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ABSTRACT

Causal representation learning has showed a variety of settings in which we can
disentangle latent variables with identifiability guarantees (up to some reasonable
equivalence class). Common to all of these approaches is the assumption that
(1) the latent variables are represented as d-dimensional vectors, and (2) that
the observations are the output of some injective generative function of these
latent variables. While these assumptions appear benign, we show that when
the observations are of multiple objects, the generative function is no longer
injective and disentanglement fails in practice. We can address this failure by
combining recent developments in object-centric learning and causal representation
learning. By modifying the Slot Attention architecture (Locatello et al., 2020b),
we develop an object-centric architecture that leverages weak supervision from
sparse perturbations to disentangle each object’s properties. This approach is more
data-efficient in the sense that it requires significantly fewer perturbations than
a comparable approach that encodes to a Euclidean space and we show that this
approach successfully disentangles the properties of a set of objects in a series of
simple image-based disentanglement experiments.

1 INTRODUCTION

Consider the image in Figure 1 (left). We can clearly see four different colored balls, each at a
different position. But asking, “Which is the first shape? And which is the second?” does not have a
clear answer: the image just depicts an unordered set of objects. This observation seems trivial, but it
implies that there exist permutations of the objects which leave the image unchanged. For example,
we could swap the positions of the two blue balls without changing a single pixel in the image.

In causal representation learning, the standard assumption is that our observations x are “rendered”
by some generative function g(·) that maps the latent properties of the image z to pixel space (i.e.
x = g(z)); the goal is to disentangle the image by finding an “inverse” map that recovers z from x
up to some irrelevant transformation. The only constraint on g(·) that is assumed by all recent papers
(for example Hyvarinen & Morioka, 2016; 2017; Locatello et al., 2020a; Khemakhem et al., 2020a;b;
Lachapelle et al., 2022; Ahuja et al., 2022a;b; 2023), is that g(·) is injective1, such that g(z1) = g(z2)
implies that z1 = z2. But notice that if we represent the latents z as some d-dimensional vectors
in Euclidean space, then whenever we observe objects like those shown in Figure 1, this injectivity
assumption fails: symmetries in the objects’ pixel representation imply that there exist non-trivial
permutation matrices Π, such that g(z) = g(Πz). This is not just a theoretical inconvenience:
Figure 1 (right) shows that when the identity of the balls is not distinguishable, the disentanglement
performance of a recent approach from Ahuja et al. (2022b) is upper-bounded by 1/k where k is the
number of balls.

∗correspondence to amin.mansouri@mila.quebec or jason@valencelabs.com
1Some papers place stronger constraints on g(·), such as linearity Hyvärinen & Oja, 2000; Squires et al.,

2023, sparsity Moran et al., 2022; Zheng et al., 2022, or constraints on g’s Jacobian Gresele et al., 2021; Brady
et al., 2023 but injectivity is the weakest assumption common to all approaches.
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Figure 1:(Left)An example image of simple objects.(Right)Mean correlation coef�cient (MCC)
score which measures the correlation between inferred latent variables and their associated ground
truth values. Ahuja et al. (2022b)'s approach achieves almost perfect MCC scores (i.e. a score
� 1) when the ball color is used to make the generative function injective (“Injective ResNet”), but
achieves an MCC score of at most1

k wherek is the number of objects when colors are selected
randomly (“Non-injective ResNet”). We show that it is possible to recover the injective performance
by disentangling object-centric representations (“Disentangled Slot Attention”).

In parallel to this line of work, there has been signi�cant progress in the object-centric learning
literature (e.g. van Steenkiste et al., 2018a; Goyal et al., 2019; Locatello et al., 2020b; Goyal et al.,
2020; Lin et al., 2020; Zhang et al., 2023) that has developed a suite of architectures that allow us
to separate observations into sets of object representations. Two recent papers (Brady et al., 2023;
Lachapelle et al., 2023) showed that the additive decoders used in these architectures give rise to
provable object-wise disentanglement, but they did not address the task of disentangling the objects'
associated properties. In this paper we show that by leveraging object-centric architectures,we
effectively reduce the multi-object problem to a set of single-object disentanglement problemswhich
not only addresses injectivity failures, but also results in a signi�cant reduction in the number of
perturbations we need to observe to disentangle properties using Ahuja et al. (2022b)'s approach. We
illustrate these results by developing a property disentanglement algorithm that combines Zhang et al.
(2023)'s SA-MESH object-centric architecture with Ahuja et al. (2022b)'s approach to disentangle-
ment and show that our approach is very effective at disentangling the properties of objects on both
2D and 3D synthetic benchmarks.

In summary, we make the following contributions:

• We highlight two problems that arise from objects which violate standard assumptions used to
identify latent variables (Section 3).

• We show that these problems can be addressed by leveraging object-centric architectures, and
that using object-centric architectures also enables us to use a factor ofk fewer perturbations to
disentangle properties, wherek is the number of objects (Section 4).

• We implement the �rst object-centric disentanglement approach that disentangles object proper-
ties with identi�ability guarantees (Section 5).

• We achieve strong empirical results2 on both 2D and 3D synthetic benchmarks (Section 7).

2 BACKGROUND

Causal representation learning (Schölkopf et al., 2021) seeks to reliably extract meaningful latent
variables from unstructured observations such as images. This problem is impossible without
additional structure because there are in�nitely many latent distributionsp(z) that are consistent with
the observed distribution,p(x) =

R
p(xjz)dp(z), only one of which corresponds to the ground truth

distribution (Hyv̈arinen & Pajunen, 1999; Locatello et al., 2019). We therefore need to restrict the
solution space either through distributional assumptions on the form of the latent distributionp(z), or
through assumptions on the functional form of the generative functiong : Z ! X that maps from
the latent space to the observed space (Xi & Bloem-Reddy, 2023). A key assumption that (to the

2The code to reproduce our results can be found at: https://github.com/amansouri3476/OC-CRL

2



Published as a conference paper at ICLR 2024

best of our knowledge) is leveraged by all papers that provide identi�ability guarantees, is thatg(�)
is injective such that if we see identical images, the latents are identical (i.e. ifg(z1) = g(z2) then
z1 = z2).

Given these restrictions, we can analyze theidenti�ability of latent variables for a given inference
algorithm by considering the set of optimal solutions that satisfy these assumptions. We say latent
variables areidenti�ed if the procedure will recover the latents exactly in the in�nite data limit.
Typically, some irreducible indeterminacy will remain, so latent variables will be identi�edup to
some equivalence classA . For example, if the true latent vector isz, and we have an algorithm for
which all optimal solutions return a linear transformation ofz such that,A = f A : ẑ = Azg, then we
say the algorithm is linearly identi�es latent variables. We will call latent variablesdisentangledif the
learning algorithm recovers the true latent variables up to a permutation (corresponding to a relabeling
of the original variables), and element-wise transformation. That is, for alli , zi = hi (z� ( i ) ), where
� is a permutation, andhi (�) is an element-wise function; for the results we consider in this paper
this function is simply a scaling and offset,f i (z) = ai zi + bi corresponding to a change of units of
measurement and intercept.

In this paper, we will build on a recent line of work that leverages paired samples from sparse
perturbations to identify latent variables (Locatello et al., 2020a; Brehmer et al., 2022; Ahuja et al.,
2022b). Our approach generalizes Ahuja et al. (2022b) to address the non-injectivity induced by
objects, so we will brie�y review their main results. Ahuja et al. assume that they have access to
paired samples,(x; x 0) wherex = g(z), x0 = g(z0), andzi is perturbed by a set of sparse offsets
� = f � 1; : : : ; � k g, such thatz0

i = zi + � i for all i 2 f 1; : : : ; kg. They show that ifg(�) is an injective
analytic function fromRd ! X , every� 2 � is 1-sparse, and at leastd linearly independent offsets
are observed, then an encoder,f that minimizes the following objective recovers the truez up to
permutations, scaling and an offset (Ahuja et al., 2022b, Theorem 1),

f̂ 2 arg minf 0Ex;x 0;�

h
(f 0(x) + � � f 0(x0))2

i
) f̂ (x) = ẑ = �� z + c (1)

where� is a permutation matrix,� is an invertible diagonal matrix andc is an offset.

3 OBJECTS RESULT IN NON-IDENTIFIABILITY

We begin by formally characterizing the challenges that arise when images contain multiple objects.

Data generating process. We assume that a setZ := f zi gk
i =1 of k objects is drawn from some joint

distribution,PZ . In order to compare set and vector representations, letvec� (Z ) denote a �attened
vector representation ofZ ordered according to some permutation� 2 Sym(k), the symmetric
group of permutations ofk objects; when� is omitted,vec(Z ) simply refers to an arbitrary default
ordering (i.e. the identity element of the group). Each object is described by ad-dimensional vector
of properties3 zi 2 Rd, and hencevec(Z ) 2 Rkd . We say objects haveshared propertiesif the
coordinates ofzi have consistent meaning across objects. For example, the objects in Figure 1 (left),
each havex; y coordinates and a color which can be represented by its hue, sozi = [ pi

x ; pi
y ; hi ]. In

general, the set of properties associated to an object can be different across objects, but for simplicity,
our discussion will focus on properties that are fully shared between all objects.

The non-injectivity problem. We observe imagesx which are generated via a generative function
g(�) that renders a set of object properties into a scene in pixel space, such thatx = g(Z ). While
g(�) is a set function, we can de�ne an equivalent vector generative function,g, which, by de�nition,
produces the same output asg(Z ); i.e. for all � 2 Sym(k), g(vec� (Z )) = g(Z ). This generative
functiong taking vectors as input is consistent with standard disentanglement assumptions except
that it is not injective:

Proposition 1. If g(vec� (Z )) = g(Z ) for all � 2 Sym(k), theng(�) is not injective.

3A natural extension of the perspective we take in this paper is to also treat properties as sets rather than
ordered vectors; for example, see Singh et al. (2023). We leave understanding the identi�ability of these
approaches to future work.
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Proof. The contrapositive of the de�nition of injectivity states thatz1 6= z2 impliesg(z1) 6= g(z2),
but by de�nition of g(�), there existz1 6= z2 such thatg(z1) = g(z2). In particular, for any setZ and
permutations� 1 6= � 2 2 Sym(k), the vectorsvec� 1 (Z ) = z1 6= z2 = vec� 2 (Z ).

This proposition simply states that if images are composed ofsetsof objects, then if we model the
generative function as a map from a Euclidean space, this map will not be injective by construction.

With the exception of Lachapelle et al. (2023), all of the causal representation learning papers cited in
section 6 assume the generative functiong is injective. To see why injectivity is necessary in general,
consider an image with two objects. If the two objects are identical, then there are two disentangled
solutions corresponding to the two permutations, so it is not possible to identify a unique solution.

The object identity problem. When applying sparse perturbations onZ (see section 2), we are
effectively perturbing one coordinate of one object. However, how can we know which object of the
multiple possible objects inZ we have perturbed? In the case of injective mappings, this is simple:
since there is a consistent ordering for them, we know that a coordinate invec(Z ) corresponds to the
same object before and after the perturbation.

However, this is no longer the case in our setting. Since the objects are actually part of a set, we
cannot rely on their ordering: the perturbed object can, in principle, freely swap order with other
objects; there is no guarantee that the ordering before and after the perturbation remains the same. In
fact, we know that these ordering changesmustbe present due to theresponsibility problem:

Proposition 2(Zhang et al. (2020); Hayes et al. (2023)). If the data is generated according to the data
generating process described above withg(vec� (Z )) := g(Z ) andk > 1, thenf (�) is discontinuous.

Proof Sketch.Consider Figure 2, notice that if we perform a90� rotation in pixel space of the image,
the image is identical, but the latent space has been permuted, since each ball has swapped positions.
Because the image on the left and the image on the right are identical in pixel space, any encoder,
f : X ! Rkd , will map them them to identical latents. There exists a continuous pixel-space rotation
from 0� to 90� , but it must entail a discontinous swap in which latent isresponsiblefor which part of
pixel-space according to the encoder.

A general proof can be found in Hayes et al. (2023). These discontinuities manifest themselves as
changes in permutation from onevec� 1 (Z ) to anothervec� 2 6= � 1 (Z ). In disentanglement approaches
that leverage paired samples (e.g. Ahuja et al., 2022b; Brehmer et al., 2022), continuity enables the
learning algorithm to implicitly rely on the object identities to stay consistent. Without continuity,
one cannot rely on the fact thatvec(Z ) andvec(Z ) + � should be the same up to the perturbation
vector� , because the perturbation may result in a discontinuous change ofvec(Z ) + � when an
observation is encoded back to latent space. As a consequence, we lose track of which object we
have perturbed in the �rst place, so na�̈ve use of existing disentanglement methods fails.

Another challenge is that the encoderf (Equation 1) has to map observations tovec(Z ) in a
discontinuousway, which is traditionally dif�cult to model with standard machine learning techniques.

In summary, the unordered nature of objects inZ results in non-injectivity, losing track of object
identities, and the need for learning discontinuous functions. These all contribute to the non-
identi�ability of traditional disentanglement methods in theory and practice.

4 OBJECT-CENTRIC CAUSAL REPRESENTATION LEARNING

A natural solution to this problem is to recognize that the latent representations of multi-object
images are sets and should be treated as such by our encoders and decoders in order to enforce
invariance among these permutations. Both Brady et al. (2023) and Lachapelle et al. (2023) showed
that architectures that enforce an appropriate object-wise decomposition in their decodersprovably
disentangle images into object-wise blocks of latent variables. These results do not disentangle the
properties of objects, but they solve an important precursor: the assumption that there exists an
object-wise decomposition of the generative function is suf�cient to partition the latents into objects.
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Figure 2: An illustration of the object identity problem. Permuting the order of the latents
[z1; z2; z3; z3] is equivalent to a 90 degree rotation in pixel-space.

Like these two papers, we will assume that natural images can be decomposed into objects,4 each of
which occupies a disjoint set of pixels. When this is the case, we say that an image isobject-separable.
To de�ne object separability formally, we will need to consider a partitionP of an image intok
disjoint subsets of pixelsP = f x (1) ; : : : ; x (k ) g indexed by an index setI P = f 1; : : : ; kg; further,
denote an index set that indexes the set of latent variablesZ asI Z . We can then say,

De�nition 1. An image,x, is object-separableif there exists anobject-wisepartition P and a
bijection� : I P ! I Z that associates each subset of pixels inP with a particular element of the set
of latents,zi , such that each subset of pixelsx ( i ) 2 P is the output of an injective map with respect to
its associated latentz� ( i ) . That is, for alli , (x ( i )0

� g(Z 0); x ( i ) � g(Z )) , we have thatx ( i )0
= x ( i )

impliesz0
� ( i ) = z� ( i ) .

This de�nition says that an image can be separated into objects if it can be partitioned into parts such
that each part is rendered via an injective map from some latentzi . We can think of eachx ( i ) as a
patch of pixels, with a bijection� that relates each of thek patches of pixels in the partitionf x ( i ) gk

i =1
to a latent variable inZ = f zi gk

i =1 . Each patch “depends” on its associated latent via an injective
map.

Brady et al. (2023) and Lachapelle et al. (2023) give two different formal characterizations of
partitionsP that are consistent with our object-wise de�nition. Brady et al.'s characterization requires
that a differentiable generative functiong is compositional, in the sense that eachx ( i ) 2 P only
functionally depends5 on a singlezj 2 Z , andirreduciblein the sense nox ( i ) 2 P can be further
decomposed into non-trivial subsets that have functionally independent latents. Lachapelle et al.'s
assumption is weaker than ours in that they only require that the generative function is de�ned as
g(Z ) = � (

P
zi 2 Z gi (zi )) where� is an invertible function, and thatg is a diffeomorphism that is

“suf�ciently nonlinear” (see Assumption 2 Lachapelle et al., 2023); object-separable images are a
special case with� as the identity function and eachgi (�) rendering a disjoint subset ofx, and hence
their results apply to our setting.

Disentangling properties with object-centric encoding. In section 3 we showed that the assump-
tions underlying sparse perturbation-based disentanglement approach are violated in multi-object
scenes. But, the results from Brady et al. (2023) and Lachapelle et al. (2023) show that the objects
can be separated into disjoint (but entangled) sets of latent variables. This suggests a natural approach
to disentangling properties in multi-object scenes:

• we can reduce the multi-object disentanglement problem to a single-object problem with an
object-wise partition of the image. Within each patch of pixelsx ( i ) 2 P injectivity holds, and
so we no longer have multiple solutions at a patch level. This partition is identi�able and we

4This is a pragmatic approximation that suf�ces for the purposes of this paper, but a careful treatment of
objects is far more subtle because what we interpret as an “object” often depends on a task or a choice of
hierarchy; for a more nuanced treatment, Smith (2019)'s Chapter 8 is an excellent introduction into the subtleties
around demarcating an “object”.

5Functional dependence is de�ned by non-zero partial derivatives, i.e.@xi

@zj
6= 0 .

5


	Introduction
	Background
	Objects result in non-identifiability
	Object-centric causal representation learning
	Method
	Related work
	Empirical evaluation
	Conclusion
	Acknowledgments
	Proof of theorem 1
	Background on slot-attention-based architectures
	Alternative perturbation mechanisms
	Matching
	Further Experimental Results
	2D Shapes
	3D Shapes
	Comparison of Sample Efficiency

	Implementation and Experimental Details
	SA-MESH Architecture
	Disentanglement Heads
	ConvNet Baseline
	Training
	Hyperparameter Optimization
	Datasets
	Limitations


