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Abstract

We study the problem of representation learn-
ing for control from partial and potentially high-
dimensional observations. We approach this prob-
lem via direct latent model learning, where one
directly learns a dynamical model in some latent
state space by predicting costs. In particular, we
establish finite-sample guarantees of finding a
near-optimal representation function and a near-
optimal controller using the directly learned latent
model for infinite-horizon time-invariant Linear
Quadratic Gaussian (LQG) control. A part of
our approach to latent model learning closely re-
sembles MuZero, a recent breakthrough in em-
pirical reinforcement learning, in that it learns
latent dynamics implicitly by predicting cumula-
tive costs. A key technical contribution of this
work is to prove persistency of excitation for a
new stochastic process that arises from our analy-
sis of quadratic regression in our approach.

1. Introduction
Control with a learned latent model is state of the art in sev-
eral reinforcement learning (RL) benchmarks, including Go,
Atari games, and visuomotor control (Schrittwieser et al.,
2020; Ye et al., 2021; Hafner et al., 2023). To better under-
stand this modern machinery, we introduce it to a classical
optimal control problem, namely Linear Quadratic Gaus-
sian (LQG) control, and study its theoretical, finite-sample
performance. Essential to this approach is the learning of
two components: a state representation function that maps
an observed history to some latent state, and a latent model
that predicts the transition and cost in the latent state space.
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The latent model is usually a Markov decision process, us-
ing which we obtain a policy in the latent space or execute
online planning.

What is the correct objective to optimize for learning a la-
tent model? One popular choice is to learn a function that
reconstructs the observation from the latent state (Hafner
et al., 2019a;b; 2020; 2023). A latent model learned this way
is agnostic to control tasks and retains all the information
about the environment. This class of approaches can achieve
satisfactory performance, but are prone to background dis-
traction (Fu et al., 2021). The second class of methods learn
an inverse model that infers actions from latent states at dif-
ferent time steps (Pathak et al., 2017; Lamb et al., 2022). A
latent model learned with this methodology is also task ag-
nostic but extracts control-relevant information. In contrast,
task-relevant representations can be learned by predicting
costs in the control task (Oh et al., 2017; Zhang et al., 2020;
Schrittwieser et al., 2020). The concept that a good latent
state should be able to predict costs is intuitive, and the costs
are directly relevant to optimal control. Hence, (Tian et al.,
2022) refers to this class of methods as “direct latent model
learning”, which is the focus of this work.

The direct latent model learning method of particular in-
terest to us is that of MuZero (Schrittwieser et al., 2020).
Announced by DeepMind in 2019, MuZero extends the line
of works including AlphaGo (Silver et al., 2016), AlphaGo
Zero (Silver et al., 2017) and AlphaZero (Silver et al., 2018)
by not requiring knowledge of the game rules. MuZero
matches the superhuman performance of AlphaZero in Go,
shogi and chess, while outperforming model-free RL algo-
rithms in Atari games. MuZero builds upon the powerful
planning procedure of Monte Carlo Tree Search, with the
major innovation being learning a latent model. The la-
tent model replaces the rule-based simulator during plan-
ning, and avoids the burdensome planning in pixel space for
Atari games.

MuZero is a milestone algorithm in representation learning
for control. Intuitively, the algorithm design makes sense,
but its complexity has so far inhibited a formal theoretical
study. On the other hand, statistical learning theory for linear
dynamical systems and control has evolved rapidly in recent
years (Tsiamis et al., 2022); for partially observable linear
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dynamical systems, much of the work relies on learning
Markov parameters, lacking a direct connection to empirical
methods. In this work, we aim to bridge the two areas by
studying provable MuZero-style latent model learning in
LQG control.

The latent model learning of MuZero features three ingredi-
ents: 1) stacking frames, i.e., observations, as input to the
representation function; 2) predicting costs, “optimal” val-
ues and “optimal” actions from latent states; and 3) implicit
learning of latent dynamics by predicting these quantities
from latent states at future time steps. These are the defin-
ing characteristics of the MuZero-style algorithm that we
shall consider. In MuZero, the “optimal” values and ac-
tions are found by the powerful online planning procedure.
In this work, we simplify the setup by considering data
collected using random actions, which are known to suf-
fice for identifying a partially observable linear dynamical
system (Oymak & Ozay, 2019). In this setup, the values
become those associated with this trivial policy and we do
not predict actions since they are random noises anyway.
Note that although our study of the above ingredients is
directly motivated by MuZero, previous empirical works
have also explored them. For example, frame stacking has
been a widely used technique to handle partial observabil-
ity (Mnih et al., 2013; 2015); predicting values for learning
a latent model has been studied in (Oh et al., 2017), which
also learns the latent state transition implicitly.

Closely related to our work is (Tian et al., 2022), which
also considers provable direct latent model learning in LQG,
but for the finite-horizon time-varying setting. Our work
builds upon it and complements it in two ways: 1) we extend
their algorithm to the time-invariant setting with a stationary
representation function and latent model, which is closer to
practice; 2) we present and analyze a new, MuZero-style
latent model learning algorithm. Both 1) and 2) introduce
new technical challenges to be addressed. We summarize
our contributions as follows.

• We show that two direct latent model learning meth-
ods provably solve infinite-horizon time-invariant LQG
control by establishing finite-sample guarantees. Both
methods only need a single trajectory; one resembles
the method in (Tian et al., 2022), and the other resem-
bles MuZero.

• By analyzing the MuZero-style algorithm, we notice
the potential issue of coordinate misalignment; that is,
costs can be invariant to certain transforms of the latent
states, and implicit dynamics learning with one-step
transition may not recover consistent coordinates. This
insight suggests the need of multi-step transition or
other coordinate alignment procedures.

• Technically, we overcome the difficulty of dependent
data in a single trajectory for latent model learning, by

proving a new result about the persistency of excitation
for a stochastic process that arises from our analysis of
quadratic regression in both methods.

Notation. Random vectors are denoted by lowercase letters;
sometimes they also denote their realized values. Uppercase
letters denote matrices, some of which can be random. Let
a∧b denote the minimum between scalars a and b. 1 denotes
either the scalar one or a vector consisting of all ones; I de-
notes an identity matrix. The dimension, when emphasized,
is specified in subscripts, e.g., 1d, Id. Given vector v ∈ Rd,
let ‖v‖ denote its `2 norm and ‖v‖P := (v>Pv)1/2 for
positive semidefinite P ∈ Rd×d. Given symmetric matrices
P and Q, P < Q or Q 4 P means P − Q is positive
semidefinite. Semicolon “;” denotes stacking vectors or ma-
trices vertically. For a collection of d-dimensional vectors
(vt)

j
t=i, let vi:j := [vi; vi+1; . . . ; vj ] ∈ Rd(j−i+1) denote

the concatenation along the column. For random variable
η, let ‖η‖ψβ denote its β-sub-Weibull norm, a special case
of Orlicz norms (Zhang & Wei, 2022), with β = 1, 2 corre-
sponding to subexponential and sub-Gaussian norms. For
matrix A, let σmin(A), ‖A‖2, ‖A‖F , and ‖A‖∗ denote its
minimum eigenvalue, minimum singular value, operator
norm (induced by vector `2 norms), Frobenius norm, and
nuclear norm, respectively. 〈·, ·〉F denotes the Frobenius
inner product between matrices. For square matrix A, let
λmin(A) be its minimum eigenvalue and ρ(A) be its spec-
tral radius. Define α(A) := supk≥0 ‖Ak‖2ρ(A)−k. Let
svec(·) denote flattening a symmetric matrix by stacking
its columns; it does not repeat the off-diagonal elements,
but scales them by

√
2 (Schacke, 2004). We adopt the stan-

dard use ofO(·),Ω(·),Θ(·), where the hidden constants are
dimension-free but can depend on system parameters.

2. Problem setup
A partially observable linear time-invariant (LTI) dynamical
system is described by

xt+1 = A∗xt +B∗ut + wt, yt = C∗xt + vt, (2.1)

with state xt ∈ Rdx , observation yt ∈ Rdy , and control ut ∈
Rdu for all t ≥ 0. Process noises (wt)t≥0 and observation
noises (vt)t≥0 are i.i.d. zero-mean Gaussian random vectors
with covariance matrices Σw and Σv, respectively, and the
two sequences are mutually independent. The quadratic cost
function is given by

c(x, u) = ‖x‖2Q∗ + ‖u‖2R∗ , (2.2)

where Q∗ < 0 and R∗ � 0.

A policy/controller π determines an action/control input ut
at time step t based on the history [y0:t;u0:(t−1)] up to this
time step. For t ≥ 0, ct := c(xt, ut) denotes the cost at
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time step t. Given a policy π, let

Jπ := lim sup
T→∞

E
[

1

T

∑T−1

t=0
ct

]
denote the average expected cost. The objective of LQG
control is to find a policy π such that Jπ is minimized.

We make the following standard assumptions.
Assumption 2.1. System dynamics (2.1) and
cost (2.2) satisfy:

1. The system is stable, that is, ρ(A∗) < 1.
2. (A∗, B∗) is ν-controllable for some ν > 0, that is, the

controllability matrix

Φc(A
∗, B∗) := [B∗, A∗B∗, . . . , (A∗)dx−1B∗]

has rank dx and σmin(Φc(A
∗, B∗)) ≥ ν.

3. (A∗, C∗) is ω-observable for some ω > 0, that is, the
observability matrix

Φo(A
∗, C∗) := [C∗;C∗A∗; . . . ;C∗(A∗)dx−1]

has rank dx and σmin(Φo(A
∗, C∗)) ≥ ω.

4. (A∗,Σw) is υ-controllable for some υ > 0.
5. (A∗, (Q∗)1/2) is µ-observable for some µ > 0.
6. Σv < σ2

vI for some σv > 0; this can always be
achieved by inserting Gaussian noises with full-rank
covariance matrices to the observations.

7. R∗ < r2I for some r > 0.
8. The operator norms of A∗, B∗, C∗, Q∗, R∗, Σw, Σv,

Σ0 are O(1) and the singular value lower bounds ν, ω,
ν, υ, σv , r are Ω(1).

If the system parameters (A∗, B∗, C∗, Q∗, R∗,Σw,Σv) are
known, the optimal policy is obtained by combining the
Kalman filter

z∗t+1 = A∗z∗t +B∗ut + L∗(yt+1 − C∗(A∗z∗t +B∗ut))
(2.3)

with the optimal feedback gain K∗ of the linear quadratic
regulator (LQR) such that ut = K∗z∗t , where L∗ is the
Kalman gain, and at the initial time step, we can set, e.g.,
z∗0 = L∗y0. This fact is known as the separation principle,
and the Kalman gain and optimal feedback gain are given by

L∗ = S∗(C∗)>(C∗S∗(C∗)> + Σv)
−1, (2.4)

K∗ = − ((B∗)>P ∗B∗ +R)−1(B∗)>P ∗A∗, (2.5)

where S∗ and P ∗ are determined by their respective discrete-
time algebraic Riccati equations (DAREs):

S∗ = A∗
(
S∗−S∗(C∗)>(C∗S∗(C∗)>

+ Σv)
−1C∗S∗

)
(A∗)> + Σw, (2.6)

P ∗ = (A∗)>
(
P ∗−P ∗B∗((B∗)>P ∗B∗

+R∗)−1(B∗)>P ∗
)
A∗ +Q∗. (2.7)

Assumptions 2.1.2 to 2.1.7 guarantee the existence and
uniqueness of positive definite solutions S∗ and P ∗; As-
sumption 2.1.8 further guarantees that their operator norms
are O(1) and minimum singular values are Ω(1).

We consider data-driven control where the LQG model is
unknown, i.e., (A∗, B∗, C∗, Q∗,Σw,Σv) are unknown. For
simplicity, we assume R∗ is known, though our approaches
can be readily extended to the case where it is unknown.

2.1. Latent model of LQG

The stationary Kalman filter (2.3) asymptotically produces
the optimal state estimation in the sense of minimum mean
squared errors. With a finite horizon, however, the optimal
state estimator is time-varying, given by

z∗t+1 = A∗z∗t +B∗ut + L∗t+1(yt+1 − C∗(A∗z∗t +B∗ut)),
(2.8)

where L∗t is the time-varying Kalman gain, converging to
L∗ as t→∞. This convergence is equivalent to that of error
covariance matrix E[(xt − z∗t )(xt − z∗t )>], which happens
exponentially fast (Komaroff, 1994). Hence, for simplicity,
we assume this error covariance matrix is stationary at the
initial time step by the choice of z∗0 so that L∗t = L∗ for
t ≥ 1; this assumption is common in the literature (Lale
et al., 2020; 2021; Jadbabaie et al., 2021). The innovation
term it+1 := yt+1−C∗(A∗z∗t +B∗ut) is independent of the
history (y0, u0, y1, u1, . . . , yt+1) and (it)t≥1 are mutually
independent. The following proposition taken from (Tian
et al., 2022, Proposition 1) represents the system in terms
of the state estimates obtained by the Kalman filter, which
we refer to as the latent model.

Proposition 2.2. Let (z∗t )t≥1 be state estimates given by
the time-varying Kalman filter. Then, for t ≥ 0,

z∗t+1 = A∗z∗t +B∗ut + L∗it+1,

where L∗it+1 is independent of z∗t and ut, i.e., the state es-
timates follow the same linear dynamics with noises L∗it+1.
The cost at step t can be reformulated as functions of the
state estimates by

ct = ‖z∗t ‖2Q∗ + ‖ut‖2R∗ + b∗ + γt + ηt,

where b∗ > 0, and γt = ‖z∗t − xt‖2Q∗ − b∗, ηt =〈
z∗t , xt−z∗t

〉
Q∗

are both zero-mean subexponential random

variables. Moreover, b∗ = O(1) and ‖γt‖ψ1
= O(d

1/2
x );

if control ut ∼ N (0, σ2
uI) for t ≥ 0, then we have

‖ηt‖ψ1
= O(d

1/2
x ).

Proposition 2.2 shows that the dynamics of the state esti-
mates computed by the time-varying Kalman filter is the
same as the original system up to noises; the costs are also
the same, up to constants and noises. Hence, a latent model
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can be parameterized by (A,B,Q,R∗). A stationary latent
policy is a linear controller ut = Kzt on latent state zt,
parameterized by feedback gain K ∈ Rdu×dx .

The latent model enables us to find a good latent policy.
To learn such a latent model and to deploy a latent pol-
icy in the original partially observable system, we need
a representation function. Let A

∗
= (I − L∗C∗)A∗ and

B
∗

= (I − L∗C∗)B∗. Then, the Kalman filter can be writ-
ten as z∗t+1 = A

∗
z∗t +B

∗
ut+L∗yt+1. For t ≥ 0, unrolling

the recursion gives

z∗t = A
∗
(A
∗
z∗t−2 +B

∗
ut−2 + L∗yt−1) +B

∗
ut−1 + L∗yt

= [(A
∗
)t−1L∗, . . . , L∗]y1:t

+ [(A
∗
)t−1B

∗
, . . . , B

∗
]u0:(t−1) + (A

∗
)tz∗0

=: M∗t [y1:t;u0:(t−1); z
∗
0 ],

where M∗t ∈ Rdx×(tdy+tdu+dx). This means the represen-
tation function can be parameterized as linear mappings
for full histories (with y0 replaced by z∗0 ). Despite the sim-
plicity, the input dimension of the function grows linearly
in time, making estimating the state using the full history
intractable for large t; nor is it necessary, since the impact
of old data decreases exponentially. Under Assumption 2.1,
ρ(A

∗
) < 1 (Bertsekas, 2012, Appendix E.4). With an H-

step truncated history, the state estimate can be written as

z∗t = [(A
∗
)H−1L∗, . . . , L∗]y(t−H+1):t

+ [(A
∗
)H−1B

∗
, . . . , B

∗
]u(t−H):(t−1) + δt

=: M∗[y(t−H+1):t;u(t−H):(t−1)] + δt,

where δt = (A
∗
)Hz∗t−H , whose impact decades expo-

nentially in H and can be neglected for sufficiently large
H , since z∗t−H converges to a stationary distribution and
its norm is bounded with high probability. Hence, the
representation function that we aim to recover is M∗ ∈
Rdx×H(dy+du), which takes as input the H-step history
ht = [y(t−H+1):t;u(t−H):(t−1)]. Henceforth, we let dh :=
H(dy + du). Then, a representation function is parameter-
ized by matrix M ∈ Rdx×dh .

Overall, a policy is a combination of a representation func-
tion M and a feedback gain K in the latent model, denoted
by π = (M,K). Learning to solve LQG control can thus
be achieved by: 1) learning representation function M ; 2)
extracting latent model (A,B,Q,R∗); and 3) finding the op-
timal K by planning in the latent model. Next, we introduce
our approach following this pipeline.

3. Method
In practice, latent model learning methods collect trajecto-
ries by interacting with the system with an online policy;
the trajectories are used to improve the learned latent model,

Algorithm 1 Direct latent model learning for LQG control
1: Input: length T , history length H , noise magnitude σu
2: Collect a trajectories of length T + H using ut ∼
N (0, σ2

uI), for t ≥ 0, to obtain Draw:

(y0, u0, c0, y1, u1, c1, . . . , yT+H) (3.1)

3: Estimate the state representation function and cost con-
stants by solving

N̂ , b̂0 ∈ argmin
N=N>,b0

∑T+H−1

t=H

(∥∥ht∥∥2

N
+ b0 − ct

)2
,

(3.2)

where ct :=
∑t+dx−1
τ=t (cτ − ‖uτ‖2R∗)

4: Find M̂ ∈ Rdx×H(dy+du) such that M̂>M̂ is the best
approximation of N̂ in the Frobenius norm

5: Compute ẑt = M̂ [y(t−H+1):t;u(t−H):(t−1)] for all t ≥
H , so that the data are converted to Dstate:

(ẑH , uH , cH , . . . , ẑT+H−1, uT+H−1, cT+H−1, ẑT+H)

6: Run SYSID or COSYSID to obtain dynamics (Â, B̂)
7: Estimate the cost function by solving

Q̃, b̂ ∈ argmin
Q=Q>,b

∑T+H−1

t=H
(‖ẑt‖2Q + b− ct)2,

8: Project Q̃ to positive semidefinite matrices to obtain Q̂
9: Find feedback gain K̂ from (Â, B̂, Q̂, R∗) by

DARE (2.7) and (2.5)
10: Return: policy π̂ = (M̂, K̂)

which in turn improves the policy. In LQG, it is known that
the simple setup allows us to learn a good latent model from
a single trajectory, collected using zero-mean Gaussian in-
puts; see e.g., (Oymak & Ozay, 2019). This is also how we
assume the data are collected. We note that our results also
apply to data from multiple independent trajectories using
the same zero-mean Gaussian inputs.

In direct latent model learning, state representations are
learned by predicting costs. To learn the transition function
in the latent model, two approaches are explored in the lit-
erature. The first approach explicitly minimizes transition
prediction errors (Subramanian et al., 2020; Hafner et al.,
2019a). Algorithmically, the overall loss is a combination
of cost and transition prediction errors. The second ap-
proach, which MuZero takes, learns transition implicitly, by
minimizing cost prediction errors at future states generated
from the transition function (Oh et al., 2017; Schrittwieser
et al., 2020). Algorithmically, the overall loss aggregates
the cost prediction errors across multiple time steps. In
both approaches, the coupling of different terms in the loss
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makes finite-sample analysis difficult. As observed in (Tian
et al., 2022), the special structure of LQG allows us to
learn the representation function independently of learning
the transition function. This allows us to formulate both
approaches under the same direct latent model learning
framework (Algorithm 1).

Algorithm 1 consists of three main steps. Lines 3 to 5 corre-
spond to cost-driven representation learning. Lines 6 to 8
correspond to latent model learning, where the system dy-
namics can be identified either explicitly, by ordinary least
squares (SYSID), or implicitly, by future cost prediction
(COSYSID, Algorithm 2). Line 8 corresponds to latent pol-
icy optimization; in LQG this amounts to solving a DARE.
Below we elaborate on cost-driven representation learning,
SYSID, and COSYSID in order.

3.1. Cost-driven representation learning

The procedure of cost-driven representation learning is al-
most identical to that in (Tian et al., 2022). The main idea
to is perform quadratic regression (3.2) to dx-step cumu-
lative costs; these correspond to the value prediction in
MuZero. By the µ-observability of (A∗, (Q∗)1/2) (Assump-
tion 2.1.5), the cost observability Gramian

Q
∗

:=
∑dx−1

t=0
((A∗)t)>Q∗(A∗)t < µ2I.

Under zero control and zero noise, starting from x, the
dx-step cumulative cost is precisely ‖x‖2

Q
∗ . Hence, N̂ es-

timates N∗ = (M∗)>Q
∗
M∗; up to an orthonormal trans-

form, M̂ recovers M∗′ := (Q
∗
)1/2M∗, the representation

function under an equivalent parameterization, termed the
normalized parameterization in (Tian et al., 2022), where

A∗′ = (Q
∗
)1/2A∗(Q

∗
)−1/2, B∗′ = (Q

∗
)1/2B,

C∗′ = C∗(Q
∗
)−1/2, w′t = (Q

∗
)1/2wt,

Q∗′ = (Q
∗
)−1/2Q∗(Q

∗
)−1/2.

Due to the following proposition, the algorithm does not
need to know the dimension dx of the latent model; it can
discover dx from the eigenvalues of N̂ .
Proposition 3.1. Under i.i.d. control inputs ut ∼
N (0, σ2

uI) for t ≥ 0, σmin(Cov(z∗t )) = Ω(ν2) for t ≥ dx,
where ν is defined in Assumption 2.1.3; as long as H ≥
log(aα(A

∗
))

log(ρ(A
∗
)−1)

for some dimension-free constant a > 0, M∗

has rank dx and σmin(M∗) ≥ Ω(νH−1/2).

Proof. For t ≥ dx, unrolling the Kalman filter gives

z∗t = A∗z∗t−1 +B∗ut−1 + L∗it

= A∗(A∗z∗t−2 +B∗ut−2 + L∗it−1) + L∗it

= [B∗, . . . , (A∗)dx−1B∗][ut−1; . . . ;ut−dx ] + (A∗)dxz∗t−dx

+ [L∗, . . . , (A∗)dx−1L∗][it; . . . ; it−dx+1],

where (uτ )t−1
τ=t−dx , z∗t−dx and (iτ )tτ=t−dx+1 are inde-

pendent. For H ≥ dx, the matrix multiplied by
[ut−1; . . . ;ut−dx ] is precisely the controllability matrix
Φc(A

∗, B∗). Then,

Cov(z∗t ) = E[z∗t (z∗t )>]

< Φc(A
∗, B∗)

· E[[ut−1; . . . ;ut−`][ut−1; . . . ;ut−`]
>]Φ>c (A∗, B∗)

= σ2
uΦc(A

∗, B∗)Φ>c (A∗, B∗).

By the ν-controllability of (A∗, B∗), Cov(z∗t ) is full-rank
and σmin(Cov(z∗t )) ≥ σ2

uν
2. Since z∗t = M∗ht + δt,

Cov(M∗ht) = Cov(z∗t − δt)
= Cov(z∗t ) + Cov(δt)

− Cov(z∗t , δt)− Cov(δt, z
∗
t ).

By Lemma C.1,

‖Cov(z∗t , δt)‖2 = ‖Cov(δt, z
∗
t )‖2

≤ ‖Cov(z∗t )1/2‖2‖Cov(δt)
1/2‖2.

Hence, by Weyl’s inequality,

λmin(Cov(M∗ht))

≥ λmin(Cov(z∗t ))− 2‖Cov(z∗t )1/2‖2‖Cov(δt)
1/2‖2.

Since δt = (A
∗
)Hz∗t−H and Cov(z∗t ) = O(1), there exists

some dimension-free constant a > 0 such that as long as
H ≥ log(aα(A

∗
))

log(ρ(A
∗
)−1)

,

λmin(Cov(M∗ht)) ≥ σ2
uν

2/2.

On the other hand,

E[M∗hth
>
t (M∗)>] 4 ‖E[hth

>
t ]‖2M∗(M∗)>.

Since ht = [y(t−H+1):t;u(t−H):(t−1)] and (Cov(yt))t≥0,
(Cov(ut))t≥0 have O(1) operator norms, by Lemma C.2,
Cov(ht) = E[hth

>
t ] = O(H). Hence,

0 < σ2
uν

2/2 ≤ σmin(Cov(z∗t )) = O(H)σ2
dx(M∗t ).

This implies that rank(M∗t ) = dx and σmin(M∗t ) =
Ω(νH−1/2).

Proposition 3.1 is an adaption of (Tian et al., 2022, Propo-
sition 2) to the infinite-horizon LTI setting. Necessarily,
this implies that by our choice of H , dh = H(dy + du) ≥
dx. Moreover, since Q

∗
< µ2I , N∗ = (M∗)>Q

∗
M∗

is a dh × dh matrix with rank dx, and λ+
min(N∗) ≥

λmin(Q
∗
)λ2

min(M∗) = Ω(µ2ν2H−1). Hence, if N̂ is suf-
ficiently close to N∗, by setting an appropriate threshold
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on the eigenvalues of N̂ , the dimension of the latent model
equals the number of eigenvalues above it.

To find an approximate factorization of N̂ , let N̂ = UΛU>

be its eigenvalue decomposition, where the diagonal ele-
ments of Λ are listed in a descending order, and U is an
orthonormal matrix. Let Λdx be the left-top block of Λ and
Udx be the left dx columns of U . By the Eckart-Young-
Mirsky theorem, M̂ = max(Λdx , 0)1/2U>dx is the best ap-
proximate factorization of N̂ among dx × dh matrices in
terms of the Frobenius norm approximation error.

In the next two subsections, we move on to discuss learning
latent dynamics, including the explicit approach SYSID and
implicit approach COSYSID.

3.2. Explicit learning of system dynamics

Explicit learning of the system dynamics simply minimizes
the transition prediction error in the latent space (Subrama-
nian et al., 2020), or more generally, statistical distances
between the predicted and estimated distributions of the next
latent state, like the KL divergence (Hafner et al., 2019a). In
linear systems, it suffices to use the ordinary least squares
as the SYSID procedure, that is, to solve

(Â, B̂) ∈ argmin
A,B

∑T+H−1

t=H
‖Aẑt +But − ẑt+1‖2.

In this linear regression, if (ẑt)t≥H are the optimal state
estimates (z∗t )t≥H (2.8), then (Simchowitz et al., 2018) has
shown finite-sample guarantees for (Â, B̂). Here, ẑt con-
tains errors resulting from the representation function M̂
and the residual error δt, but as long as T and H are large
enough, SYSID still has a finite-sample guarantee, as will be
shown in Lemma E.1. We refer to the algorithm that instanti-
ates Algorithm 1 with SYSID as COREL (COst-driven state
REpresentation Learning). As the time-varying counterpart
in (Tian et al., 2022), it provably solves learning for LQG
control, as will be shown in Theorem F.1.

3.3. Implicit learning of system dynamics
(MuZero-style)

An important ingredient of latent model learning in
MuZero (Schrittwieser et al., 2020) is to implicitly learn
the transition function by minimizing the cost prediction
error at future latent states generated from the transition
function. Let zt = Mht denote the latent state given by
representation function M at step t. Let zt,0 = zt and
zt,i+1 = Azt,i + But for i ≥ 0 be future latent states pre-
dicted by dynamics (A,B). For a trajectory of length T+H
like (3.1), the loss that considers ` steps into the future is
given by∑T+H−K−1

t=H

∑`

i=0
(‖zt,i‖2Q + ‖ut‖2R∗ + b− ct)2.

Algorithm 2 COSYSID: Cost-driven system identification

1: Input: data Draw, representation function M̂
2: Estimate the system dynamics by

N̂1, b̂1 ∈ argmin
N1=N>1 ,b1

T+H−1∑
t=H

(
‖[ht;ut]‖2N1

+ b1 − ct+1

)2
(3.5)

3: Find M̂1 ∈ Rdx×(Hdy+(H+1)du) such that M̂>1 M̂1 is
the best approximation of N̂1 in the Frobenius norm

4: Solve [ÃM̂ , B̃] = M̂1 for Ã, B̃
5: Find alignment matrix Ŝ0 by solving linear regression

from (M̂1[ht;ut])
T+H−1
t=H to (ẑt+1)T+H−1

t=H

6: Return: system dynamics estimate (Â, B̂) =

(S0Ã, S0B̃)

This loss involves powers of A from A2 to A` and is not
amenable to analysis. In LQG, our finding is that it suffices
to take ` = 1. As mentioned in §1, MuZero also predicts op-
timal values and optimal actions; in LQG, to handleQ∗ 6� 0,
like cost-driven representation learning (see §3.1), we adopt
the cumulative costs and use the normalized parameteriza-
tion. Thus, the optimization problem we aim to solve is
given by

min
M,A,B,b

∑T+H−1

t=H

(
(‖Mht‖2 + b− ct)2

+ (‖AMht +But‖2 + b− ct+1)2
)
.

(3.3)

To convexify the optimization problem (3.3), we define
N := M>M and N ′ := [AM,B]>[AM,B]. Then, (3.3)
becomes

min
N,N1,b

∑T+H−1

t=H

(
(‖ht‖2N + b− ct)2

+ (‖[ht;ut]‖2N1
+ b− ct+1)2

)
.

(3.4)

This minimization problem is convex in N , N1 and b, and
has a closed-form solution; essentially, it consists of two
linear regression problems coupled by b. Since constant b is
merely a term accounting for the estimation error and not
part of the representation function, we can decouple the two
regression problems by allowing b to take different values in
them. This further simplifies the algorithm: the first regres-
sion problem is exactly cost-driven representation learning
(§3.1), and the second is cost-driven system identification
(COSYSID, Algorithm 2). The algorithm that instantiates
Algorithm 1 with COSYSID is called COREDYL (COst-
driven state REpresentation and DYnamic Learning). Like
COREL, this MuZero-style latent model learning method
provably solves learning for LQG control, as we shall show
in Theorem F.1.

COSYSID has similar steps to cost-driven representation
learning (§3.1), except that in Line 5, it requires fitting a



Toward Understanding Latent Model Learning in MuZero: A Case Study in LQG Control

matrix Ŝ0. This is because approximate factorization steps
recover M∗ and M∗1 up to orthonormal transforms, but
there is no guarantee for the two orthonormal matrices to
be the same; we need to fit Ŝ0 to align their coordinates.
We note that although COSYSID needs the output M̂ from
cost-driven representation learning, the two quadratic re-
gressions (3.2) and (3.5) are not coupled and can be solved
in parallel.

4. Theoretical guarantees
The following Theorem 4.1 shows that both COREL and
COREDYL are guaranteed to solve unknown LQG control.
Theorem 4.1. Given an unknown LQG problem satisfy-
ing Assumption 2.1, let M∗′ and (A∗′, B∗′, Q∗′, R∗) be
the optimal state representation function and the true sys-
tem parameters under the normalized parameterization.
For a given p ∈ (0, 1), if we run COREL or COREDYL
for T ≥ poly(dx, dy, du, log(T/p))), sufficiently large H ,
and σu = Θ(1), then there exists an orthonormal matrix
S ∈ Rdx×dx , such that with probability at least 1− p, the
representation function M̂ satisfies

‖M̂ − SM∗′‖2 = O(poly(H, dx, du, dy, log(T/p))T−1/2),

and the suboptimality gap of feedback gain K̂ in system
(SA∗′S>, SB∗′, SQ∗′S>, R∗) is

O(poly(H, dx, du, dy, log(T/p))T−1).

We defer the proof of Theorem 4.1 to §F. Compared with
common system identification methods based on learning
Markov parameters (Oymak & Ozay, 2019; Simchowitz
et al., 2019), the error bounds of the system parameters
produced by COREDYL (or COREL) have the same depen-
dence on T , but worse dependence on system dimensions.
Moreover, to establish persistency of excitation, COREDYL
(or COREL) requires a larger burn-in period. These relative
sample inefficiencies are the price we pay for direct latent
model learning, which is only supervised by scalar-valued
costs that are quadratic in the history, instead of vector-
valued observations that are linear in the history. Hence,
we have to address the more challenging quadratic regres-
sion problem, which lifts the dimension of the optimization
problem. On the other hand, direct latent model learning
avoids learning the reconstruction functionC∗ and can learn
task-relevant representations in more complex settings, as
demonstrated by empirical studies.

4.1. Persistency of excitation

Central to the analysis of COREL and COREDYL is the
finite-sample characterization of the quadratic regression
problem. To solve (3.2), notice that

‖ht‖2N =
〈
N,hth

>
t

〉
F

=
〈
svec(N), svec(hth

>
t )
〉
,

so this quadratic regression is essentially a linear regression
with correlated covariates that are products of Gaussians. A
major difficulty in the analysis is to establish persistency of
excitation for (svec(hth

>
t ))t≥H , meaning that the minimum

eigenvalue of the design matrix grows linearly in the size of
the data. Formally, we need the following lemma.

A linear lower bound on λmin(
∑T+H−1
t=H hth

>
t ) is a known

result for the identification of partially observable linear
dynamical systems (Tsiamis et al., 2022). In our case, how-
ever, elements of svec(hth

>
t ) are products of Gaussians,

making the analysis difficult. If (ht)t≥H are independent,
which is the case if they are from multiple trajectories, the
result has been established in (Jadbabaie et al., 2021; Tian
et al., 2022). It can also be proved with the matrix Azuma
inequality (Tropp, 2012). Here, we need to aggregate de-
pendent data to estimate a set of stationary parameters. The
difficulty we face results from both products of Gaussians
and the data dependence.

In principle, given enough burn-in time, state xt, and hence
observation yt and truncated history ht, converge to steady-
state distributions, and samples with an interval of the or-
der of mixing time are approximately independent, so in-
tuitively, a linear lower bound is correct. But a proof of
this type incurs dependence on mixing time; to eschew such
dependence, (Simchowitz et al., 2018) introduces the small-
ball method. We adopt the same route, while developing
different arguments to handle the products of Gaussians.

Let us recall the block martingale small-ball condition.
Definition 4.2 (Block martingale small ball (BMSB) condi-
tion (Simchowitz et al., 2018, Definition 2.1)). Let (ft)t≥1

be a stochastic process in Rd adapted to filtration (Ft)t≥1.
We say (ft)t≥1 satisfies (k,Γ, q)-BMSB condition for k ∈
N+, Γ < 0 and q > 0, if for any t ≥ 1, for any fixed unit
vector v ∈ Rd, 1

k

∑k
i=1 P(| 〈ft+i, v〉 | ≥ ‖v‖Γ | Ft) ≥ q

almost surely.

The key Lemma 4.3 below shows that (svec(hth
>
t ))t≥H

satisfies the BMSB condition.
Lemma 4.3. Let ht = [y(t−H+1):t;u(t−H):(t−1)] be
the H-step history at time step t in system (2.1) with
ut ∼ N (0, σ2

uI) for t ≥ 0. Define filtration Ft :=
σ(x0, v0, u0, w0, v1, . . . , ut−1, wt−1, vt). Define ft :=
svec(hth

>
t ), adapted to (Ft)t≥H . As long as H ≥

a log(α(A∗) log(T/p))
log(ρ(A∗)−1) , (ft)t≥H is (k, γ2I, q)-BMSB for k =

4H , γ = Θ(1/dh), and q = Θ(1/d2
h), where Θ(·) hides

the dependence on dimension-free constants.

Then, following the analysis in (Simchowitz et al., 2018,
Appendix D), we can show that as long as T is large enough,
with high probability,

λmin

(∑T+H−1

t=H
ftf
>
t

)
= Ω(γ2q2T ) = Ω(T/d6

h),
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which establishes the persistency of excitation.

The full proof of Lemma 4.3 is deferred to Appendix D.1.
Crucial for its proof is the following Lemma 4.4, which
might be of independent interest.

Lemma 4.4. Let x be a d-dimensional zero-smean Gaus-
sian random vector with covariance Σ. Let A be d× d sym-
metric matrix with unit Frobenius norm. Then E[|x>Ax|] ≥
aλmin(Σ)/d for some absolute constant a > 0.

4.2. Main ideas in proving Theorem F.1

Below we sketch the ideas of proving Theorem F.1 for
COREDYL.

For the quadratic regression problems (3.2) and (3.5), By
establishing persistency of excitation (Lemma D.1) and us-
ing sub-Weibull martingale concentration (Lemma C.4), we
can show that

‖N̂ −N∗‖F = O((H(dy + du))7d3/2
x T−1/2 log4(T/p)),

‖N̂1 −N∗1 ‖F
= O((H(dy + du) + dx)7d3/2

x T−1/2 log4(T/p));

our choice of H ensures that the truncation errors are ab-
sorbed into these bounds. By the Procrustes-type lemma
in (Tu et al., 2016, Lemma 5.4), these two bounds im-
ply bounds of the same order on ‖M̂ − SM∗′‖F and
‖M̂1 − S1M

∗′
1 ‖F , respectively, for some orthonormal ma-

trices S and S1. Thus, ‖B̃ − S1B
∗′‖2 is of the same or-

der as the bound on ‖N̂1 −N∗1 ‖2, and by the perturbation
bounds of the Moore-Penrose inverse (Wedin, 1973), so is
‖Ã− S1A

∗′S>‖2.

Remark. Although the next state zt,1 generated by (Ã, B̃)
yields the correct cumulative cost at the next time step, it
mismatches the next state ẑt+1 generated by M̂ using ht+1

by an orthonormal transform S0 = SS>1 ; that is, zt,1 ap-
proximates S>0 ẑt+1 instead of ẑt+1. This happens because
the cost is invariant to orthonormal transforms of the latent
states, and by only predicting one step into the future, the or-
thonormal transforms from the two quadratic regressions are
not guaranteed to be the same. MuZero bypasses this prob-
lem by predicting multiple steps; here we simply calculate
this alignment matrix S0 by Line 5 in Algorithm 2.

As explained, we need to fit matrix S0 = SS>1 to en-
sure the next states generated by (Â, B̂) align with those
by M̂ . With an analysis of perturbed linear regression
(Lemma E.1), we find that ‖Ŝ0−S0‖2 = O((H(dy +du)+

dx)15/2d
5/2
x T−1/2 log6(T/p)). Therefore, the bounds on

‖Â − SA∗S>‖2 and ‖B̂ − SB∗‖2 are of the same order.
Line 7 in Algorithm 1 requires an analysis of perturbed
quadratic regression (Lemma D.1), which guarantees that

‖Q̂− SQ∗S>‖F = O((H(dy + du)dx)15/2T−1/2 log6(T/p)).

Figure 1. Optimality of the learned policy versus the length of the
trajectory. Each dot averages the results of five independent runs.

Hence, ‖Â − SA∗S>‖2, ‖B̂ − SB∗S>‖2
and ‖Q̂ − SQ∗S>‖2 are all O((H(dy +
du)dx)15/2T−1/2 log6(dxT/p)).

Lastly, we invoke the result on certainty equivalent LQR
in (Mania et al., 2019) to certify the suboptimality gap of
K̂ obtained from (Â, B̂, Q̂, R∗). This certainty equivalent
controller can also be replaced by a robust one (Dean et al.,
2020). Let K∗′ denote the optimal controller under the
normalized parameterization. Then, for a large enough
burn-in period, the certainty-equivalent controller satisfies
that ‖K̂ −K∗′‖2 is of the same order as system parameter
errors. Note that policy K∗M∗ in the original system is
independent of the latent model parameterization, and we
have that ‖K̂M̂ −K∗M∗‖2 is of the same order.

5. Numerical results
Although this work is theoretical in nature, we conduct
preliminary numerical experiments by testing COREL on
a mass-spring-damper system, with mass 1 kg, stiffness 10
N/m and damping coefficient 100 kg/s. We discretize time
with the forward Euler method using 0.01 s intervals. The
state of the system is the position and the velocity of the
mass, with the observation being the position only. The
scalar control input is the external force. We take Q = I
and R = 1 in the cost function. We set H = 5 and measure
the performance by the distance between K̂M̂ and K∗M∗.
In all experiments, we warm up the system by 1000 steps.

The simulation results are summarized in Figure 1. In gen-
eral, we observe the decrease of the distance to the optimal
policy as the length of the trajectory increases. The sys-
tem has dx = 2. Besides dz = 2, we experiment with
dz = 1 and dz = 3 to examine the impact of dimension
mismatch. In this example, we see that dz = 1 does not
produce a meaningful policy and dz = 3 performs better
than the dz = 2 baseline. We note that the these results are
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preliminary, and this phenomenon of “blessing of overpa-
rameterization” could be worthy of further investigation.

6. Conclusion and future work
We studied direct latent model learning for solving unknown
infinite-horizon time-invariant LQG control. We established
finite-sample guarantees for two methods, which differ in
whether the latent dynamics is learned explicitly or implic-
itly, with the latter being closer to that used in MuZero
(Schrittwieser et al., 2020). For MuZero-style latent model
learning, our analysis identifies a coordinate misalignment
problem, suggesting the value of multi-step future prediction.
A limitation of this work is that we only consider state rep-
resentation based on truncated histories, i.e., frame stacking,
as used in MuZero; the recursive form of the representation
function, as the Kalman filter, is also used empirically (Ha
& Schmidhuber, 2018; Hafner et al., 2019a), and might be
worth further investigation.

Many questions remain to be answered in representation
learning for control. Provable generalization of direct latent
model learning to nonlinear observations or dynamics is
a natural consideration. Moreover, with the ubiquity of
visual perception in real-world control systems, what if we
have a varying observation function or multiple observation
functions, modeling images taken from different angles? In
reality, most of the time we do not have a well-defined cost
function; learning task-relevant state representations from
demonstrations is another intriguing direction.
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A. Additional related work
(Oymak & Ozay, 2019) studies the identification of partially observable linear dynamical systems from a single trajectory,
which presents a finite-sample analysis of identifying the Markov parameter and a perturbation analysis of the Ho-Kalman
algorithm. (Simchowitz et al., 2019) relaxes the stability requirement to marginal stability by using prefiltered least squares
to identify the Markov parameter. The method in (Zheng & Li, 2020) applies to unstable systems but requires multiple
trajectories. Since the Markov parameter maps control input histories to observations, these methods do not work with costs
and use the Markov parameter as an intermediate step to identify the system. By contrast, our methods, entirely driven by
the costs and closely connected with empirical methods, directly learn the representation function and the latent model.
Directly learning the latent model connects our work to the identification of fully observable linear dynamical systems.
(Simchowitz et al., 2018) introduces small-ball conditions to handle dependent data and characterizes the statistical rates for
stable and unstable systems, both proving to be useful for our analysis.

Online control of partially observable linear dynamical systems is considered in (Lale et al., 2020; 2021) for stochastic noises
and in (Simchowitz et al., 2020) for nonstochastic noises. (Zheng et al., 2021) considers end-to-end sample complexity and
is closest to our setup. All these methods rely on the estimation of Markov parameters. For a discussion of the literature in
more details and breadth, we refer the reader to the recent survey (Tsiamis et al., 2022).

B. Additional discussions on COSYSID

In COSYSID (Algorithm 2), the covariates of quadratic regression in (3.5) are ([ht;ut])t≥H . One may wonder if we can
pursue an alternative approach by fixing M to be M̂ , and using ([ẑt;ut])t≥H as covariates, which have a much lower
dimension, though the two quadratic regressions cannot be solved in parallel anymore. Specifically, the new quadratic
regression we need to solve is given by

N̂2, b̂2 ∈ argmin
N2=N>2 ,b2

∑T+H−1

t=H

(
‖[ẑt;ut]‖2N2

+ b2 − ct+1

)2
,

where ẑt = M̂ht is an approximation of Sz∗t . The ground truth for N̂2 is N∗2 = [SA∗S>, SB∗]>[SA∗S>, SB∗], so its
approximate factorization recovers [S3A

∗S>, S3B
∗] for some orthonormal matrix S3. In a similar way to COSYSID, we still

need to fit an alignment matrix S2 = SS>3 to align the coordinates. Let Ã, B̃ denote the system parameters recovered from
N̂2. The linear regression we now need to solve is from ([Ã, B̃][ẑt;ut])

T+H−1
t=H to (ẑt+1)T+H−1

t=H . However, without further
assumptions, [A∗, B∗] does not necessarily have full row rank, and hence, neither does [Ã, B̃], in which case recovering the
entire S2 is impossible.

C. Auxiliary results
C.1. Basic inequalities involving random vectors

Lemma C.1 ((Tian et al., 2022, Lemma 3)). Let x and y be random vectors defined on the same probability space. Then,
‖Cov(x, y)‖2 ≤ ‖Cov(x)1/2‖2‖Cov(y)1/2‖2.

Lemma C.2 ((Tian et al., 2022, Lemma 2)). Let x, y be random vectors of dimensions dx, dy, respectively, defined on the
same probability space. Then, ‖Cov([x; y])‖2 ≤ ‖Cov(x)‖2 + ‖Cov(y)‖2.

C.2. Lower bound about Gaussian quadratic forms

Lemma C.3. Let z1, z2, . . . , zd be independent standard Gaussian random variables. Let v = [v1, v2, . . . , vd]
> ∈ Rd be a

unit vector. There exists an absolute constant a > 0, such that for any such v, E[|
∑d
i=1 viz

2
i |] ≥ a/d.

Proof of Lemma C.3. Let sign(·) denote the sign function. Let I+ := {i : sign(vi) = 1, 1 ≤ i ≤ d} and I− := {i :
sign(vi) = −1, 1 ≤ i ≤ d} be the index sets of positive and negative values. Then,

E
[∣∣∣∑d

i=1
viz

2
i

∣∣∣] = E
[∣∣∣∑d

i=1
|vi| sign(vi)z

2
i

∣∣∣] = E
[∣∣∣∑

i∈I+
|vi|z2

i −
∑

j∈I−
|vj |z2

j

∣∣∣].
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For a given v, since (z2
i )di=1 have identical distributions, E

[∣∣∣∑i∈I+ |vi|z2
i −

∑
j∈I− |vj |z2

j

∣∣∣] has the same value under
permutations of (vi)i∈I+ and (vj)j∈I− . Summing over all the permutations of (vi)i∈I+ and (vj)j∈I− gives

dE
[∣∣∣∑d

i=1
viz

2
i

∣∣∣] ≥ E
[∣∣∣(∑

i∈I+
|vi|
)∑

i∈I+
z2
i −

(∑
j∈I−

|vj |
)∑

j∈I−
z2
j

∣∣∣].
Hence,

E
[∣∣∣∑d

i=1
viz

2
i

∣∣∣] ≥ 1

d

(∑d

i=1
|vi|
)
E
[∣∣∣∑d

i=1
sign(vi)z

2
i

∣∣∣]
Since

∑d
i=1 |vi| ≥ (

∑d
i=1 v

2
i )1/2 = 1, we have

E
[∣∣∑d

i=1
viz

2
i

∣∣] ≥ 1

d
inf

w∈{±1}d
E
[∣∣∑d

i=1
wiz

2
i

∣∣].
It remains to lower bound infw∈{±1}d E

[∣∣∑d
i=1 wiz

2
i

∣∣]. Let p denote the number of +1’s and q denote the number of −1’s
in w, such that p+ q = n. If p 6= q, by Jensen’s inequality,

E[|
∑d

i=1
wiz

2
i |] ≥ E[

∑|p−q|

i=1
z2
i ] ≥ E[z2

1 ] = Ω(1).

If p = q, again, an application of Jensen’s inequality yields

E[|
∑d

i=1
wiz

2
i |] ≥ E[|z2

1 − z2
2 |] = Ω(1).

Overall, we have infw∈{±1}d E[|
∑d
i=1 wiz

2
i |] = Ω(1). Hence, E

[∣∣∑d
i=1 viz

2
i

∣∣] ≥ Ω(1/d).

Below we use Lemma C.3 to prove Lemma 4.4.

Proof of Lemma 4.4. Let y := Σ−1/2x. Then y is a standard Gaussian random vector, and x>Ax = y>Σ1/2AΣ1/2y. Let
U>ΛU be the eigenvalue decomposition of Σ1/2AΣ1/2. Then,

E[|x>Ax|] = E[|y>U>ΛUy|] = E[|z>Λz|],

where z := Uy is still a standard Gaussian random vector. Since

‖Λ‖F
(i)
= ‖U>ΛU‖F = ‖Σ1/2AΣ1/2‖F ≥ λmin(Σ)‖A‖F = λmin(Σ),

where (i) is due to the unitary invariance of the Frobenius norm, we have

inf‖A‖F=1 E[|x>Ax|] ≥ inf‖Λ‖F≥λmin(Σ) E[|z>Λz|]
(i)

≥ aλmin(Σ)/d,

where (i) is due to Lemma C.3.

C.3. Sum of sub-Weibull martingale difference sequences

To upper bound
∑T+H−1
t=H ftet in the analysis of quadratic regression (see §D), one possible approach (Tsiamis et al., 2022)

is to use bounds for self-normalized martingales (Abbasi-Yadkori et al., 2011), but the standard self-normalized martingale
lemma assumes the noises (et)t≥H are sub-Gaussian. (Fan et al., 2012; 2017) studies the sum of martingale difference
sequence with sub-Weibull distributions, based on which we prove Lemma C.4.

Lemma C.4. Let (ηt)t≥1 be a martingale difference sequence adapted to filtration (Ft)t≥1. Assume ηt | Ft−1 is θ-sub-
Weibull with ‖ηt | Ft−1‖ψθ ≤ K. Then with probablity at least 1− p, there exists absolute constants c, c′ > 0, such that as
long as n ≥ c, ∑T

t=1
ηt ≤ c′K

√
T (log(T/p))1+θ−1

.
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Proof. By the definition of sub-Weibull distributions, E[exp(|ηt/K|θ) | Ft−1] ≤ 2. Define εt = ηk/K. Then by the
properties of sub-Weibull distributions, E[ε2t | Ft−1] ≤ a, for some absolute constant a > 0. Hence, (εt)t≥1 satisfies the
assumptions required in (Fan et al., 2017, Theorem 3.2) for α = θ/(θ + 1). Taking (φt)t≥1 in (Fan et al., 2017, Theorem
3.2) to be ones, we have

P
(∑T

t=1
εt ≥ x

√
T
)
≤ exp

(
− x2

2(c+ x1+ 1
θ+1 /3)

)
+ 2T exp

(
− x

θ
θ+1

)
.

Note that

x2

2(c+ x1+ 1
θ+1 /3)

=
x

θ
θ+1

2/3 + 2cx−1− 1
θ+1

≥ x
θ
θ+1 ,

if 2cx−1− 1
θ+1 ≤ 1/3, that is, x ≥ (6c)

θ+1
θ+2 . Then, as long as x ≥ 6c,

P
(∑T

t=1
εt ≥ x

√
T
)
≤ 3T exp

(
− x

θ
θ+1

)
.

Hence,

P
(∑T

t=1
εt ≥ 6c+

√
T (log(3T/p))1+θ−1

)
≤ p.

Therefore, there exists absolute constant c′ > 0, such that if T ≥ max(36c2, 3), then with probability at least 1− p,∑T

t=1
εt ≤ c′K

√
T (log(T/p))1+θ−1

.

C.4. Proposition on multi-step cumulative costs

The following proposition, taken from (Tian et al., 2022, Proposition 3) and adapted to our LTI setting, is important for
analyzing COREL and COREDYL.
Proposition C.5. Define filtration Ft := σ(x0, v0, u0, w0, v1, . . . , ut−1, wt−1, vt). Let z∗′t = x̂′t be the state estimates by
the Kalman filter under the normalized parameterization, adapted to (Ft)t≥0. If we apply ut ∼ N (0, σ2

uI) for all t ≥ 0,
then for t ≥ 0,

ct :=
∑t+dx−1

τ=t
(cτ − ‖uτ‖2R∗) = ‖z∗′t ‖2 + b′ + e′t,

where b′ = O(dx) is a positive constant, and e′t | Ft−1 is a zero-mean subexponential random variable with ‖e′t | Ft−1‖ψ1
=

O(d
3/2
x ).

D. Quadratic regression bound
The following quadratic regression bound is at the core of proving Theorem F.1. Its proof builds on a new persistency of
excitation result (Lemma 4.3) and the concentration of sub-Weibull martingale different sequences (Lemma C.4).
Lemma D.1. Let (h∗t )t≥1 be a sequence of d-dimensional Gaussian random vectors adapting to filtration (Ft)t≥1 with
‖E[h∗t (h

∗
t )
>]‖1/22 ≤ σ. Define random variable ct = (h∗t )

>Nh∗t + b∗ + et, where et | Ft−1 is zero-mean, subexpo-
nential with ‖et | Ft−1‖ψ1

≤ E. Define ht = h∗t + δt, where the Gaussian noise vector δt can be correlated with
h∗t and satisfy ‖E[δtδ

>
t ]‖1/22 ≤ ε ≤ σ. Assume that (svec(h∗th

∗
t ))t≥1 satisfies the (k, γ2I, q)-BMSB condition and

ε ≤ a0γσ
−1d−1 log−2(T/p) for some absolute constant a0 > 0. Consider

N̂ , b̂ ∈ argmin
N=N>,b

∑T

t=1
(ct − ‖ht‖2N − b)2. (D.1)

Then, as long as T ≥ a1kd
5 log(d/p) for some dimension-free constant a1 > 0, with probability at least 1− p,

‖N̂ −N∗‖F = O(ε(γq)−1d log2(T/p) + (γq)−2dET−1/2 log4(T/p)),

where σ, E and ‖N∗‖2 are problem-dependent constants hidden in O(·).
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{YT: Think of this ct as the cost subtracting ‖ut‖2R∗ .}

Proof. Let ft := svec(hth
>
t ) and F := [f1, f2, . . . , fT ]> be the T × d(d+1)

2 matrix whose tth row is f>t . Define f∗t and
F ∗ similarly. Using ft, we can rewrite the regression (D.1) as

svec(N̂), b̂ ∈ argmin
svec(N),b

∑T

t=1

(
ct − f>t svec(N)− b

)2
. (D.2)

Solving regression (D.2) for N and b, and substituting the expression of ct, we obtain

F>F svec(N̂) = F>F ∗svec(N∗) + (b∗ − b̂)F>1T + F>ε, (D.3)

b̂ = b∗ +
1

T

(
1>T F

∗svec(N∗)− 1>T F svec(N̂) + 1>T ε
)
. (D.4)

where ε denotes the vector whose tth element is et. By substituting (D.4) into (D.3), we have

F>
(
IT −

1T 1>T
T

)
F svec(N̂) = F>

(
IT −

1T 1>T
T

)
F ∗svec(N∗) + F>

(
IT −

1T 1>T
T

)
ε.

To deal with JT = (IT−1T 1>T /T ), we adopt the same reparameterization trick in (Tian et al., 2022), by defining F̃ := J
1/2
T F

and F̃ ∗ := J
1/2
n F ∗. Since JT is a positive definite matrix with T − 1 eigenvalues being ones and the other being 1− 1/T ,

the eigenvalues of F̃>F̃ do not differ much from those of F>F . In particular, λmin(F̃>F̃ ) ≥ (1− 1/T )λmin(F>F ). With
this reparameterization and subtracting F̃>F̃ svec(N∗) from both sides, we have

F̃>F̃ svec(N̂ −N∗) = F̃>(F̃ ∗ − F̃ )svec(N∗) + F̃>J
1/2
T ε.

Below we bound ‖(F̃ ∗ − F̃ )svec(N∗)‖, ‖F̃>J1/2
T ε‖, and λmin(F̃>F̃ ) separately.

To bound ‖(F̃ ∗ − F̃ )svec(N∗)‖ we apply similar techniques in (Mhammedi et al., 2020; Tian et al., 2022), by noting

‖(F ∗ − F )svec(N∗)‖2 =
∑T

t=1

〈
svec(h∗t (h

∗
t )
>)− svec(hth

>
t ), svec(N∗)

〉
=
∑T

t=1

〈
h∗t (h

∗
t )
> − hth>t , N∗

〉
F

= ‖N∗‖22
∑T

t=1
‖h∗t (h∗t )> − hth>t ‖2∗

(i)

≤ 2‖N∗‖22
∑T

t=1
‖h∗t (h∗t )> − hth>t ‖2F = 2‖N∗‖22‖F ∗ − F‖2F ,

where (i) follows from the fact that the matrix h∗t (h
∗
t )
> − hth>t has at most rank two.

‖F ∗ − F‖2F =
∑T

t=1
‖h∗t (h∗t )> − hth>t ‖2F

=
∑T

t=1
‖h∗t (h∗t − ht)> + (h∗t − ht)h>t ‖2F

=
∑T

t=1
‖h∗t δ>t + δth

>
t ‖2F ≤

∑T

t=1
2(‖h∗t ‖2 + ‖ht‖2)‖δt‖2.

With probability at least 1− p, for all 1 ≤ t ≤ T ,

‖h∗t ‖ = O(σd1/2 log(T/p)), ‖ht‖ = O(σd1/2 log(T/p)), ‖δ‖ = O(εd1/2 log(T/p)).

Hence,

‖F ∗ − F‖2F = O(ε2σ2d2T log4(T/p)).

It follows that

|(F̃ ∗ − F̃ )svec(N∗)‖ = ‖J1/2
T (F ∗ − F )svec(N∗)‖ = O(εσd‖N∗‖2T 1/2 log2(T/p)).
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Next, we handle ‖F̃>J1/2
T ε‖ by

‖F̃>J1/2
T ε‖ =

∥∥∥F>(I − 1T 1>T
T

)
ε
∥∥∥ ≤ ‖F>ε‖+

1

T
‖F>1T 1>T ε‖ =

∥∥∥∑T

t=1
ftet

∥∥∥+
1

T

∥∥∥(∑T

t=1
ft

)(∑T

t=1
et

)∥∥∥.
Since ‖[ft]i | Ft−1‖ψ1

= O(σ2) and ‖et | Ft−1‖ψ1
≤ E, the product [ft]iet | Ft−1 is 1

2 -sub-Weibull, with the sub-Weibull
norm being O(σ2E). By Lemma C.4, with probability at least 1− p,∑T

t=1
[ft]iet = O(σ2ET 1/2 log3(T/p)).

Then, since
∑T+H−1
t=H ftet has d(d+ 1)/2 components,∥∥∥∑T+H−1

t=H
ftet

∥∥∥ = O(σ2dET 1/2 log3(T/p)).

On the other hand, with probability at least 1− p,∥∥∥∑T

t=1
ft

∥∥∥ ≤∑T

t=1
‖hth>t ‖F =

∑T

t=1
‖ht‖2 = O(σ2dT log2(T/p)),

and by Lemma C.4, with probability at least 1− p,∥∥∥∑T

t=1
et

∥∥∥ = O(ET 1/2 log2(T/p)).

Hence,

‖F̃>J1/2
T ε‖ = O(σ2dET 1/2 log3(T/p) + σ2d log2(T/p)ET 1/2 log2(T/p)) = O(σ2dET 1/2 log4(T/p)).

The remaining term to deal with is λmin(F̃>F̃ ) = Ω(F>F ), which we achieve by showing (ft)t≥1 is BMSB. By our
assumption, (f∗t )t≥1 is (k, γ2I, q)-BMSB, meaning that for any fixed unit vector v ∈ R

d(d+1)
2 , it holds almost surely that

1

k

∑k

i=1
P(|
〈
f∗t+i, v

〉
| ≥ γ | Ft) ≥ q.

For any fixed unit vector v ∈ R
d(d+1)

2 , we have

| 〈ft, v〉 | = | 〈f∗t , v〉+ 〈ft − f∗t , v〉 | ≥ | 〈f∗t , v〉 | − | 〈ft − f∗t , v〉 | ≥ | 〈f∗t , v〉 | − ‖ft − f∗t ‖.

For all 1 ≤ t ≤ T , since ‖ft− f∗t ‖ = ‖hth>t − h∗t (h∗t )>‖F = O(εσd log2(T/p)), there exists an absolute constant a0 > 0,
such that as long as ε ≤ a0γ

σd log2(T/p)
, ‖ft − f∗t ‖ ≤ γ/2. It follows that

1

k

∑k

i=1
P(| 〈ft+i, v〉 | ≥ γ/2 | Ft) ≥

1

k

∑k

i=1
P(|
〈
f∗t+i, v

〉
| ≥ γ | Ft) ≥ q,

which means that (ft)1≤t≤T is (k, γ2I/4, q)-BMSB. Following the analysis in (Simchowitz et al., 2018, Appendix D), we
can show that for a given p ∈ (0, 1), as long as T ≥ a1kd

5 log(d/p) for some dimension-free constant a1 > 0, then with
probability at least 1− p, we have

λmin

(∑T

t=1
ftf
>
t

)
= Ω(γ2q2T ).

Hence, λmin(F̃>F̃ ) = Ω(γ2q2T ).

Finally, since

svec(N̂ −N∗) = F̃ †(F̃ ∗ − F̃ )svec(N∗) + (F̃>F̃ )−1F̃>J
1/2
T ε,
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by combining the individual bounds proved above, we show that there exists some absolute constant a > 0, such that as
long as T ≥ a1kd

5 log(d/p), with probability at least 1− p,

‖N̂ −N∗‖F = ‖svec(N̂ −N∗)‖2 ≤ λmin(F̃>F̃ )−1/2‖(F̃ ∗ − F̃ )svec(N∗)‖+ λmin(F̃>F̃ )−1‖F̃>J1/2
T ε‖

= O(ε(γq)−1d log2(T/p) + (γq)−2dET−1/2 log4(T/p)),

where σ and ‖N∗‖2 are problem-dependent constants hidden in O(·).

As a side remark, from (D.4), we obtain

|b̂− b∗| =
∣∣∣ 1

T
1>T (F ∗ − F )svec(N∗)

∣∣∣+
∣∣∣ 1

T
1>T F svec(N∗ − N̂)

∣∣∣+
∣∣∣ 1

T
1>T ε

∣∣∣.
Substituting the individual bounds we have derived and using ‖1T /T‖ = T−1/2, we have that

|b̂− b∗| = O(εd log2(T/p) + T−1/2 + T−1/2‖N̂ −N∗‖F ).

For large enough T , the term T−1/2‖N̂ −N∗‖F is a lower-order term, and |b̂− b∗| = O(εd log2(T/p) + T−1/2), which is
a faster rate than that of ‖N̂ −N∗‖F .

D.1. Persistency of excitation

Below we prove Lemma 4.3, which claims that (ft)t≥1 satisfies the (k, γ2I, q)-BMSB condition. With some additional

arguments (Simchowitz et al., 2018; Matni & Tu, 2019), this implies that λmin

(∑T+H−1
t=H ftf

>
t

)
= Ω(γ2q2T ), establishing

the persistency of excitation.

Proof of Lemma 4.3. Since svec is a bijection, every unit vector v ∈ Rdh(dh+1)/2 corresponds to a symmetric matrix
M ∈ Rdh×dh with unit Frobenius norm. Then,

〈ft+i, v〉 =
〈
svec(ht+ih

>
t+i), svec(M)

〉
= h>t+iMht+i.

Take Γ = γ2I for some γ > 0. Then, ‖v‖Γ = γ. It suffices to show that for i > G for some G > 0,

P(|h>t+iMht+i| ≥ γ | Ft) ≥ q,

since if so, we have

1

2G

∑2G

i=1
P(|h>t+iMht+i| ≥ γ | Ft) ≥

1

2G

∑2G

i=G+1
P(|h>t+iMht+i| ≥ γ | Ft) ≥ q/2,

which means (ft)t≥H is (2G, γ2I, q/2)-BMSB.

Now let us take a close look at ht+i = [y(t+i−H+1):(t+i);u(t+i−H):(t+i−1)]. Since

yt+i = C∗(A∗)ixt +
∑i

j=1
C∗(A∗)j(B∗ut+i−j + wt+i−j) + vt+i,

yt+i | Ft is Gaussian with mean C∗(A∗)ixt and covariance determined by
∑i
j=1 C

∗(A∗)j(But+i−j + wt+i−j) + vt+i,
where we note that vt+i is independent of all other random variables and has full-rank covariance. Hence, for i > H ,
ht+i | Ft is Gaussian and has full-rank covariance. Then intuitively, since ‖M‖F = 1, |h>t+iMht+i| | Ft is a well-behaved
random variable that can exceed some γ > 0 with a positive probability q. Formally, let µt,i := E[ht+i | Ft]. By Lemma 4.4,
for i > H , there exists some absolute constant a > 0, such that

E[|(ht+i − µt,i)>M(ht+i − µt,i)| | Ft] ≥ amin{σu, σv}/dh.

By the triangle inequality,

|(ht+i − µt,i)>M(ht+i − µt,i)| = |h>t+iMht+i + µ>t,iMµt,i − 2h>t+iMµt,i|
≤ |h>t+iMht+i|+ |µ>t,iMµt,i|+ 2|h>t+iMµt,i|.
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Hence,

E[|h>t+iMht+i| | Ft] ≥ amin{σu, σv}/dh − E[|µ>t,iMµt,i|+ 2|h>t+iMµt,i| | Ft].

Now we argue that for large enough i, E[|µ>t,iMµt,i| + 2|h>t+iMµt,i|] is negligible. Since matrix A∗ is stable, with
probability at least 1− p, ‖xt‖ = O(log(T/p)) for all t ≥ 0. Hence,

‖C∗(A∗)ixt‖ = O(α(A∗)ρ(A∗)i log(T/p)).

Then, for i > H ,

E[|µ>t,iMµt,i|+ 2|h>t+iMµt,i| | Ft] = |
〈
µt,iµ

>
t,i,M

〉
F
|+ 2E[|

〈
µt,ih

>
t+i,M

〉
F
| | Ft]

≤ ‖µt,iµ>t,i‖F · ‖M‖F + 2E[‖µt,ih>t+i‖F · ‖M‖F | Ft]
= ‖µt,i‖2 + 2‖µt,i‖ · E[‖h>t+i‖ | Ft].

By definition, µt,i is the concatenation of (C∗(A∗)jxt)i−H+1≤j≤i and zero vectors. Hence,

‖µt,i‖ = O(d
1/2
h α(A∗)ρ(A∗)i log(T/p)).

Choose H ≥ a1 log(d2hα(A∗) log(T/p))
log(ρ(A∗)−1) for some dimension-free constant a1 > 0, such that for i > 2H ,

‖µt,i‖2 + 2‖µt,i‖ · E[‖h>t+i‖ | Ft] ≤ amin{σu, σv}/(2dh).

Then, we have the desired lower bound that

E[|h>t+iMht+i| | Ft] ≥ amin{σu, σv}/(2dh).

On the other hand, since

|h>t+iMht+i| =
∣∣〈M,ht+ih

>
t+i

〉
F

∣∣ ≤ ‖M‖F ‖ht+ih>t+i‖F = h>t+iht+i,

we have E[|h>t+iMht+i|2 | Ft] ≤ E[‖ht+i‖4 | Ft]. Since ‖ht+i‖ | Ft is sub-Gaussian with

‖‖ht+i‖ | Ft‖ψ2
= O(‖E[ht+ih

>
t+i | Ft]‖

1/2
2 ) = O(1),

E[|h>t+iMht+i|2 | Ft] = O(1). By the Paley-Zygmund inequality, for θ ∈ [0, 1] we have

P(|h>t+iMht+i| ≥ θamin{σu, σv}/(2dh) | Ft) = Ω((1− θ)2a2/d2
h),

where the dependence on σu, σv is hidden in Ω(·). By taking θ = 1/2, we can see that (ft)t≥H satisfies (k, γ2I, q)-BMSB
condition for k = 4H , γ = Θ(1/dh) and q = Θ(1/d2

h).

E. Linear system identification with noisy measurements
Identifying the time-invariant latent dynamics involves linear regression with time-dependent data and noisy measurements.
The following Lemma E.1 extends the previous linear system identification result in (Simchowitz et al., 2018) to the case
with noises in both input and output variables. In Lemma E.1, γ and q are treated as dimension-free constants (in contrast to
Lemma D.1), which is indeed the case in our application of Lemma E.1.

Lemma E.1. Let (x∗t )t≥1 be a sequence of d1-dimensional Gaussian random vectors adapted to a filtration (Ft)t≥1

with ‖E[x∗t (x
∗
t )
>]‖1/22 ≤ σ. Define y∗t = A∗x∗t + et, where A∗ ∈ Rd2×d1 and et | Ft is Gaussian with zero mean and

‖E[ete
>
t ]‖1/22 ≤ ε. Define yt = y∗t + δyt and xt = x∗t + δxt , where the Gaussian noise vectors δxt and δyt can be correlated

with x∗t and x∗y , and satisfy ‖E[δxt (δxt )>]‖1/22 ≤ εx ≤ σ and ‖E[δyt (δyt )>]‖1/22 ≤ εy ≤ σ. Assume that (x∗t )t≥1 satisfies the
(k, γ2I, q)-BMSB condition and εx ≤ a0γ

2q2/σ for some absolute constant a0 > 0. Consider

Â ∈ argmin
A∈Rd2×d1

∑T

t=1
‖yt −Axt‖2. (E.1)
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Then, as long as T ≥ a1kq
−1(log(1/p) + d1 log(10/q) + d1 log(σγ−1d1 log(T/p))) for some absolute constant a1 > 0,

with probability at least 1− p,

‖Â−A∗‖2 = O((εx + εy)(d1 + d2) log2(T/p) + (d2 + d1 log(d1 log(T/p)))1/2T−1/2).

{YT: d1 + d2 is different from the LTV case due to different treatments of ‖(X∗)>∆x‖.}

Proof. Let X ∈ RT×d1 denote the matrix whose tth row is x>t . Define X∗, Y, E,∆x,∆y similarly. To solve the regression
problem, we set its gradient to be zero and substitute Y = X∗(A∗)> + E + ∆Y to obtain

Â(X>X) = A∗(X∗)>X + E>X + ∆>y X. (E.2)

Substituting X = X∗ + ∆x gives

(Â−A∗)((X∗)>X∗) = A∗(X∗)>∆x − Â(∆>x ∆x + ∆>xX
∗ + (X∗)>∆x)

+ E>X∗ + E>∆x + ∆>y X
∗ + ∆>y ∆x.

(E.3)

Now we deal with each term on the right-hand side. Since (X∗)>∆x =
∑T
t=1 xt(δ

x
t )>, by the triangle inequality,

‖(X∗)>∆x‖2 ≤
∑T

t=1
‖x∗t (δxt )>‖2 ≤

∑T

t=1
‖x∗t ‖ · ‖δxt ‖.

Since (x∗t )t≥1 and (δxt )t≥1 are Gaussian, with probability at least 1 − p, ‖x∗t ‖ = O(σd
1/2
1 log(T/p)) and ‖δxt ‖ =

O(εxd
1/2
1 log(T/p)). Hence,

‖(X∗)>∆x‖2 = O(εxσd1T log2(T/p)).

Similarly, with probability at least 1− p,

‖∆>x ∆x‖2 = O(ε2xd1T log2(T/p)), ‖E>∆x‖2 = O(εεxd
1/2
1 d

1/2
2 T log2(T/p)),

‖∆>y X∗‖2 = O(εyσd
1/2
1 d

1/2
2 T log2(T/p)), ‖∆>y ∆x‖2 = O(εxεyd

1/2
1 d

1/2
2 T log2(T/p)).

It remains to bound ‖Â‖2. Notice that with probability at least 1− p,

‖(X∗)>X∗‖2 ≤
∑T

t=1
‖xt‖2 = O(σ2d1 log2(T/p)T ).

Let T0 := a1kq
−1(log(1/p) + d1 log(10/q) + d1 log(σγ−1d1 log(T/p))) for some absolute constant a1 > 0. Then,

by (Simchowitz et al., 2018, Section D), as long as T ≥ T0, with probability at least 1− p, λmin((X∗)>X∗) = γ2q2T/32.
Since X>X = (X∗)>X∗ + ∆>xX

∗ + (X∗)>∆x + ∆>x ∆x,

λmin(X>X) ≥ λmin((X∗)>X∗)− ‖∆>xX∗ + (X∗)>∆x + ∆>x ∆x‖2.

Hence, there exists an absolute constant a0 > 0, such that as long as εx ≤ a0γ
2q2/σ, λmin(X>X) = Ω(γ2q2T ), which

implies ‖X†‖2 = O(γ−1q−1T−1/2). From (E.2), we have

‖Â‖2 = (‖A∗‖2‖X∗‖2 + ‖E‖2 + ‖∆y‖2)‖X†‖2 = O(γ−1q−1(σ‖A∗‖2 + ε+ εy)) = O(1),

where in the last equality we use εy ≤ σ and treat γ, q, σ, ε as problem-dependent constants.

Finally, by (Simchowitz et al., 2018, Theorem 2.4), as long as T ≥ T0,

‖E>(X∗)†‖2 = O((d2 + d1 log(d1 log(T/p)) + log(1/p))1/2T−1/2).

Combining all the above individual bounds on the terms of the right-hand side of (E.3), we have

‖Â−A∗‖2 = O((εx + εy)(d1 + d2) log2(T/p) + (d2 + d1 log(d1 log(T/p)) + log(1/p))1/2T−1/2).
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F. Proof of the main results
In this section, we prove the sample complexity bounds for COREL and COREDYL in Theorem 4.1, which is a simplified
version of the following Theorem F.1. As we shall see, the proofs for the two algorithms share similar ideas and tools.

Theorem F.1. Given an unknown LQG problem satisfying Assumption 2.1, let M∗′ and (A∗′, B∗′, Q∗′, R∗) be the optimal
state representation function and the true system parameters under the normalized parameterization. For a given p ∈
(0, 1), if we run COREL or COREDYL for T ≥ poly(dx, dy, du, log(T/p))), H = Ω(

log(α(A
∗
)(dy+du)−1d−1/2

x T )

log(ρ(A
∗
)−1)

+

log(α(A∗) log(T/p))
log(ρ(A∗)−1) ), and σu = Θ(1), then there exists an orthonormal matrix S ∈ Rdx×dx , such that with probability at

least 1− p, the representation function M̂ satisfies

‖M̂ − SM∗′‖2 = O((H(dy + du)dx)15/2T−1/2 log6(T/p)),

and the suboptimality gap of feedback gain K̂ in system (SA∗′S>, SB∗′, SQ∗′S>, R∗) is

O((H(dy + du)dx)15(dx ∧ du)T−1 log12(T/p)).

F.1. Proof of Theorem F.1 for COREL

Proof. Define filtration Ft := σ(x0, v0, u0, w0, v1, . . . , ut−1, wt−1, vt). By definition, xt, yt ∈ Ft. Hence, ht =
[y(t−H+1):t;u(t−H):(t−1)] ∈ Ft and z∗t ∈ Ft.

Recall that we define ft := svec(hth
>
t ). By Lemma 4.3, ft is (k, γ2I, q)-BMSB for k = 4H , γ = Θ(1/dh) and

q = Θ(1/d2
h). By Proposition C.5 and Lemma D.1, there exists some absolute constant a0 > 0, such that as long as

T ≥ a0H
6(dy + du)5 log(H(dy + du)/p), with probability at least 1− p,

‖N̂ −N∗‖F = O((γq)−2dhET
−1/2 log4(T/p)) = O((H(dy + du))7d3/2

x T−1/2 log4(T/p)).

By (Tu et al., 2016, Lemma 5.4), there exists an orthonormal matrix S, such that ‖M̂ − SM∗‖F is on the same order. Since
ẑt − Sz∗t = (M̂ − SM∗)ht − δt,

‖Cov(ẑt − Sz∗t )‖1/22 = O(‖Cov((M̂ − SM∗)ht)‖1/22 + ‖Cov((A
∗
)Hz∗t−H)‖1/22 )

= O(‖E[hth
>
t ]‖1/22 ‖M̂ − SM∗‖2 + ‖E[z∗t−H(z∗t−H)>]‖1/22 ‖(A

∗
)H‖2)

(i)
= O((H(dy + du))15/2d3/2

x T−1/2 log4(T/p)),

where (i) holds by our choice of H . Then, by the noisy linear regression bound (Lemma E.1), for T greater than a constant
polynomial in the problem parameters,

‖[Â, B̂]− S[A∗, B∗]‖2 = O((H(dy + du))15/2d3/2
x T−1/2 log4(T/p) · dx log2(T/p))

= O((H(dy + du))15/2d5/2
x T−1/2 log6(T/p)).

By the noisy quadratic regression bound (Lemma D.1) and svec(z∗t (z∗t )>) being (Θ(1),Θ(1/dx),Θ(1/d2
x))-BMSM,

‖Q̂− SQ∗S>‖F = O((H(dy + du))15/2d3/2
x T−1/2 log4(T/p) · d3

xdx log2(T/p) + d6
xdxd

1/2
x T−1/2 log4(T/p))

= O((H(dy + du)dx)15/2T−1/2 log6(T/p)).

Hence, ‖Â−SA∗S>‖2, ‖B̂−SB∗S>‖2 and ‖Q̂−SQ∗S>‖2 are all bounded byO((H(dy+du)dx)15/2T−1/2 log6(T/p)).
By (Mania et al., 2019), for T greater than a constant polynomial in the problem parameters,

‖K̂ −K∗S>‖2 = O((H(dy + du)dx)15/2T−1/2 log6(T/p))

is on the same order, and K̂ has a suboptimality gap of

O((H(dy + du)dx)15(dx ∧ du)T−1 log12(dxT/p)).
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F.2. Proof of Theorem F.1 for COREDYL

Proof. Define filtration Ft := σ(x0, v0, u0, w0, v1, . . . , ut−1, wt−1, vt). By definition, xt, yt ∈ Ft. Hence, ht =
[y(t−H+1):t;u(t−H):(t−1)] ∈ Ft and z∗t ∈ Ft.

Recall that we define ft := svec(hth
>
t ). By Lemma 4.3, ft is (k, γ2I, q)-BMSB for k = 4H , γ = Θ(1/dh) and

q = Θ(1/d2
h). By Proposition C.5 and Lemma D.1, there exists some absolute constant a0 > 0, such that as long as

T ≥ a0H
6(dy + du)5 log(H(dy + du)/p), with probability at least 1− p,

‖N̂ −N∗‖F = O((H(dy + du))7d3/2
x T−1/2 log4(T/p)),

‖N̂1 −N∗1 ‖F = O((H(dy + du) + dx)7d3/2
x T−1/2 log4(T/p)).

By (Tu et al., 2016, Lemma 5.4), there exists orthonormal matrices S, S1, such that ‖M̂ − SM∗‖F and ‖M̂1 − S1M
∗
1 ‖F

are on the same order of ‖N̂ −N∗‖F and ‖N̂1 −N∗1 ‖F , respectively. Then,

‖B̃ − S1B
∗‖2 = O((H(dy + du) + dx)7d3/2

x T−1/2 log4(T/p)).

Since [S1A
∗S>SM∗, S1B

∗] = S1M
∗
1 , by the perturbation bounds of the Moore-Penrose inverse (Wedin, 1973),

‖Ã− S1A
∗S>‖2 = O((H(dy + du) + dx)7d3/2

x T−1/2 log4(T/p)).

To align Ã with SA∗S>, we compute another matrix Ŝ0 by solving

[ẑH+1, . . . , ẑT+H ] = Ŝ0M̂1[[hH ;uH ], . . . , [hT+H−1;uT+H−1]].

Since ẑt − Sz∗t = (M̂ − SM∗)ht − δt,

‖Cov(ẑt − Sz∗t )‖1/22 = O(‖Cov((M̂ − SM∗)ht)‖1/22 + ‖Cov((A
∗
)Hz∗t−H)‖1/22 )

= O(‖E[hth
>
t ]‖1/22 ‖M̂ − SM∗‖2 + ‖E[z∗t−H(z∗t−H)>]‖1/22 ‖(A

∗
)H‖2)

(i)
= O((H(dy + du))15/2d3/2

x T−1/2 log4(T/p)),

where (i) holds by our choice of H . Similarly,

‖Cov(M̂1[ht;ut]− S1z
∗
t+1]‖1/22 = O((H(dy + du) + dx)15/2d3/2

x T−1/2 log4(T/p)).

Since S[z∗H+1, . . . , z
∗
H+T ] = SS>1 S1[z∗H+1, . . . , z

∗
H+T−1], by the noisy linear regression bound (Lemma E.1), for T greater

than a constant polynomial in the problem parameters,

‖Ŝ0 − SS>1 ‖2 = O((H(dy + du) + dx)15/2d3/2
x T−1/2 log4(T/p) · dx log2(T/p))

= O((H(dy + du) + dx)15/2d5/2
x T−1/2 log6(T/p)).

Hence,

‖Â− SA∗S>‖2 = ‖Ŝ0Ã− SS>1 S1A
∗S>‖2 = ‖(Ŝ0 − SS>1 )Ã‖2 + ‖SS>1 (Ã− S1A

∗S>)‖2
= O((H(dy + du) + dx)15/2d5/2

x T−1/2 log6(T/p)),

and ‖B̂ − SB∗‖2 has the same order. By the noisy quadratic regression bound (Lemma D.1) and svec(z∗t (z∗t )>) being
(Θ(1),Θ(1/dx),Θ(1/d2

x))-BMSM,

‖Q̂− SQ∗S>‖F = O((H(dy + du))15/2d3/2
x T−1/2 log4(T/p) · d3

xdx log2(T/p) + d6
xdxd

1/2
x T−1/2 log4(T/p))

= O((H(dy + du)dx)15/2T−1/2 log6(T/p)).

Hence, ‖Â−SA∗S>‖2, ‖B̂−SB∗S>‖2 and ‖Q̂−SQ∗S>‖2 are all bounded byO((H(dy+du)dx)15/2T−1/2 log6(T/p)).
By (Mania et al., 2019), for T greater than a constant polynomial in the problem parameters,

‖K̂ −K∗S>‖2 = O((H(dy + du)dx)15/2T−1/2 log6(T/p))

is on the same order, and K̂ has a suboptimality gap of

O((H(dy + du)dx)15(dx ∧ du)T−1 log12(dxT/p)).
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