873

trained GPT-2 (Radford et al., 2019) model. A 874

lower perplexity score signifies higher text fluency, 875

indicating that the generated narrative is coherent 876

and easily comprehensible, mirroring the linguistic 877

quality of the text. 878

11



Models
Hallucination Rate Generation Quality

ChairS↓ ChairI↓ HumanS↓ HumanI↓ POPE↑ Bleu1↑ Bleu2↑ Bleu4↑ Info.↑ ppl.↓

LLaVA-RLHF 60.2 24.8 40.0 12.7 87.0 39.8 25.8 12.6 93.5 0.126
+ EFUF 59.7 24.7 38.0 12.4 88.8 40.1 26.1 12.9 93.4 0.126

LRV 39.4 19.9 46.0 16.0 85.1 51.8 36.6 20.5 88.4 0.129
+ EFUF 37.3 19.5 45.0 15.1 85.1 51.2 36.3 20.7 87.7 0.118

Table 5: Performance comparison of EFUF added on other hallucination mitigating approaches (%).
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Figure 4: Training time comparison of EFUF with other
finetuning-based methods (A100 GPU hours).

B Training Cost879

EFUF distinguishes itself from conventional fine-880

tuning approaches to hallucination mitigation881

through its markedly lower end-to-end training882

costs. A key advantage of EFUF lies in its dataset883

construction process, which obviates the need for884

costly human annotations. Traditional methods typ-885

ically rely on extensive human-labeled datasets, of-886

ten comprising around 10,000 samples at expenses887

surpassing $3,000 (Sun et al., 2023; Yu et al., 2023).888

Otherwise, they create the dataset with the assis-889

tance of GPT-4, involving up to 500,000 samples890

pre-screened before manual review, incurring costs891

for around 200 million tokens equivalent to $2,000892

(Liu et al., 2023a; Jiang et al., 2023).893

In stark contrast, EFUF’s resource efficiency894

extends to its training demands. As depicted in895

Figure 4, EFUF’s training on an A100 GPU for a896

MiniGPT4 model requires merely 3 GPU hours, a897

fraction of the resources needed by other methods.898

For comparison, RLHF-based finetuning typically899

consumes 20 GPU hours (Sun et al., 2023), DPO900

ranges from 8 (Yu et al., 2023) to 16 (Zhao et al.,901

2023) GPU hours, and contrastive learning method902

requires around 10 GPU hours (Jiang et al., 2023).903

This substantial reduction on resource require-904

ments in both dataset construction and training 905

stage not only makes EFUF a cost-effective ap- 906

proach but also enhances its scalability and acces- 907

sibility for broader applications in hallucination 908

mitigation within the realm of multimodal large 909

language models. 910

C EFUF is beneficial to other 911

hallucination mitigation methods 912

EFUF stands out not only for its effectiveness and 913

efficiency in dataset construction and training but 914

also for its compatibility with existing hallucination 915

mitigation strategies, such as RLHF and instruction 916

tuning. This compatibility suggests that MLLMs 917

already enhanced with such techniques can further 918

benefit from the integration of EFUF, potentially 919

leading to additional performance improvements. 920

To validate this proposition, we conduct incre- 921

mental experiments, selecting models enhanced 922

with RLHF (LLaVA-RLHF, Sun et al., 2023) and 923

instruction tuning (LRV, Liu et al., 2023a) as our 924

new baseline for comparison. These models are 925

then incrementally trained with EFUF. Results, de- 926

tailed in Table 5, indicate a notable reduction in 927

hallucination rates post-EFUF application, with- 928

out compromising the quality of the generated text. 929

This outcome underscores EFUF’s value as an ad- 930

ditive method, capable of augmenting the perfor- 931

mance of MLLMs already subjected to advanced 932

hallucination mitigating techniques. 933

D Effects of different weight 934

In this segment, we delve into the effects of vary- 935

ing the weight assigned to the negative loss λ1 and 936

sentence loss λ2 on the performance outcomes of 937

ShareGPT4V model when trained using our EFUF 938

strategy. The investigation is aimed at understand- 939

ing how adjustments in these parameters influence 940

both the reduction in hallucination rates and the 941

overall quality of generated content, with results 942

reported on validation set. 943
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Parameter
Hallucination Rate Generation Quality

ChairS↓ ChairI↓ HumanS↓ HumanI↓ POPE↑ Bleu1↑ Bleu2↑ Bleu4↑ Info.↑ ppl.↓

λ1

0.1 46.3 22.1 30.0 10.2 87.7 43.2 29.2 15.4 89.5 0.155
0.2 38.5 19.2 20.0 7.3 88.1 44.5 30.2 16.1 91.2 0.129
0.3 36.9 18.6 18.0 5.2 88.2 47.5 33.1 18.4 90.9 0.154
0.4 21.0 12.5 13.0 5.9 88.0 63.5 47.0 18.1 88.5 0.243

λ2

0.1 35.7 17.7 16.0 4.3 88.4 48.6 34.1 17.9 90.6 0.187
0.2 36.9 18.6 18.0 5.2 88.2 47.5 33.1 18.4 90.9 0.154
0.3 39.4 19.6 30.0 7.8 87.9 45.9 31.7 16.8 91.0 0.152

Table 6: Performance of EFUF on the ShareGPT4V model with different negative loss weight λ1 and sentence loss
weight λ2 (validation set).

(1) Effects of negative loss weight λ1 As sum-944

marized in Table 6, as λ1 is incremented from 0.1945

to 0.4, we initially note enhancements in both hal-946

lucination reduction and generation quality metrics,947

up until a value of 0.2. Beyond this threshold and948

past the value of 0.3, a new trend emerges: while949

the rate of hallucinations continues to decline, a no-950

ticeable degradation in generation quality become951

apparent. This is particularly evident in the met-952

rics assessing informativeness and fluency, with the953

most pronounced effects observed once λ1 exceeds954

0.4. Our case study further reveals the model’s955

diminishing capacity to construct lengthy, informa-956

tive sentences at the value of 0.4, suggesting an957

overly aggressive unlearning weight might inadver-958

tently impair the model’s foundational knowledge959

and capabilities.960

Given these findings, a value of 0.3 for λ1 is961

identified as the optimal balance point, effectively962

minimizing hallucinations without compromising963

the integrity of generation quality.964

(2) Effects of sentence loss weight λ2 Contrast-965

ingly, the impact of λ2 generally mirrors the in-966

verse of λ1’s effects. A value of 0.1 yields re-967

duced fluency, suggesting that such a low sentence968

loss weight fails to exert sufficient influence. Con-969

versely, elevating λ2 to 0.3 incites an increase in970

the hallucination rate. This phenomenon can be at-971

tributed to an overly dominant sentence loss weight,972

which biases the model towards learning entire sen-973

tence patterns at the expense of neglecting to un-974

learn hallucinated content. Consequently, a value975

of 0.2 for λ2 is identified as the optimal setting,976

striking a balance between minimizing hallucina-977

tions and maintaining high-quality sentence gener-978

ation.979

E Case Study 980

In this part, we present a comparative analysis 981

through a case study, aiming to elucidate the dis- 982

tinct advantages of our method EFUF. This com- 983

parison involves the baseline MiniGPT4 model, a 984

version subjected solely to sentence loss, and the 985

model enhanced with our EFUF strategy. 986

The case study, as depicted in Figure 5, high- 987

lights a scenario where the base MiniGPT4 model 988

erroneously predicts non-existent elements, such 989

as “large windows” and “bookshelves”. This er- 990

ror is a clear instance of multimodal hallucination, 991

where the generated content includes objects not 992

present in the input image. The sentence-loss- 993

only approach, while attempting to better align 994

the model with multimodal contexts, falls short of 995

completely correcting these hallucinations. This 996

shortfall is attributed to finetuning’s inherent limi- 997

tation: it lacks a mechanism to explicitly signal to 998

the model which objects are inaccurately generated 999

and thus should be excluded from the output. 1000

In contrast, our EFUF approach successfully 1001

addresses this challenge. By integrating a fine- 1002

grained unlearning strategy, EFUF effectively dis- 1003

courages the generation of objects with low rel- 1004

evance to the given image. This direct interven- 1005

tion ensures that the model refrains from includ- 1006

ing hallucinated objects in its outputs, showcasing 1007

a significant improvement over the baseline and 1008

sentence-loss-only method. 1009
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Please describe the image in detail.

The image shows a large room with wooden floors and white walls. There are 
several tables and chairs set up in the room, with people sitting at them 

working on their laptops. The room has large windows on two sides, allowing 
natural light to pour in. There are also several bookshelves along the walls, 
filled with books and other materials. The overall atmosphere of the room is 
one of productivity and focus, with people working diligently on their tasks.

MiniGPT4

The image shows a large room with wooden tables and chairs. There are 
several people sitting at the tables, working on their laptops. The walls are 

painted white and there are windows on one side of the room that let in natural 
light. The floor is made of hardwood and there are rugs scattered throughout 
the room. The room is well lit and there are several lamps on the tables. The 
atmosphere is quiet and focused, with people concentrating on their work.

MiniGPT4 + sentence loss

The image shows a large room with several tables and chairs. There are 
several people sitting at the tables, working on their laptops. The walls 
are made of wood and there are several paintings on them, adding to 

the ambiance of the room. The floor is made of hardwood and there are 
several rugs on it, providing a comfortable surface for people to work on. 

The ceiling is high and the room is well lit. The overall atmosphere is 
productivity and focus, with people concentrating on their tasks.

MiniGPT4 + EFUF

Figure 5: Responses of MiniGPT4 with different methods.

14


	Introduction
	Related Work
	Hallucination Mitigation for MLLM
	Unlearning

	Preliminary Experiment
	Hallucinated v.s. Non-Hallucinated
	Results and Analysis

	Multimodal Hallucination Mitigation
	Overview
	Dataset Formation
	Unlearning for MLLM

	Experiments
	Experimental Settings
	Baselines

	Results and Analysis
	Main Results
	Ablation Study
	Comparison with Other Hallucination Mitigation Methods
	More Analyses

	Conclusion
	Details on Experiment Settings
	Implementation Details
	Dataset
	Evaluation Metrics
	Metrics on Hallucination Rate
	Metrics on Generation Quality


	Training Cost
	EFUF is beneficial to other hallucination mitigation methods
	Effects of different weight
	Case Study

