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ABSTRACT

Accurate prediction of protein-ligand binding poses is crucial for structure-based
drug design, yet existing methods struggle to balance speed, accuracy, and physi-
cal plausibility. We introduce MATCHA, a novel molecular docking pipeline that
combines multi-stage flow matching with learned scoring and physical validity
filtering. Our approach consists of three sequential stages applied consecutively
to progressively refine docking predictions, each implemented as a flow match-
ing model operating on appropriate geometric spaces (R3, SO(3), and SO(2)).
We enhance the prediction quality through a dedicated scoring model and apply
unsupervised physical validity filters to eliminate unrealistic poses. Compared
to various approaches, MATCHA demonstrates superior performance on ASTEX
and PDBBIND test sets in terms of docking success rate and physical plausibility.
Moreover, our method works approximately 25× faster than modern large-scale
co-folding models.

1 INTRODUCTION

Molecular docking aims to predict the binding pose of a small molecule (ligand) within the active
site of a target protein. It plays a key role in computer-aided drug discovery, particularly in virtual
screening, the computational search for promising drug candidates within large-scale compound li-
braries. Given the vast size of these libraries, practical docking methods must balance accuracy
with computational efficiency. Additionally, predicted poses are expected to be physically plausi-
ble (Buttenschoen et al., 2024). Another challenge is the diversity of existing docking benchmarks,
which differ substantially in target and ligand selection, making it difficult to design methods that
generalize well across all datasets.

Classical docking approaches (Friesner et al., 2004; Trott & Olson, 2010; Koes et al., 2013; Forli
et al., 2016; Sulimov et al., 2020) have traditionally relied on hand-crafted scoring functions com-
bined with heuristic search algorithms. However, recent benchmarks (Morehead et al., 2025) demon-
strate that such methods are outperformed by data-driven approaches.

Modern data-driven blind docking methods (Abramson et al., 2024; Boitreaud et al., 2024;
Wohlwend et al., 2024), starting from the seminal DIFFDOCK (Corso et al., 2022), typically for-
mulate molecular docking as a generative modeling problem, where a neural network — often a
diffusion model — learns to sample ligand poses from a probabilistic distribution.

Our proposed method, MATCHA, follows this generative paradigm but is based on flow MATCH-
ing (Lipman et al., 2022) rather than diffusion. Following DIFFDOCK, we represent ligand flexibility
in a joint space of translations, global rotations, and internal torsions. This corresponds to a semi-
flexible ligand: the conformation is fixed except for rotations around rotatable bonds. In contrast to
Riemannian diffusion-based methods, Riemannian flow matching (Chen & Lipman, 2023) provides
tractable losses in these spaces and simplifies training. Moreover, our approach naturally bypasses
the need for semi-flexible conformational alignment, which is a challenging optimization problem.
To the best of our knowledge, it is the first docking pipeline that is built upon flow matching on
non-Euclidean manifolds.
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Architecturally, MATCHA combines the structure of a Diffusion Transformer (DIT; Peebles & Xie
2023) with a spatial encoder inspired by UNIMOL (Zhou et al., 2023). Our pipeline consists of
three neural networks trained at different noise levels. For instance, the first model is optimized to
predict the 3D translational displacement of the ligand center relative to the binding site. By default,
MATCHA is trained for blind docking, but the pocket-informed setting can be managed by omitting
the coarse model and providing the correct binding site location. Also, we train a separate scoring
model to select the best pose among all generated candidates.

Our main contributions are as follows:

• We introduce MATCHA, a neural pipeline for molecular docking that combines Rieman-
nian flow matching with a DIT-inspired architecture. The pipeline employs three neural
networks applied consecutively to progressively refine docking predictions.

• We perform an extensive empirical evaluation of MATCHA against state-of-the-art methods,
comparing binding quality, computational efficiency, and physical plausibility across the
PDBBIND, DOCKGEN, ASTEX, and POSEBUSTERS V2 benchmarks.

• MATCHA achieves inference approximately 25× faster than ALPHAFOLD 3, CHAI-1, and
BOLTZ-2, while having state-of-the-art docking performance on the ASTEX test set: 66%
with RMSD ≤ 2 Å & PB-valid (Buttenschoen et al., 2024) and competitive results on other
benchmarks.

2 METHOD

Figure 1: MATCHA consists of three flow matching models that generate a set of ligand poses. After unsuper-
vised physical validity filtration, all poses are scored with a separate model, and the prediction is the pose with
the best score. We highlight rotatable bonds and their periods in the ligand on this figure.

2.1 DOCKING LOSS FUNCTION

MATCHA tackles the molecular docking problem by modeling a protein as a rigid body while pa-
rameterizing the ligand’s degrees of freedom in a manner similar to DIFFDOCK. Specifically, we
operate in the following spaces:

• translation (tr): a 3D continuous vector representing the position of the ligand’s center
relative to the protein,

• rotation (rot): an SO(3) transformation matrix representing the orientation of ligand,

• torsion angles (tor): a set of angles in SO(2), one for each rotatable bond in the ligand.

For rotatable bonds, we define the torsional period p as the smallest positive angle such that a rotation
by p about that bond yields an indistinguishable configuration (up to symmetry). Accordingly,
torsion angles are taken modulo p, i.e., for any θ we use its wrapped representative θ mod p that is
in (−p/2, p/2].

Our model predicts velocities vtr, vrot, and vtor in the tangent spaces R3, so(3), and so(2)m, with
m denoting the number of rotatable bonds. Elements of so(n) can be thought of as n × n real
skew-symmetric matrices (Warner, 1983), we represent them as n(n− 1)/2-dimensional vectors.

2
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We compute separate flow matching losses (Chen & Lipman, 2023) for each component and op-
timize their weighted sum. Generally, to train a flow matching model vθ given data points x1 on
a Riemannian manifold M drawn from pdata, we should define a noise distribution p0. Then we
choose an interpolation on M, select an appropriate norm, and compute the time derivative of the
interpolation to obtain the conditional velocity. The conditional flow matching loss takes the form:

LCFM = Ex0∼p0,x1∼pdata,t∼U[0,1]∥vθ(xt, t)− ẋt∥, where xt = interpolate(x0,x1; t). (1)

For translations, we use a standard linear interpolation and normally distributed noise. For both
angular components, we adopt spherical linear interpolation (SLERP; Shoemake 1985). In SO(3),
the time derivative of SLERP is computed by transforming to quaternion representations and ap-
plying automatic differentiation with custom backward functions. Additional derivation details are
provided in Appendix A.

2.2 ARCHITECTURE

Time 

Ligand: 
• atom types
• atom features
• atom positions
• rotatable bonds

Protein: 
• sequence
•  positions

Ligand Embedder

Ligand DiT

(position-
aware)

ESM-2 MLP Positional
Embeddings

Ligand
Embedding

Protein
Embedding

 emb

 emb

Ligand
Embedding

Protein
Embedding

Translation
head

Rotation head

Torsion
module

 

Time Embedder

Complex DiT

(position-
aware)

Figure 2: The architecture of the velocity model of MATCHA (stages 1, 2, 3).

MATCHA consists of two primary components (Figure 1): the docking pipeline and the scoring
model. These components are implemented through a transformer-based architecture and have a
similar design (Figure 2).

2.2.1 VELOCITY MODEL

Input tokens The input sequence consists of ligand atom tokens, protein amino acid residue to-
kens, and two CLS-like tokens for aggregating translation (CLStr) and global rotation (CLSrot)
information. Each token is assigned a 3D coordinate: atom positions for ligand atoms, Cα positions
for residues, and the ligand centroid for both CLS tokens. Protein representations are initialized
from ESM-2-35M (Lin et al., 2022) embeddings; we use the 35M model instead of the 650M vari-
ant to reduce the risk of overfitting. Initial ligand atom embeddings are a sum of simple embeddings
of scalar and categorical atom features from the RDKit package (Landrum, 2024).

Time t ∈ [0, 1] is embedded by an MLP over sinusoidal features and conditions all transformer
blocks in a DIT-like manner. Positions (x, y, z) are encoded using a simple MLP and added to both
embeddings of ligand atoms and protein residues in a manner of positional encoding in transformers.

Distance-aware attention bias We adopt the approach from UNIMOL and ALPHAFOLD 3, where
spatial features are used as extra biases in self-attention. Given 3D coordinates x = {xi}Ni=1, xi ∈
R3, we form a per-head attention bias by combining a radial (distance-based) and a directional
(vector-based) term. For a pair (i, j) with edge type tij ∈ {1, . . . , T}, define the displacement
∆ij = xi − xj and a stabilized inverse distance

sij =
1

∥∆ij∥22 + 1
. (2)

An edge-type–specific affine transform produces s̃ij = αtij sij + βtij . We then embed s̃ij with a
K-kernel Gaussian RBF:

ϕ
(k)
ij = N

(
s̃ij ; µk, σ

2
k

)
, k = 1, . . . ,K, (3)
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followed by a small MLP projection g : RK →RH to obtain a per-head radial bias oij = g(ϕij) ∈
RH . In parallel, a directional projection h : R3→RH maps the displacement to vij = h(∆ij). The
per-pair bias is bij = g(ϕij) + h(∆ij) ∈ RH . Stacking over all pairs yields a tensor in RN×N×H ;
we then move the head dimension to the front to obtain Bhij = [bij ]h ∈ RH×N×N , which we add
to the attention logits.

Velocity prediction heads After the transformer backbone, we employ lightweight modules to
predict the velocity fields. We do not force rotational or translational symmetries via the architecture;
instead, we rely on data augmentations during training to promote invariances and equivariances.

The translation head consumes the dedicated CLStr token and outputs a 3D velocity vector vtr ∈ R3.
The rotation head consumes the CLSrot token and outputs a 3-vector representation of so(3). For
torsions, we construct a token for each rotatable bond by averaging the embeddings of ligand atoms
influenced by the rotation of that bond and combining this with an encoding of basic features of the
bond level. The resulting per-bond sequence is passed through a lightweight transformer decoder,
and a final single-layer MLP projects each token to a scalar torsional velocity vtor.

Coarse-to-fine structure Our pipeline stacks three models of identical architecture but indepen-
dent weights. The first model is used solely for translation, where samples are drawn from a zero-
mean Gaussian distribution with a large variance, while angular components are sampled uniformly.
The second model refines translation using a Gaussian centered at the ground truth with moderate
variance, still keeping angular components uniform. Finally, the third model sharpens both transla-
tion and angular degrees of freedom, sampling them from Gaussians with small variance around the
ground truth. The models are trained independently. Full details are provided in Algorithm 1.

The system can operate in two distinct scenarios: blind docking and pocket-aware docking. Blind
docking means predicting ligand poses without prior knowledge of the binding site location, while
in the pocket-aware scenario, the information about the known binding site is used to guide pose
prediction. This flexibility is achieved because of the multiscale nature of MATCHA.

Augmentations During training, we apply multiple augmentation techniques to avoid overfitting
and improve model generalization. Firstly, we randomly rotate the whole complex to get new
(x, y, z) coordinates. Secondly, we add random Gaussian noise with zero mean and standard de-
viation 0.25 to the protein and ligand positions. Finally, we randomly mask 15% of protein residues
and ligand atoms. This strategy also leads to masking of some rotatable bonds.

Inference We run a fixed-length explicit Riemannian Euler solver (10 steps) over (tr, rot, tor)
using the predicted velocities, applying three models sequentially.

Stage 1 From a random initialization, we integrate all degrees of freedom (translation, rotation,
torsions), but retain only the predicted translation; the angular components are discarded
and reinitialized uniformly.

Stage 2 Starting from this state (predicted translation and uniformly distributed angles), we perform
the same rollout and pass the full output (tr, rot, tor) forward.

Stage 3 We execute the final rollout to produce the refined pose.

2.2.2 POSE SELECTION

Scoring model We train a separate pose–scoring network to evaluate and rank candidate docking
poses. It shares the backbone with our docking model but removes time conditioning and all flow
matching components. Instead, a dedicated scalar scoring head is optimized with an RMSD-based
pairwise ranking objective for comparative pose assessment. For training, each batch is composed of
multiple noisy poses of the same protein–ligand complex, and the model learns to order the resulting
pairs of poses.

Pose filtration We reimplement, speed up, and apply a minimal set of PoseBusters geometric and
physicochemical validity filters before scoring. Specifically, we retain candidate complexes that

4
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Algorithm 1: General scheme of MATCHA docking training

Input: Protein-ligand complexes D, initialized flow model v, stage ∈ {1, 2, 3}, σlarge, σmedium, σsmall

for batch of ligand-protein complexes in D do
1. Take conformation of ligand from batch. Compute the centroid trtrue of this conformation. Apply

augmentations (Section 2.2.1, augmentations).
2. Identify rotatable bonds and define their quantity by m.
3. Sample random translation, rotation, and torsion: tr, rot, tor and apply them to the conformation.
4. Set rottrue := inverse(rot), tortrue := inverse(tor).
5. Sample noise for translation, rotation, and torsion transformations trnoise, rotnoise, tornoise:
• if stage = 1: trnoise ∼ N (0, σ2

large), rotnoise ∼ Unif(SO(3)), tornoise ∼ Unif(SO(2))m

• if stage = 2: trnoise ∼ N (trtrue, σ
2
medium), rotnoise ∼ Unif(SO(3)), tornoise ∼ Unif(SO(2))m

• if stage = 3: trnoise ∼ N (trtrue, σ
2
small), rotnoise ∼ N (rottrue, σ

2
smallI), tornoise ∼ N (tortrue, σ

2
small)

m

6. Sample t ∼ Uniform(0, 1), interpolate transformations between noisy (trnoise, rotnoise, tornoise)
and true values (trtrue, rottrue, tortrue), and apply these transformations to the ligand conformation,
resulting in x(t) := (tr(t), rot(t), tor(t)).
7. Obtain the output of the flow model, v(x(t), t), which belongs to R3 × so(3)× so(2)m.
8. Compute the flow matching loss for each component of v(x(t), t) separately and compute their
linear combination.
9. Execute the gradient optimization step of the computed loss.

Output: Trained flow model v for the given stage

achieve the highest filter scores across key validity criteria: (i) Minimum distance to protein, pre-
venting ligand–receptor atomic collision; (ii) Protein–ligand maximum distance, excluding poses
with excessive protein–ligand separation that are unlikely to form specific interactions; (iii) Volume
overlap with protein, rejecting any nonzero volumetric overlap with the receptor; and (iv) Internal
steric clash, removing ligand conformers with intramolecular clashes. Filtration is strictly unsuper-
vised—i.e., it does not rely on knowledge of the native pose – and is therefore readily applicable at
inference. In practice, for each complex we retain the poses that pass the highest number of validity
criteria and then select a single pose using our learned scoring model.

3 EXPERIMENTAL SETUP

3.1 DATASETS

MATCHA is trained on two major protein-ligand complex datasets: PDBBIND (Liu et al., 2017) and
BINDING MOAD (Hu et al., 2005). During training, we keep only protein chains close to the ligand
(less than 4.5 Å). We use complexes that have proteins with less than 2000 residues and ligands
with 6 − 150 heavy atoms. At training time, we concatenate the BINDING MOAD dataset to the
PDBBIND training set without removing redundant complexes, thereby giving additional weight to
higher-quality complexes that passed both datasets’ filtering processes.

For the BINDING MOAD dataset, we implement protein-level sampling to address the inherent class
imbalance where multiple ligands are bound to the same protein structure. During every training
epoch, we sample each unique protein exactly once. For each selected protein, we randomly choose
one ligand from all ligands bound to that receptor.

The docking quality is evaluated on four test datasets. ASTEX Diverse set (Hartshorn et al., 2007)
and POSEBUSTERS V2 Benchmark set (Buttenschoen et al., 2024) are commonly used in the field
and contain 85 and 308 complexes, respectively. DOCKGEN (Corso et al., 2024) is a set of 330 hard
complexes with binding sites different from the training set. Finally, we use the PDBBIND test set
obtained using time-splitting of dataset complexes and has 363 complexes (Corso et al., 2022).

3.2 TRAINING DETAILS

All models are trained with the AdamW optimizer (Loshchilov & Hutter, 2017) using a learning rate
of 5 × 10−5. The docking models employ a batch size of 24 and are trained on a single NVIDIA
H100 GPU (80GB). Stage 1 training runs for 1.9M steps (≈ 11 days), stage 2 for 3.3M steps (≈ 19
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days), and stage 3 for 1.4M steps (≈ 8 days), totaling 38 GPU-days. The scoring model is trained
separately with batch size 12 on an NVIDIA V100 GPU (16GB) for 700k steps (≈ 26 hours).

All MATCHA models use 6 Complex DIT layers with hidden dimension 192. This corresponds to
∼29M parameters for the docking models and ∼6M parameters for the scoring model. For docking,
we optimize a weighted objective with loss coefficients wtr = 1, wrot = 1, and wtor = 3.

3.3 DOCKING QUALITY METRICS

To comprehensively evaluate the performance of MATCHA, we use symmetry-corrected Root Mean
Square Deviation (RMSD) that accounts for molecular symmetry and report success rates at 2 Å
threshold (RMSD ≤ 2 Å). We also run POSEBUSTERS tests (Buttenschoen et al., 2024) to assess
physical plausibility of predicted poses, resulting in the combined metric RMSD ≤ 2 Å & PB-
valid. Exact POSEBUSTERS tests are listed in Appendix F. For models that predict whole complex
structures, we follow Abramson et al. (2024) and use pocket-aligned symmetric RMSD by aligning
the reference protein pocket to the predicted structure. If a model crashes on a complex, we assign
an RMSD of +∞. The details are reported in Section 4.5 and Appendix D.1.

3.4 HOW WE RUN BASELINES

Baseline model parameters For ALPHAFOLD 3 (Abramson et al., 2024), BOLTZ-2 (Passaro
et al., 2025) and CHAI-1 (Boitreaud et al., 2024), we use the prediction with the highest confi-
dence score among five model seeds with five samples per seed and 10 recycling steps. We used
multiple sequence alignments computed with JACKHMMER (HMMER3) (Eddy, 2011). When
modeling receptor structures, we preserve all chains and remove exact duplicate chains only. NEU-
RALPLEXER (Qiao et al., 2024b), DIFFDOCK (Corso et al., 2022) and UNI-MOL (Alcaide et al.,
2024) are run with their default inference parameters. We run FLOWDOCK (Morehead & Cheng,
2025) using true holo protein structures as receptor templates. For all methods, we take the top-
scored sample among generated. We detail the parameters that were used to run classical dock-
ing models (AUTODOCK VINA (v1.2.5) (Trott & Olson, 2010), SMINA (v2020.12.10; fork of
Vina 1.1.2) (Koes et al., 2013), and GNINA (v1.0.3) (McNutt et al., 2021)) in Appendix B.

Pocket Detection for Classical Docking Methods Classical docking methods and UNI-MOL face
fundamental challenges in blind docking due to their reliance on pocket identification algorithms.
This dependence introduces additional error when binding sites are unknown, representing a key
limitation compared to end-to-end methods. We evaluate these methods using P2RANK (Krivák &
Hoksza, 2018), FPOCKET (Le Guilloux et al., 2009), and whole protein approaches. Among these,
P2RANK has shown the best performance and is used as the primary pocket detection method for
our main results. The complete results are provided in Appendix C.1.2.

MATCHA inference parameters We run MATCHA in two inference regimes: in blind docking
setup using all protein chains and in the pocket-aware scenario with the correct binding site provided.
The first model in the pipeline generates 40 samples, which are then passed to the refinement stages.
Then, the plausibility filtering is applied, reducing the number of candidate poses. We use the top-
scored pose among the rest of the candidates.

4 RESULTS AND DISCUSSION

4.1 COMPREHENSIVE EVALUATION ON DIVERSE BENCHMARKS

We evaluate MATCHA against established baselines: classical docking (SMINA, VINA, GNINA),
deep learning-based (DL-based) methods (DIFFDOCK, UNI-MOL, NEURALPLEXER and FLOW-
DOCK) as well as co-folding models (ALPHAFOLD 3, CHAI-1, BOLTZ-2). The results for DockGen
dataset as well as all extended results are reported in Appendix C.1. Additionally, we evaluate the
considered models in the pocket-aware scenario with the corrected binding site location provided
(see Appendix C.2).

On the ASTEX dataset, MATCHA demonstrates superior performance across all metrics, achieving
the highest success rates for both RMSD ≤ 2 Å (68.2%) and the harder RMSD ≤ 2 Å & PB-
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Figure 3: Blind ligand docking success rates on ASTEX Diverse Set (n = 85).
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Figure 4: Blind ligand docking success rates on PDBBIND test set (n = 363).

valid (65.9%), outperforming the next-best method (ALPHAFOLD 3) by 10.6 percentage points on
physically valid structures. The substantial improvement in the number of physically valid structures
highlights the effectiveness of our flow matching approach in generating chemically plausible poses
while maintaining high geometric accuracy.

On the PDBBIND test set, MATCHA demonstrates superior performance across all metrics compared
to DL-based docking methods. While co-folding methods achieve slightly higher RMSD ≤ 2 Å
success rates, MATCHA shows the highest success rate of 43.8% for RMSD ≤ 2 Å & PB-valid,
surpassing even ALPHAFOLD 3 (39.9%). This demonstrates that MATCHA produces the most phys-
ically plausible and chemically valid structures, making it particularly valuable for practical drug
discovery applications.

The POSEBUSTERS V2 dataset presents the most challenging evaluation scenario, where
MATCHA’s performance shows a relative decrease compared to co-folding methods due to a higher
proportion of protein targets with binding pockets structurally dissimilar to the training data (More-
head et al., 2025). Co-folding methods, trained on significantly larger and more diverse protein
structure datasets, demonstrate better generalization to these out-of-distribution pocket geome-
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Figure 5: Blind ligand docking success rates on POSEBUSTERS V2 dataset (n = 308).
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tries. Nevertheless, MATCHA maintains superior performance compared to other DL-based methods
(DIFFDOCK, NEURALPLEXER, FLOWDOCK), confirming the effectiveness of our approach within
the shared training distribution. This evaluation highlights the fundamental limitation of such mod-
els in generalizing beyond training data distributions.

4.2 COMPUTATIONAL EFFICIENCY OF MATCHA

Inference Speed Analysis We measure the average inference time for all considered blind docking
methods one NVIDIA A100 40Gb GPU (see Figure 6). Time is measured only for model inference
avoiding model loading. The exact timing results (in seconds) are detailed in Appendix E. MATCHA
demonstrates the best speed-accuracy balance in terms of fraction of PoseBusters-valid predictions
with RMSD ≤ 2 Å, which is important in practical applications. MATCHA achieves substantially
higher docking success rates compared to fast methods (DIFFDOCK, NEURALPLEXER, FLOW-
DOCK), having even faster inference time. Also, MATCHA shows a significant speed advantage
over high-accuracy co-folding methods, achieving comparable docking quality.
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Training speed MATCHA required significantly less computational resources for training com-
pared to competing methods: 38 GPU-days on a single H100 versus 120 GPU-days for DIFFDOCK
(4× RTX A6000) and 3,840 GPU-days for CHAI-1 (128× A100). This highlights MATCHA’s effi-
ciency in both training and inference compared to DL-based models and co-folding models.

4.3 ANALYSIS OF THE REQUIRED NUMBER OF SAMPLES

Figure 7 shows how the number of generated poses affects the quality of the best selected pose, com-
paring scoring-only regime, scoring with filtration (default), and oracle performance (representing
the theoretical upper bound). Using scoring model increases RMSD ≤ 2 Å & PB valid from 0.22 to
0.27, while adding physically-aware post-filtration improves results to 0.44, demonstrating the crit-
ical importance of incorporating molecular validity constraints alongside learned scoring functions.
Performance plateaus at around 40 samples, marking the optimal computational cost-quality trade-
off. The gap between filtered scoring and oracle performance indicates remaining opportunities for
improvement in pose selection, while the convergence behavior suggests that the current sampling
strategy effectively explores the relevant conformational space within the first 40 generated poses.

4.4 PHYSICAL VALIDITY ASSESSMENT

A critical advantage of MATCHA lies in its ability to generate physically plausible molecular poses.
For instance, on the PDBBIND test set, MATCHA has 85.9% of physically-valid structures among
those with RMSD ≤ 2 Å. To compare, ALPHAFOLD 3 has 68.9%, DIFFDOCK – 50.7%. This
consistent superiority in generating chemically valid poses across different datasets demonstrates
that MATCHA’s flow matching approach effectively preserves molecular constraints through two
key mechanisms: (1) ligand parametrization using only torsional angles, which maintains internal
molecular geometry, and (2) fast and effective post-filtration to eliminate unrealistic complex poses.
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The high fraction of physically plausible structures, combined with fast inference, makes MATCHA
particularly suitable for practical drug discovery applications where chemical validity and screening
efficiency are as important as geometric accuracy.

4.5 IMPACT OF ALIGNMENT STRATEGY ON REPORTED METRICS

Pocket alignment refers to the procedure for superimposing predicted and reference protein–ligand
complexes prior to RMSD evaluation, which is necessary for models that modify protein structure
during prediction. Different strategies lead to systematically different results. One common option
is the POCKET-BASED alignment, where the predicted pocket is aligned to the reference one. This
can yield lower RMSD values even if the ligand is placed in a non-native binding site, effectively
inflating success rates for both structure prediction and rigid docking methods. In contrast, we
follow the BASE alignment strategy, in which the reference pocket is aligned to the full predicted
protein, ensuring that incorrect pocket assignments are penalized. This methodological difference
explains why our reported metrics may differ from those in other studies, even when using the
same datasets. Appendix D provides a detailed comparison, showing that pocket-based alignment
consistently increases success rates by 10–20% across methods, while leaving their relative ordering
unchanged.

5 RELATED WORK

Prior work on molecular docking can be organized along several orthogonal axes. One natural
division is between classical heuristic-based approaches and modern deep learning methods. Within
these, methods can be further distinguished by whether they treat docking as rigid-body alignment
or as a co-folding process, and by whether they rely on discriminative or generative modeling of the
complex.

Co-folding approaches represent some of the most computationally demanding directions in molec-
ular docking, as they attempt to jointly predict the conformations of both proteins and ligands.
Recent examples include ALPHAFOLD 3 (Abramson et al., 2024), CHAI-1 (Boitreaud et al., 2024),
and BOLTZ-1/2 (Wohlwend et al., 2024; Passaro et al., 2025), NEURALPLEXER family (Qiao et al.
2024b, Qiao et al. 2024a), INTERFORMER (Lai et al., 2024), DYNAMICBIND (Lu et al., 2024),
LABIND (Zhang et al., 2025b), PHYSDOCK (Zhang et al., 2025a). These models are generally dif-
fusion generative models in the Euclidean space. Since co-folding methods model protein positions,
they typically require large-scale training and long inference time.

In contrast, rigid docking methods assume a fixed protein conformation and focus on placing a
flexible ligand into binding site. This setting is computationally simpler than co-folding, yet it
remains challenging due to the high dimensionality of ligand torsions and the rugged energy land-
scape of protein pockets. Classical docking approaches, such as AUTODOCK VINA (Trott & Ol-
son, 2010) and SMINA (Koes et al., 2013), rely on heuristic search combined with hand-crafted
scoring functions. Recent deep learning methods reformulate rigid docking either as a regression
problem or as generative modeling. Regression-based models, including EQUIBIND (Stärk et al.,
2022), TANKBIND (Lu et al., 2022), E3BIND (Zhang et al., 2022), and FABIND (Pei et al., 2023),
UNI-MOL (Alcaide et al., 2024), predict a single pose in one shot, often followed by torsional
refinement of the ligand. Generative methods, such as DIFFDOCK (Corso et al., 2022) and FLOW-
DOCK (Morehead & Cheng, 2025), instead learn distributions over poses and can sample diverse
ligand conformations conditioned on the rigid receptor.

6 CONCLUSION

We introduced MATCHA, a multi-stage Riemannian flow matching framework for molecular dock-
ing that combines geometric generative modeling, scoring, and physical validity filtering. MATCHA
achieves a high physically valid docking accuracy while being substantially faster than many other
models, making it suitable for large-scale applications. A key limitation is reduced generalization to
unseen protein pockets, pointing to future work on receptor flexibility and broader protein coverage.
Overall, MATCHA strikes a practical balance between accuracy, efficiency, and physical realism for
structure-based drug discovery.
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APPENDIX

A FLOW MATCHING ON SO(2) AND SO(3)

In this section, we address the problem of training flow matching on the special orthogonal groups
SO(2) and SO(3). Our approach involves minimizing the flow matching loss function with respect
to the parameters w of a flow model denoted by v. The loss function is defined as:

ℓ(w) = Ex0,x1,t

∥∥∥∥v(x(t), t;w)− dx(t)

dt

∥∥∥∥
g

, (4)

In the equation above, x(t) represents an interpolation between two points x0 and x1. The term
∥x∥g =

√
g(x,x) defines a norm based on the Riemannian metric g.

For a given Riemannian manifold M , the tangent space at a point p ∈ M is denoted by TpM . The
Riemannian metric is defined as:

g : TpM × TpM → R, (5)

acts on the Cartesian product of these tangent spaces to produce a non-negative scalar value.

The special orthogonal group SO(n) consists of elements that can be represented as n× n rotation
matrices. Although there are several ways to define a Riemannian metric g on SO(n), the canonical
metric is given by:

g(X,Y) ≜ tr(X⊤Y), (6)

where X and Y are n× n matrices corresponding to the elements of the tangent space.

Regarding interpolation on these manifolds, various methods exist. In this work, we employ the
widely used spherical linear interpolation, commonly referred to as SLERP Shoemake (1985).

A.1 SO(2) MANIFOLD

Every 2× 2 rotation matrix is characterized by the rotation angle θ and is given by

R =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
. (7)

Given two rotation matrices defined by angles θ0 and θ1, the SLERP interpolation between them for
t ∈ [0, 1] is represented by the matrix R(t) with the angle

θ(t) = θ0 + t(θ1 − θ0) = θ0 + t∆θ. (8)

The time derivative of this matrix is

Ṙ(t) =

[
− sin(θ(t)) − cos(θ(t))
cos(θ(t)) − sin(θ(t))

]
∆θ, (9)

which can be expressed as

Ṙ(t) = R(t)

[
0 −∆θ
∆θ 0

]
. (10)

This form — a product of a rotation matrix and a skew-symmetric matrix — can be derived for
any element of SO(n), given that the tangent space of an identity SO(n) matrix is spanned by
skew-symmetric n× n matrices.

Assuming the neural network model v̂ for the flow takes as input θ and t, and outputs a scalar v̂(θ, t),
we can represent the flow as

v(R(t), t) = R(t)

[
0 −v̂(θ(t), t)

v̂(θ(t), t) 0

]
. (11)
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Utilizing the canonical metric (6), the norm difference becomes

∥v(R(t), t)− Ṙ(t)∥ =
√
2 |θ1 − θ0 − v̂(θ(t), t)| . (12)

Consequently, our objective to be minimized is

ℓ(w) = Eθ0,θ1,t (θ1 − θ0 − v̂(R(t), t,w))
2
. (13)

A.2 SO(3) MANIFOLD

In contrast to SO(2) case, SLERP for 3× 3 rotation matrices is more complicated, often requiring a
transformation into quaternions (Brégier, 2021). Nonetheless, it is possible to compute the interpo-
lated matrix R(t) and its corresponding time derivative, which belongs to the tangent space of R(t),
using automatic differentiation tools.

Every tangent vector of a point R ∈ SO(3) can be expressed as

R

[
0 −kz ky
kz 0 −kx
−ky kx 0

]
. (14)

Assuming that the values kx, ky, kz describe the matrix Ṙ(t), a neural network can be constructed
to yield three outputs: vx, vy, vz . The flow model becomes

v(R(t), t) = R(t)

[
0 −vz vy
vz 0 −vx
−vy vx 0

]
. (15)

For the SO(3) manifold, the square of norm in equation (4) evaluates to

2(kx − vx)
2 + 2(ky − vy)

2 + 2(kz − vz)
2. (16)

To determine the values kx, ky, kz , one can leverage automatic differentiation to compute Ṙ(t).
Subsequently, these values can be extracted from the expression R⊤(t)Ṙ(t).

B HOW WE RUN CLASSICAL DOCKING

Classical docking baseline parameters We used AUTODOCK VINA (v1.2.5) (Trott & Olson,
2010), SMINA (v2020.12.10; fork of Vina 1.1.2) (Koes et al., 2013), and GNINA (v1.0.3) (Mc-
Nutt et al., 2021). Unless noted otherwise, all runs used exhaustiveness 64 and seed 42.
Pocket centers were provided as described below; the search box was centered at each pocket center
and sized to the RDKit conformer diameter of the ligand plus a 10 Å padding on all six sides (equiv-
alently, autobox add 10 where applicable). To emulate blind docking we also used a large box
centered on the protein with padding autobox add 16.

Ligand and receptor preparation for classical docking Each ligand was prepared from a
SMILES string: standardization and neutralization of charges, adjustment to pH 7 protona-
tion rules, addition of explicit hydrogens, and 3D conformer generation with RDKit’s ETKDG
method (Riniker & Landrum, 2015). Receptor proteins were hydrogenated with REDUCE (v4.13)
using the FLIP option (Asparagine (Asn), Glutamine (Gln), Histidine (His) side-chain flips) (Word
et al., 1999; Chen et al., 2010). For AutoDock-family tools, inputs were converted to PDBQT with
MEEKO (v0.4.0) (Forli Lab, CCSB et al.).

C EXTENDED RESULTS

C.1 BLIND DOCKING

C.1.1 DOCKGEN RESULTS

We report blind docking success rates for ASTEX, POSEBUSTERS V2 and PDBBIND test sets in
the main text in Section 4.1. In Figure 8, we present the results for DOCKGEN test set, which
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Figure 8: Blind ligand docking success rates on DOCKGEN dataset (n = 330).

contains proteins with pockets that are structurally dissimilar to the training set. All considered
models perform poorly on this set. However, co-folding models show better results. We explain
it by the difference in training datasets: co-folding models have seen significantly more proteins
during pre-training, which allows them to work better on the out-of-distribution proteins and ligands
from the DOCKGEN dataset.

C.1.2 RESULTS WITH DIFFERENT POCKET PREDICTION METHODS

In this section, we report results for blind docking scenario for models that require pocket infor-
mation as input: UNI-MOL, SMINA, VINA, GNINA. We use three types of pocket information:
P2RANK (Krivák & Hoksza, 2018), FPOCKET (Le Guilloux et al., 2009) and full protein setup. Full
protein means providing the whole protein and the protein center as a starting pocket center: using
large box centered on the protein with padding autobox add 16. The full protein setup was not
used for UNI-MOL because this model is unable to process such type of inputs.
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Figure 9: Blind ligand docking success rates with different pocket prediction methods on ASTEX Diverse set.
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Figure 10: Blind ligand docking success rates with different pocket prediction methods on PDBBIND test set.

We report the results for all four considered tests datasets in Figures 9, 10, 11, and 12. According to
them, P2RANK consistently shows the best quality among all other pocket identification strategies.
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Figure 11: Blind ligand docking success rates with different pocket prediction methods on POSEBUSTERS V2
dataset.
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Figure 12: Blind ligand docking success rates with different pocket prediction methods on DOCKGEN dataset.

C.2 POCKET-AWARE DOCKING

In addition to the blind docking setup, we run all models in the pocket-aware scenario, providing
them with information about the true binding site (true ligand center). This scenario imitates the real-
world case with the desired pocket for the protein provided. However, UNI-MOL cannot be fairly
compared in the pocket-aware scenario due to its pocket cutting approach. Unlike other docking
methods that can flexibly utilize pocket information as a starting point, UNI-MOL uses the provided
reference pocket center to cut a small fixed-radius pocket around the ligand. This tight spatial
constraint creates information leakage about the true ligand binding location, as the model becomes
unable to ”forget” or deviate significantly from the provided center due to the severely limited protein
context. In contrast, methods like SMINA, VINA, GNINA, and MATCHA treat pocket information
as a flexible starting point: they can explore and modify the binding site during their search process.
Therefore, we do not report UNI-MOL results in the pocket-aware scenario.

In pocket-aware scenario with a known pocket center (stage 2 and stage 3 of MATCHA), we outper-
form classical docking tools on ASTEX, PDBBIND, DOCKGEN, but have slightly lower scores on
POSEBUSTERS V2 due to the domain shift (Figures 13, 14, 15, and 16).
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Figure 13: Pocket-aware ligand docking success
rates on ASTEX Diverse set.
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Figure 14: Pocket-aware ligand docking success
rates on PDBBIND test set.
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Figure 15: Pocket-aware ligand docking success
rates on POSEBUSTERS V2 set.
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Figure 16: Pocket-aware ligand docking success
rates on DOCKGEN test set.

D THE IMPORTANCE OF THE POCKET ALIGNMENT

D.1 POCKET-ALIGNED RMSD COMPUTATION

For all models that predict the structure of the whole complex, we follow Abramson et al. (2024)
and use pocket-aligned symmetric RMSD. However, since this procedure is not clearly defined in
the paper, we explain in detail how we perform the BASE pocket alignment.

1. The primary protein chain with the most atoms within 10 Å of the ligand is kept.
2. The pocket is defined as all Cα atoms within 10 Å of any heavy atom of the reference

ligand, restricted to protein backbone atoms.
3. The reference pocket is aligned to the whole predicted protein structure by Cα atoms in

PyMOL (DeLano et al., 2002) with five refinement cycles, which is the default parameter.

An alternative approach to compute pocket-aware RMSD was described in Qiao et al. (2024a). This
POCKET-BASED approach shares the first two stages, but then the procedure differs:

3. The predicted pocket is defined as all Cα atoms within 10 Å of any heavy atom of the
predicted ligand, restricted to protein backbone atoms.

4. Each chain in the predicted pocket is aligned to the reference pocket, and the chain with the
minimum alignment RMSD is selected. The alignment is performed with zero refinement
cycles.

We believe the base approach provides fair evaluation, while the pocket-based approach produces
overoptimistic results due to a fundamental flaw: for multi-chain proteins with multiple binding sites
it can artificially align non-corresponding pockets with low RMSD by chance. This allows predicted
ligands to appear correctly positioned even when docked to entirely wrong pockets.

The pocket-based alignment artificially constrains translation error since pockets are pre-aligned,
masking true docking failures that would be evident in blind docking scenarios. In contrast, real-
world docking can produce large translation errors when ligands bind to incorrect sites—a critical
failure mode that pocket-based metrics cannot detect.

This methodological difference explains the discrepancy between our metrics and those reported
for ALPHAFOLD 3 in the NEURALPLEXER 3 (Qiao et al., 2024a) paper on the POSEBUSTERS V2
dataset. To demonstrate this bias, we show that rigid docking approaches can achieve the same
artificial metric improvements when evaluated using pocket-based alignment. We demonstrate the
comparison between the base and the pocket-based approaches in Appendix D.2.

D.2 DOCKING RESULTS FOR DIFFERENT WAYS OF COMPUTING POCKET-ALIGNED RMSD

We computed docking quality metrics using both base and pocket-based approaches for structure
prediction methods (ALPHAFOLD 3, BOLTZ-2, CHAI-1, NEURALPLEXER, FLOWDOCK) and rigid
docking approaches (DIFFDOCK, MATCHA). The results for all considered test datasets are shown
in Figures 17, 18, 19, and 20. The obtained results reveal comparable metric inflation across all
methods. This applies to all four test sets. The increase is around 15-20% in RMSD ≤ 2 Å for
the ASTEX dataset and around 10% for POSEBUSTERS V2. Lower increases for PDBBIND and
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Figure 17: Comparison of pocket alignment strategies in blind docking scenario for ASTEX Diverse set.
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Figure 18: Comparison of pocket alignment strategies in blind docking scenario for PDBBIND test set.

DOCKGEN test sets are due to the use of the preprocessed dataset versions with the removed irrel-
evant chains provided by Corso et al. (2022). Moreover, the choice of the alignment almost does
not affect the ordering of the docking methods: all our claims done for the base alignment, still hold
for the pocket-based alignment. This demonstrates that the apparent superiority of co-folding meth-
ods in some evaluations may stem from evaluation methodology rather than genuine performance
differences.

E INFERENCE SPEED COMPARISON

We report the average inference speed for all considered blind docking methods on one NVIDIA
A100 40GB GPU. We use ASTEX dataset to measure the time on it. Time is reported only for model
inference avoiding model loading. Most docking models generate multiple poses and select a pose
with the best score, so we measure the time required to sample all required poses. The results are
shown in Table 1.

F POSEBUSTERS TESTS

We report PoseBusters results for the following 27 tests according to the release in https://
github.com/maabuu/posebusters/releases/tag/v0.4.5:

18

https://github.com/maabuu/posebusters/releases/tag/v0.4.5
https://github.com/maabuu/posebusters/releases/tag/v0.4.5


972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Matc
ha

DiffD
ock

Neu
ral

Ple
xer

Flo
wDock

Alph
aFo

ld 
3

Bolt
z-2

Cha
i-1

Uni-
Mol 

(P2
Ra

nk
)

SM
INA (P

2R
an

k)

GNINA (P
2R

an
k)

VINA (P
2R

an
k)

0%

20%

40%

60%

80%

Pe
rc

en
ta

ge
 o

f p
re

di
ct

io
ns

25.0

34.4

19.5

36.7

2.3

16.6

1.9

15.9

47.4

60.7

25.6

47.1

29.2

39.6

8.1

12.3

33.4

35.7

38.6

43.2

25.6

28.6

28.6

43.5

24.4

48.4

2.3

18.8

2.3

18.2

54.9

70.1

30.8

56.5

43.2

63.0

10.7

16.6

44.2

46.4

51.9

57.5

33.8

37.7

Base: RMSD  2Å
Base: RMSD  2Å & PB-Valid
Pocket: RMSD  2Å
Pocket: RMSD  2Å & PB-Valid

Figure 19: Comparison of pocket alignment strategies in blind docking scenario for POSEBUSTERS V2
dataset.

Matc
ha

DiffD
ock

Neu
ral

Ple
xer

Flo
wDock

Alph
aFo

ld 
3

Bolt
z-2

Cha
i-1

Uni-
Mol 

(P2
Ra

nk
)

SM
INA (P

2R
an

k)

GNINA (P
2R

an
k)

VINA (P
2R

an
k)

0.0%

10.0%

20.0%

30.0%

40.0%

Pe
rc

en
ta

ge
 o

f p
re

di
ct

io
ns

2.1

14.2

1.2

18.2

0.6

25.2

3.6

11.8

28.2

5.2

20.3

10.9

23.9

1.8

15.5

2.4
4.5 5.2

13.0

1.5

2.1
2.7

14.2

1.5

18.2

0.6

29.7

5.5

13.3

30.9

6.7

25.2

17.0

35.5

2.4

14.8

2.4
4.8 5.5

12.7

1.5

2.1

Base: RMSD  2Å
Base: RMSD  2Å & PB-Valid
Pocket: RMSD  2Å
Pocket: RMSD  2Å & PB-Valid

Figure 20: Comparison of pocket alignment strategies in blind docking scenario for DOCKGEN dataset.

1. mol_pred_loaded,

2. mol_cond_loaded,

3. sanitization,

4. inchi_convertible,

5. all_atoms_connected,

Table 1: Comparison of the average inference time for blind docking models (for ASTEX test set)

Method Inference time (sec)

MATCHA 15
DIFFDOCK 32
NEURALPLEXER 65
FLOWDOCK 39
ALPHAFOLD 3 392
CHAI-1 1638
BOLTZ-2 1488
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6. bond_lengths,
7. bond_angles,
8. internal_steric_clash,
9. aromatic_ring_flatness,

10. non-aromatic_ring_non-flatness,
11. double_bond_flatness,
12. internal_energy,
13. protein-ligand_maximum_distance,
14. minimum_distance_to_protein,
15. minimum_distance_to_organic_cofactors,
16. minimum_distance_to_inorganic_cofactors,
17. minimum_distance_to_waters,
18. volume_overlap_with_protein,
19. volume_overlap_with_organic_cofactors,
20. volume_overlap_with_inorganic_cofactors,
21. volume_overlap_with_waters,
22. double_bond_stereochemistry,
23. mol_true_loaded,
24. molecular_bonds,
25. molecular_formula,
26. RMSD ≤ 2 Å,
27. tetrahedral_chirality.
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