
Proceedings Track
Under Review - Proceedings Track 1–4, 2024 Symmetry and Geometry in Neural Representations

A New Geometric Approach of Adaptive Neighborhood
Selection for Classification

Editors: List of editors’ names

Abstract

The k-nearest neighbor (k-NN) is a widely adopted technique for nonparametric classifica-
tion. However, the specification of the number of neighbors, k, often presents a challenge
and highlights relevant constraints. Many desirable characteristics of a classifier - including
the robustness to noise, smoothness of decision boundaries, bias-variance tradeoff, and man-
agement of class imbalance - are directly impacted by this parameter. In the present work,
we describe an adaptive k-nearest-neighbors method that locally defines the neighborhood
size by investigating the curvature of the sample. The rationale is that points with high
curvature may have smaller neighbors (locally, the tangent space is a loose approximation)
and points with low curvature may have larger neighborhoods (locally, the tangent space
approximates the underlying data shape well). The results on several real-world data sets
indicate that the new method outperforms the well-established k-NN approach.
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1. Introduction

The nonparametric technique for pattern classification known as the k-nearest neighbor
classifier (k-NN) is renowned for its ease of use, adaptability, and intuitive approach (Cover
and Hart, 1967; Nielsen, 2016). The neighborhood size is controlled by the parameter k,
which drives the behavior of the k-NN classifier. When generating predictions for a new data
point, this parameter indicates the number of nearest neighbors considered (Jodas et al.,
2022). A more flexible method with decision bounds that closely match the training data is
provided by a lower k value, which may be capable of capturing complex patterns and local
changes. Nevertheless, due to the fact that it overly depends on the closest neighbors for
classification, lower k values should increase the vulnerability to problems related noise and
outliers (Uddin et al., 2022). On the other hand, larger k values produce a more generic
method that is less influenced by single data points while considering a smoother decision
boundary.

In the present work, we describe a geometric approach for adaptive neighborhood selec-
tion in the k-nearest neighbor classifier, which automatically modify the number of neigh-
bors for each sample. Through the inspection of the local curvature, the adaptive approach
of the curvature-based K-NN classifier defines the neighborhood size k at each vertex of
the k-nearest neighbors graph (k-NNG). The tangent plane is frequently tightly tuned to a
manifold in the case of points with smaller curvature values, allowing the definition of larger
neighborhoods. However, the tangent plane is loose considering points of high curvature,
reducing the size of the neighborhood. Our findings over several cases indicate a superior
performance of the proposed curvature-based method compared to the regular and widely
adopted k-NN method.
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2. Local shape operator and curvatures

A challenging problem is to appropriately estimating the curvature at each sample of the
data set. We propose an algorithm to estimate the local shape operator based on discrete
approximations to the local metric and curvature tensors - i.e., generalizations of the first
and second fundamental forms of a surface (Levada et al., 2024). This aims to approximate
the metric tensor as the inverse of the local covariance matrix as well as the curvature tensor
as the local Hessian matrix, based on the definitions of the Hessian Eigenmaps algorithm
(Donoho and Grimes, 2003).

Algorithm 1: The shape operator-based curvatures

1. A← kNN-graph(X, k) // Builds the kNN-graph from data matrix X

2. For k = 1 to n // Scan each sample

(a) neighbors← N(xi) // Neighborhood of sample xi

(b) Σi ← cov-matrix(neighbors) // Local covariance matrix

(c) U ← eigenvectors(Σi) // Eigenvectors = columns of U

(d) Compute the matrix Xi with 1 +m+m(m+ 1)/2 columns

(e) Compute the matrix Hi: the last m(m+ 1)/2 columns of Xi

(f) Hi ← ĤiĤ
T
i // Second fundamental form

(g) Si ← −HiΣi // Shape operator

(h) Ki ← det(Si) // Curvature at point xi

3. Return K // The vector of local curvatures

3. Curvature-based approach for adaptive k-NN

Subsequently to the computation of the curvature in each sample, a total of ten distinct
scores (ranging from zero to nine) are assigned to the curvatures. The edges of the k-NNG
are pruned in order to perform the adaptive neighborhood adjustment, given the scores
determined by the local curvatures. For example, assuming that k = 11 and sample xi has
a curvature score of ci = 4, the neighborhood would consist of only seven neighbors. The
edges connecting sample xi with its four farthest neighbors would be removed. The sample
xi would still be linked to its closest neighbor when k < ci. During the testing phase, the
new sample zi is included and classified, determining its local curvature while connecting
it to its k-nearest neighbors. Lastly, the new point’s curvature is added to the vector of
curvatures, generating its score.
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Table 1: Sample size, number of features, and classes of the selected openML data sets of
the first round of experiments.

# Data set # samples # features # classes

1 vowel 990 13 11
2 tecator 240 124 2
3 sonar 208 60 2
4 ionosphere 351 34 2
5 user-knowledge 403 5 5
6 parkinsons 195 22 2
7 breast-tissue 106 9 4
8 Smartphone-Based Recognition 180 66 6
9 mfeat-fourier (25%) 500 76 10
10 letter (10%) 2000 16 26
11 satimage (25%) 1607 36 6
12 pendigits (25%) 2748 16 10
13 texture (25%) 1375 40 11
14 digits (25%) 449 64 10
15 Olivetti Faces (10 LDA features) 400 10 40

4. Preliminary results

We selected 15 data sets from distinct domains, with a varying number of features. The
proposed adaptive K-NN is compared with the standard k-NN classifier considering their
balanced accuracy, Kappa coefficient, Jaccard index, and F1-score.

A holdout strategy is implemented to separate the samples into training and test data
sets. With 5% increments, the training partition may range from 10% to 90% of the total
samples. This means that there are a total of 17 potential divisions during the training
and testing phases. The rationale is to test the behavior of the methods while exploring
small, medium and large training sets. The preliminary results are reported in Table 2. The
proposed curvature-based k-NN method outperforms the regular k-NN for all data sets.

5. Conclusion

In this work, we propose a curvature-based k-NN classification algorithm. The new method
is devised to increase classification accuracy by locally adjusting the neighborhood size while
exploring the intrinsic curvature information of the data set. Our experimental findings
provide insights into the efficiency and adaptability of the proposed approach. Future
works may include a weighted version of the curvature-based k-NN.
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Table 2: Median of measures after 17 executions adopting the holdout strategy, with train-
ing data sets of different sizes: from 10% to 90% of with increments of 5%
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