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Abstract

Weighted low rank approximation (WLRA) is an
important yet computationally challenging primi-
tive with applications ranging from statistical anal-
ysis, model compression, and signal processing.
To cope with the NP-hardness of this problem,
prior work considers heuristics, bicriteria, or fixed
parameter tractable algorithms to solve this prob-
lem. In this work, we introduce a new relaxed so-
lution to WLRA which outputs a matrix that is not
necessarily low rank, but can be stored using very
few parameters and gives provable approximation
guarantees when the weight matrix has low rank.
Our central idea is to use the weight matrix itself
to reweight a low rank solution, which gives an
extremely simple algorithm with remarkable em-
pirical performance in applications to model com-
pression and on synthetic datasets. Our algorithm
also gives nearly optimal communication com-
plexity bounds for a natural distributed problem
associated with this problem, for which we show
matching communication lower bounds. Together,
our communication complexity bounds show that
the rank of the weight matrix provably parame-
terizes the communication complexity of WLRA.
‘We also obtain the first relative error guarantees
for feature selection with a weighted objective.

1. Introduction

The approximation of matrices by matrices of lower rank has
been, and continues to be, one of the most intensely studied
and applied computational problems in statistics, machine
learning, and signal processing. The classical approach to
this problem is to approximate a matrix A € R"*? by a
rank & matrix A € R"™*? that minimizes the Frobenius
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norm error

n d
IA—AlE =" A - A%
i=1j=1

where rank(A) < k. This problem can be solved exactly
by the singular value decomposition (SVD), which can be
computed in polynomial time. We will write Ay, to denote
the optimal rank %k approximation to A in the Frobenius
norm, and we will write A_; := A — A, to denote the
residual error of this approximation.

While this simple choice often gives satisfactory results,
this loss function treats all entries of the matrix uniformly
when trying to fit A, which may not exactly align with the
practitioner’s desires if some of the entries are more crucial
to fit than others. If one additionally has such information
available in the form of non-negative weights W, ; > 0
that reflect some measure of importance of each of the
entries (¢, j), then this can be encoded in the loss function
by incorporating weights as

n d
IA—AlRyr=>_ > W7 |Ai; — A%
i=1 j=1
where rank(A) < k. This problem is known as the
weighted low rank approximation (WLRA) problem. We
write A o B to denote the entrywise product for two matri-
ces A and B, so we may also write

IA=AlRy p = [Wo(A-A)|% = |[WoA-WoA|

The incorporation of weights into the low rank approxima-
tion problem gives this computational problem an incredible
versatility for use in a long history of applications starting
with its use in factor analysis in the early statistical literature
(Young, 1941). A popular special case is the matrix comple-
tion problem (Rennie & Srebro, 2005; Candes & Tao, 2010;
Keshavan et al., 2010), where the weights W € {0, 1}7*¢
are binary and encode whether a given entry of A is ob-
served or not. This primitive has been useful in the design
of recommender systems (Koren et al., 2009; Chen et al.,
2015; Lee et al., 2016), and has been famously applied in
the 2006 Netflix Prize problem. More generally, the weights
‘W can be used to reflect the variance or number of samples
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obtained for each of the entries, so that more “uncertain’
entries can influence the objective function less (Anandan
& Irani, 2002; Srebro & Jaakkola, 2003). In the past few
years, weighted low rank approximation has also been used
to improve model compression algorithms, especially those
for large scale LLMs, based on low rank approximations
of weight matrices by taking into account the importance
of parameters (Arora et al., 2016; Hsu et al., 2022; Hua
et al., 2022). Given the rapid growth of large scale ma-
chine learning models, model compression techniques such
as WLRA are expected to bring high value to engineering
efforts for these models. Other applications of WLRA in-
clude ecology (Robin et al., 2019; Kidzinski et al., 2022),
background modeling (Li et al., 2017; Dutta et al., 2018),
computational biology (Tuzhilina et al., 2022), and signal
processing (Shpak, 1990; Lu et al., 1997).

Approximation algorithms have long been considered for
efficient low rank approximation problems, and we formal-
ize the approximation guarantee that we study in Definition
1.1.

Definition 1.1 (Approximate weighted low rank approxima-
tion). Let W € R"*4 be non-negative, let A € R™*4 and
let k£ € N. Then in the k-approximate rank k weighted low
rank approximation problem, we seek to output a matrix
A e R"*? such that

A —Alw.r <k IA = Alllw,p-

min
rank(A’)<k

In Definition 1.1, we have purposefully under-specified re-
quirements on A. Part of this is to cope with the com-
putational difficulty of WLRA. Indeed, while we ideally
would like A to have rank at most k, solving for even an
approximate such solution (with x = (1 + 1/ poly(n)))
is an NP-hard problem (Gillis & Glineur, 2011). On the
other hand, allowing for additional flexibility in the choice
of A may still be useful as long as A satisfies some sort of
“parameter reduction” guarantee. A common choice is to
allow A to have rank &’ > k slightly larger than k, which is
known as a bicriteria guarantee. In this work, we will show
a new relaxation of the constraints on A that allows us to
achieve new approximation guarantees for WLRA.

1.1. Our results

We present our main contribution in Theorem 1.2, which
gives a simple approach to WLRA, under the assumption
that the weight matrix W has low rank rank(W) < r.
We note that this assumption is very natural and captures
natural cases, for example when W has block structure, and
has been motivated and studied in prior work (Razenshteyn
et al., 2016; Ban et al., 2019). We also empirically verify
this assumption in our experiments. We defer a further
discussion of the low rank W assumption to Section 1.1.3

as well as prior works (Razenshteyn et al., 2016; Ban et al.,
2019).

The algorithm (shown in Algorithm 1) that we propose is
extremely simple: compute a rank rk approximation of
W o A, and then divide the result entrywise by W. Note
that if we exactly compute the low rank approximation
step by an SVD, then the optimal rank rk approximation
(W o A),; given by the SVD requires only (n + d)rk
parameters to store, and W also only requires nr parameters
to store. Thus, denoting the entrywise inverse of W by
We~! the solution W°~1 o (W o A),;, can be stored in a
total of O((n + d)rk) parameters, which is nearly optimal
for constant rank r = O(1).!

Algorithm 1 Weighted low rank approximation

input: input matrix A € R"*¢, non-negative weights
W ¢ R™"*4 with rank r, rank parameter k.
output: approximate solution A.

1: Compute a rank rk approximation Aw of Wo A
2: Return A .= W° 1o Aw

While our discussion thus far has simply used the SVD
to compute the rank rk approximation (W o A),x, we
obtain other useful guarantees by allowing for approx-
imate solutions Ay that only approximately minimize
[W o A — Awl||r. For example, by computing the rank
rk approximation Aw using faster randomized approxima-
tion algorithms for the SVD (Clarkson & Woodruff, 2013;
Musco & Musco, 2015; Avron et al., 2017), we obtain algo-
rithms for WLRA with similar running time. In general, we
prove the following theorem:

Theorem 1.2. Let W € R™*? be a non-negative weight
matrix with rank 7. Let A € R"*4 and let k € N. Suppose
that Aw € R™*? satisfies

IWoA - Aw|: <x [WoA—Al

min
rank(A’)<rk

= w[(Wo A) %

and let A == W°~ 1o Aw, where W°~1 € R"*4 denotes
the entrywise inverse of W. Then,

JA - Ay p<r min

A_A/ 2
rank(A’)SkH HW’F

In particular, we obtain a solution with k = (1 + ¢) in
running time O(nnz(A)) 4 O(n(rk)? /e + poly(rk/e)) by
using randomized low rank approximation algorithms of
(Avron et al., 2017).

We prove Theorem 1.2 in Section 2. In the special case of
binary weight matrices, our result shows that “zero-filling”

'If W, ; = 0, we take Wf;l = oo. Note that this entry is
ignored by the cost, i.e., (W o W°™1); - = 0 by convention.
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the missing entries leads to relative error guarantees in this
natural setting, which is perhaps surprising due to a number
of works studying this algorithm that suggest otherwise
(Balzano et al., 2010; Wang & Singh, 2017).

Note that as stated, the approximation given by Algorithm
1 may not always be desirable, since in general, W°~!
cannot be computed without multiplying out the low rank
factors of W. However, we show in Lemma 1.3 that for
a broad family of structured matrices formed by the sum
of support-disjoint rank 1 matrices and a sparse matrix,
We~! can in fact be stored and applied in the same time
as W. These capture a large number of commonly used
weight matrix patterns in practice, such as Low-Rank Plus
Sparse, Low-Rank Plus Diagonal, Low-Rank Plus Block
Diagonal, Monotone Missing Data Pattern, and Low-Rank
Plus Banded matrices (Musco et al., 2021) (see Corollary
1.4). These results are proved in Appendix 3.

Lemma 1.3. Let W € R"*4 be structured as W =
E + 22:1 S;, where S; are rank 1 matrices with dis-
joint rectangular supports S; x T; for S; C [n]| and
T; C [d], and E is a sparse matrix with nnz(E) non-zero
entries. Let A = UV for U € R™* and V € RF*d
be a rank k matrix. Then, We°=l o A can be stored in
O(nnz(E) + >°7_,|Si| + |Ti|) space and can be applied
to a vector x € R% in O(nnz(E) + Z;/:l\SA + |T;|) time.
Furthermore, W has rank at most r = nnz(E) + r’.

Corollary 1.4. Let W € R"*9, The following hold:

e Low-Rank Plus Sparse: Suppose that W has at most
t non-zeros per row. Then, We—1L can be stored and
applied in O(nt) time and space.

e Low-Rank Plus Diagonal: Suppose that W is all ones
except for zeros along the diagonal. Then, W°~! can
be applied and stored in O(n) time and space.

e Low-Rank Plus Block Diagonal: Suppose that W
is all ones except for r block diagonal matrices that
are zeros. Then, W°™1 can be applied and stored in
O(nr) time and space.

* Monotone Missing Data Pattern: Suppose that W is
a rank r matrix where each row is a prefix of all ones
followed by a suffix of all zeros. Then, W°™! can be
applied and stored in O(nr) time and space.

e Low-Rank Plus Banded: Suppose that W is all ones
except for zeros on “band” entries, i.e., W; ; = 0 for
li — j| < p. Then, W°~! can be applied and stored in
O(np) time and space.

Thus, our results yield efficient algorithms with provable
approximation guarantees for a wide class of structured
weight matrices encountered in practice. Furthermore, for

general weight matrices, our results can be applied by first
computing a low rank approximation of the weight matrices
or an approximation by one of the above structured classes
of weight matrices for further improvements in efficiency.

1.1.1. COLUMN SUBSET SELECTION FOR WEIGHTED
LOW RANK APPROXIMATION

Another advantage of allowing for approximation algo-
rithms for computing low rank approximations to W o A is
that we can employ column subset selection approaches to
low rank approximation (Frieze et al., 2004; Deshpande &
Vempala, 2006; Drineas et al., 2006; 2008; Boutsidis et al.,
2016; Altschuler et al., 2016). That is, it is known that the
Frobenius norm low rank approximation problem admits
(1 + &)-approximate low rank approximations whose left
factor is formed by a subset of at most O(k/e) columns
of the input matrix. In particular, these results show the
existence of approximate solutions to the low rank approxi-
mation problem that preserve the sparsity of the input matrix,
and thus can lead to a reduced solution size when the input
matrix has sparse columns. Furthermore, column subset
selection solutions to low rank approximation give a natu-
ral approach for unsupervised feature selection. Thus, as a
corollary of Theorem 1.2, we obtain the first relative error
guarantee for unsupervised feature selection with a weighted
Frobenius norm objective. Weaker additive error guarantees
were previously studied by (Dai, 2023; Axiotis & Yasuda,
2023)>.

Corollary 1.5 (Column subset selection for weighted low
rank approximation). There is an algorithm that computes a
subset S C [d] of |S| = O(rk/¢) columns and X € RISI*d
such that

|A - W o (WoA)*X
< (1+¢)

2
Nw. e

i A—- A3
o, Skll lw,r

where for a matrix B € R4, B|® denotes the matrix
formed by the columns of B indexed by S.

Proof. This follows from Theorem 1.2 by computing the
rank rk approximation Aw to W o A via column subset
selection algorithms given by, e.g., (Boutsidis et al., 2016).

O

Note that in Corollary 1.5, the approximation W°~1o((Wo
A)|®X) only depends on A through the columns A |, and
thus giving an approach to column subset selection with a
weighted objective.

’The result of (Dai, 2023) contained an error, which we correct,
tighten, and simplify in Appendix C.
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1.1.2. NEARLY OPTIMAL COMMUNICATION
COMPLEXITY BOUNDS

As a consequence of Corollary 1.5, we obtain another im-
portant result for WLRA in the setting of communication
complexity. Here, we obtain nearly optimal communication
complexity bounds for constant factor approximations (i.e.,
k = O(1)) to distributed WLRA for a wide range of pa-
rameters. While many works have studied distributed LRA
in depth (Sarlés, 2006; Clarkson & Woodruff, 2009; 2013;
Macua et al., 2010; Kannan et al., 2014; Ghashami et al.,
2016; Boutsidis et al., 2016), we are surprisingly the first to
initiate a study of this problem for WLRA.

The communication setting we consider is as follows. We
have two players, Alice and Bob, where Alice has an input
matrix A and would like to communicate an approximate
WLRA solution to Bob. Communication complexity is
of great interest in modern computing, where exchanging
bits can be a critical bottleneck in large scale computation.
While we consider two players in this discussion for simplic-
ity, our algorithms also apply to a distributed computing set-
ting, where the columns of the input matrix are partitioned
among m servers as m matrices AN, A A and
some central coordinator outputs a WLRA of the concatena-
tion A = [AM AP A(™] of these columns.

Definition 1.6 (WLRA: communication game). Let Alice
and Bob be two players. Let W € Z"*“ be non-negative,
let A € Z"*¢ and let k € N. Furthermore, let W and
A have entries at most W, ;,|A; ;| < poly(nd). We let
both Alice and Bob receive the weight matrix W' as input,
and we give only Alice the input matrix A. We say that
Alice and Bob solve the k-approximate rank k weighted low
rank approximation communication game using B bits of
communication if Alice sends at most B bits to Bob, and
Bob outputs any matrix A e R satisfying

min

1A~ Alw.r <k
rank(A’)<k

|A — A'||w,F.

Suppose that A has columns which each have at most s
non-zero entries. Then, the solution given by Corollary 1.5
can be communicated to Bob using just O(srk/e + rkd)
numbers (O(srk/e) for the O(rk/e) columns of A and
O(rkd) for X), or O((srk/e + rkd)log(nd)) bits under
our bit complexity assumptions. Thus, when the number of
columns d is at most the column sparsity s, then we obtain
an algorithm which uses only O((srk/e) log(nd)) bits of
communication. More generally, if the columns of A are
distributed among m servers, then a solution can be com-
puted using O((msrk/e)log(nd)) bits of communication
by using work of (Boutsidis et al., 2016).

In fact, we show a nearly matching communication lower
bound. In particular, we show that 2(srk) bits of commu-
nication is required to output any matrix (not necessarily

structured) that achieves a weighted Frobenius norm loss
that is any finite factor within the optimal solution. Our
lower bound is information-theoretic, and also immediately
implies an Q(msrk) bit lower bound in the distributed set-
ting of m servers if each server must output a solution, as
considered by (Boutsidis et al., 2016).

Theorem 1.7. Let W be a binary block diagonal mask
(Definition 4.2) and let k € N. Suppose that a randomized
algorithm solves, for every C € Z™*" with at most s non-
zero entries in each column, the k-approximate weighted
low rank approximation problem on input C using B bits
of communication with probability at least 2/3, for any
1< k<o Ifs,k <nj/r, then B=Q(srk).

By proving a nearly tight communication complexity bound
of ©(rsk) for computing constant factor WLRAs, we arrive
at the following qualitative observation: the rank r of the
weight matrix W parameterizes the communication com-
plexity of WLRA. A similar conclusion was drawn for the
computational complexity of WLRA in the work of (Razen-
shteyn et al., 2016), where it was shown that WLRA 1is fixed
parameter tractable in the parameter 7, and also must have
running time exponential in 7 under natural complexity the-
oretic assumptions. Thus, an important contribution of our
work is to provide further evidence, both empirical and the-
oretical, that the rank r of the weight matrix W is a natural
parameter to consider when studying WLRA.

1.1.3. EXPERIMENTS

We demonstrate the empirical performance of our WLRA al-
gorithms through experiments for model compression tasks.
This application of WLRA was suggested by (Hsu et al.,
2022; Hua et al., 2022), which we find to be a particularly
relevant application of weighted low rank approximation
due to the trend of extremely large models. In the model
compression setting, we wish to approximate the hidden
layer weight matrices of neural networks by much smaller
matrices. A classical way to do this is to use low rank ap-
proximation (Sainath et al., 2013; Kim et al., 2016; Chen
et al., 2018). While this often gives reasonable results, the
works of (Hsu et al., 2022; Hua et al., 2022) show that
significant improvements can be obtained by taking into ac-
count the importance of each of the parameters in the LRA
problem. We thus conduct our experiments in this setting.

We first show in Section 5.1 that the importance matrices
arising this application are indeed very low rank. We may
interpret this phenomenon intuitively: we hypothesize that
the importance score of some parameter A; ; is essentially
the product of the importance of the corresponding input
1 and the importance of the corresponding output j. This
observation may be of independent interest, and also empir-
ically justifies the low rank weight matrix assumption that
we make in this work, as well as works of (Razenshteyn
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et al., 2016; Ban et al., 2019). While WLRA with a rank
1 weight matrix is known to be solvable efficiently via the
SVD, our result shows that general low rank weight matrices
also yield efficient algorithms via the SVD.

Next in Section 5.2, we conduct experiments which demon-
strate the superiority of our methods in practice. Of the
algorithms that we compare to, an expectation-minimization
(EM) approach of (Srebro & Jaakkola, 2003) gives the small-
est loss albeit with a very high running time, and our algo-
rithm nearly matches this loss with an order of magnitude
lower running time. We also show that this solution can be
refined with EM, producing the best trade-off between effi-
ciency and accuracy. One of the baselines we compare is a
sampling algorithm of (Dai, 2023), whose analysis contains
an error which we correct, simplify, and tighten.

1.2. Related work

We survey a number of related works on approximation
algorithms for weighted low rank approximation. One of the
earliest algorithms for this problem is a natural EM approach
proposed by (Srebro & Jaakkola, 2003). Another related
approach is to parameterize the low rank approximation A
as the product UV of two matrices U € R"**¥ and V €
R**4 and alternately minimize the two matrices, known as
alternating least squares. This algorithm has been studied in
a number of works (Hastie et al., 2015; Li et al., 2016; Song
et al., 2023). The work of (Bhaskara et al., 2021) proposes
an approach to weighted low rank approximation based
on a greedy pursuit, where rank one factors are iteratively
added based on an SVD of the gradient matrix. Finally,
fixed parameter tractable algorithms have been considered
in (Razenshteyn et al., 2016; Ban et al., 2019) based on
sketching techniques.

2. Approximation algorithms
The following simple observation is the key idea behind

Theorem 1.2:

Lemma 2.1. Let W, A’ € R"*4 with rank(W) < r and
rank(A’) < k. Then, rank(W o A’) < rk.

Proof. Since rank(W) < r, it can be written as W =
S u;v, foru; € R" and v; € R Then,

WoA' = Z(uiviT) oA’ = Z diag(u;) A’ diag(v;)

i=1 i=1

so W o A’ is the sum of r matrices, each of which is rank
k. Thus, W o A’ has rank at most rk. O

Using Lemma 2.1, we obtain the following:

Theorem 1.2. Let W € R"*? be a non-negative weight
matrix with rank r. Let A € R"™* and let k € N. Suppose
that Aw € R™*? satisfies

IWoA—Awllh < s [WoA—Al

min
rank(A’)<rk

= £[[(W o A) sl

and let A == W°~! o Ay, where W°=1 € R"*4 denotes
the entrywise inverse of W. Then,

min

A—A|% - <
| ||WF > “mnk(A,)Sk

1A = A/l F

In particular, we obtain a solution with k = (1 + €) in
running time O(nnz(A)) + O(n(rk)? /e + poly(rk/e)) by
using randomized low rank approximation algorithms of
(Avron et al., 2017).

Proof. Note that [W°! o Aw — Alwr = |Aw —
W o A|%, which is at most x[[(W o A)_,4||% by as-
sumption. On the other hand for any rank k¥ matrix A’,
|A" — Allw.r = [|[W oA’ — W o A|p can be lower
bounded by |[(W o A)_,| r since W o A’ has rank at
most rk by Lemma 2.1. Thus,

W™ o Aw — Allfy r < KI(W o A) 7
1A — A/l p-

<Kk min
rank(A’)<k

O

3. Matrices with structured entrywise inverses

We present a general lemma which shows how to handle
a wide family of structured matrices which often arise in
practice as weight matrices for weighted low rank approxi-
mation.

Lemma 3.1. Let W € R"*¢ be structured as W =
E + Z:Zl S;, where S; are rank 1 matrices with dis-
joint rectangular supports S; x T; for S; C [n] and
T; C [d], and E is a sparse matrix with nnz(E) non-zero
entries. Let A = UV for U € R"* and V. € RF*4
be a rank k matrix. Then, W°~1 o A can be stored in
O(nnz(E) + Y°0_,|Si| + |T3|) space and can be applied
to a vector x € R% in O(nnz(E) + Z:,:l\SA + |T;|) time.
Furthermore, W has rank at most r = nnz(E) 4 r’.

Proof. Let S = >"'_,'S;. We can then write W°~! =
E’ + S°~!, where E’ is a sparse matrix with nnz(E’) =
nnz(E). Since S; have disjoint supports, we can also write
Se—t ="  S?7!. Thus,

(We™loA)x = (E’ + (Z S§—1> o A>x
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= (B o A)x + i(sg—l o A)x

i=1

Note that nnz(E’ o A) < nnz(E), so this can be stored and
applied in O(nnz(E)) time and space. For each 4, S is
just a rank 1 matrix supported on .S; x T}, so this can be
stored and applied in O(]S;| + |T;|) time and space. [

As a corollary of Lemma 1.3, we show that we can efficiently
handle all five families of commonly encountered weight
matrices discussed in (Musco et al., 2021). We refer to
(Musco et al., 2021) on the large body of work studying
these classes of weight matrices.

Corollary 3.2. Let W € R"*%. The following hold:

e Low-Rank Plus Sparse: Suppose that W has at most
t non-zeros per row. Then, W°™! can be stored and
applied in O(nt) time and space.

e Low-Rank Plus Diagonal: Suppose that W is all ones
except for zeros along the diagonal. Then, W°~! can
be applied and stored in O(n) time and space.

e Low-Rank Plus Block Diagonal: Suppose that W
is all ones except for r block diagonal matrices that
are zeros. Then, W°™1 can be applied and stored in
O(nr) time and space.

* Monotone Missing Data Pattern: Suppose that W is
a rank r matrix where each row is a prefix of all ones
followed by a suffix of all zeros. Then, W°~1 can be
applied and stored in O(nr) time and space.

e Low-Rank Plus Banded: Suppose that W is all ones
except for zeros on “band” entries, i.e., W; ; = 0 for
li — j| < p. Then, W°~! can be applied and stored in
O(np) time and space.

Proof. For the Low-Rank Plus Sparse weight matrices, W
itself has at most O(nt) non-zero entries and thus can be
set to E in Lemma 1.3. For the Low-Rank Plus Diagonal
weight matrices, W can be written as the sum of the rank
1 matrix of all ones and a sparse matrix supported on the
diagonal. For the Low-Rank Plus Block Diagonal weight
matrices, we can write the complement of the blocks along
their rows as disjoint rank 1 matrices. Since there are at
most 7 blocks, this is the sum of at most 4 1 disjoint rank
1 matrices. For the Monotone Missing Data Pattern weight
matrices, there can only be at most r different patterns of
rows, and these can be written as the sum of r disjoint rank
1 matrices. For the Low-Rank Plus Banded weight matrices,
‘W can be written as the sum of the rank 1 matrix of all ones
and a sparse matrix supported on the diagonal band. O

4. Communication complexity bounds

We show that our approach to weighted low rank approxi-
mation in Theorem 1.2 gives nearly optimal bounds for this
problem in the setting of communication complexity.

Our first result is an upper bound for the communication
game in Definition 1.6.

Theorem 4.1. Let W € Z"*% be a non-negative rank k
weight matrix and let A € Z™*?% be an input matrix with
at most s non-zero entries in each column. There is an
algorithm which solves the (1 + ¢)-approximate weighted
low rank approximation communication game (Definition
1.6) using at most B = O((srk/e + rkd)log(nd)) bits of
communication.

Proof. The algorithm is to use the column subset selection-
based WLRA algorithm of Corollary 1.5 and then to send
the columns of A indexed by the subset .S and X. O

On the other hand, we show a communication complexity
lower bound showing that the number of bits B exchanged
by Alice and Bob must be at least {2(rsk). Our lower bound
holds even when the weight matrix W is the following
simple binary matrix.

Definition 4.2 (Block diagonal mask). Letr € N and let
n be an integer multiple of 7. Then, W € {0,1}"*" is
the block diagonal mask associated with these parameters if
‘W is the r x r block diagonal matrix with diagonal blocks
given by the n/r x n/r all ones matrix and off-diagonal
blocks given by the n/r x n/r all zeros matrix.

We give our communication complexity lower bound in the
following theorem.

Theorem 1.7. Let W be a binary block diagonal mask
(Definition 4.2) and let k € N. Suppose that a randomized
algorithm solves, for every C € Z™*™ with at most s non-
zero entries in each column, the k-approximate weighted
low rank approximation problem on input C using B bits
of communication with probability at least 2/3, for any
1<k <oo Ifs,k <n/r, then B = Q(srk).

Proof. Let Agense € {0,1}*"* be a uniformly random
binary matrix, and let A,,q € {0, 1}7%7/7 be formed by
padding the columns of A gense With /7 — k zero columns
and padding each block of s contiguous rows with n/r — s

zero rows. For j € [r], let A;Qd be the restriction of Apaq
to the jth contiguous block of n/r rows. We then construct
A € R™*"™ by horizontally concatenating r copies of Apaq.

Note that the optimal rank & approximation achieves 0 loss
in the W-weighted Frobenius norm. Indeed, we can take
A to be the horizontal concatenation of 7 copies of Ap.q.
Since Ap,q has rank k, A* also has rank k. Furthermore,
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on the j-th nonzero blocks of W, A4 has the same en-
tries as Ag;d. Thus, an approximation A that achieves any
finite approximation factor x must exactly recover A, re-
stricted to the support of W. In turn, this means that such

an approximation A can also be used to recover A gense-

It now follows by a standard information-theoretic argument
that B = Q(srk) (see Appendix A for further details). [

S. Experiments

As discussed in Section 1.1.3, we first conduct experiments
for WLRA in the setting of model compression (as pro-
posed by (Hsu et al., 2022; Hua et al., 2022)). In our experi-
ments, we train a basic multilayer perceptron (MLP) on four
image datasets, mnist, fashionmnist, smallnorb,
and colorectal_histology which were selected from
the tensorflow_datasets catalogue for simplicity of
processing (e.g., fixed feature size, no need for embeddings,
etc.). We then compute a matrix of importances of each of
the parameters in a hidden layer of the MLP given by the
Fisher information matrix. Finally, we compute a WLRA of
the hidden layer matrix using the Fisher information matrix
as the weights W.

Our experiments are conducted on a 2019 MacBook Pro
with a 2.6 GHz 6-Core Intel Core i7 processor. All code
used in the experiments are available in the supplementary.

Table 1: Datasets used in experiments

Dataset Image dim.  Flattened dim. Neurons  Matrix dim.

mnist (28,28,1) 784 128 784 x 128

fashionmnist (28,28,1) 784 128 784 x 128
smallnorb (96,96,1) 9216 1024 9216 x 1024
colorectal-histology (150,150,3) 67500 1024 67500 x 1024

5.1. The low rank weight matrix assumption in practice

We first demonstrate that for the task of model compression,
the weight matrix is approximately low rank in practice.
The weight matrix W in this setting is the empirical Fisher
information matrix of the hidden layer weights A, where
the empirical Fisher information of the (¢, j)-th entry A; ;
is given by

8 2
Wi,j = Ex~p l(aAi,j ‘C(X; A)) ]

where £(x; A) denotes the loss of the neural network on
the data point x and hidden layer weights A, and D denotes
the empirical distribution (that is, the uniform distribution
over the training data).

Plots of the empirical Fisher matrix (Figure 1) reveal low
rank structure to the matrices, and the spectrum of the Fisher
matrix confirms that the vast majority of the Frobenius norm

is contained in the first singular value (Table 2). We also
plot the spectrum itself in Figure 6 in the appendix.

((b)) fashionmnist

((¢c)) smallnorb

Figure 1: Low rank structure of Fisher weight matrices

Table 2: % mass of Fisher matrix in 1st singular value

Dataset % mass
mnist 95.4%
fashionmnist 95.9%
smallnorb 99.9%

colorectal histology 99.3%

5.2. Approximation quality and running time

In this section, we compare the performance of our Algo-
rithm 1 (denoted as svd_w in the following discussion) with
a variety of previously proposed algorithms for WLRA.

We consider the following algorithms: adam, em, greedy,
sample, and svd, which we next explain in detail. We
first consider adam, in which we simply parameterize the
WLRA problem as an optimization problem in the factorized
representation UV for factors U € R"*¥ and V € R¥*4
(Burer & Monteiro, 2003), and optimize this loss function
using the Adam optimizer provided in the tensorflow
library. Such an approach is well-studied for the standard
low rank approximation problem (Li et al., 2018; Ye & Du,
2021), and empirically performs well for weighted low rank
approximation as well. This was run for 100 epochs, with
an initial learning rate of 1.0 decayed by a factor of 0.7
every 10 steps. The em algorithm was proposed by (Srebro
& Jaakkola, 2003) for the WLRA problem, and involves
iteratively “filling in” missing values and recomputing a
low rank approximation. In the experiments, we run 25
iterations. The greedy algorithm is a greedy basis pursuit
algorithm proposed by (Bhaskara et al., 2021) and iteratively
adds new directions to the low rank approximation by taking
an SVD of the gradient of the objective. Similar algorithms
were also studied in (Shalev-Shwartz et al., 2011; Khanna
et al., 2017; Axiotis & Sviridenko, 2021) for general rank-
constrained convex optimization problems. The sample
algorithm is a row norm sampling approach studied by (Dai,
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2023). Finally, svd simply computes an SVD of the original
matrix W, without regard to the weights W.

We compute low rank approximations for ranks 1 through
20 on four datasets, and plot the loss and the running time
against the rank in Figures 2 and 3, respectively. The val-
ues in the figures are tabulated at ranks 20, 10, and 5 in
Tables 3, 4, and 5 in the supplementary. We observe that our
svd._w algorithm performs among the best in the approxi-
mation loss (Figure 2), nearly matching the approximation
quality achieved by much more computational expensive
algorithms such as adam and em, while requiring much less
computational time (Figure 3).

While in some cases the em algorithm may eventually pro-
duce a better solution, we note that our svd_w may be
improved by initializing the em algorithm with this solu-
tion, which produces an algorithm which quickly produces
a superior solution with many fewer iterations (Figure 4).

5.3. Experiments on synthetic datasets

Finally, we perform additional experiments on a synthetic
datasets based on a mixture of Gaussians. In this experi-
ment, we consider a uniform mixture of £ Gaussians in d
dimensions with diagonal covariance matrices, each which
has variances that take at most r distinct values. The input
matrix A is taken to be n i.i.d. observations of this dis-
tribution, while the weight matrix scales a Gaussian with
variance o by 1/02. It can easily be observed that this
weight matrix has rank at most kr, and thus our results ap-
ply. The variances for are chosen randomly by taking the
4th powers of random Gaussian variables. The 4th power is
taken to make the variances more varied, which makes the
WLRA problem more interesting. In Figure 5, we show the
results for n = 1000, d = 50, k = 5, and r = 3. Our results
again show that our algorithm achieves superior losses with
a running time that is competitive with a standard SVD.

. N 00

svd_w adam em greedy sample svd
Algorithm

svd_w adam em greedy sample svd
Algorithm

Figure 5: Loss and running time of WLRA on a synthetic
dataset based on a mixture of Gaussians. Results are aver-
aged over 5 trials.

6. Conclusion

In this work, we studied new algorithms for the weighted
low rank approximation problem, which has countless appli-
cations in statistics, machine learning, and signal processing.
We propose an approach based on reweighting a low rank
matrix, which is a novel class of relaxed solutions to the
WLRA problem, and give provable guarantees under the
assumption that the weight matrix W has low rank. Theo-
retically, this allows us to obtain an algorithm for WLRA
with nearly optimal communication complexity, for which
we show nearly matching communication complexity lower
bounds, which shows that the rank of the weight matrix
tightly parameterizes the communication complexity of this
problem. We also give the first guarantees for column sub-
set selection for weighted low rank approximation, which
gives a notion of feature selection with a weighted objec-
tive. Finally, we show that in practice, our approach gives a
highly efficient algorithm that outperforms prior algorithms
for WLRA, particularly when combined with refinement
using expectation-maximization.
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A. Missing proofs from Section 4

We provide the standard information-theoretic argument omitted in the proof of Theorem 1.7 in Section 4.

Let M denote the communication transcript between Alice and Bob, and let Adense denote the reconstruction of A gense
based on the approximate weighted low rank approximation solution A, which can be constructed based on M. Recall
that the algorithm succeeds in outputting a correct approximation with probability at least 2/3, so Adense = A gense With
probability at least 2/3. Then by Fano’s inequality (Theorem 2.10.1 of (Cover & Thomas, 2006)), we have that

~ 1 1
H(Adgense | Adense) < h(1/3) + 3 log,| Al = h(1/3) + gsrk’ e))

where A denotes the support of the random variable A gense and h denotes the binary entropy function. It then follows from
the data processing inequality (Theorem 2.8.1 of (Cover & Thomas, 2006)) and the previous bound that the message length
B = |M] is at least
B = |M‘ Z H(M) Z I(M;Adense)
> I(Adense§ Adense)
= H(Adense) - H(Adense | Adense)
> rsk — (h(1/3) + srk/3) = Q(rsk) (1).

data processing inequality

B. Additional figures for experiments

In Figure 6, we plot the spectrum of the weight matrices that we consider, showing that the assumption of a low rank weight
matrix is a highly practical one.
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Figure 6: Spectrum of Fisher weight matrices

In Tables 3 through 5, we tabulate the approximation loss and running time of various algorithms for ranks 20, 10, and 5,
respectively.
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Table 3: Fisher-weighted rank 20 approximation loss and running time

Algorithm mnist fashionmnist smallnorb colorectal_histology
svd_w loss 0.0157 0.0689 0.0023 0.0092
adam loss 0.0153 0.0673 0.0281 0.0122
em loss 0.0149 0.0627 0.0019 0.0090
greedy loss 0.0189 0.0767 0.0131 0.0103
sample loss 0.0308 0.1093 0.3978 0.0211
svd loss 0.0203 0.0783 0.0380 0.0143
svd_w time (s) 0.0112 0.0115 1.0586 7.2273
adam time (s) 0.3883 0.3988 10.5479 63.3477
em time (s) 0.2356 0.3183 26.1445 206.1457
greedy time (s)  0.0803 0.0895 6.4177 47.4794
sample time (s) 0.0672 0.0779 4.1263 36.2301
svd time (s) 0.0055 0.0057 0.2831 2.2419

Table 4: Fisher-weighted rank 10 approximation loss and running time

Algorithm mnist fashionmnist smallnorb colorectal_histology
svd_w loss 0.0255 0.0967 0.0198 0.0125
adam loss 0.0245 0.0945 0.0348 0.0145
em loss 0.0243 0.0897 0.0202 0.0122
greedy loss 0.0274 0.1017 0.0391 0.0135
sample loss 0.0410 0.1293 0.6094 0.0240
svd loss 0.0335 0.1094 0.0429 0.0146
svd_w time (s) 0.0114 0.0125 0.8855 6.1798
adam time (s) 0.3835 0.4199 14.9386 62.5755
em time (s) 0.2285 0.2776 18.3505 146.7829
greedy time (s) 0.0342 0.0460 3.2980 26.5377
sample time (s) 0.0428 0.0421 2.3308 18.2120
svd time (s) 0.0049 0.0059 0.2339 1.8703

C. Row norm sampling for weighted low rank approximation
We correct an error of a row norm sampling result of (Dai, 2023), and further tighten the result and simplify the proof. The
algorithm we study is to repeatedly sample rows according to a row norm sampling distribution (Definition C.1).

Definition C.1 (Row norm sampling). Let A € R"*<. Then, a row norm sample from this matrix samples the row e, A for
i € [n] with probability
o leTAJZ

S PN

We prove the following theorem, which corrects and improves Theorem 3 of (Dai, 2023).

Theorem C.2. Let A € R"*? be a rank d matrix and let W € R"*? be non-negative weights bounded by 1. Let
A* € R™™? pe a rank k matrix satisfying

A — A*|? = i A— A3 .
| HW,F ranlf?,«lxr})gk” ||W,F

Let T C [n] be a multiset of t indices sampled according to the distribution of Definition C.1. If t > (2v/10 +
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Table 5: Fisher-weighted rank 5 approximation loss and running time

Algorithm mnist fashionmnist smallnorb colorectal_histology
svd_w loss 0.0364 0.1210 0.0872 0.0161
adam loss 0.0355 0.1173 0.1337 0.0180
em loss 0.0349 0.1142 0.1052 0.0155
greedy loss 0.0368 0.1215 0.1393 0.0168
sample loss 0.0470 0.1417 0.7363 0.0239
svd loss 0.0441 0.1312 0.2979 0.0168
svd_w time (s) 0.0094 0.0110 0.8328 6.1427
adam time (s) 0.3890 0.4410 14.6393 63.4094
em time (s) 0.1809 0.2019 18.0931 141.1849
greedy time (s) 0.0185 0.0211 1.7466 15.8465
sample time (s) 0.0320 0.0343 1.4726 11.4331
svd time (s) 0.0039 0.0050 0.2129 1.8317

1)2||A*A |2 /€2, then with probability at least 9/10, there is a matrix A € R™ % with rows spanned by the rows
sampled in T' such that .
|A = ARy r < |A = A%[Ry ¢ + el Al

We make a couple of remarks about this result before showing the proof.

Remark C.1. If W is all ones and A* = Ay, is the optimal rank k approximation in the standard Frobenius norm given by
the SVD, then || A, A~ ||% = k and thus we recover a result of (Frieze et al., 2004). We empirically estimate the value of
|Ax A~ ||% for weighted low rank approximation by treating the best solution we find as the “true” solution A*, and we
find that this value is < 2k on these datasets.

Proof of Theorem C.1. Define the random matrix

N 1 A*A eeA

Z

Note that E[A] = A* and that A is in the row span of the rows of A sampled by 7'. Then, the variance of a single sample
in T is bounded by

— 1 A A% ‘A -
Z;HA “eie] Al = Z e TAH2||A eilzle Al = [|[A*A™F]All%
i=1 1"

so the variance of A is bounded by
* A 1 * A —
Var(A) = E|A" - Alf} < ClATATF AR

Thus by Markov’s inequality,
A 10, .. _
IA" — AL < —A"A7[FAlE

with probability at least 9/10. Then,

IA - Alw.r <|A-Awr+ A —Alw,r triangle inequality
< A= A"l + A" — Allr
N V10, ..
<A - ATlw.r+ WHA A”[[r[Allp-
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Squaring both sides yields

A * * \% 10 A — 1 A —
IA —AlRyr < |A - A" +2]A - A lw.r = A AT lIrl|AllF + ZllAA % [1A[%
" VvI10, .. 1 . a—
<lA-A H%V,F+27t IA" A7 l|AlF + S AT AL Al

N
Vi

<A = A*|3y.r + (2V10+ 1)

* * A — 1 * A —
= A - A"y p+ (2 IA*AT][F + Sl|ATA II%>|AII%

[A*A"||F

A2
N A7

<A = ARy p + el AlE-
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