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Abstract

Protein foundation models produce embeddings that are valuable for various down-
stream tasks, yet the structure and information content of these embeddings remain
poorly understood, particularly in relation to diverse pre-training tasks and input
modalities. We apply intrinsic dimension (Id) analysis to quantify the complexity of
protein embeddings from several widely used models, including ESM-2, ESM-IF,
ProstT5, and ProteinMPNN. We also employ Id correlation (IdCor) to measure the
shared information between different embeddings. Our results reveal a universality
in protein embeddings, with similar Id scales across models and strong correlations
between protein and residue embeddings. We observe significant redundancy, with
Id values much smaller than the original embedding dimensions. We also show that
models capture both spatial and sequential long-range correlation, with correlation
decay rate differing based on the input modalities and pre-training tasks. Lastly,
we analyze mutant embeddings, revealing that mutations cluster effectively by site,
and fine-tuning further reduces the Id to capture task-specific representations.

1 Introduction

Protein foundation models, trained on large scale protein sequence and structure datasets (e.g.,
PDB [5] and UniProt [29]), have emerged as powerful tools for encoding protein sequences and
structures into embeddings that capture rich, biologically meaningful information [1, 24]. These
embeddings have been successfully employed in a wide range of downstream tasks, including protein
function prediction, protein design, and structural analysis [1, 12, 23, 24, 25]. The landscape of
protein foundation models is highly diverse, with models being trained on different pretraining tasks
(e.g., masked language modeling, inverse folding), accepting various input types (e.g., amino acid
sequences, structural data), and come in different sizes and embedding dimensions.

Despite the success of protein foundation models, the information content of their embeddings, and
how the pretraining objectives and input modalities shape these embeddings, remains unclear. While
assumptions can be made based on a model’s training task and inputs, a systematic and quantitative
understanding of the embeddings’ characteristics is still lacking. Previous efforts to analyze and
compare protein embeddings have primarily focused on visualizing dimensionally-reduced projections
and benchmarking performance on downstream tasks [1, 24, 25]. While these methods provide
valuable insights, they may not fully capture the intrinsic properties of the embeddings or the
underlying task-independent relationships between different models [30].

In this work, we analyze protein embeddings in a data-intrinsic manner using a concept of intrinsic
dimension Id. The intrinsic dimension is defined as the minimum number of variables required to
describe a dataset effectively, providing a measure of the complexity and variability of the data. By
estimating the Id of protein embeddings, we aim to gain insights into their underlying structure and
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information content. Furthermore, we employ a recent method [4] to estimate the mutual information
that are shared across different protein embeddings. This approach has been shown to outperform
traditional Euclidean distance-based methods in high-dimensional settings.

Id analysis has been performed in other domains such as NLP and CV and provided insights, but
its application in protein domain was limited, and IdCor analysis has yet to be done so far to our
knowledge.

Our key findings are as follows:

• Universality of protein embeddings. We observe that the Ids of proteins and residues are
consistent across foundation models. The fact that the sets of amino acids with small Ids are
nearly identical across different models, along with the high correlation between protein and
residue embeddings, suggests that these embeddings capture a shared, universal structure
across both the structural and sequence modalities of proteins.

• Redundancy in protein embeddings. Estimated Id values are much smaller than the
original embedding dimensions, indicating a high level of redundancy. High IdCor values
also suggest that a considerable amount of information is shared between the residues within
the same protein and the residues and their corresponding protein embeddings.

• Local and long-range awareness. Residue embeddings are more correlated with sequen-
tially or spatially proximal residues than with distal ones. The degree of decay in correlation
varies depending on the pretraining task of the model, indicating that different models
capture local and global geometries to varying degrees.

• Understanding mutant embeddings. ESM-2 mutant embeddings cluster by mutation sites
and amino acid types, showing that the embeddings capture both local mutations and global
protein context. Fine-tuning on the mutant stability score prediction task further reduces the
Id to 2.5, reflecting the compactness of task-specific representation.

2 Related Works

Protein foundation models We analyze embeddings from four popular protein foundation models:
ESM-2 [17], ESM Inverse Folding (ESM-IF) [11], ProstT5 [10], and ProteinMPNN [7]. The
following reviews key similarities and differences in architecture and training objectives.

• ESM-2 [17]: A Transformer encoder pretrained using masked language modeling to
predict masked amino acids from sequence context, capturing statistical dependencies
without structural information. We utilize embeddings from models of varying sizes (8M,
150M, and 650M parameters).

• ESM Inverse Folding (ESM-IF) [11]: Employs a GVP-Transformer encoder based on
Geometric Vector Perceptron (GVP) [14] to embed structural information and a Trans-
former decoder to autoregressively generate amino acid sequences, effectively reversing the
ESMFold process. It is trained on both experimental structures and AlphaFold2 predictions.

• ProstT5 [10]: A bidirectional encoder-decoder Transformer finetuned from pretrained
ProtT5 model [8] to embed both sequence and structure. It uses 1) masked language
modeling to predict amino acid (AA) or geometric (3Di) tokens given the partial information
of the other, and 2) a bidirectional translation objective to obtain an entire sequence from
complete structural information or vice versa, producing separate embeddings for amino
acid identities and structure.

• ProteinMPNN (MPNN) [7]: A purely GNN-based encoder-decoder model that generates
amino acid identities from structural information. Its encoder provides geometric embed-
dings for nodes (V), and also edges (E), an aggregation of edge features of spatial k-nearest
neighbors. We also utilize the decoder’s concatenated embeddings: ESV (nodes, edges,
amino acid identity from a lookup table) and EXV (nodes, edges, mask token). We use
the MPNN model trained with the highest Gaussian noise level since it showed the best
benchmark performance in [7].

Intrinsic dimension-based analysis of embeddings The intrinsic dimension (Id) provides insights
into the structure of latent manifolds in deep neural models [13, 18, 21, 26] . Id is also known to
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relate to neural scaling laws in computer vision tasks by predicting loss trends [3, 21]. Tracking how
Id changes through neural network layers helps understand information flow: it typically increases in
early layers and decreases in later ones, with the final layer’s Id known to predict test set classification
accuracy [2, 15, 30]. For protein models, [30] analyzed Id across layers in transformer-based
architectures.

Recently, [4] introduced the IdCor metric to estimate mutual information between datasets, assessing
multimodal correlations between image and text models. However, no prior work has applied Id
analysis or IdCor to protein or chemical models to understand their relationships. While methods like
Singular Value Canonical Correlation Analysis (SVCCA) [22], Centered Kernel Alignment (CKA)
[16], and Distance Correlation [27, 31] can be used to compare embeddings in a similar manner, they
are most effective within the same data modality [4]. Since we aim to compare models with different
input types (e.g., amino acid sequences vs. 3D coordinates), we employ IdCor analysis.

3 Methods

Dataset preparation and caching of embeddings From the 16,380 cluster representatives of 30%
sequence identity clusters of protein chains in the PDB, we selected 4,591 structures that do not
contain any residues with missing structural information. For each protein foundation model, we
extracted and cached residue embeddings from either the sequences or their corresponding PDB
structures, and generated protein-level embeddings through mean pooling. During this process,
no sequences were truncated for embedding generation or mean pooling; however, for residue-
level embedding analysis, sequences were truncated at the 500th residue. To make the residue
embeddings to fit in GPU memory, we downsampled them by a factor of 20, resulting in 25,170
residue embeddings. For amino acid-specific embedding analysis, no downsampling was applied.

Intrinsic dimension estimation Traditionally, Id can be estimated with Principal Component
Analysis or non-linear methods such as Multidimensional Scaling [6]. These methods project the
data into a lower-dimensional space. Here, we employ the TwoNN method [9] that does not require
projecting the data into lower dimensional space. Id is estimated from nearest neighbor distances
with good speed and performance on non-uniform embedding distributions.

Intrinsic dimension correlation Intrinsic Dimension Correlation (IdCor) was introduced by Basile
et al. [4] to measure the correlation between different data representations. It is defined as:

IdCor =
id1 + id2 − idC
max{id1, id2}

,

where id1 and id2 are the Id of the dataset described by feature vectors from first and second
representation methods, respectively. idC is the Id of the combined representation obtaining by
concatenating the two feature vectors. id1 and id2 quantify the information content of the individual
representations, while idC captures the information content of the joint representation. Hence, the
numerator reflects the mutual information between the two representations, while the denominator
normalizes IdCor between 0 and 1. Note that IdCor depends on the method used to compute Id,
and when idC is significantly underestimated in high-dimensional spaces, IdCor may not be strictly
confined to the range of [0, 1].

To assess the statistical significance of IdCor estimation, a p-value associated with the null hypothesis
that the two data representations are uncorrelated is also calculated, following the method described
by Basile et al. [4]. The pairings between the two data representations are randomly shuffled S times,
and Id is calculated for the concatenated features of each shuffle (denoted by idS ∈ RS). The p-value
is then defined as p = S′+1

S+1 , where S′ = |{id ≤ idC | id ∈ idS}|. Intuitively, a high value of S′

indicates that the features are highly uncorrelated, leading to a higher idC . The full algorithm is
adapted from Basile et al. [4] with S = 100, and we apply a significance threshold of p < 0.05 in
our analysis.
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Table 1: The Id values for residue and protein embeddings, and the IdCor between embeddings with
p-values. Res. (H) refers to the Id for histidine residues.

Id IdCor (p-value)

Model Dim. Residue Res. (H) Protein Residue–Protein Same Protein All Protein

ESM-2 (8M) 320 22.6 14.3 12.4 0.65 (0.01) 0.68 (0.01) 0.61 (0.23)
ESM-2 (150M) 640 29.5 16.1 12.5 0.62 (0.01) 0.66 (0.01) 0.60 (0.55)
ESM-2 (650M) 1280 37.0 17.4 12.7 0.59 (0.01) 0.59 (0.01) 0.47 (0.84)
ESM-IF 512 29.6 25.2 17.0 0.62 (0.01) 0.28 (0.13) 0.25 (0.36)
ProstT5 (AA) 1024 23.1 15.7 11.5 0.40 (0.01) 0.00 (0.42) 0.00 (0.45)
ProstT5 (3Di) 1024 19.8 18.2 11.8 0.46 (0.01) 0.00 (0.77) 0.00 (0.13)
MPNNV 128 15.9 13.7 13.3 0.74 (0.01) 0.35 (0.08) 0.33 (0.90)
MPNNE 128 16.7 14.5 9.0 0.63 (0.01) 0.64 (0.01) 0.59 (0.85)
MPNNESV 384 19.3 14.1 14.4 0.72 (0.01) 0.55 (0.01) 0.00 (0.33)
MPNNEXV 384 19.2 14.8 11.9 0.64 (0.01) 0.58 (0.01) 0.32 (0.86)

4 Results

4.1 Universality and redundancy in protein embeddings

Table 1 presents the Id and IdCor values for both residue and protein embeddings. First, despite
the large variations in original feature dimensions, the Id values for residue and protein embeddings
remain relatively consistent, with 15–30 for residues and ≈ 10 for proteins. This suggests a universal
behavior in how protein modalities are encoded in across the foundation models examined, and
the significant dimensionality reduction indicates a high degree of redundancy in the information
across different dimensions. Additionally, several models exhibit high IdCor values, with statistically
significant p-values, for residue embeddings randomly selected from the same protein sequence
(Same Protein). This indicates that a considerable amount of information is shared among residues
within the same protein. In contrast, the IdCor values between two sets of randomly shuffled residues
across different proteins (All Protein) yield high p-values. This supports our conclusion that the
previously observed IdCor results represent meaningful correlations specifically in the context of the
same protein.

Overall, the Id of residue embeddings is higher than that of the pooled protein embeddings, indicating
a potential loss of residue-specific contextual information during the mean pooling process. However,
we consistently observe reasonable IdCor values between residue embeddings and their corresponding
protein embeddings (Residue–Protein) across all models. This implies that while some information
may be lost, a significant portion of the information in the residue embeddings is still retained through
mean pooling operations.

When embeddings are clearly clustered into specific contexts, computing the Ids for each context
separately would provide more meaningful results. The Id for individual amino acid types is lower
than the Id for all residues combined, indicating that computing Id for specific contexts captures
more focused information. The clustering of the residue embeddings, shown in Figures 5 and 6,
reveals the types of contexts the models have learned. In the ESM-2 models, residue embeddings
are distinctly clustered by amino acid type, while in other models, although the clustering is less
pronounced, the embeddings can still be grouped by both amino acid types and 3Di geometric tokens.

Figure 1 ranks the amino acids by their Id values for each model. Interestingly, the amino acid
types with the lowest Id values are consistent across different models. The amino acids with the
lowest Id values—cysteine (C), tryptophan (W), and histidine (H)—are highly conserved residues.
For example, cysteines participate in disulfide bridges, which are crucial for structural stability
and conserved across evolutionarily relevant protein families. Thus, their low Id values align with
biological expectations, as conserved positions correspond to less variability in features, given their
critical roles in protein structure.

Figure 2 highlights the strong correlations between protein embeddings from different models. In
particular, embeddings from the ESM-2 and ProstT5-AA models show very high correlations, which
can be attributed to their reliance on similar sequential input types and pretraining tasks that focus on
sequence-based objectives. Among the ESM-2 models (8M, 150M, and 650M), which share the same
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Figure 1: Id ranking of amino acids for each embedding, listed in ascending order.

(a) Protein IdCor (b) Residue (H) IdCor

Figure 2: Comparison of IdCor between protein and residue embeddings. (a) Protein IdCor, (b)
Residue (H; histidine) IdCor. All IdCor estimates had p-value of 0.01, indicating the significance.

data and task but differ in the number of parameters, the correlations are nearly perfect (>0.94). This
reflects the consistency of the embeddings across models that vary in size but are trained in a similar
manner. In contrast, the different variants of MPNN (V, E, ESV, EXV) show weaker correlations with
each other, suggesting that these models disentangle information differently depending on the type of
embeddings they generate.

The correlation patterns for residue embeddings (amino acid: histidine (H)) are similar but generally
weaker IdCor values than those at the protein level. This weaker correlation may be due to residue
embeddings capturing local context and fine-grained details that vary more between models, whereas
protein embeddings summarize this information globally.

4.2 Local and long-range awareness

We analyzed the long-range correlations of residue embeddings to understand how different models
capture sequential and spatial dependencies in proteins. For sequential correlations, we randomly
selected ten residues per protein and computed the correlation between their embeddings and those
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Figure 3: Long-range IdCor values of residue embeddings with (left) the neighboring residues within
the radius threshold and (right) the N -hop neighbors along the sequence.

of their N -hop neighbors along the sequence at distances of N = 1, 2, 5, 10, 20, and 50 residues. For
spatial correlations, we identified neighboring residues within shells of increasing radii (<4 Å, 4–8 Å,
8–12 Å, and 12–16 Å) and calculated the correlations between their embeddings.

Our findings reveal a general decay in correlation with increasing residue distance for both sequential
and spatial metrics. Notably, ProteinMPNN, an inverse folding model based solely on protein
geometry, exhibits the highest long-range spatial correlations in its ESV and EXV-type embeddings.
Interestingly, its correlations do not decay with sequential distance, reflecting its independence from
sequence proximity. The MPNN-V (node) embeddings, however, show a rapid decay, suggesting
they primarily capture local geometric features, whereas the MPNN-E (edge) embeddings retain
correlations over longer distances, indicating they encode more global geometric relationships.

Similarly, ProstT5-3Di demonstrates a rapid decay in correlations akin to MPNN-V embeddings, and
both models exhibit very high protein embedding IdCor values (Figure 2 (a)), implying they encode
similar local geometric information.

ESM-2 models, despite being based solely on sequence information, exhibit strong long-range spatial
correlations. This aligns with previous observations that protein language models can unsupervisedly
learn contact maps or coevolutionary statistics, which are crucial for predicting protein folds [17].
Notably, the largest ESM-2 model examined (650M) demonstrates the highest long-range spatial
correlation among the ESM-2 models studied.

A slow decay in long-range correlation might suggest that a model retains meaningful information
between residues over greater distances. However, we also note that consistently high correlations
at very large distances may indicate the presence of redundant or unnecessarily correlated features.
Determining whether these long-range correlations reflect meaningful interactions or redundancy
would be an important direction for future research.

4.3 Understanding mutant embeddings

Understanding mutant embeddings is crucial, as predicting mutant properties is a key downstream
task in protein engineering. To understand the structure of the embedding space for mutants, we
analyzed 3,127 single and double substitution mutants of the SH3 domain of the Obscurin protein
(PDB ID: 1V1C) from the mega-scale protein folding stability dataset in [28]. This dataset includes
Deep Mutational Scanning (DMS) assays measuring folding stability.
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Figure 4: First two axes of UMAP projections [19] of protein and mutated residue embeddings. The
scatter plots shows protein (top) and mutated residue (bottom) embeddings from mutants, colored
by amino acid type, mutation site, and DMS score. The left column displays embeddings from the
pretrained ESM-2 8M model, while the right column shows embeddings of the final layer of MLP
regressor for mutation stability prediction. Clustering patterns reflect the model’s ability to capture
mutation site and DMS score information.

Mutant embeddings in the OBSCN family show significantly lower intrinsic dimensions (Id = 7.8 on
average for the three ESM-2 models) compared to embeddings from diverse proteins, reflecting the
reduced variability within a family of mutants.

A key observation from Figure 4 is that mutant protein embeddings are primarily clustered by the
mutation sites. Since ESM-2 models are trained with masked language modeling task, which likely
encourages the models to learn which parts of the sequence deviate from the ‘natural’ wild-type
sequence—the mutated regions in the mutants. In the OBSCN family, the mutation sites strongly
correlates with the DMS score, as in many other mutant families. This alignment, even without
specific training, helps explain the good zero-shot and supervised performance of ESM-2 models on
the DMS score regression task, as seen in benchmarks like ProteinGym [20].

Embeddings of the mutated residues exhibit an intrinsic dimension of 7.1 (average of the three
ESM-2 models), much smaller than the Id=29.7 of residues from random sequences. In Figure 4,
mutated residue embeddings are clustered primarily by amino acid type, consistent with the clustering
observed in Figure 5. However, within each amino acid type cluster, embeddings are further aligned
based on the mutation sites in the sequence. This suggests that, while amino acid identity is a
dominant factor in structuring the embeddings, the context of the mutation—where it occurs in the
protein—adds another dimension of high variability. Additionally, the average IdCor between the
mutant residue embeddings and the corresponding mutant protein embeddings is 0.77 across the
three ESM-2 models, further indicating that the mutant residue embeddings are also aware of global
protein context.

We trained a two-layer Multi-Layer Perceptron (MLP) regressor with ReLU activation (hidden
dimension=16) to predict DMS scores from the frozen ESM-2 (8M) embeddings of mutant protein
and mutated residues. After training, the Id of the final layer embeddings dropped to 2.5, suggesting
that the model converges on a highly compact and task-specific representation. As shown in Figure 4,
after fine-tuning, the final layer embeddings align more smoothly with the DMS scores, in line with
the reduced Id.

5 Conclusion

In this study, we analyzed the intrinsic dimension (Id) and Id correlation (IdCor) values of protein and
residue embeddings generated by protein foundation models. First, we observed that the alignment
of the foundation models with biological principles, with highly conserved residues consistently
showing smaller Id values across models. Second, we found that protein models tend to align with
one another, showing high IdCor and similar Id scales. Third, we identified a degree of long-range
awareness in the foundation models, where sequentially and spatially proximal residues show higher
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correlation than distal ones. The varying rates of correlation decay could be attributed to the specific
architectures and pretraining tasks of the models. These findings show that Id and IdCor analysis
provide valuable insights into the internal structure of protein embeddings.

Our analysis of mutant family embeddings further reveals that mutant embeddings focus on the
differences between mutants, resulting in smaller Id values. The primary source of variability is the
location of the mutation, which is consistent with the embedding clusters based on their mutation site.
Fine-tuning experiments reveal that the Id values of embeddings decrease further when models are
optimized for specific downstream tasks, suggesting that fine-tuning allows models to simplify their
representations to focus on task-relevant information.

Future works. We will expand the analysis to include more protein models as well as other
biomolecular modalities, such as DNA and RNA models. Cross-modal IdCor analysis could help
quantify the information shared between protein and their corresponding DNA sequence embeddings,
for example. Another interesting direction is to track the evolution of Id during fine–tuning to gain
insights into how models adapt to specific tasks and suggest training strategies accordingly.
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A Appendix

A.1 Clustering analysis

Figure 5: UMAP projection [19] of residue embeddings, colored by amino acid type.

Figure 6: UMAP projection of residue embeddings, colored by 3Di token.

In this section, we show clustering results of the embeddings and discuss their agreement with the
intrinsic dimension analysis.

In Figures 5 and 6, ESM-2 embeddings show clear clustering into distinct amino acid types. This
suggests that the model has learned strong, distinct representations for each amino acid. This outcome
can be attributed to the masked language model (MLM) training objective of ESM-2. The training
process likely encourages the model to learn the differences between amino acids, as it needs to
predict the identity of masked residues based on the sequence context. This predictive task forces the
model to separate the embeddings of different amino acids effectively, which explains the clear and
well-separated clusters.

On the contrary, models like ProteinMPNN or ProstT5 are trained with structure-based tasks focused
on local geometry. These models prioritize learning the spatial relationships between residues and
their structural environments, leading to clusters that are organized based more on local geometric
features rather than strictly by amino acid type.
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