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Abstract

Decision making under uncertainty is challeng-
ing as the data-generating process (DGP) is often
unknown. Bayesian inference proceeds by esti-
mating the DGP through posterior beliefs on the
model’s parameters. However, minimising the
expected risk under these beliefs can lead to sub-
optimal decisions due to model uncertainty or
limited, noisy observations. To address this, we
introduce Distributionally Robust Optimisation
with Bayesian Ambiguity Sets (DRO-BAS) which
hedges against model uncertainty by optimising
the worst-case risk over a posterior-informed am-
biguity set. We provide two such sets, based on
the posterior expectation (DRO-BASPE) or the
posterior predictive (DRO-BASPP) and prove that
both admit, under conditions, strong dual formu-
lations leading to efficient single-stage stochastic
programs which are solved with a sample aver-
age approximation. For DRO-BASPE, this covers
all conjugate exponential family members while
for DRO-BASPP this is shown under conditions
on the predictive’s moment generating function.
Our DRO-BAS formulations outperform existing
Bayesian DRO on the Newsvendor problem and
achieve faster solve times with comparable robust-
ness on the Portfolio problem.

1. Introduction
Decision-makers regularly attempt to optimise an objective
under uncertainty with only finite sampling access – via in-
dependently and identically distributed (i.i.d.) observations –
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Figure 1. Visualisation of our BASPE and BASPP ambiguity sets
versus BDRO (Shapiro et al., 2023) for Normal likelihood with
Normal-Gamma posterior. BASPE contains distributions with ex-
pected (under the posterior Π) KL divergence from the model of at
most ϵ. BASPP contains distributions with KL divergence at most
ϵ from the posterior predictive distribution. BDRO minimises the
expected worst-case risk between each KL-based ambiguity set
based on posterior samples µ, σ2 ∼ Π (orange crosses).

from the data-generating process (DGP). Given the observa-
tions, parametric model-based inference estimates the DGP
with a distribution Pθ indexed by parameters θ ∈ Θ in pa-
rameter space Θ ⊆ Rk. In a Bayesian framework, the data
is combined with a prior to obtain posterior beliefs about θ
and the decision maker can now minimise the risk under the
Bayesian estimator.

However, the estimator is likely different from the true DGP
due to model and data uncertainty: the number of observa-
tions may be small; the data may be noisy; and the prior
or model may be misspecified. Minimising the risk under
the Bayesian model inherits any estimation error, and leads
to overly optimistic decisions on out-of-sample scenarios
even if the estimator is unbiased: this phenomenon is called
the optimiser’s curse (Kuhn et al., 2019). For example, if
the number of observations is small and the prior is overly
concentrated, the decision will likely be overly optimistic.

To hedge against the uncertainty of the estimated distri-
bution, the field of Distributionally Robust Optimisation
(DRO) minimises the expected objective function under
the worst-case distribution that lies in an ambiguity set.
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DRO with Bayesian Ambiguity Sets

Discrepancy-based ambiguity sets contain distributions that
are close to a nominal one in the sense of some discrepancy
measure such as the Kullback-Leibler (KL) divergence (Hu
& Hong, 2013), Wasserstein distance (Kuhn et al., 2019)
or Maximum Mean Discrepancy (Staib & Jegelka, 2019).
For example, model-based methods1 (Iyengar et al., 2023;
Michel et al., 2021; 2022) consider a family of parametric
models and create discrepancy-based ambiguity sets centred
on the fitted model. However, these works do not capture un-
certainty about the parameters which can lead to a nominal
distribution far away from the DGP when the data is limited.
The principled framework for capturing such uncertainty
is Bayesian inference. Existing DRO methodologies like
Bayesian DRO (BDRO) introduced by Shapiro et al. (2023)
that are informed by parameter posterior beliefs, do not cor-
respond to a worst-case risk objective and hence do not give
rise to a single, interpretable worst-case risk distribution
(see Figure 1).

We introduce DRO with Bayesian Ambiguity Sets (DRO-
BAS): a framework for robust decision-making under un-
certainty based on posterior-informed ambiguity sets. Our
contributions are:

1. We define Bayesian Ambiguity Sets (BAS) which lever-
age posterior beliefs about the parameters of interest.
We provide two distinct formulations of BAS: one con-
taining distributions with small KL divergence from the
posterior predictive distribution (DRO-BASPP) and an-
other one including those with small expected KL diver-
gence from the candidate model (DRO-BASPE). Sim-
ilarly to discrepancy-based DRO, the decision maker
solves a single worst-case risk minimisation problem.

2. We show that DRO-BASPP attains a dual formulation
which is an efficient single-stage stochastic program.
Additionally, for models within the conjugate exponen-
tial family, we demonstrate that the dual program of
DRO-BASPE is also single-stage and can be solved ex-
actly when a linear objective function and a Gaussian
likelihood are used. When the objective function is
non-linear but convex, the duals can be solved with a
sample average approximation (SAA) (also known as
Monte Carlo). Finally, we provide the worst-case risk
distribution form as well as finite-sample results on the
optimal tolerance level.

3. On the Newsvendor problem, we show that DRO-
BAS Pareto dominates existing Bayesian DRO for-
mulations (Shapiro et al., 2023) when evaluating the
out-of-sample mean-variance trade-off of the objective
function when the number of SAA samples is small.
On the real-world Portfolio problem, DRO-BAS solves

1For a discussion of empirical DRO vs model-based DRO
methods, see Appendix E.3.

instances faster than Bayesian DRO with comparable
out-of-sample robustness.

2. Background
Let x ∈ X be a decision-making variable that is chosen to
minimise a stochastic objective function f : X × Ξ → R,
where X ⊆ RD is the set of feasible decisions and Ξ ⊆ RD

is the data space2. Let P⋆ ∈ P(Ξ) be the data-generating
process (DGP) where P(Ξ) is the space of Borel distribu-
tions over Ξ. We are given n i.i.d. observations D ≜ ξ1:n ∼
P⋆. Model-based inference considers a family of models
PΘ ≜ {Pθ : θ ∈ Θ} ⊂ P(Ξ) where each Pθ has probability
density function p(ξ|θ) for parameter space Θ ⊆ Rk. In a
Bayesian framework, data D is combined with a prior π(θ)
to obtain posterior beliefs about θ through Π(θ|D). Under
expected-value risk, Bayesian Risk Optimisation (Wu et al.,
2018) solves a stochastic optimisation problem:

(BRO) min
x∈X

Eθ∼Π(θ|D) [Eξ∼Pθ
[fx(ξ)]]. (1)

where fx(ξ) ≜ f(x, ξ) is the objective function. How-
ever, decision-makers sometimes seek worst-case protection.
The closest work to ours, using parametric Bayesian infer-
ence to inform the optimisation problem, is Bayesian DRO
(BDRO) by Shapiro et al. (2023). BDRO takes an expected
worst-case approach under the posterior distribution. More
specifically, let Bϵ(Pθ) ≜ {Q ∈ P(Ξ) : dKL(Q∥Pθ) ≤ ϵ}
be the KL discrepancy-based ambiguity set centered on
distribution Pθ, where dKL is the KL-divergence and param-
eter ϵ ∈ [0,∞) controls the size of the ambiguity set. Under
the expected value of the posterior, BDRO solves:

(BDRO) min
x∈X

Eθ∼Π(θ|D)

[
sup

Q∈Bϵ(Pθ)

Eξ∼Q[fx(ξ)]

]
, (2)

where Eθ∼Π(θ|D)[Y ] ≜
∫
Θ
Y (θ)Π(θ | D) dθ denotes the

expectation of random variable Y : Θ → R with respect to
Π(θ | D). A decision maker is often interested in protecting
against and quantifying the worst-case risk, but BDRO does
not correspond to a worst-case risk analysis. Moreover,
the BDRO dual problem is a two-stage stochastic problem
that involves a double expectation over the posterior and
likelihood. To get a good approximation of the dual problem
using SAA, a large number of samples are required, which
increases the solving time of the dual problem.

Gupta (2019) introduced Near-Optimal Ambiguity Sets,
based on Bayesian guarantees. This method aims to find
the smallest convex ambiguity set that satisfies a Bayesian
Posterior Feasibility guarantee. The authors also provide

2For convenience, we assume the decision variable x ∈ X and
the random variable ξ ∈ Ξ both have dimension D, but our work
is not restricted to this case.
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an upper bound on the posterior value-at-risk, constructing
the ambiguity set according to the framework of Bertsimas
et al. (2018). In this approach, the ambiguity set is chosen
by searching over a space of potential sets and selecting the
one that meets a predefined guarantee based on the posterior
distribution. In contrast to BDRO, the ambiguity set is con-
fined to members of the model family, and posterior beliefs
are not used to inform the ambiguity set itself, but rather to
guide the search for feasible sets.

Alternative DRO formulations often incorporate nonpara-
metric Bayesian methods. Wang et al. (2023) suggested
using a nonparametric prior over the DGP P⋆ to induce
distributional uncertainty. This nonparametric prior is cho-
sen to be a Dirichlet Process (DP) prior with prior centring
measure F ∈ P(Ξ). The authors suggest inducing distri-
butional robustness by minimising the worst-case loss over
an ambiguity set for F. Bariletto & Ho (2024) also address
DGP uncertainty by combining DP-based posterior beliefs
about the DGP with a decision-theoretic framework that
models smooth ambiguity-averse preferences, arising from
the economic decision theory literature (Cerreia-Vioglio
et al., 2011). This framework was recently generalised by
Bariletto et al. (2024) to handle heterogeneous data sources
through hierarchical DPs. Unlike the previously mentioned
BDRO, these methods are not well-suited for situations
where the decision-maker has a parametric model and seeks
to incorporate parameter posterior beliefs.

3. Bayesian Ambiguity Sets
The goal of this work is to formulate a family of optimisation
problems that, based on parameter posterior beliefs, produce
decisions with worst-case risk protection. We introduce
Bayesian Ambiguity Sets (BAS) which achieve this through
two ambiguity set constructions. We first propose a BAS
based on the posterior predictive (BASPP) which forms a
distributionally robust counterpart to the BRO objective
in (1). To overcome some of its drawbacks, we further
propose BAS based on a posterior expectation (BASPE).
The difference between the two lies in the position of the
posterior expectation in the constraint. The two ambiguity
sets, for tolerance level ϵ, consider probability measures
Q ∈ P(Ξ) with density function q(ξ) such that:

(BASPP) dKL

(
q(ξ),

∫
Θ

p(ξ | θ)dΠ(θ | D)

)
≤ ϵ,

(BASPE)

∫
Θ

dKL (q(ξ), p(ξ | θ)) dΠ(θ | D) ≤ ϵ.

3.1. BAS via Posterior Predictive (BASPP)

Given posterior Π and risk tolerance level ϵ ∈ [0,∞) we
extend the Bayesian risk objective in (1) to a worst-case

risk minimisation, controlled by ϵ. Expected-value risk in
(1) is equivalent to minimising the expected risk under the
posterior predictive Pn ∈ P(Ξ) that has probability density
function defined by:

pn(ξ
⋆ | D) ≜

∫
Θ

p(ξ⋆ | θ)dΠ(θ | D). (3)

First we propose Bayesian Ambiguity Sets with the posterior
predictive (BASPP):

Bϵ(Pn) ≜ {Q ∈ P(Ξ) : dKL(Q,Pn) ≤ ϵ} (4)

where Q ∈ P(Ξ) is a distribution in the ambiguity set
and dKL : P(Ξ) × P(Ξ) → R is the KL divergence. The
ambiguity set is informed by the posterior predictive Pn: it
consists of all probability measures Q ∈ P(Ξ) which are
absolutely continuous with respect to Pn, i.e. Q ≪ Pn, and
have KL-divergence to Pn less than or equal to ϵ. Thus, ϵ
dictates the desired amount of risk in the decision. For a
given decision x, the worst-case risk is

RBϵ(Pn)(fx) ≜ sup
Q∈Bϵ(Pn)

Eξ∼Q [fx(ξ)]. (5)

The posterior Π(θ | D) targets the KL minimiser between
the model family and P⋆ (Walker, 2013), hence it is natural
to choose the KL divergence in (4). This is because as n→
∞ the posterior collapses to θ⋆ ≜ argminθ∈Θ dKL(P⋆,Pθ)
and the posterior predictive is equal to pn(ξ⋆ | θ⋆). Thus,
for a well-specified model family, which occurs when P⋆ ≡
Pθ⋆ ∈ PΘ, we have that in the limit of infinite observations,
Bϵ(Pn) is a KL-based ambiguity set with P⋆ the nominal
distribution. The goal of the decision maker is to choose x
that minimises the worst-case risk, yielding the problem:

(DRO-BASPP) min
x

RBϵ(Pn)(fx) (6)

Ambiguity sets of the form Bϵ(P) based on the KL-
divergence have been previously suggested in a non-
Bayesian DRO context by Hu & Hong (2013), who studied
the optimisation of this problem for a general nominal dis-
tribution P. For the dual of the worst-case risk RBϵ(P)(fx)
to be well-defined, the following property of the nominal
distribution P is required.

Property 3.1 (Finite moment-generating function of fx).
Let P ∈ P(Ξ). For all x ∈ X , there exists t > 0 such that:

Eξ∼P [exp(tfx(ξ))] <∞. (7)

If Pn satisfies this property, we have the following result.

Proposition 3.2. Assume Pn satisfies Property 3.1 for
all D ⊂ Ξn. Then, for any ϵ > 0, the worst-case risk
in (5) is:

RBϵ(Pn)(fx) = inf
γ≥0

γϵ+ γ lnEpn(ξ⋆|D)

[
e

fx(ξ)
γ

]
. (8)
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The proof can be found in Appendix B.1. This result offers
strong duality and the resulting optimisation problem is a
single-stage stochastic program. Unlike BDRO, the problem
in (6) not only provides a worst-case approach but also
requires sampling from only a single expectation when the
posterior predictive is available.

Assuming that Property 3.1 holds in Proposition 3.2 requires
the moment-generating function (MGF) of fx(ξ⋆) under the
posterior predictive Pn to be finite. This is a standard as-
sumption made in KL-based DRO methods (Hu & Hong,
2013; Shapiro et al., 2023) ensuring that the dual objective
in (8) is well-defined. However, this assumption can be
violated when e.g. the model is a Normal distribution with
a conjugate Normal-Gamma prior, leading to a Student-t
posterior predictive (see e.g. Murphy, 2023) which has an
infinite MGF. A similar problem occurs when the Expo-
nential distribution with a conjugate Gamma prior is used.
Thus, the use of such an ambiguity set can be limiting in the
model and objective function choices. A way to overcome
this limitation is to approximate the primal problem in (6)

using the ambiguity set Bϵ(P̂n) based on a finite sample
approximation P̂n of the posterior predictive where:

ξ⋆1:M
iid∼ Pn, P̂n,M ≜

1

M

M∑
i=1

δξ⋆i . (9)

Although for finite M , the dual formulation can be applied
with P̂n,M , the resulting optimisation problem is always
a SAA and does not solve the original primal in (6) to
optimality. Hence, we offer an alternative BAS formulation
based on a posterior expectation.

3.2. BAS via Posterior Expectation (BASPE)

Consider Bayesian ambiguity sets with the Posterior Expec-
tation (BASPE) defined as:

Aϵ(Π) ≜ {Q ∈ P : Eθ∼Π[dKL(Q,Pθ)] ≤ ϵ} . (10)

The ambiguity set considers all probability measures Q ∈
P(Ξ), which are absolutely continuous with respect to Pθ

(Q ≪ Pθ) for all θ ∈ Θ and have at most ϵ expected
(with respect to Π) KL divergence to Pθ. The shape of our
ambiguity set is posterior-driven: we emphasise this point
by taking the posterior Π as an argument to the ambiguity
set Aϵ(Π). This is contrary to standard discrepancy-based
ambiguity sets Bϵ(·) as in (4) which are centred on a fixed
nominal distribution. We will later prove that BASPE can be
reduced to an ambiguity set of the form Bϵ(·) for exponential
family models, allowing for efficient computation. For fixed
decision x, the worst-case risk is:

RAϵ(Π)(fx) ≜ sup
Q∈Aϵ(Π)

Eξ∼Q [fx(ξ)]. (11)

Similarly to the BASPP worst-case risk in (5), our formula-
tion (11) is still a worst-case approach, keeping with DRO

tradition, instead of BDRO’s expected worst-case formula-
tion (2). The goal is to minimise the worst-case risk:

(DRO-BASPE) min
x

RAϵ(Π)(fx). (12)

We derive an upper bound for the worst-case risk in (11):

Proposition 3.3. Assume Pθ satisfies Property 3.1 for all
θ ∈ Θ. Then the worst-case risk satisfies:

RAϵ(Π)(fx) ≤ inf
γ≥0

γϵ+ EΠ

[
γ lnEPθ

[
e

fx(ξ)
γ

]]
. (13)

Proof sketch. We introduce a Lagrangian variable γ ≥
0 for the constraint Eθ∼Π[dKL(Q,Pθ)] ≤ ϵ from (10)
and write the dual in terms of the convex conjugate
(EΠ [γdKL(·∥Pθ)])

⋆
(fx) of the expected KL-divergence.

The upper bound follows by Jensen’s inequality because
the conjugate is a convex function. The result follows from
the convex conjugate of the KL-divergence (Bayraksan &
Love, 2015; Shapiro et al., 2023). See Appendix B.2 for a
detailed and full proof.

While Proposition 3.3 provides a weak duality upper bound
applicable to general Bayesian models, its primary purpose
is to motivate the need for more tractable formulations. In
particular, this bound highlights the challenges of working
with expected ϕ-divergences, like the KL. To address this,
Section 3.3 focuses on exponential family models, where
we can move beyond the weak duality bound and derive a
strong duality result in Theorem 3.6. This analysis requires
the closed-form expression of the expected KL divergence
(Lemma 3.5), which plays a central role in obtaining the
convex conjugate and deriving novel results on tolerance
levels, worst-case distributions, and tractable optimisation.

3.3. DRO-BASPE for the Exponential Family

The convex conjugate (EΠ [γdKL(·∥Pθ)])
⋆ of the expected

KL-divergence in the proof of Proposition 3.3 is not easy to
obtain for a general Bayesian model, but if we can find an
exact expression for this convex conjugate for specific mod-
els, then the worst-case risk (11) can be computed exactly.
In this section, we derive such an expression for exponential
family models with conjugate priors. When the likelihood
distribution is a member of the exponential family, there
exists a conjugate prior that also belongs to the exponential
family (see e.g. Diaconis & Ylvisaker, 1979). Exponential
families include many of the most widely used probability
distributions, making them versatile for modelling across
diverse settings. Additionally, they are highly appealing
due to their extensive theoretical foundation and a range
of valuable properties (see Diaconis & Ylvisaker, 1979;
Gutiérrez-Peña et al., 1997; Gutierrez-Pena, 1997, for a de-
tailed overview.). We use the conjugate exponential family
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and the convexity of the log-partition function to derive the
strong dual of the worst-case risk problem in (11). The
following definition is from Murphy (2023).
Definition 3.4 (Exponential family with conjugate prior).
Let p(D | η) be an exponential family likelihood with nat-
ural parameter η ∈ Ω ⊆ RK , scaling constant h : Ξ → R,
log-partition function A : Ω → R such that Ω ≜ {η ∈
RK : A(η) <∞}, and sufficient statistic s : Ξ → RK with
likelihood function:

p(D | η) = h(D) exp
(
η⊤s(D)− nA(η)

)
where h(D) =

∏n
i=1 h(ξi) and s(D) =

∑n
i=1 s(ξi). We

consider the prior distribution:

π(η | ⌣τ ,⌣ν) = 1

Z(
⌣
τ ,

⌣
ν)

exp

(
⌣
τ
⊤
η − ⌣

νA(η)

)
(14)

where ⌣
τ ,

⌣
ν are prior hyperparameters and Z(⌣τ ,⌣ν) is the

normalising constant. The conjugate posterior Π(η | ⌢τ ,⌢ν)
has the same form as (14) with parameters ⌢

τ =
⌣
τ + s(D)

and ⌢
ν =

⌣
ν + n.

We start with a Lemma before presenting the main result.
The proof can be found in Appendix B.3.
Lemma 3.5. Let p(ξ | η) be an exponential family likeli-
hood function with natural parameter η and π(η | ⌣

τ ,
⌣
ν),

Π(η | ⌢τ ,⌢ν) a conjugate prior-posterior pair as in Definition
3.4. Let η̂ ≜ E

Π(η|⌢τ ,⌢ν)[η] and define G : T → R as:

G(
⌢
τ ,

⌢
ν) ≜ E

Π(η|⌢τ ,⌢ν)[A(η)]−A(η̂)

for hyperparameter space T . If for almost all η ∈ Ω the
partial derivatives ∂⌢

ν
and ∇⌢

τ
of the posterior p.d.f. Π :

Ω× T → R≥0 exist for all (⌢ν,⌢τ ) ∈ T then:

η̂ = −∇⌢
τ

(
− lnZ(

⌢
τ ,

⌢
ν)
)
, (15)

G(
⌢
τ ,

⌢
ν) =

∂

∂⌢
ν

(
− lnZ(

⌢
τ ,

⌢
ν)
)
−A (η̂) ≥ 0 (16)

and the expected KL-divergence under the posterior is:

E
Π(η|⌢τ ,⌢ν) [dKL(Q∥Pη)] = dKL(Q,Pη̂) +G(

⌢
τ ,

⌢
ν). (17)

It is straightforward to establish the minimum tolerance
level ϵmin required to obtain a non-empty BASPE. Since
the KL divergence is non-negative, under the condition of
Lemma 3.5, for any Q ∈ P(Ξ):

Eη∼Π[dKL(Q∥Pη)] = dKL(Q,Pη̂) +G(
⌢
τ ,

⌢
ν)

≥ G(
⌢
τ ,

⌢
ν) ≜ ϵmin(n). (18)

We are now ready to present our main result, the proof of
which can be found in Appendix B.4.

Theorem 3.6. Suppose the conditions of Lemma 3.5 hold
and ϵ ≥ ϵmin(n) as in (18). Furthermore, assume p(ξ | η̂)
satisfies Property 3.1 for all η̂ ∈ Ω. Then the worst-case
risk RAϵ(Π)(fx) in (11) is equal to:

inf
γ≥0

γ(ϵ−G(
⌢
τ ,

⌢
ν)) + γ lnEp(ξ|η̂)

[
e

fx(ξ)
γ

]
. (19)

Observe that this dual formulation (19) closely mirrors the
dual of the problem in (8), albeit with a different tolerance
level and expectation law. However, in this case, assuming
Property 3.1 requires fx(ξ) to have a finite MGF with re-
spect to a member of the model family, namely p(ξ | η̂).
Contrary to the posterior predictive case, this is satisfied for
exponential family models with many objective functions
such as the linear and piecewise-linear ones we use in our
experiments. The same model assumption is imposed by
BDRO (Shapiro et al., 2023).

Using this theorem, we can derive an immediate connection
between BASPE (10) and KL-based ambiguity sets of the
form Bϵ(·) such as BASPP:

Corollary 3.7. Let ϵ′ ≜ ϵ−G(
⌢
τ ,

⌢
ν). Then in the exponen-

tial family case, Aϵ(Π) ≡ Bϵ′(Pη̂).

Hence, in the exponential family case, the two BAS formula-
tions are different as they correspond to KL-based ambiguity
sets with distinct nominal distributions. Additional insights
on their relationship are discussed in Appendix D.

It is worth noting that although the dual formulations of the
DRO-BAS formulations and the PDRO method of Iyengar
et al. (2023) with the KL divergence are both model-based,
they are fundamentally different. Our ambiguity sets are a
posteriori informed, integrating prior beliefs and data evi-
dence. Consequently, the resulting nominal distribution (Pn

for DRO-BASPP and Pη̂ for DRO-BASPE) contains all the
information from our posterior beliefs, including their un-
certainty quantification, unlike the point estimator approach
of PDRO. This allows us to propagate uncertainty from the
posterior beliefs about the parameters to the ambiguity set.

3.4. Tolerance Level Selection

To guarantee that the DRO-BAS objectives upper-bound
the expected risk under the DGP, the decision-maker aims
to choose ϵ large enough so that P⋆ is contained in the
ambiguity sets. For BASPE with the exponential family,
Lemma 3.5 yields a closed-form expression for the optimal
radius ϵ⋆PE(n) in the exponential family case, by noting that:

ϵ⋆PE(n) ≜ Eη∼Π[dKL(P⋆∥Pη)] = dKL(P⋆,Pη̂) +G(
⌢
τ ,

⌢
ν).
(20)

If the model is well-specified, and hence P⋆ and Pη̂ be-
long to the same exponential family, it is simple to obtain
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ϵ⋆PE(n) based on the prior, posterior and true parameters (see
Appendix A for examples). In practice, since the true param-
eters are unknown, we can empirically approximate ϵ⋆PE(n)
from data D. For any ϵ ≥ ϵ⋆PE(n) ≥ ϵmin(n), we have that
P⋆ ∈ Aϵ(Π), thus the worst-case risk upper bounds the true
risk under the DGP:

Eξ∼P⋆ [fx(ξ)] ≤ sup
Q∈Aϵ(Π)

Eξ∼Q[fx(ξ)]. (21)

For BASPP, the inclusion of the DGP is achieved for:

ϵ⋆PP(n) ≜ dKL(P⋆,Pn). (22)

A possible approach would be to approximate this using
the observed dataset and samples (ξ⋆1 , . . . , ξ

⋆
M )

iid∼ Pn from
the posterior predictive via dKL(

1
n

∑n
i=1 δξi ,

1
M

∑M
i=1 δξ⋆i ).

However, this can become computationally expensive in
higher dimensions if the KL is not available in closed
form. Alternatively, we can use the approximation of ϵ⋆PE(n),
which is available in closed-form in the well-specified case,
since ϵ⋆PP(n) ≤ ϵ⋆PE(n). This follows by Jensen’s inequality
since the KL divergence is convex in both arguments:

ϵ⋆PP(n) = dKL(P⋆||EΠ[Pθ]) ≤ EΠ[dKL(P⋆||Pθ)] = ϵ⋆PE(n).

It follows that for any ϵ ≥ ϵ⋆PP(n), the risk under the DGP is
upper-bounded by (5).

3.5. Computation

When the objective function fx(ξ) is convex in x, the dual
of DRO-BASPP and DRO-BASPE is a convex optimisation
problem that can be solved using off-the-shelf solvers. Both
DRO-BAS duals are single-stage stochastic programs which
can be solved in practice using SAA. In contrast, the BDRO
dual is a two-stage stochastic program where samples must
be taken from both the posterior and likelihood Shapiro et al.
(2023). The size of the dual programs - in terms of the num-
ber of variables and size of the input data - is summarised
for DRO-BAS and BDRO in Table 1. To give an exam-
ple for DRO-BASPP, the size of the input of is O(MPPD)
because this is the size of the samples ξ1, . . . , ξMPP ∼ Pn;
the number of variables for DRO-BASPP is O(D +MPP)
because there are D decision variables for each dimension
of x, MPP epigraphical variables for each sample ξi ∼ Pn,
and one Lagrangian variable.

Next, we consider the special case of DRO-BASPE when the
objective is a linear function fx(ξ) = ξTx, the likelihood is
a multivariate Gaussian N (ξ | µ,Σ), and the posterior is a
Normal-inverse-Wishart. Posterior parameters µ̂, Σ̂ can be
derived from (15) for η̂ (see Appendix A.3). By the MGF
of a Gaussian, we have

EN (ξ|µ̂,Σ̂)

[
exp

(
ξTx

γ

)]
= exp

(
µ̂Tx

γ
+
xT Σ̂x

2γ2

)

We can solve the infimum over γ in (19) to obtain

RAϵ(Π)(fx) = µ̂Tx+

√
2
(
ϵ−G(µ̂, Σ̂)

)√
xT Σ̂x.

Importantly, the resulting minimisation dual for DRO-
BASPE over decision x is closed form and we do not need
to sample from either the posterior or the likelihood. Thus,
the number of variables in the dual is O(D) (the dimension
of x) and the dual input size is O(D2) (the size of Σ̂).

Notably, BASPP does not admit such a closed-form due to
the absence of a finite MGF under the Student-t distribution,
which in this case corresponds to the posterior predictive
law. As discussed in Section 3.1, this is a limitation of DRO-
BASPP which leads to a violation of Property 3.1 and does
not allow an exact dual formulation in Proposition 3.2 for
many exponential family cases.

3.6. Worst-case BAS Distribution

The understanding of the structure of the proposed BAS sets
is facilitated through the worst-case distributions maximis-
ing the objectives in (5) and (11). Indeed, by following the
argument in Hu & Hong (2013) (Eq. 8), it can be shown that,
for some γ⋆(x) > 0 minimising the dual formulation in (8),
the worst-case distribution maximising the DRO-BASPP
objective in (6) has probability density equal to:

p⋆(ξ′, γ⋆(x)) :=
pn(ξ

′) exp
(

fx(ξ
′)

γ⋆(x)

)
Epn

[
exp

(
fx(ξ)
γ⋆(x)

)] , ξ′ ∈ Ξ.

This means that the distribution attaining the worst-case risk
is proportional to the posterior predictive and has the same
support. Similarly, it can be shown that, in the exponential
family case, the distribution that attains the worst-case risk
according to the DRO-BASPE objective in (11) is:

p⋆(ξ′, γ⋆(x)) =
p̃(ξ′)∫

Ξ
p̃(ξ)dξ

, ξ′ ∈ Ξ

where p̃(ξ) = h(ξ) exp (η̂s(ξ)−A(η̂) + fx(ξ
′)/γ⋆(x))

and γ⋆(x) minimises the dual problem in (19).

Note that for BDRO, a single worst-case distribution does
not exist because it considers an expected worst-case ap-
proach (see (2), Figure 1) rather than a worst-case approach,
as advocated by DRO methods. If we sample θj ∼ Π from
the posterior for BDRO, then one can obtain a worst-case
distribution for each Pθj via the argument in Eq. (8) of Hu &
Hong (2013). However, notice that in general, the minimiser
of an expected objective is not the same as the average of
the minimisers of the individual objectives. Hence, even
looking at the posterior mean or mode of the worst-case
minimisers of the inner worst-case objectives in (2) would
not necessarily give us a single distribution p that yields a
worst-case risk of the form Eξ∼p[f(x, ξ)] corresponding to
the risk minimised by BDRO.
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Table 1. The number of variables and the size of the input for two cases of the dual program in terms of the dimension D (of ξ and x)
and the number of likelihood samples Mξ, posterior samples Mθ , and posterior predictive samples MPP. Variables include decision,
Lagrangian, and epigraphical. We note the results for DRO-BASPE refer to the exponential family case.

Property 3.1 holds for (f , P) Linear f ; Pθ = N (µ,Σ)
Algorithm P Number of variables Input size Number of variables Input size

DRO-BASPE Pθ O(D +Mξ) O(MξD) O(D) O(D2)
DRO-BASPP Pn O(D +MPP) O(MPPD) O(D +MPP) O(MPPD)
BDRO Pθ O(D +MθMξ) O(MθMξD) O(D +Mθ) O(MθD
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Figure 2. The out-of-sample mean-variance tradeoff for exponential DGP (top row), 5D multivariate normal DGP (middle row), and
truncated normal DGP (bottom row). We vary ϵ when the total number of SAA samples is 25 (left), 100 (middle), and 900 (right) and plot
the markers in bold. For illustration purposes, blurred markers/lines show the other smaller values of M ; for example, the right column
shows M = 900 in bold and M = 25, 100 in blurred. Each marker corresponds to a single value of ϵ, some of which are labelled (e.g.
ϵ = 0.1, 0.5, 3.0). Filler markers indicate the given ϵ lies on the Pareto frontier.

4. Experiments
We evaluate DRO-BAS against BDRO on two classical prob-
lems: the Newsvendor and the Portfolio problems. We focus

our analysis on Bayesian formulations of DRO, however,
we discuss empirical DRO and provide additional experi-
ments in Appendix E.3. For DRO-BASPE, if ϵ < ϵmin(n),
then the problem in Theorem 3.6 is unbounded and we
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ignore this configuration. For DRO-BASPP we use a fi-
nite sample approximation P̂n,M of the posterior predic-
tive Pn as in (9). For a given ϵ, we calculate the out-of-
sample (OOS) mean m(ϵ) and variance v(ϵ) of the ob-
jective function f across J different datasets. Further de-
tails and experiments can be found in Appendix E. The
code to reproduce the experiments is available at https:
//github.com/PatrickOHara/mis-dro-code.

4.1. DRO-BAS on the Newsvendor Problem

The goal of the Newsvendor problem is to choose an inven-
tory level x ∈ RD

≥0 of D perishable products with unknown
customer demand ξ ∈ RD that minimises the cost function
fx(ξ) = hmax(0, x − ξ) + bmax(0, ξ − x), where h, b
are the holding cost and backorder cost per product unit
respectively. Following Shapiro et al. (2023), we set h = 3
and b = 8. We run DRO-BASPE, DRO-BASPP, and BDRO
across 24 different values of ϵ ranging from 0.001 to 1. For
DRO-BASPE and DRO-BASPP, we approximate the expec-
tations over p(ξ | η̂) and pn(ξ⋆ | D) respectively with M
samples; for BDRO, we approximate the double expecta-
tion with Mθ posterior samples and Mξ likelihood samples
for each posterior sample such that Mξ ×Mθ = M . We
evaluate the methods on two well-specified settings (an ex-
ponential and a multivariate normal DGP) and one univariate
misspecified setting (truncated normal DGP/normal model).
For random seed j = 1, . . . , 500, we sample n = 20 train-
ing observations from P⋆, then sample T = 50 test points.

Figure 2 shows the OOS mean-variance tradeoff across
all three DGPs. The middle row shows that, in the
well-specified multivariate setting, both instantiations of
DRO-BAS dominate BDRO in the sense that DRO-BAS
forms a Pareto front for the OOS mean-variance trade-
off of the objective function f . That is, for any ϵ1, let
mBDRO(ϵ1) and vBDRO(ϵ1) be the OOS mean and variance
respectively of BDRO: then there exists ϵ2 for DRO-BAS
with OOS mean mBAS(ϵ2) and variance vBAS(ϵ2) such
that mBAS(ϵ2) < mBDRO(ϵ1) and vBAS(ϵ2) < vBDRO(ϵ1).
On the top row of Figure 2 (well-specified Exponential
DGP) DRO-BAS dominated BDRO for ϵBDRO ≥ 0.5 when
M = 25, 100, whilst all methods lie on the same Pareto
front otherwise. In the misspecified case (Truncated Normal
DGP with Normal likelihood), DRO-BASPE Pareto domi-
nates BDRO and DRO-BASPP when M = 25, 100 while
all methods perform similarly when M = 900. Finally,
for fixed M , the solve times for DRO-BAS and BDRO are
broadly comparable (see Table 3 in Appendix E). How-
ever, BDRO requires more samples M than DRO-BAS for
good out-of-sample performance, likely because BDRO
must evaluate a double expectation over the posterior and
likelihood, contrary to the single expectation of DRO-BAS.
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Figure 3. Mean-variance tradeoff of the Portfolio objective across
all OOS time windows. Markers are filled similarly to Figure 2.

4.2. DRO-BAS on the Real-world Portfolio Problem

The goal of the Portfolio Problem is to choose the weight-
ing of a portfolio of stocks that maximises the return. Our
dataset and experimental setup follows Bruni et al. (2016)
who provide weekly return data for the DowJones index on
D = 28 stocks across 1363 weeks. Given n = 52 weeks of
training data Dn, we fit a model to the return ξ with Normal
likelihood and conjugate Normal-inverse-Wishart prior. The
test dataset DT contains the T = 12 weeks of returns im-
mediately following the training dataset. We minimise the
linear objective function fx(ξ) = −ξ⊤x (equivalent to max-
imising the return) such that xi ≥ 0 for all i = 1, . . . , D and∑D

i=1 xi = 1. The J = 109 train and test datasets are con-
structed using a sliding time window (see Appendix E.2).

Since the objective is linear and the likelihood is Normal,
the dual objective for DRO-BASPE is available in closed
form (see Section 3.5). For DRO-BASPP, we sample from
the posterior predictive P̂n,M where we set M = 3600 (we
found DRO-BASPP needs a large M for good OOS perfor-
mance). For BDRO, the dual program can be simplified (see
Appendix C) and we need only sampleM = 900 covariance
matrices from an inverse-Wishart distribution.

Figure 3 shows that DRO-BASPE and BDRO have a similar
OOS mean-variance tradeoff, whilst DRO-BASPP is Pareto
dominated by the other two methods. Figure 7 demonstrates
that the cumulative return of DRO-BASPE and BDRO are
broadly comparable and the returns are generally larger
than DRO-BASPP. The discrepancy from DRO-BASPE and
BDRO to DRO-BASPP is likely because the dual programs
of DRO-BASPE and BDRO can be simplified using the MGF
of the Normal likelihood. The simplified dual for DRO-
BASPE and BDRO both yield a closed-form expression for
the mean, whilst DRO-BASPE also obtains the covariance
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Table 2. Average solve times in seconds (with associated standard
deviation) and sample times in seconds ×104 on the Portfolio
Problem. N.A. means “not applicable” due to no sampling.

ALGORITHM SOLVE TIME SAMPLE (×104)

DRO-BASPE 0.01 (0.01) N.A.
DRO-BASPP 1.34 (0.22) 3.48 (0.91)
BDRO 4.47 (0.62) 44.45 (3.11)

in closed form but BDRO must sample the covariance from
the Inverse-Wishart (see Appendix C). In comparison, DRO-
BASPP samples from the posterior predictive without any
closed-form expression for the mean or covariance.

Table 2 shows that the solve and sample time of DRO-BAS
is orders of magnitude faster than BDRO on the Portfo-
lio problem. The average solve time of DRO-BASPE and
DRO-BASPP is 0.012 and 0.213 seconds respectively, whilst
BDRO takes 3.381 seconds. Similarly, the average time
taken for BDRO to sample posterior covariance matrices
takes 100 times more than for DRO-BASPE to calculate the
parameters µ̂ and Σ̂, and 28 times longer than DRO-BASPP
to sample from a Student-t distribution. Given that Fig-
ure 3 shows comparable OOS mean-variance tradeoff and
cumulative returns between DRO-BASPE and BDRO, we
conclude that DRO-BASPE is the more suitable method for
achieving low OOS mean-variance in this example due to
its elimination of sampling and faster solve time.

5. Discussion
We proposed an approach to decision-making under un-
certainty through two DRO objectives based on posterior-
informed Bayesian ambiguity sets. By employing exponen-
tial family models, the resulting problems benefit from a
dual formulation which allows for the optimisation of worst-
case risk criteria. This property, combined with generality
across the entire exponential family, makes the approach
particularly attractive for decision-making problems with
statistical models. Since our dual is a single-stage stochas-
tic program rather than a two-stage program, our frame-
work offers computational advantages, making it feasible
for larger-scale applications.

Understanding the growth of the ambiguity set volume as
a function of the tolerance level ϵ would aid the interpre-
tation of the robustness properties of these sets and is left
for future work. Moreover, although both DRO-BAS for-
mulations showcased improved empirical performance and
computational advantages compared to existing methodolo-
gies, a theoretical analysis to identify conditions, beyond
what we discussed in this work, favouring one formulation
over the other would be highly beneficial.

Moreover, DRO-BASPP allows for the use of models beyond
the exponential family, as long as a closed-form posterior
predictive is available. On the other hand, the dual formu-
lation of DRO-BASPE takes advantage of the properties of
the exponential family models since the underlying nom-
inal distribution is also a member. This is in contrast to
BASPP which can lead to general forms of posterior predic-
tive distributions, outside the exponential family, leading
to assumption violations in the derivation of the dual prob-
lem (Section 3.1). This advantage of BASPE further offers
a more efficient optimisation objective for the commonly
used (see e.g. the Portfolio problem of Section 4.2) linear
cost functions with a Normal likelihood (see Section 3.5).

Future work will aim to generalise DRO-BASPE to models
beyond the exponential family as it is possible that this will
lead to differently shaped ambiguity sets, beyond KL-based
ambiguity sets with a fixed nominal distribution. These
might exhibit benefits in higher dimensions where the size
of KL-based ambiguity sets can grow very fast with the tol-
erance level, leading to over-conservative decisions. More-
over, it would be valuable to theoretically examine the effect
of the Monte Carlo sampling size on the out-of-sample cost,
similar to our empirical analysis in Section 4. Such an analy-
sis has already been performed for the Wasserstein distance
and the χ2-divergence by Iyengar et al. (2023) but has not
yet been extended to the KL-divergence.

Extending the BAS framework to general ϕ-divergences,
which have been previously used in DRO (e.g. Bayraksan &
Love, 2015; Duchi & Namkoong, 2019), represents another
promising direction for future work. In particular, analysing
DRO-BASPP would require deriving the dual formulation
using convex conjugate results for ϕ-divergences, though
obtaining results on the tolerance level and worst-case dis-
tribution may prove more difficult due to the properties of
the posterior predictive and the divergence function. The
DRO-BASPE setting is even more challenging, as it involves
characterising the expected ϕ-divergence under the poste-
rior in closed form, which is critical for deriving its convex
conjugate and establishing strong duality. Such derivations,
as seen with the KL divergence, are key to obtaining re-
sults on tolerance level selection, tractable objectives in
specific settings, and the form of the worst-case distribution.
We believe addressing these challenges could lead to new,
principled BAS formulations based on a broader class of
divergences.

Finally, while DRO-BAS achieves worst-case robustness,
it remains inherently tied to the Bayesian posterior. This
dependence makes it vulnerable to severe model misspeci-
fication. Future work will investigate alternative posterior
formulations that are more robust to model misspecification,
to enhance the BAS construction and produce more robust
posterior-informed ambiguity sets.
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Supplementary Material
The Supplementary Material is organised as follows: Appendix A provides details for all the conjugate exponential family
examples used in the experiments, while Appendix B contains the proofs of all mathematical results appearing in the
main text. Additional computational details are discussed in Appendix C and further details on the relationship between
DRO-BASPE and DRO-BASPP are provided in Appendix D. Finally, Appendix E provides additional experimental details
and results.

A. Special Cases of Exponential Family Models

We derive the values of G(⌢τ ,⌢ν) and η̂ appearing in Theorem 3.6 for different likelihoods and conjugate prior/posterior pairs
used in the experiments.

A.1. Gaussian Model with Unknown Mean and Variance

This section considers a Bayesian model that estimates the unknown mean and variance of a univariate Gaussian distribution.
We consider the natural parametrisation of the Normal distribution with unknown mean and unknown variance, written in its
exponential family form and derive the conjugate prior and posterior parameters as well as η̂ and G(⌢τ ,⌢ν) in Theorem 3.6.

Consider the Gaussian likelihood for mean µ and precision λ. Then the likelihood of dataset D is:

p(D | µ, λ) = (2π)−
n
2 λ

n
2 exp

(
−
√
λ

2

n∑
i=1

(ξi − µ)2

)
. (23)

The natural parameters and log-partition function of the normal distribution are

η =

[
η1
η2

]
=

[
µλ
−λ

2

]
, A(η) = − η21

4η2
− 1

2
ln(−2η2)

respectively. Before proceeding, we revisit the gamma and digamma functions.

Definition A.1. The gamma function Γ : N → R and digamma function ψ : N → R are

Γ(z) ≜ (z − 1)! ψ(z) ≜
d

dz
ln Γ(z).

We are now ready to prove the following Corollary, which is a special case of Theorem 3.6.

Corollary A.2. When the likelihood is a Gaussian distribution with unknown mean µ and precision λ as in (23), and the

conjugate prior and posterior are normal-gamma distributions with parameters (⌣µ,⌣κ,⌣α,
⌣
β) and (

⌢
µ,

⌢
κ,

⌢
α,

⌢
β) respectively,

then Theorem 3.6 holds with η̂ =

(
⌢
µ(

⌢
κ+1)

2
⌢
β

,−
⌢
κ(

⌢
κ+1)

4
⌢
β

⌢
κ

)
and G(⌢τ ,⌢ν) = 1

2

(
ln

⌢
α− ψ(

⌢
α) + 1

⌢
κ

)
.

Proof. The prior distribution which leads to a conjugate posterior is the Normal-Gamma distribution with parameters

hyper-parameters ⌣
µ,

⌣
κ,

⌣
α,

⌣
β:

π(µ, λ | ⌣µ,⌣κ,⌣α,
⌣
β) = NG(µ, λ | ⌣µ,⌣κ,⌣α,

⌣
β)

= N(µ | ⌣µ, (⌣κλ)−1)Ga(λ | ⌣
α,

⌣
β)

=
1

ZNG
λ

⌣
α− 1

2 exp

(
−

⌣
βλ+

⌣
κλ

2
(µ− ⌣

µ)2

)

where the normalisation constant ZNG is given by:

ZNG =
⌣
β
−⌣
α
⌣
κ
−1/2

Γ(
⌣
α)

√
2π.

12
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Following the form of the conjugate prior in Definition 3.4 we can write the prior for η as:

π(η | ⌣τ ,⌣ν) = 1

Z(
⌣
τ ,

⌣
ν)

exp

[ ⌣
κ
⌣
µ

⌣
κ
⌣
µ
2
+ 2

⌣
β

]⊤ [
η1
η2

]
− ⌣
κ

(
−1

2
ln(−2η2)−

1

4
η21η

−1
2

)
=

1

Z(
⌣
τ ,

⌣
ν)

exp

(
⌣
τ
⊤
η − ⌣

νA(η)

)
.

where we set ⌣
α ≜

⌣
κ+1
2 and it follows that:

⌣
τ =

[
⌣
τ 1
⌣
τ 2

]
=

[ ⌣
κ
⌣
µ

⌣
κ
⌣
µ
2
+ 2

⌣
β

]
,

⌣
ν =

⌣
κ, Z(

⌣
τ ,

⌣
ν) =

⌣
τ 2
2

−
⌣
τ
2

1

2
⌣
ν

−
⌣
ν+1
2

⌣
ν
− 1

2
Γ(

⌣
ν + 1

2
)
√
2π. (24)

By conjugacy it follows that the posterior distribution for η with parameters ⌢
τ =

⌣
τ + s(D) and ⌢

ν =
⌣
ν + n, for sufficient

statistic s(D) =
(∑n

i=1 ξi,
∑n

i=1 ξ
2
)⊤

, is:

Π(η | D,⌢τ ,⌢ν) = 1

Z(
⌢
τ ,

⌢
ν)

exp

(
⌢
τ
⊤
η − ⌢

νA(η)

)
.

We can now derive G(⌢τ ,⌢ν) for the univariate Normal with Normal-Gamma prior using Lemma 3.5. First,

∂

∂
⌢
ν

(
− lnZ(

⌢
τ ,

⌢
ν)
)
=

∂

∂
⌢
ν

⌢
ν + 1

2
ln

⌢
τ 2
2

−
⌢
τ
2

1

2
⌣
ν

+
1

2
ln

⌢
ν − ln Γ

(
⌣
ν + 1

2

)
=

1

2
ln

⌢
τ 2
2

−
⌢
τ
2

1

2
⌣
ν

+

⌢
ν + 1

2

⌢
τ
2

1

2
⌢
ν
2

⌢
τ 2

2 −
⌢

τ2
1

2
⌢
ν

+
1

2
⌢
ν
− 1

2
ψ

(
⌢
ν + 1

2

)

=
1

2
ln

⌢
τ 2
2

−
⌢
τ
2

1

2
⌣
ν

+
(
⌢
ν + 1)

⌢
τ
2

1

2
⌢
ν(

⌢
τ 2

⌢
ν − ⌢

τ1
2
)
+

1

2
⌢
ν
− 1

2
ψ

(
⌢
ν + 1

2

)

=
1

2
ln

⌢
β +

(
⌢
κ + 1)

⌢
κ
2⌢
µ
2

2
⌢
κ(2

⌢
β
⌢
κ)

+
1

2κ
− 1

2
ψ

(
⌢
κ + 1

2

)

=
1

2
ln

⌢
β +

(
⌢
κ + 1)

⌢
µ
2

4
⌢
β

+
1

2κ
− 1

2
ψ

(
⌢
κ + 1

2

)
.

Furthermore, we have:

η̂ ≜ −∇⌢
τ
(− lnZ(

⌢
τ ,

⌢
ν)) = −∇⌢

τ

⌢
ν + 1

2
ln

⌢
τ 2
2

−
⌢
τ
2

1

2
⌣
ν

+
1

2
ln

⌢
ν − ln Γ

(
⌣
ν + 1

2

)
=

(
⌢
τ 1(

⌢
ν + 1)

⌢
τ 2

⌢
ν − ⌢

τ
2

1

,−
⌢
ν(

⌢
ν + 1)

2(
⌢
τ 2

⌢
ν − ⌢

τ
2

1)

)

=

(
⌢
µ(

⌢
κ + 1)

2
⌢
β

,−
⌢
κ + 1

4
⌢
β

)
.

Plugging this into the definition of the log-partition function we obtain:

A(η̂) = − η̂21
4η̂2

− 1

2
ln(−2η̂2) =

⌢
µ
2
(
⌢
κ + 1)

4
⌢
β

− 1

2
ln

 ⌢
κ+ 1

2
⌢
β


13
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and from Lemma 3.5 it follows that:

G(
⌢
τ ,

⌢
ν) =

∂

∂
⌢
ν

(
− lnZ(

⌢
τ ,

⌢
ν)
)
−A(η̂)

=
1

2
ln

⌢
β +

(
⌢
κ + 1)

⌢
µ
2

4
⌢
β

+
1

2κ
− 1

2
ψ

(
⌢
κ + 1

2

)
−

⌢
µ
2
(
⌢
κ + 1)

4
⌢
β

+
1

2
ln

 ⌢
κ+ 1

2
⌢
β


=

1

2
⌢
κ
− 1

2
ψ(

⌢
α) +

1

2
ln

⌢
α.

Furthermore, for our implementation we can reparametrise η̂ back to standard parameterization to obtain:

λ̂ = −2η̂2 =

⌢
α
⌢
β
, µ̂ =

η̂1

λ̂
=

⌢
µ.

Tolerance level ϵ In the well-specified case, where we assume that P⋆ ≜ P⋆
θ for some θ⋆ ∈ Θ, it is easy to obtain the

required size of the ambiguity set exactly. Let θ⋆ ≜ (µ⋆, λ⋆−1) and P⋆ ≜ N(µ⋆, λ⋆−1). Using Corollary A.2 we obtain:

ϵ⋆PE(n) = E
µ,λ∼NG(µ,λ|⌢µ,⌢κ,⌢α,

⌢
β)

[
dKL(P⋆,N (ξ | µ, λ−1))

]
= dKL

P⋆ ∥ N

⌢
µ,

⌢
β
⌢
α

+
1

2

(
1
⌢
κ
+ ln

⌢
α− ψ(

⌢
α)

)

= ln


√√√√
λ⋆

⌢
β
⌢
α

+
λ⋆−1 + (µ⋆ − ⌢

µ)2

2
⌢
β
⌢
α

− 1

2
+

1

2

(
1
⌢
κ
+ ln

⌢
α− ψ(

⌢
α)

)

=
1

2

ln

(
λ⋆

⌢
β

)
+
λ⋆−1 + (µ⋆ − ⌢

µ)2

⌢
β
⌢
α

− 1 +
1
⌢
κ
− ψ(

⌢
α)

 .

Posterior predictive distribution For completeness, we remind the reader of the posterior predictive distribution, which
is needed for the implementation of DRO-BASPP. Under the setting of Corollary A.2, the posterior predictive distribution is
the following Student-t distribution 3:

Pn ≡ t
2
⌢
α

ξ | ⌢µ, ⌢β(⌢κ + 1)
⌢
α
⌢
κ

 .

A.2. Exponential Likelihood with Conjugate Gamma Prior

We now consider the natural parametrisation of the Exponential distribution, written in its exponential family form and
re-derive the conjugate prior and posterior parameters as well as η̂ and G(⌢τ ,⌢ν) in Theorem 3.6.

Consider the Gaussian likelihood of dataset D for rate parameter λ > 0:

p(D | λ) = exp

(
−λ

n∑
i=1

ξi + n lnλ

)
.

The natural parameter and log-partition function of the Exponential distribution are:

η = −λ, A(η) = − ln(−η)
respectively. We prove the following Corollary.

3For a full derivation see for example https://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf
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Corollary A.3. When the likelihood is an exponential distribution with rate parameter λ > 0 and a gamma prior

and posterior pair is used with parameters (
⌣
α,

⌣
β) and (

⌢
α,

⌢
β) respectively, then Theorem 3.6 holds with η̂ = −

⌢
α
⌢
β

and

G(
⌢
τ ,

⌢
ν) = ln

⌢
α− ψ(

⌢
α).

Proof. The prior distribution which leads to a conjugate posterior is the Gamma distribution with hyper-parameters ⌣
α,

⌣
β:

π(λ | ⌣
α,

⌣
β) =

1

ZG
exp

(
−

⌣
βλ+ (

⌣
α− 1) lnλ

)

where the normalisation constant is ZG =
⌣
β
−⌣
α

Γ(
⌣
α). By following the form of the conjugate prior in Definition 3.4 we can

write the prior of η as:

π(η | ⌣τ ,⌣ν) = 1

Z(
⌣
τ ,

⌣
ν)

exp
(
⌣
τ η − ⌣

νA(η)
)

where ⌣
τ =

⌣
β, ⌣ν =

⌣
α− 1 and Z(⌣τ ,⌣ν) = ⌣

τ
⌣
ν+1

Γ(
⌣
ν + 1). By conjugacy, it follows that the posterior distribution for η with

parameters ⌢
τ =

⌣
τ + s(D) and ⌢

ν =
⌣
ν + n, for sufficient statistic s(D) =

∑n
i=1 ξi, is:

Π(η | D,⌢τ ,⌢ν) = 1

Z(
⌢
τ ,

⌢
ν)

exp
(
⌢
τ η − ⌢

νA(η)
)
.

We are now ready to derive η̂ and G(⌢τ ,⌢ν) for this example. Firstly,

∂

∂
⌢
ν
(− lnZ(

⌢
τ ,

⌢
ν)) =

∂

∂ν̂
((

⌢
ν + 1) ln

⌢
τ − ln Γ(

⌢
ν + 1))

= ln
⌢
τ − ψ(

⌢
ν + 1)

= ln
⌢
β − ψ(

⌢
α).

Furthermore, we have

η̂ ≜ − ∂

∂
⌢
τ
(− lnZ(

⌢
τ ,

⌢
ν)) = −

⌢
ν + 1

⌢
τ

= −
⌢
α
⌢
β

and

A(η̂) = − ln(−η̂) = − ln

(
⌢
α
⌢
β

)
.

Using Lemma 3.5 we obtain:

G(
⌢
τ ,

⌢
ν) =

∂

∂
⌢
ν
(− lnZ(

⌢
τ ,

⌢
ν))−A(η̂) = ln

⌢
β − ψ(

⌢
α) + ln

(
⌢
α
⌢
β

)
= ln

⌢
α− ψ(

⌢
α).

Furthermore, for our implementation, we can reparametrise η̂ to the standard parameterization and obtain:

λ̂ = −η̂ =

⌢
α
⌢
β
.
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Tolerance level ϵ In the well-specified case, where we assume that P⋆ ≜ P⋆
θ for some θ⋆ ∈ Θ, it is easy to obtain the

required size of the ambiguity set exactly. Let θ⋆ be the true rate parameter, i.e. P⋆ ≜ Exp(θ⋆). Using Corollary A.3 we
obtain:

ϵ⋆PE(n) = E
Ga(θ|⌢α,

⌢
β)

[dKL(P⋆,Exp(θ)]

= dKL

(
P⋆ ∥ Exp

(
⌢
α
⌢
β

))
+ ψ(

⌢
α)− ln(

⌢
α)

= ln(θ⋆)− ln

(
⌢
α
⌢
β

)
+

⌢
α

⌢
βθ⋆

− 1 + ψ(
⌢
α)− ln(

⌢
α).

Posterior predictive distribution For completeness, we remind the reader of the posterior predictive distribution, which
is needed for the implementation of DRO-BASPP. Under the setting of Corollary A.3, the posterior predictive distribution is
the following Lomax (Pareto type II) distribution:

Pn ≡ Lomax(⌢α,
⌢
β).

A.3. Multivariate Normal Likelihood with Normal-Wishart Prior

Now we assume the random variable ξ is multivariate such that Ξ ⊆ RD where D is the dimension of the random variable.
The definitions of the likelihood, prior, and posterior in terms of the natural parameters can be found in Chapter 3.4.4.3 of
Murphy (2023). The likelihood is a multivariate normal distribution N (ξ | µ,Σ) with µ ∈ RD and Σ ∈ SD+ (where set SD+
is the space of D ×D positive semi-definite matrices):

p(ξ | µ,Σ) = (2π)−
D
2 |Σ|− 1

2 exp

(
−1

2
(ξ − µ)⊤Σ−1(ξ − µ)

)
. (25)

The natural parameters of the multivariate normal distribution are

η =

[
η1
η2

]
=

[
Σ−1µ

− 1
2 vec

(
Σ−1

)] (26)

where vec is a function that converts a matrix into a vector4. For convenience, we abuse notation and treat η2 and τ2 as
matrices instead of using their vectorised form.

We prove the following Corollary.

Corollary A.4. When the likelihood is a multivariate Gaussian distribution with unknown mean µ ∈ RD and covariance
matrix Σ ∈ SD+ as in (25), and the conjugate prior and posterior are normal-Inverse-Wishart distributions with parameters

(
⌣
µ,

⌣
κ,

⌣
ι ,

⌣
Ψ) and (

⌢
µ,

⌢
κ,

⌢
ι ,

⌢
Ψ) respectively, then Theorem 3.6 holds with

η̂ =

 (
⌢
κ −D − 2)

⌢
Ψ

−1
⌢
µ

− 1
2 (

⌢
κ −D − 2)

⌢
Ψ

−⊤


and

G(
⌢
τ ,

⌢
ν) = −D

2
ln(

⌢
κ −D − 2)− 1

2
ln

∣∣∣∣⌢Ψ−1
∣∣∣∣+ 1

2
(
⌢
κ −D − 2)

⌢

µ⊤⌢
Ψ

−1
⌢
µ.

Proof. The conjugate prior to the likelihood is the normal-inverse-Wishart (NIW) denoted by NIW

(
µ,Σ | ⌣µ,⌣κ,⌣ι ,

⌣
Ψ

)
.

The hyperparameters of the NIW have the following interpretation (Murphy, 2023): ⌣
µ ∈ RD is the prior mean for µ, and

4Strictly speaking, since the upper diagonal of the covariance matrix is the same as the lower diagonal, our vectorised exponential
family representation is not minimal. It is, however, more convenient and easier to work with.
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⌣
κ ∈ R+ quantifies how strongly we believe in this prior; matrix

⌣
Ψ ∈ SD++ is (proportional to) the prior mean of Σ, and

⌣
ι ∈ R+ dictates how strongly we believe in this prior. We can re-write the prior π

(
µ,Σ | ⌣µ,⌣κ,⌣ι ,

⌣
Ψ

)
in the form of an

exponential family π(η | ⌣τ ,⌣ν): starting from the definition of the normal-inverse-Wishart distribution, we have

NIW

(
µ,Σ | ⌣µ,⌣κ,⌣ι ,

⌣
Ψ

)
≜ N

(
µ | ⌣µ, 1⌣

κ
Σ

)
× IW

(
Σ |

⌣
Ψ,

⌣
ι

)
=

1

ZNIW
|Σ|− 1

2 exp

(
−

⌣
κ

2
(µ− ⌣

µ)⊤Σ−1(µ− ⌣
µ)

)
× |Σ|− 1

2 (
⌣
ι+D+1) exp

(
−1

2
Tr

(
⌣
ΨΣ−1

))

=
1

ZNIW
exp

(
−

⌣
κ

2
µΣ−1µ+

⌣
κ
⌣
µ
⊤
Σ−1µ−

⌣
κ

2

⌣
µ
⊤
Σ

⌣
µ− 1

2
(ι+D + 2) ln|Σ| − 1

2
Tr

(
⌣
ΨΣ−1

))

=
1

ZNIW
exp

(
⌣
κ

4
η⊤1 η

−1
2 η1 +

⌣
κη⊤1

⌣
µ +

⌣
κ
⌣
µ
⊤
η2

⌣
µ+

1

2
(ι+D + 2) ln|−2η2|+Tr

(
⌣
Ψη2

))

=
1

ZNIW
exp

[ ⌣
κ
⌣
µ

⌣
κ
⌣
µ
⌣
µ
⊤
+

⌣
Ψ

]⊤ [
η1
η2

]
− ⌣
ν

(
−1

2
ln|−2η2| −

1

4
η⊤1 η

−1
2 η1

)
=

1

Z(
⌣
τ ,

⌣
ν)

exp

(
⌣
τ
⊤
η − ⌣

νA(η)

)
= π(η | ⌣τ ,⌣ν).

In the above, we recognise that A(η) = − 1
2 ln|−2η2| − 1

4η
⊤
1 η

−1
2 η1 is the log partition function of the multivariate normal

likelihood; we set ⌣
ν =

⌣
κ =

⌣
ι +D + 2; and we define ⌣

τ as

⌣
τ =

[
⌣
τ 1
⌣
τ 2

]
=

 ⌣
κ
⌣
µ

vec

(
⌣
κ
⌣
µ
⌣
µ
⊤
+

⌣
Ψ

) (27)

(similarly to η2, we abuse notation and treat τ2 as a matrix). The normalisation constant ZNIW for the NIW distribution may
be written in terms of ⌣

τ and ⌣
ν as:

ZNIW ≜ 2
⌣
ιD/2ΓD

(
⌣
ι /2
)
(2π/

⌣
κ)D/2|

⌣
Ψ|−

⌣
ι /2

= 2D(
⌣
ν−D−2)/2ΓD

(
⌣
ν −D − 2

2

)
(2π/

⌣
ν)D/2

∣∣∣∣⌣τ 2 − 1
⌣
ν

⌣
τ 1

⌣
τ
⊤
1

∣∣∣∣−(
⌣
ν−D−2)/2

≜ Z(
⌣
τ ,

⌣
ν)

(28)

where ΓD is the multivariate gamma function with dimension D.

The posterior distribution is

Π(η | D) = Π(η | ⌢τ ,⌢ν) = 1

Z(
⌢
τ ,

⌢
ν)

exp

(
⌢
τ
⊤
η − ⌢

νA(η)

)
.

The posterior update is ⌢
τ =

⌣
τ +s(D) and ⌢

ν =
⌣
ν +n where s(D) =

(∑n
i=1 ξi,

∑n
i=1 ξξ

⊤)⊤. Since the prior and posterior

have the same form, the normalisation constant Z(⌢τ ,⌢ν) is defined in the same way as (28).
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Our goal is to derive the function G(⌢τ ,⌢ν) from Lemma 3.5. First, we derive ∂

∂
⌢
ν

(
− lnZ(

⌢
τ ,

⌢
ν)
)

. We have

∂

∂
⌢
ν

(
− lnZ(

⌢
τ ,

⌢
ν)
)
=

∂

∂
⌢
ν

(
− D

2
(
⌢
ν −D − 2) ln 2− ln ΓD

(
(
⌢
ν −D − 2)

2

)
− D

2
ln 2π

+
D

2
ln

⌢
ν +

1

2
(
⌢
ν −D − 2) ln

∣∣∣∣⌢τ 2 − 1
⌢
ν

⌢
τ 1

⌢
τ
⊤
1

∣∣∣∣
)

= −D
2
ln 2− 1

2
ψD

(
⌢
ν −D − 2

2

)
+
D

2
⌢
ν
+

1

2
ln

∣∣∣∣⌢τ 2 − 1
⌢
ν

⌢
τ 1

⌢
τ
⊤
1

∣∣∣∣
+

1

2
(
⌢
ν −D − 2)Tr

((
⌢
τ 2 −

1
⌢
ν

⌢
τ 1

⌢
τ
⊤
1

)−1(
⌢
ν
−2⌢
τ 1

⌢
τ
⊤
1

))

= −D
2
ln 2− 1

2
ψD

(
⌢
κ −D − 2

2

)
+
D

2
⌢
κ
+

1

2
ln

∣∣∣∣∣∣⌢κ⌢
µ
⌢
µ
⊤
+

⌢
Ψ−

⌢
κ2

⌢
κ

⌢
µ
⌢
µ
⊤

∣∣∣∣∣∣
+

⌢
κ −D − 2

2
Tr


⌢
κ
⌢
µ
⌢
µ
⊤
+

⌢
Ψ−

⌢
κ2

⌢
κ

⌢
µ
⌢
µ
⊤
−1⌢

κ
2

⌢
κ2

⌢
µ
⌢
µ
⊤



= −D
2
ln 2− 1

2
ψD

(
⌢
κ −D − 2

2

)
+
D

2
⌢
κ
+

1

2
ln

∣∣∣∣⌢Ψ∣∣∣∣+ ⌢
κ −D − 2

2

⌢
µ
⊤⌢
Ψ

−1
⌢
µ.

The first equality above holds by definition of Z(⌢τ ,⌢ν) and by log identities. The second equality holds by chain rule for
differentiation and the identity ∂(ln|A|) = Tr(A−1∂A) from (43) of Petersen & Pedersen (2008). In the third equality, we

have substituted ⌢
τ , ⌢ν for ⌢

µ, ⌢κ,
⌢
Ψ. In the last equality, we have simplified and used the fact that Tr(

⌢
Ψ

−1
⌢
µ
⌢
µ
⊤
) =

⌢
µ
⊤⌢
Ψ

−1
⌢
µ.

Next, we need to evaluate A(η̂). We note that by Lemma 3.5, η̂ is

η̂ ≜ E
Π(η|⌢τ ,⌢ν)[η] = −∇⌢

τ
(− lnZ(

⌢
τ ,

⌢
ν))

= −∇⌢
τ

(
− D

2
(
⌢
ν −D − 2) ln 2− ln ΓD

(
(
⌢
ν −D − 2)

2

)
− D

2
ln 2π

+
D

2
ln

⌢
ν +

1

2
(
⌢
ν −D − 2) ln

∣∣∣∣⌢τ 2 − 1
⌢
ν

⌢
τ 1

⌢
τ
⊤
1

∣∣∣∣
)

= −∇⌢
τ

(
1

2
(
⌢
ν −D − 2) ln

∣∣∣∣⌢τ 2 − 1
⌢
ν

⌢
τ 1

⌢
τ
⊤
1

∣∣∣∣) .
Before we obtain the partial derivative with respect to ⌢

τ 1 we need the following lemma.

Lemma A.5. Let x ∈ X and A ∈ Rn×n. Then ∂
∂x ln |A− xx⊤| = −2(A− xx⊤)−1x.
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Proof.

∂

∂x
ln |A− xx⊤| (i)= Tr

(
−(A− xx⊤)−1 ∂(xx

⊤)

∂x

)
(ii)
= Tr

(
−(A− xx⊤)−1(x(∂x)⊤ + (∂x)x⊤)

)
(iii)
= Tr

(
−(A− xx⊤)−1x(∂x)⊤

)
+Tr

(
−(A− xx⊤)−1(∂x)x⊤

)
(iv)
= Tr

(
−(A− xx⊤)−1x(∂x)⊤

)
+Tr

(
−(A− xx⊤)−1x(∂x)⊤

)
= −2Tr

(
(A− xx⊤)−1x(∂x)⊤

)
(v)
= −2(A− xx⊤)−1x.

where (i) follows from the Jacobi’s formula (see e.g. Petersen & Pedersen, 2008, Equation 43) which says that ∂ ln |X| =
Tr(X−1∂X), (ii) follows from the chain rule, (iii) follows from the property of trace that says Tr(A+B) = Tr(A)+Tr(B),
(iv) follows from the fact that x(∂x)⊤ is symmetric and finally (v) follows from the property Tr(Auv⊤) = v⊤Au.

We are now ready to derive the partial derivative of − lnZ(
⌢
τ ,

⌢
ν) with respect to ⌢

τ 1 using the above Lemma:

∂

∂
⌢
τ 1

(
1

2
(
⌢
ν −D − 2) ln

∣∣∣∣⌢τ 2 − 1
⌢
ν

⌢
τ 1

⌢
τ
⊤
1

∣∣∣∣) = − 1
⌢
ν
(
⌢
ν −D − 2)(

⌢
τ 2 −

1
⌢
ν

⌢
τ 1

⌢
τ
⊤
1 )

−1⌢τ 1.

where we used the fact that ∂ ln |X| = Tr(X−1∂X). Using the fact that for a square, non-singular matrix X: ∂
∂X ln |X| =

X−⊤ (Petersen & Pedersen, 2008, Equation 49), the partial derivative with respect to ⌢
τ 2 is:

∂

∂
⌢
τ 2

(
1

2
(
⌢
ν −D − 2) ln

∣∣∣∣⌢τ 2 − 1
⌢
ν

⌢
τ 1

⌢
τ
⊤
1

∣∣∣∣) =
1

2
(
⌢
ν −D − 2)

(
⌢
τ 2 −

1
⌢
ν

⌢
τ 1

⌢
τ
⊤
1

)−⊤

.

Hence,

η̂ =

 1
⌢
ν
(
⌢
ν −D − 2)(

⌢
τ 2 +

1
⌢
ν

⌢
τ 1

⌢
τ
⊤
1 )

−1⌢τ 1

− 1
2 (

⌢
ν −D − 2)

(
⌢
τ 2 +

1
⌢
ν

⌢
τ 1

⌢
τ
⊤
1

)−⊤

 =

 (
⌢
κ −D − 2)

⌢
Ψ

−1
⌢
µ

− 1
2 (

⌢
κ −D − 2)

⌢
Ψ

−⊤

 .

From the definition of A(η) for the multivariate normal distribution, we have

A(η̂) ≜ −1

2
ln|−2η̂2| −

1

4
η̂⊤1 η̂

−1
2 η̂1

= −1

2
ln

∣∣∣∣(⌢κ −D − 2)
⌢
Ψ

−⊤∣∣∣∣− 1

4
(−2)(

⌢
κ −D − 2)

⌢
µ
⊤⌢
Ψ

−⊤
Ψ⊤⌢

Ψ
−1

⌢
µ

= −1

2
ln

(∣∣∣(⌢κ −D − 2)I
∣∣∣ ∣∣∣∣⌢Ψ−⊤∣∣∣∣)+

1

2
(
⌢
κ −D − 2)

⌢

µ⊤⌢
Ψ

−1
⌢
µ

= −D
2
ln(

⌢
κ −D − 2)− 1

2
ln

∣∣∣∣⌢Ψ−1
∣∣∣∣+ 1

2
(
⌢
κ −D − 2)

⌢

µ⊤⌢
Ψ

−1
⌢
µ.
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We have all the ingredients for calculating G(⌢τ ,⌢ν):

G(
⌢
τ ,

⌢
ν) ≜

∂

∂
⌢
ν

(
− lnZ(

⌢
τ ,

⌢
ν)
)
−A(η̂)

= −D
2
ln 2− 1

2
ψD

(
⌢
κ −D − 2

2

)
+
D

2
⌢
κ
+

1

2
ln

∣∣∣∣⌢Ψ∣∣∣∣+ ⌢
κ −D − 2

2

⌢
µ
⊤⌢
Ψ

−1
⌢
µ

+
D

2
ln(

⌢
κ −D − 2) +

1

2
ln

∣∣∣∣⌢Ψ−1
∣∣∣∣− 1

2
(
⌢
κ −D − 2)

⌢

µ⊤⌢
Ψ

−1
⌢
µ

= −D
2
ln 2− 1

2
ψD

(
⌢
κ −D − 2

2

)
+
D

2
⌢
κ
+
D

2
ln(

⌢
κ −D − 2)

where we used the fact that |
⌢
Ψ

−1

| = |
⌢
Ψ|−1 Finally, for our implementation, we need to get the parameters µ̂, Σ̂ of the

normal likelihood from the parameter η̂. Using equation (26), we have

Σ̂ = (−2η̂2)
−1

=
1

⌢
κ −D − 2

⌢
Ψ

µ̂ = Σ̂η̂1 =
⌢
µ.

(29)

Tolerance level ϵ In the well-specified case, where we assume that P⋆ ≜ P⋆
θ for some θ⋆ ∈ Θ, it is easy to obtain the

required size of the ambiguity set exactly. Let θ⋆ ≜ (µ⋆,Σ⋆) ∈ RD × SD+ and P⋆ ≜ N(µ⋆,Σ⋆). Further let µ̂ and Σ̂ as in
(29). Using Corollary A.4 we obtain:

ϵ⋆PE(n) = E
µ,Σ∼NIW (µ,Σ|⌢µ,⌢κ,⌢ι ,

⌢
Ψ)

[dKL(P⋆,N (ξ | µ,Σ))]

= dKL

(
P⋆ ∥ N

(
µ̂, Σ̂

))
− D

2
ln 2− 1

2
ψD

(
⌢
κ −D − 2

2

)
+
D

2
⌢
κ
+
D

2
ln(

⌢
κ −D − 2)

=
1

2

[
log

|Σ̂|
|Σ⋆| −D + (µ⋆ − µ̂)⊤Σ̂−1(µ⋆ − µ̂) + Tr

{
Σ̂−1Σ⋆

}]

− D

2
ln 2− 1

2
ψD

(
⌢
κ −D − 2

2

)
+
D

2
⌢
κ
+
D

2
ln(

⌢
κ −D − 2).

Posterior predictive distribution For completeness, we remind the reader of the posterior predictive distribution, which
is needed for the implementation of DRO-BASPP. Under the setting of Corollary A.4, the posterior predictive distribution is
the following multivariate Student-t distribution (see e.g. Murphy, 2023, p. 96):

Pn ≡ T⌢
κ−D+1

ξ | ⌢µ, ⌢
Ψ(

⌢
κ + 1)

⌢
κ(

⌢
κ −D + 1)

 .

B. Proofs of Theoretical Results
B.1. Proof of Proposition 3.2

Before proving the required upper bound, we recall the definition of the KL divergence and its convex conjugate.

Definition B.1 (KL-divergence). Let µ, ν ∈ P(Ξ) and assume µ is absolutely continuous with respect to ν (µ≪ ν). The
KL divergence of µ with respect to ν is defined as:

dKL(µ∥ν) ≜
∫
Ξ

ln

(
µ(dξ)

ν(dξ)

)
µ(dξ).
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Lemma B.2 (Conjugate of the KL-divergence). Let ν ∈ P(Ξ) be non-negative and finite. The convex conjugate d⋆KL(·∥ν) of
dKL(·∥ν) is

d⋆KL(·∥ν)(h) = ln

(∫
Ξ

exp(h)dν

)
.

Proof. See Proposition 28 and Example 7 in Agrawal & Horel (2021).

We are now ready to prove Proposition 3.2.

Proof. We introduce a Lagrangian variable γ ≥ 0 for the KL constraint on the left-hand side of (6) as follows:

sup
Q:dKL(Q∥Pn)≤ϵ

EQ[fx]
(i)
= inf

γ≥0
sup

Q∈P(Ξ)

EQ[fx] + γϵ− γdKL(Q∥Pn)

(ii)
= inf

γ≥0
γϵ+ (γdKL(·∥Pn))

⋆
(fx)

(iii)
= inf

γ≥0
γϵ+ γ lnEPn

[
exp

(
fx
γ

)]
.

Equality (i) holds by strong duality since Pn is a strictly feasible point to the primal constraint. Equality (ii) holds by the
definition of the conjugate function. Finally, equality (iii) holds by Lemma B.2 and the fact that for γ ≥ 0 and function ϕ,
(γϕ)⋆(y) = γϕ⋆(y/γ).

B.2. Proof of Proposition 3.3

Proof. The result follows from a standard Lagrangian duality argument and an application of Jensen’s inequality. More
specifically, we introduce a Lagrangian variable γ ≥ 0 for the expected-ball constraint on the left-hand side of (13) as
follows:

sup
Q:Eθ∼Π[dKL(Q∥Pθ)]≤ϵ

EQ[fx]
(i)

≤ inf
γ≥0

sup
Q∈P(Ξ)

EQ[fx] + γϵ− γEΠ [dKL(Q∥Pθ)]

(ii)
= inf

γ≥0
γϵ+ sup

Q∈P(Ξ)

EQ[fx]− EΠ [γdKL(Q∥Pθ)]

(iii)
= inf

γ≥0
γϵ+ (EΠ [γdKL(·∥Pθ)])

⋆
(fx)

(iv)

≤ inf
γ≥0

γϵ+ EΠ

[
(γdKL(·∥Pθ))

⋆
(fx)

]
(v)
= inf

γ≥0
γϵ+ EΠ

[
γ lnEPθ

[
exp

(
fx
γ

)]]
.

Inequality (i) holds by weak duality. Equality (ii) holds by linearity of expectation and a simple rearrangement. Equality
(iii) holds by the definition of the conjugate function. Inequality (iv) holds by Jensen’s inequality (E[·])⋆ ≤ E[(·)⋆]
because the conjugate is a convex function. Equality (v) holds by Lemma B.2 and the fact that for γ ≥ 0 and function ϕ,
(γϕ)⋆(y) = γϕ⋆(y/γ).

B.3. Proof of Lemma 3.5

We first give a closed-form expression for the expected log-likelihood under the posterior. We start by deriving an expression
for the posterior mean, i.e. η̂ ≜ E

Π(η|D,
⌢
τ ,

⌢
ν)
[η]. We follow a similar technique as the one presented in Endres et al. (2022).

We start by using the fact that the posterior density integrates to 1 and take partial derivatives with respect to ⌢
τ . Note that
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by the differentiability assumptions and the fact that the posterior p.d.f. is Lebesgue-integrable, we can interchange the
differentiability and integral operations:

∫
1

Z(
⌢
τ ,

⌢
ν)

exp

(
⌢
τ
⊤
η − ⌢

νA(η)

)
dη = 1

⇒ ∇⌢
τ

(∫
1

Z(
⌢
τ ,

⌢
ν)

exp

(
⌢
τ
⊤
η − ⌢

νA(η)

)
dη

)
= 0

⇒ ∇⌢
τ

(
1

Z(
⌢
τ ,

⌢
ν)

)
Z(

⌢
τ ,

⌢
ν) +

1

Z(
⌢
τ ,

⌢
ν)

∫
η exp

(
⌢
τ
⊤
η − ⌢

νA(η)

)
dη = 0

⇒ E
Π(η|D,

⌢
τ ,

⌢
ν)
[η] = −∇⌢

τ

(
1

Z(
⌢
τ ,

⌢
ν)

)
Z(

⌢
τ ,

⌢
ν)

⇒ η̂ = −∇⌢
τ

(
1

Z(
⌢
τ ,

⌢
ν)

)
Z(

⌢
τ ,

⌢
ν)

⇒ η̂ = −∇⌢
τ
(
− lnZ(

⌢
τ ,

⌢
ν)
)
. (30)

We now have an expression for η̂ and we can hence write:

E
η∼p(η|⌢τ ,⌢ν)[ln p(ξ | η)] = E

η∼p(η|⌢τ ,⌢ν)

[
lnh(ξ) + ηT s(ξ)−A(η)

]
= lnh(ξ) + E

η∼p(η|⌢τ ,⌢ν)[η]
T s(ξ)− E

η∼p(η|⌢τ ,⌢ν)[A(η)]

= lnh(ξ) + η̂T s(ξ)− E
η∼p(η|⌢τ ,⌢ν)[A(η)]

= lnh(ξ) + (η̂)
T
s(ξ)−A(η̂) +A(η̂)− E

η∼p(η|⌢τ ,⌢ν)[A(η)]

= ln p(ξ | η̂) +A(η̂)− E
η∼p(η|⌢τ ,⌢ν)[A(η)] (31)

where in the last equality we used the exponential family form of the likelihood (see Definition 3.4). To obtain an expression
for the expected log-partition function we follow a similar argument: we start from the posterior p.d.f. and differentiate with
respect to ⌢

ν under the differentiability and integrability assumptions:

∫
Ω

1

Z(
⌢
τ ,

⌢
ν)

exp

(
⌢
τ
⊤
η − ⌢

νA(η)

)
dη = 1

⇒ ∂

∂
⌢
ν

(∫
Ω

1

Z(
⌢
τ ,

⌢
ν)

exp

(
⌢
τ
⊤
η − ⌢

νA(η)

)
dη

)
= 0

⇒ ∂

∂
⌢
ν

(
1

Z(
⌢
τ ,

⌢
ν)

)∫
Ω

exp

(
⌢
τ
⊤
η − ⌢

νA(η)

)
dη +

1

Z(
⌢
τ ,

⌢
ν)

∫
Ω

∂

∂
⌢
ν
exp

(
⌢
τ
⊤
η − ⌢

νA(η)

)
dη = 0

⇒ ∂

∂
⌢
ν

(
1

Z(
⌢
τ ,

⌢
ν)

)
Z(

⌢
τ ,

⌢
ν) +

1

Z(
⌢
τ ,

⌢
ν)

∫
Ω

−A(η) exp
(

⌢
τ
⊤
η − ⌢

νA(η)

)
dη = 0

⇒ E
η∼Π(η|D,

⌢
τ ,

⌢
ν)
[A(η)] =

∂

∂
⌢
ν

(
1

Z(
⌢
τ ,

⌢
ν)

)
Z(

⌢
τ ,

⌢
ν)

⇒ E
η∼Π(η|D,

⌢
τ ,

⌢
ν)
[A(η)] =

∂

∂
⌢
ν

(
− ln(Z(

⌢
τ ,

⌢
ν)
)
. (32)

By substituting Equation (32) in Equation (31) we obtain a closed-form expectation for the expected log-likelihood as
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follows:

E
η∼p(η|⌢τ ,⌢ν)[ln p(ξ | η)] = ln p(ξ | η̂) +A(η̂)− E

η∼p(η|⌢τ ,⌢ν)[A(η)]

= ln p(ξ | η̂)−
(
∂

∂
⌢
ν

(
− ln(Z(

⌢
τ ,

⌢
ν)
)
−A(η̂)

)
≜ ln p(ξ | η̂)−G(

⌢
τ ,

⌢
ν). (33)

It is straightforward to show that G(⌢τ ,⌢ν) is non-negative:

G(
⌢
τ ,

⌢
ν) =

∂

∂
⌢
ν

(
− ln(Z(

⌢
τ ,

⌢
ν)
)
−A(η̂)

= E
η∼Π(η|D,

⌢
τ ,

⌢
ν)
[A(η)]−A

(
E
η∼Π(η|D,

⌢
τ ,

⌢
ν)
[η]
)

≥ 0

where the equality follows from Equation (32) and the inequality follows from Jensen’s inequality since the log-partition
function of an exponential family likelihood is a convex function (Brown, 1986, Theorem 1.13). Finally, we can proceed
with the main result. Starting from the left-hand side, we have

Eη∼Π [dKL(Q∥Pθ)]
(i)
= E

η∼Π(η|D,
⌢
τ ,

⌢
ν)

[∫
Ξ

q(ξ) ln

(
q(ξ)

p(ξ | η)

)
dξ

]
(ii)
= E

η∼Π(η|D,
⌢
τ ,

⌢
ν)

[∫
Ξ

q(ξ) ln (q(ξ))− q(ξ) ln (p(ξ | η)) dξ
]

(iii)
=

∫
Ξ

q(ξ) ln (q(ξ))− q(ξ) · E
η∼Π(η|D,

⌢
τ ,

⌢
ν)

[ln (p(ξ | η))] dξ

(iv)
=

∫
Ξ

q(ξ) ln (q(ξ))− q(ξ) ·
(
ln p(ξ | η̂)−G(

⌢
τ ,

⌢
ν)
)
dξ

(v)
=

∫
Ξ

q(ξ) ln

(
q(ξ)

p(ξ | η̂)

)
dξ +

∫
Ξ

q(ξ) ·G(⌢τ ,⌢ν) dξ

(vi)
= dKL(Q∥Pη̂) +G(

⌢
τ ,

⌢
ν).

where (i) is by the definition of the KL-divergence; (ii) follows by log properties; (iii) holds by linearity of expectation; (iv)
holds by (33); (v) holds by rearrangement and properties of log and (vi) holds by the definition of the KL-divergence.

B.4. Proof of Theorem 3.6

We begin by restating the Lagrangian dual from the proof of Equation (13) for the exponential family case, but with the
added claim that strong duality holds between the primal and dual problems:

sup
Q:Eη∼Π[dKL(Q∥Pη)]≤ϵ

EQ[fx] = inf
γ≥0

sup
Q∈P(Ξ)

EQ[fx] + γϵ− γEΠ [dKL(Q∥Pη)] . (34)

Proof. The conditions under which our claim of strong duality holds will be proved later. Next, we substitute the right-hand
side of equation (vi) above into the dual problem in (34):

sup
Q:Eη∼Π[dKL(Q ∥ Pη)]≤ϵ

Eξ∼Q[fx(ξ)]

= inf
γ≥0

γϵ+ sup
Q∈P(Ξ)

∫
Ξ

fx(ξ)q(ξ) dξ − γ
(
dKL (Q ∥ p(ξ | η̂)) +G(

⌢
τ ,

⌢
ν)
)

= inf
γ≥0

γϵ− γG(
⌢
τ ,

⌢
ν) + (γ dKL (· ∥ p(ξ | η̂)))⋆ (fx(ξ))

= inf
γ≥0

γ(ϵ−G(
⌢
τ ,

⌢
ν)) + γ lnEξ∼p(ξ|η̂)

[
exp

(
fx(ξ)

γ

)]
,
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where the second and third equality holds by the definition of the conjugate of the KL-divergence and by Lemma B.2.

Finally, it remains to argue that strong duality holds. First, note that the primal problem is a concave optimisation problem
with respect to distribution Q. Second, when ϵ > G(

⌢
τ ,

⌢
ν), then distribution Q̂ = p(ξ | η̂) is a strictly feasible point to the

primal constraint because
Eθ∼Π[dKL(Q̂ ∥ Pθ)] = 0 < ϵ−G(

⌢
τ ,

⌢
ν).

C. Bayesian DRO Reformulation
We begin by recalling the two-stage stochastic optimisation proposed by Shapiro et al. (2023) for Bayesian DRO. Let X be
the set of feasible decisions. The decision x ∈ X is the called the here-and-now decision: the decision is made before the
realisation of the uncertainty of θ. The first stage objective function is H(x, θ). The first-stage decision solves:

min
x∈X

Eθ∼Π [H(x, θ)] . (35)

The Lagrangian decision λ is the second-stage decision: the decision is made after the realisation of the uncertainty of θ.
The second stage problem is:

H(x, θ) := inf
λ>0

{
λϵ+ λ lnEξ∼p(ξ|θ)

[
exp

(
fx(ξ)

λ

)]}
. (36)

We emphasise the two-stage nature of this program: the variable λ is a function of θ and can only be optimised after the
realisation of θ.

Shapiro et al. (2023) solve the two-stage stochastic program with a nested SAA. The outer SAA samples θi ∼
π(θ|ξ̂1, . . . , ξ̂N ) where i = 1, . . . , Nθ. The inner SAA samples ξj ∼ p(ξ|θi) where j = 1, . . . , Nξ. For a given θj
and given decision x ∈ X , the authors solve:

H(x, θ) ≈ Ĝ(x, θ) = inf
λ>0

λϵ+ λ ln
1

Nξ

∑
ξj∼p(ξ|θi)

exp

(
f(x, ξj)

λ

) . (37)

The drawback of this method is the necessity to iterate over each decision x in the set of feasible set X . For example, in the
one-dimensional Newsvendor Problem, the authors set X = {x ∈ R : 0 ≤ x ≤ 50} and then iterate over X with a grid
search:

1. For each x = 0, 1, . . . , 50, evaluate (37). Let x⋆ be the minimum attained.

2. For each x from x⋆ − 1 to x⋆ + 1 in increments of 0.01, evaluate (37) and return the minimum attained.

When the set X large, this strategy is clearly not scalable. Instead, we jointly minimise the decision variable and Lagrangian
variables using an out-of-the-box commercial solver. Our algorithm relies upon the observation that the samples θi ∼ πN
form a discrete, empirical distribution. Let λi be the Lagrangian variable that depends upon sample θi. From Section 2.3.1
of Shapiro et al. (2021), we can switch the expectation in (35) with the minimisation in (37) to obtain:

inf
x,λ1,...,λNθ

 1

Nθ

Nθ∑
i=1

λiϵ+ λi ln
1

Nξ

Nξ∑
j=1

exp

(
f(x, ξ

(i)
j )

λi

)
: λ1, . . . , λNθ

> 0, x ∈ X

 , (38)

where we have denoted the jth sample from p(ξ|θi) by ξ(i)j . We now have a joint minimisation over the decision x and
Lagrangian variables λi where i = 1, . . . , Nθ. However, the second term in (38) cannot yet be given directly to a solver.
We make two transformations to (38) to get the minimisation problem into a standard form that can be recognised by a
solver. The first transformation uses the log identity ln a

b = ln a− ln b. The second transformation introduces Nθ ×Nξ
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epigraphical variables tij and constraints f(x, ξ(i)j ) ≤ tij for all i = 1, . . . , Nθ and j ∈ 1, . . . , Nξ. Re-writing (38) with
these two transformations, we have:

inf
x,λ1,...,λNθ

1

Nθ

Nθ∑
i=1

λiϵ− λ lnNξ + λi ln

Nξ∑
j=1

exp

(
tij
λi

)
s. t. f(x, ξ

(i)
j ) ≤ tij , i = 1, . . . , Nθ, j ∈ 1, . . . , Nξ

λ1, . . . , λNθ
> 0, x ∈ X

(39)

To conclude, we observe that the third term is a perspective function of the form λi LSE(ti/λi), where ti = (ti1, . . . , tiNξ
)

and LSE is the Log-Sum-Exp function. As λi → 0, we must take care in our implementation to avoid numerical instability.
Fortunately, we can make use of Lemma C.1 in our optimisation algorithm, which says as λi → 0, then

λi LSE(ti/λi) → max(ti1, . . . , tiNξ
).

Lemma C.1. Let LSE(y1, . . . , yn) be the Log-Sum-Exp function defined by

LSE(y1, . . . , yn) ≜ ln

n∑
i=1

exp(yi).

The perspective of the Log-Sum-Exp function converges to the max function, that is:

lim
τ→0

τ LSE
(y1
τ
, . . . ,

yn
τ

)
= max(y1, . . . , yn).

Proof. Let y⋆ = max(y1, . . . , yn) and let C the cardinality of the set of maximum elements:

C = |{yi : yi = y⋆, i = 1, . . . , n}| .

The Log-Sum-Exp function has the following property:

LSE (y1, . . . , yn) = y⋆ + LSE(y1 − y⋆, . . . , yn − y⋆).

Using this property, we have

lim
τ→0

τ LSE
(y1
τ
, . . . ,

yn
τ

)
= y⋆ + lim

τ→0
τ ln

n∑
i=1

exp

(
yi − y⋆

τ

)
= y⋆ + lim

τ→0
τ lnC = y⋆.

To see why the second equality holds, notice that yi − y⋆ ≤ 0 for all i = 1, . . . , n. Thus, we have

lim
τ→0

exp

(
yi − y⋆

τ

)
=

{
0, if yi − y⋆ < 0,
1, if yi − y⋆ = 0,

where we assume 0/0 = 0 for the case of yi − y⋆ = 0.

Linear objective and Normal likelihood. Recall from Section 3.5 that when the objective function fx(ξ) = ξ⊤x and the
likelihood is a Normal distribution N (µ,Σ), then we can use the MGF to solve the optimisation problem over λ in (37) to
obtain

H(x, θ) = H(x, µ,Σ) = µ⊤x+
√
2ϵ
√
x⊤Σx.

Assuming the posterior distribution is a Normal-inverse-Wishart (NIW) distribution, the BDRO dual from (35) can be
re-written as

min
x∈X

Eµ,Σ∼NIW [H(x, θ)] = min
x∈X

Eµ∼NIW

[
µ⊤x

]
+
√
2ϵ EΣ∼NIW

[√
x⊤Σx

]
. (40)

The expectation over µ above can be computed in closed form, whilst the expectation over Σ can be approximated by Monte
Carlo sampling.
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D. Further Details on the Connection Between DRO-BAS Formulations
In this section, we provide the proof of Corollary 3.7 and make some additional comments on the relationship between the
two formulations. We begin with Corollary 3.7.

Proof of Corollary 3.7. By (17), BASPE is equivalent to a KL-based discrepancy set with nominal distribution Pη̂ and a
posterior-adjusted constant G(⌢τ ,⌢ν). To see this, consider some ϵ > 0 and Q ∈ P(Ξ) such that Q ≪ Pη for any η ∈ Ω.
Then by (17):

Eη∼Π[dKL(Q||Pη)] ≤ ϵ⇒ dKL(Q,Pη̂) +G(
⌢
τ ,

⌢
ν) ≤ ϵ

⇒ dKL(Q,Pη̂) ≤ ϵ−G(
⌢
τ ,

⌢
ν).

This means that the DRO-BASPE problem in (12), restricted to the exponential family case, is equivalent to the following
optimisation problem:

min
x

sup
Q∈B

ϵ−G(
⌢
τ ,

⌢
ν )

(Pη̂)

Eξ∼Q[fx(ξ)].

This observation is specific to the exponential family and we should not expect this to hold for general model families and
posteriors.

Another interesting connection between the two formulations regards cases where one constitutes the subset of the other.
One such case is the following:

Lemma D.1. For general model family PΘ and fixed ϵ ≥ 0, BASPE is a subset of BASPP, i.e. Aϵ(Π) ⊆ Bϵ(Pn).

Hence, for fixed ϵ, if the DGP is contained in both ambiguity sets, then the DRO-BASPE risk is upper bounded by the
DRO-BASPP risk resulting in DRO-BASPP decisions being overly conservative.

Proof of Lemma D.1. This result follows from Jensen’s inequality by noting that the KL is convex on the second argument
and hence for any Q ∈ Aϵ(Π) we have

dKL(Q||Pn) = dKL(Q||Eθ∼Π[Pθ]) ≤ Eθ∼Π[dKL(Q||Pθ)] ≤ ϵ

and hence Q ∈ Bϵ(Pn).

In the exponential family case, this holds for all ϵ ≥ ϵ⋆PE, with ϵ⋆PE as defined in (20). In particular, for all ϵ ≥ ϵ⋆PE it follows
that:

Eξ∼P⋆ [fx(ξ)] ≤ sup
Q:Eη∼Π[dKL(Q∥Pη)]≤ϵ

Eξ∼Q[fx(ξ)] ≤ sup
Q:dKL(Q∥Eη∼Π[Pη ])≤ϵ

Eξ∼Q[fx(ξ)]

where the first inequality follows from (21) and the second inequality follows from Lemma D.1. However, it is worth noting
that this is not guaranteed for values of ϵ smaller than ϵ⋆PE so no definite conclusions can be made for the performance of the
methods for different values of ϵ or for any ϵ ≤ ϵ⋆PE. Exploring this further would be an important aspect of future work. We
further discuss computational differences of the two objectives in the next section and empirically investigate both methods
in Section 4.

E. Supplementary Experiments & Details
In this section, we provide additional details about the setup of experiments, the metrics used to evaluate the algorithms, and
some supplementary experiments.
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Figure 4. The out-of-sample mean-variance tradeoff for normal DGP (top row) and Contaminated Exponential DGP (bottom row). We
vary ϵ for DRO-BASPE, DRO-BASPP, and BDRO when the total number of samples from the model is 25 (left), 100 (middle), and 900
(right) and plot the markers in bold. For illustration purposes, blurred markers/lines show the other smaller values of M ; for example, the
right column shows M = 900 in bold and M = 25, 100 in blurred. Each marker corresponds to a single value of ϵ, some of which are
labelled (e.g. ϵ = 0.1, 0.5, 3.0). Filler markers indicate the given ϵ lies on the Pareto frontier of the model-based algorithms. If the marker
is unfilled, this indicates the given ϵ is Pareto dominated by at least one other point.

Implementation. We implemented the dual problems for DRO-BAS (Theorem 3.6) and BDRO (Shapiro et al., 2023) in
Python 3.11 using CVXPY version 1.5.2 (Diamond & Boyd, 2016; Agrawal et al., 2018) and the MOSEK solver version
10.1.28. Three machines were used to run experiments, each with a Dual Intel Xeon E5-2643 v3 @ 3.4 Ghz (12 cores/24
threads total) with 128GB RAM (5 GB per thread / 10GB per core). The SLURM workload manager was used to schedule
jobs. Each job was allocated a single core and 10GB of RAM such that upto 12 jobs can be ran in parallel on a single
machine.

Out-of-sample mean and variance. For a given ϵ, we calculate the total out-of-sample mean m(ϵ) and variance v(ϵ) of
the cost as:

m(ϵ) =
1

JT

J∑
j=1

T∑
t=1

f(x(j)ϵ , ξn+t),

v(ϵ) =
1

JT − 1

J∑
j=1

T∑
t=1

(
f(x(j)ϵ , ξn+t)−m(ϵ)

)2
,

where x(j)ϵ is the obtained solution on training dataset D(j)
n . The variance formula we use above is simply the total variance

across all T observations and all J test datasets. For random seed j = 1, . . . , 500, we sample n = 20 training observations
D(j)

n from the DGP, then sample T = 50 test points. This contrasts with the formula proposed in Gotoh et al. (2021) for a
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Solve time (seconds) Total sample time (seconds ×10−4)
DGP M DRO-BASPE DRO-BASPP BDRO DRO-BASPE DRO-BASPP BDRO

Exp 25 0.024 (0.003) 0.024 (0.003) 0.068 (0.012) 0.097 (0.007) 0.117 (0.009) 0.360 (0.018)
100 0.036 (0.003) 0.037 (0.003) 0.148 (0.020) 0.099 (0.007) 0.122 (0.015) 0.614 (0.045)
900 0.422 (0.030) 0.428 (0.032) 0.724 (0.040) 0.114 (0.010) 0.155 (0.013) 1.611 (0.117)

Tr. N 25 0.024 (0.003) 0.024 (0.003) 0.067 (0.012) 0.070 (0.006) 0.138 (0.008) 0.121 (0.009)
100 0.035 (0.003) 0.035 (0.003) 0.145 (0.020) 0.072 (0.006) 0.142 (0.009) 0.156 (0.013)
900 0.398 (0.020) 0.406 (0.021) 0.683 (0.033) 0.090 (0.008) 0.185 (0.012) 0.292 (0.025)

5D N 25 0.031 (0.004) 0.030 (0.004) 0.104 (0.012) 0.423 (0.034) 0.400 (0.023) 4.279 (0.243)
100 0.080 (0.009) 0.080 (0.010) 0.210 (0.022) 0.437 (0.033) 0.422 (0.025) 7.852 (0.342)
900 0.919 (0.097) 0.948 (0.100) 1.145 (0.072) 0.525 (0.039) 0.592 (0.040) 22.150 (0.892)

Table 3. Newsvendor Problem: Average solve (in seconds) and sample time (in seconds ×10−4) with the associated standard deviation
in brackets. The Exponential, 1D Truncated Normal (T. N ) and 5D Normal DGPs correspond to the Newsvendor problem setting in
Section 4.1. The time of the algorithm with the fastest solve is in bold; if two algorithms have the same solve time, then the sample time is
in bold. The solve and sample times for the 1D well-specified Normal and contaminated Exponential DGPs in Figure 4 are very similar to
Tr. N and 5D N respectively, and are thus omitted.

bootstrapping application which was also used by Shapiro et al. (2023) in their BDRO experiments.

E.1. Newsvendor Problem - Additional Details

This subsection is dedicated to additional details and experiments that complement Section 4.1 on the Newsvendor Problem.

Data-generating processes. In the main text, we evaluated the methods on two well-specified settings: an exponential
distribution with rate parameter λ = 1

20 and a 5D multivariate normal distribution with mean µ⋆ = (10, 20, 30, 35, 22) and
full covariance Σ⋆. In this section, we also provide supplementary experiments for a univariate Normal distribution DGP
with mean µ⋆ = 25 and standard deviation σ⋆ = 10; the likelihood is also Normal, so the model is well-specified.

In Section 4.1, we also evaluated the algorithms when the likelihood is misspecified. The DGP is a Truncated Normal
distribution with mean µ⋆ = 10, standard deviation σ⋆ = 10, and truncation ξ ∈ [0,∞); the likelihood is a univariate Normal
distribution. In this section, we provide another misspecified example. The DGP is a Contaminated Exponential distribution
whilst the likelihood is an Exponential distribution with conjugate Gamma posterior/prior. 80% of the observations from the
Contaminated Exponential DGP are sampled from an Exponential distribution with rate parameter λ = 1

20 ; the other 20% of
observations are sampled from a Normal distribution with mean 100 and standard deviation 0.5.

Prior hyperparameters. When the likelihood is a univariate Normal distribution (i.e. when the DGP is Normal or
Truncated Normal), the prior and posterior are Normal-Gamma distributions; we set the prior hyperparameters to be ⌣

µ = 0

and ⌣
κ,

⌣
α,

⌣
β = 1. When the likelihood is an Exponential distribution, the prior and posterior are Gamma distributions with

prior hyperparameters ⌣
α,

⌣
β = 1. Finally, when the likelihood is a multivariate Normal distribution with dimension D = 5,

the prior and posterior are Normal-Inverse-Wishart distributions with prior hyperparameters ⌣
µ = 0 ∈ RD, ⌣

ι = D + 1,
⌣
κ =

⌣
ι +D + 2, and

⌣
Ψ = ID, where ID is the D-dimensional identity matrix.

Supplementary experiment: Normal DGP. The top row of Figure 4 shows that the conclusions of Section 4.1 hold for
the well-specified case of a Normal DGP/likelihood, that is, for M = 25, 100, DRO-BAS Pareto dominates BDRO in the
OOS mean-variance tradeoff, whilst performance is similar for M = 900.

Supplementary experiment: Contaminated Exponential DGP. The bottom row of Figure 4 shows misspecification
context where the DGP is a Contaminated Exponential and the likelihood is an Exponential distribution. As ϵ increases,
the OOS mean of DRO-BAS and BDRO increases fast but with little reduction in the OOS variance: a decision maker is
unlikely to desire this property. This implies that we should use a very small value of ϵ because a larger ϵ does not give
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Figure 5. The out-of-sample mean-variance tradeoff for Exponential DGP when the total number of observations n is 5 (left), 20 (middle),
and 100 (right). For illustration purposes, blurred markers/lines show the previous two values of n; for example, the right column
shows n = 100 in bold and n = 5, 20 in blurred. Each marker corresponds to a single value of ϵ, some of which are labelled (e.g.
ϵ = 0.1, 0.5, 3.0). If the marker is filled, this indicates the given ϵ lies on the Pareto frontier. If the marker is unfilled, this indicates the
given ϵ is Pareto dominated by at least one other point.

much more robustness. Contrast this to the other DGPs we have analysed where the mean-variance tradeoff creates a nice
Pareto frontier curve on a subset of the ϵ values whereby an increase in the OOS mean is traded for a decrease in the OOS
variance. In particular, contrast this to the well-specified Exponential example from the top row of Figure 2. All of this
provides motivation for future work on Bayesian ambiguity that specifically target model misspecification.

Solve and sample times. Table 3 shows the solve times on the Newsvendor Problem for algorithms on different DGPs.
As we noted in Section 4.1, the solve and sample times are broadly comparable for DRO-BAS and BDRO, although both
DRO-BAS algorithms are faster across all DGPs and all sample sizes M .

Results for varying number of observations. We now examine the results from the Newsvendor problem for an
increasing number of observations. We fix the number of MC samples to M = 100 and run the experiment for dataset
size n = 5, 20, 100. Results for n = 5, 20 were also reported in Shapiro et al. (2023) for the well-specified Normal and
Exponential DGPs/likelihoods. Figure 5 shows that as expected performance of both methods improves as the number of
observations increases. Moreover, DRO-BAS continues to Pareto dominate or match BDRO in all cases with the difference
between the two methods being bigger for a smaller number of observations.

Why does the OOS variance increase as ϵ increases? The behaviour of the OOS variance v(ϵ) in the Newsvendor
experiments is due to the behaviour of the variance of the solution (denoted by vx(ϵ)). In turn, the variance of the solution is
driven by the Newsvendor asymmetric cost function and its interplay with the worst-case distribution for each ϵ. Figure 6
shows the behaviour of the solution for the Newsvendor problem under a Normal DGP corresponding to the top plot in
Figure 4. The Newsvendor cost-function is piece-wise linear with 2 pieces, and hence, the true risk (expected cost under
the DGP) has two different gradient slopes. The optimal solution lies at the intersection of the two pieces of the objective
function, which coincides with the point with respect to x where the true risk is zero. The piece corresponding to larger
solutions has a significantly smaller slope (see 4th plot of Figure 6), leading to a smaller true risk.

Let’s consider a fixed value of M = 25 in Figure 6. For small values of ϵ, the variance of the solution vx(ϵ) is smaller
because fewer distributions are included in the ambiguity set; hence, the obtained solution is fairly stable over replications
(see first plot of Figure 6). However, because BAS likely does not include the DGP, the decision is prone to risk; thus, the
OOS variance of the cost function v(ϵ) is large (see the Pareto curve of the first plot of Figure 4). In this regime, the OOS
variance (of the cost) reduces as we increase epsilon and better capture the DGP.

As ϵ increases further, the ambiguity sets begin to include more distributions, leading to the mean solution moving to values
larger than the optimal solution where the slope of the true risk is smaller (see 4th plot of Figure 6). This makes sense
because, as we increase ϵ, we become more conservative. However, as ϵ increases to very large values (in this case > 0.5),
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Figure 6. The first three plots showcase the mean solution (decision variable x) with the associated variance (error bars) obtained by the
methods applied to the Newsvendor problem with a Normal DGP for M = 25, 100, 900. The last plot shows the true risk (expected cost
under the DGP) for each value of the solution x. Red dotted lines show the optimal solution under the DGP.

the ambiguity set contains a lot of arbitrary distributions, significantly increasing the out-of-sample cost. The methods then
push the solution towards smaller values of x as can be observed by the big variance vx(ϵ) on the first plot for larger values
of ϵ.

This behaviour is common for all values of M , however, there is an important distinction: for smaller values of M (25, 100),
the error bars extend way below and above the optimal solution. If we associate this with the form of the true risk on the
last plot in Figure 6, we can expect a very high variance v(ϵ) of the out-of-sample cost. On the other hand, the variance of
the solution vx(ϵ) for large M (M = 900) does not extend below the optimal solution by a large degree. This means that
as the optimisation becomes more exact, the methods suggest staying on values bigger than the optimal solution, which
corresponds to the smaller slope of the true risk. This is why for M = 900 in the top row of Figure 4, the out-of-sample
variance v(ϵ) does not increase by a lot for large values of ϵ.

E.2. Portfolio Problem: Additional Details

The dataset from Bruni et al. (2016) contains two baselines which we include for comparison in Figure 7: a Markowitz
mean-variance risk model (Markowitz, 1952) and the DowJones index. In Figure 7, we show the cumulative returns on the
test datasets. We note that all three DRO methods have a larger cumulative return than the Markowitz and DowJones index
baselines.

Sliding time window construction (Bruni et al., 2016). The first train D(1)
n and test D(1)

T dataset contain the first 52
weeks of returns and following 12 weeks of returns respectively. We construct the second train dataset D(2)

n by excluding
the first 12 weeks of returns from D(1)

n and including the 12 weeks from D(1)
T , whilst the second test dataset D(2)

T contains
the next 12 weeks of data following D(1)

T . We repeat this procedure for all j = 1, . . . , J until the end of the dataset.

E.3. Discussion on Empirical vs Model-based DRO and Additional Comparisons

In this section, we further discuss the relationship between empirical and model-based DRO methods. This work focuses on
scenarios where the decision-maker has access to both observations from the data-generating process (DGP) and a model
family that describes the underlying data distribution. Specifically, we examine situations where incorporating uncertainty
quantification about the model parameters into the worst-case minimization problem is crucial. This setting is particularly
relevant when a model is required to capture a complex relationship between covariates and outcome variables, such as
in regression tasks or Bayesian risk minimization, where the decision-maker seeks protection against a poor posterior
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Figure 7. The Portfolio cumulative return across test datasets. For each DRO method, a line corresponds to a distinct ϵ value (shown in
brackets in the legend). The vertical dotted line marks the start of the first test set on week 52.
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distribution arising from limited or noisy data. In such instances, purely data-driven (empirical) DRO formulations may not
be the most suitable approach. To better understand the practical differences between these methods, we empirically assess
our proposed approach against two empirical DRO methods. Firstly, the Empirical KL DRO framework introduced by Hu &
Hong (2013) uses the following ambiguity set:

Bϵ(P̂n) = {P : dKL(P||P̂n) ≤ ϵ}.

Secondly, we compare against Wasserstein DRO with a p = 2 norm (see e.g. Kuhn et al., 2019; Gao & Kleywegt, 2023).

Figure 8 shows the OOS mean-variance trade-off of Empirical KL DRO (in gray with crosses) and Wasserstein DRO (in
brown with plusses) versus the model-based DRO approaches of DRO-BAS and BDRO on the Newsvendor Problem for
two DGPs. For a given DGP, note that the gray and brown curves do not change for M = 25, 100, 900 because Empirical
DRO does not sample. The results show that DRO-BAS and BDRO perform better than Empirical KL and Wasserstein
DRO when a sufficiently large number of samples is taken from the model (M = 900). However, for M = 25, Empirical
DRO has better the OOS performance than model-based DRO approaches because more samples need to be taken to
better approximate the model. For M = 100, Empirical DRO and the model-based methods are broadly comparable, with
Empirical KL DRO having an advantage on the Truncated Normal DGP, likely due to misspecification of the likelihood.

E.4. Cross-validation for choosing ϵ

In practise, the decision-maker is unlikely to be able to calculate the optimal value of ϵ because they do not know the
distributional form of the DGP. Instead, the decision-maker must calibrate ϵ from the available training data. One method
for achieving this is to perform cross-validation (CV) by splitting the data into training folds, then evaluating the OOS
performance of proposed solution on the test folds. We perform 10-fold CV on the Newsvendor for DRO-BAS with a
univariate Normal DGP and n = 100 training observations. We train our model only on the training folds, then after solving
for each candidate ϵ, we calculate the CV mean and variance of the objective function on the validation folds.
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Figure 8. Comparison of the OOS mean-variance tradeoff on the Newsvendor for Empirical KL DRO and Empirical Wasserstein DRO vs
Bayesian model-based DRO approaches on the Newsvendor Problem with Normal DGP (top) and Truncated Normal DGP (bottom).

The results in Figure 9 show how the decision-maker can choose a value of ϵ depending upon their appetite for risk. For
example, if the decision-maker wishes to minimise the CV variance, then they should choose the value of ϵ marked by
the stars in Figure 9. The triangle markers in the figure show a way to choose ϵ that compromises between the CV mean
and variance by taking a average of the CV mean and the CV standard deviation. By considering the CV mean-variance
tradeoff, the decision-maker is now well-informed to choose ϵ with knowledge of how the chosen value could perform on
out-of-sample, unseen data.
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Figure 9. The cross-validation (CV) mean-variance tradeoff on the Newsvendor Problem with Normal DGP and n = 100 training
observations. We highlight three ways the decision maker can choose ϵ: firstly, minimise the CV-mean (cross markers); secondly, minimise
the CV-var (star markers); and thirdly, minimise 1

2
(CV-mean + CV-std) (triangle markers), where CV-std is the standard deviation of the

objective function on the validation folds.
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