
Approximate Forest Completion and Learning-Augmented Algorithms
for Metric Minimum Spanning Trees

Nate Veldt 1 Thomas Stanley 1 Benjamin W. Priest 2 Trevor Steil 2 Keita Iwabuchi 2 T.S. Jayram 2

Geoffrey Sanders 2

Abstract
Finding a minimum spanning tree (MST) for n
points in an arbitrary metric space is a funda-
mental primitive for hierarchical clustering and
many other ML tasks, but this takes Ω(n2) time
to even approximate. We introduce a framework
for metric MSTs that first (1) finds a forest of
trees using practical heuristics, and then (2) finds
a small weight set of edges to connect disjoint
components in the forest into a spanning tree. We
prove that optimally solving step (2) still takes
Ω(n2) time, but we provide a subquadratic 2.62-
approximation algorithm. In the spirit of learning-
augmented algorithms, we then show that if the
heuristic forest found in step (1) overlaps with an
optimal MST, we can approximate the original
MST problem in subquadratic time, where the
approximation factor depends on a measure of
overlap. In practice, we find nearly optimal span-
ning trees for a wide range of metrics, while being
orders of magnitude faster than exact algorithms.

1. Introduction
Finding a minimum spanning tree of a graph is a classical
combinatorial problem with well-known algorithms dating
back to the early and mid 1900s (Borůvka, 1926; Prim,
1957; Kruskal, 1956). A widely-studied special case in the-
ory and practice is the metric MST problem, where each
node corresponds to a point in a metric space and every pair
of points defines an edge with weight equal to the distance
between points. Finding a metric MST has widespread appli-
cations including network design (Loberman & Weinberger,
1957), approximation algorithms for traveling salesman

1Department of Computer Science and Engineering, Texas
A&M University 2Center for Applied Scientific Computing,
Lawrence Livermore National Laboratory. Correspondence to:
Nate Veldt <nveldt@tamu.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

problems (Held & Karp, 1970), and feature selection (Labbé
et al., 2023). The problem also has a very well-known con-
nection to hierarchical clustering (Gower & Ross, 1969)
and has been used as a key step in clustering astronomical
data (Barrow et al., 1985; March et al., 2010), analyzing
gene expression data (Xu et al., 2002), document cluster-
ing (Xu & Uberbacher, 1997), and various image segmenta-
tion and classification tasks (Xu & Uberbacher, 1997; An
et al., 2000; La Grassa et al., 2022).

This paper is motivated by challenges in efficiently com-
puting metric MSTs in modern machine learning (ML) and
data mining applications. The most fundamental challenge
is simply the massive size of modern datasets. In theory
one can always find an MST for n points by computing all
O(n2) distances and running an existing MST algorithm.
However, this quadratic complexity is far too expensive both
in terms of runtime and memory for massive datasets. A sec-
ond challenge is handling complicated metric spaces. Most
existing algorithms for metric MSTs are designed for Eu-
clidean distances or other simple metric spaces, often with
a particular focus on small-length feature vectors (March
et al., 2010; Agarwal et al., 1990; Shamos & Hoey, 1975;
Vaidya, 1988; Arya & Mount, 2016; Wang et al., 2021).
While useful in certain settings, these are limited in their ap-
plicability to high-dimensional feature spaces and complex
distance functions. Many modern ML tasks focus on non-
Cartesian data (e.g., videos, images, text, nodes in a graph,
or even entire graphs) which must be classified, clustered,
or otherwise compared, possibly after being embedded into
some metric space. In these settings, even querying the
distance score between two data points becomes non-trivial
and often involves some level of uncertainty. Computing
distances for popular non-Euclidean metrics like Leven-
shtein distance or graph kernels is far more expensive than
computing Euclidean distances. This motivates a body of
research on minimizing the number of queries needed to
find a minimum spanning tree (Bateni et al., 2024; Erlebach
et al., 2022; Hoffmann et al., 2008; Megow et al., 2017).

These applications and challenges motivate new approaches
for efficiently finding good spanning trees for a set of points
in an arbitrary metric space. Ideally, we would like an

1

Approximate Forest Completion for Metric Minimum Spanning Trees

algorithm whose memory, runtime, and distance query com-
plexity are all o(n2), while still being able to find spanning
trees with strong theoretical guarantees in arbitrary metric
spaces. Unfortunately, there are known hardness results
that pose challenges for obtaining meaningful subquadratic
algorithms. In particular, it is known that finding any con-
stant factor approximation for an MST in an arbitrary metric
space requires knowing Ω(n2) edges in the underlying met-
ric graph (Indyk, 1999). Overcoming this inherent challenge
requires exploring additional assumptions and alternative
types of theoretical approximation guarantees.

The present work: metric forest completion. To achieve
our design goals and overcome existing hardness results,
we take our inspiration from the nascent field of learning-
augmented algorithms, also known as algorithms with
predictions (Mitzenmacher & Vassilvitskii, 2022). The
learning-augmented paradigm assumes access to an ML
heuristic that provides a prediction or “warm start” that is
useful in practice but does not come with a priori theoreti-
cal guarantees. The goal is to design an algorithm that (1)
comes with improved theoretical guarantees when the ML
heuristic performs well, and (2) recovers similar worst-case
guarantees if the ML heuristic performs poorly. Improved
theoretical guarantees can take various forms, including
faster runtimes (e.g., for sorting (Bai & Coester, 2023), bi-
nary search (Lin et al., 2022) or maximum s-t flows (Davies
et al., 2023)), improved approximation factors (e.g., for
NP-hard clustering problems (Ergun et al., 2022; Nguyen
et al., 2023)), better competitive ratios for online algorithms
(e.g., for ski rental problems (Shin et al., 2023)), or some
combination of the above (e.g., better trade-offs for space re-
quirements vs. false positive rates for Bloom filters (Kraska
et al., 2018)). These improved guarantees are given in terms
of some parameter measuring the quality of the prediction,
which is typically not known in practice but provides a
concrete measure of error that can be used in theoretical
analysis.

In this paper we specifically assume access to fragments
of a spanning tree for a metric MST problem (called the
initial forest), that takes the form of a spanning tree for each
component of some partitioning of the data objects. This
input can be interpreted as a heuristic approximation for the
forest that would be obtained by running a few iterations of
a classical MST algorithm such as Kruskal’s (Kruskal, 1956)
or Boruvka’s (Borůvka, 1926). Given this input, we formal-
ize the METRIC FOREST COMPLETION problem (MFC),
whose goal is to find a minimum-weight set of edges that
connects disjoint components to produce a full spanning
tree. Although optimally solving MFC takes Ω(n2) distance
queries, we design a subquadratic approximation algorithm
for MFC and prove a learning-augmented style approxima-
tion guarantee for the original metric MST problem. To

summarize, we have the following contributions.
• New algorithmic framework. We introduce METRIC

FOREST COMPLETION for large-scale metric MST prob-
lems, along with strategies for computing an initial forest
and a discussion of how our problem fits into the recent
framework of learning-augmented algorithms.

• Approximate completion algorithm. We prove that
optimally solving MFC requires Ω(n2) edge queries, but
provide an approximation algorithm with approximation
factor ≈ 2.62. Our algorithm has a query complexity of
o(n2) as long as the initial forest has o(n) components.

• Learning-augmented approximation guarantees. We
prove that if the initial forest γ-overlaps with an optimal
MST, then our algorithm is a (2γ + 1)-approximation
algorithm for the metric MST problem. If γ = 1, this
means all edges in the forest are contained in an optimal
MST. A precise definition for γ > 1 is given in Section 3.

• Experiments. We show that our method is extremely
scalable and obtains very good results on synthetic and
real datasets. We also show that simple heuristics provide
initial forests with γ-overlap values that are typically
smaller than 2 on various datasets and distance functions,
including many non-Euclidean metrics.

2. Technical Preliminaries and Related Work
We cover several technical preliminaries to set the stage for
our new MFC problem and algorithms. Additional related
work can be found in Section 5.

Graph notation and minimum spanning trees. For an
undirected graph G = (V,E) and weight function w : E →
R+, we denote the weight of an edge e = (u, v) as w(u, v),
wuv, or we. The weight of an edge set F ⊆ E is denoted
by w(F) =

∑
e∈F we. We frequently use w(G) = w(E)

to denote the weight of all edges in G = (V,E).

The minimum spanning tree problem on G with respect to
weight function w seeks a spanning tree T = (V,ET) of
G that minimizes w(ET). When w is clear from context
we will refer to T simply as an MST of G. We do often
consider multiple spanning trees of the same graph, each
optimal for a different weight function. In these cases we
explicitly state the weight function associated with an MST.

There are many well-known greedy algorithms for opti-
mally constructing an MST. We review Kruskal’s (Kruskal,
1956) and Boruvka’s (Borůvka, 1926) algorithms as their
mechanics are relevant for understanding our approach and
results. These methods first place all nodes into singleton
components. Each iteration of Kruskal’s algorithm iden-
tifies a minimum weight edge that connects two nodes in
different components, and adds it to a forest of edges (ini-
tialized to the empty set at the outset of the algorithm) that
is guaranteed to be part of some MST. This proceeds until

2

Approximate Forest Completion for Metric Minimum Spanning Trees

(a) Optimal metric MST (b) Forest from Kruskal’s

Figure 1: (a) An MST for an implicit graph GX defined
by 75 points in 2D Euclidean space. (b) The forest at an
intermediate step of Kruskal’s algorithm.

all components of the forest have been merged into one tree.
The method is equivalent to ordering all edges based on
weight and visiting them in order, greedily adding the ith
edge to the spanning tree if and only if its endpoints are
in different components. Boruvka’s algorithm (Borůvka,
1926) is similar, but instead identifies a minimum weight
edge incident to each component, adding all of them to the
growing forest. Both algorithms can be implemented to run
in O(m log n) time where n = |V | and m = |E|. Faster
algorithms, often based on one of these algorithms, have
been developed. The fastest deterministic algorithm has a
runtime of O(m · α(m,n)) where α is the inverse of the
Ackerman function (Chazelle, 2000). For this paper it suf-
fices to know that finding an MST takes Õ(m) time where
Õ hides factors that are logarithmic (or smaller) in n.

The metric MST problem. Throughout the paper we let
(X , d) be a finite metric space where X = {x1, x2, . . . , xn}
is a set of data points and d(xi, xj) is the distance between
the ith and jth points. In order to be a metric space, d
must satisfy the triangle inequality: d(xi, xj) ≤ d(xi, xk)+
d(xk, xj) for all triplets i, j, k ∈ [n] = {1, 2, . . . n}. Aside
from this we make no formal assumptions about the points
or d. The space is associated with a complete graph
GX = (X , EX) where we treat X as a node set and the
edge set EX =

(X
2

)
includes all pairs of nodes. The weight

function wX for GX is defined by wX (i, j) = d(xi, xj).
This graph GX is implicit; in order to know the weight of
an edge we must query the distance function d. We make no
assumptions regarding the complexity of querying distances.
Rather, we will give the complexity of our algorithms both
in terms of the runtime and number of queries.

The metric minimum spanning tree problem is simply the
MST problem applied to GX (see Figure 1a). This can be
solved by querying the distance function O(n2) times to
form GX , and then applying an existing MST algorithm.
We show it is more practical to implicitly deal with GX
via edge queries, while solving different types of nearest
neighbor problems over subsets of X .

Metric MSTs and bichromatic closest pairs. The bichro-

matic closest pair problem (BCP) is a particularly relevant
computational primitive for metric MSTs. The input to BCP
is two sets of points A and B in a metric space. The goal is
then to find a pair of opposite-set points (one from A and one
from B) with smallest distance. One can implicitly apply
a classical MST algorithm such as Kruskal’s or Boruvka’s
algorithm to GX by repeatedly solving BCP problems. In
more detail, these algorithms must find one or more discon-
nected components in an intermediate forest (see Figure 1b)
to join at each step via minimum weight edges. Finding
a minimum weight edge between two components exactly
corresponds to a BCP problem. This connection between
metric MSTs and BCP is well known and has been leveraged
in many prior works on metric MSTs (Agarwal et al., 1990;
Callahan & Kosaraju, 1993; Narasimhan & Zachariasen,
2001; Chatterjee et al., 2010).

3. Metric Forest Completion
We now formalize our METRIC FOREST COMPLETION
(MFC) framework, which assumes access to an initial forest
that is then grown into a full spanning tree.

Defining the initial forest. As a starting point for the metric
MST problem on (X , d), we assume access to a partitioning
P = {P1, P2, . . . , Pt} where X =

⋃t
i=1 Pi and Pi ∩ Pj =

∅ for i ̸= j. For each component Pi we have a partition
spanning tree Ti = (Pi, ETi) for that component. See
Figure 2a for an illustration. Let Gt = (X , Et) represent
the union of these trees, which has the same node set as GX ,
and edge set Et =

⋃t
i=1 ETi

. Each set Pi for i ∈ [t] defines
a group of points in X as well as a connected component
of Gt. We refer to this as the initial forest for MFC. To
provide intuition, the initial forest can be viewed as a proxy
for the forest obtained at an intermediate step of Kruskal’s
or Boruvka’s algorithm (see Figure 1b). While this serves as
a useful analogy, we stress that the partitioning will typically
be obtained using much cheaper methods and will not satisfy
any formal approximation guarantees.

Our theoretical analysis requires very few assumptions
about the partitioning P and partition spanning trees (initial
forest) {Ti : i = 1, 2, . . . t} that are given as input to the
METRIC FOREST COMPLETION problem. In particular, we
need not assume that Ti is a minimum spanning tree or even
a good spanning tree of Pi. Similarly, the components are
not required to be sets of points that are close together in
the metric space in order for the problem to be well-defined.
Nevertheless, in practice the hope is that P identifies groups
of nearby points in X and that Ti is a reasonably good
spanning tree for Pi for each i ∈ [t] = {1, 2, . . . , t}. Ap-
pendix A covers two practical strategies and corresponding
runtimes for finding an initial forest. In summary these are:

Strategy 1: k-centering. Apply a fast k-centering heuristic

3

Approximate Forest Completion for Metric Minimum Spanning Trees

to X to form P , e.g., using a simple 2-approximation (Gon-
zalez, 1985) or fast distributed methods (Malkomes et al.,
2015; McClintock & Wirth, 2016).

Strategy 2: k-NN graph. Compute an approximate k-nearest
neighbor graph of X for a reasonably small k, e.g., via the
scalable k-NN descent algorithm (Dong et al., 2011) or its
distributed generalization (Iwabuchi et al., 2023).

Similar but more restrictive strategies have been used by
previous heuristics for Euclidean MSTs (see Section 5).

Defining the MFC problem. METRIC FOREST COMPLE-
TION seeks to connect an initial forest into a spanning tree
for GX . Let P (x) ∈ P denote the component that x ∈ X
belongs to. The set of inter-component edges is

I = {(x, y) ∈ X × X : P (x) ̸= P (y)}.

We wish to find a minimum weight set of edges M ⊆ I so
that M ∪Et defines a connected graph on X . If M satisfies
these constraints we say it is a valid completion set and that
M completes P . The MFC problem can then be written as

minimize wX (M) + wX (Et)
subject to M completes P.

(1)

Let M∗ denote an optimal completion set. The graph T ∗ =
(X , Et∪M∗) is then guaranteed to be a tree (see Figure 2b);
if not we could remove edges to decrease the weight while
still spanning X . If the forest Gt is in fact contained in some
optimal spanning tree of GX (which would be the case if
it were obtained by running a few iterations of Kruskal’s
or Boruvka’s algorithm), then solving MFC would produce
an MST of GX . In practice this will typically not be the
case, but the problem remains well-defined regardless of
any assumptions about the quality of the initial forest.

The objective function in Eq. (1) includes the weight of the
initial forest wX (Et). Although this is constant with respect
to M and does not affect optimal solutions, there are several
reasons to incorporate this term explicitly. Most importantly,
our ultimate goal is to obtain a good spanning tree for all of
GX , and thus the weight of the full spanning tree (i.e., the
objective in Eq. 1) is a more natural measure. Considering
the weight of the full spanning tree also makes more sense
in the context of our learning-augmented algorithm analysis,
where the goal is to approximate the original metric MST
problem on GX , under different assumptions about the ini-
tial forest. We note finally that excluding the term wX (Et)
rules out the possibility of any meaningful approximation
results. We prove the following result using a reduction
from BCP to MFC, combined with a slight variation of a
simple lower bound for monochromatic closest pair that was
shown in Section 9 of Indyk (1999).

Theorem 3.1. Every optimal algorithm for MFC has Ω(n2)
query complexity. Furthermore, for any multiplicative factor

(a) Initial forest (P; {Ti}) (b) M∗ (in orange)

(c) GP w.r.t. w∗ (d) MST of GP w.r.t. w∗

(e) True metric MST (f) MST overlap with P

Figure 2: (a) An initial forest for a small metric MST prob-
lem. (b) The optimal solution to MFC. (c) The coarsened
graph GP with respect to optimal weight function w∗. (d)
An MST of GP with respect to w∗, which can in theory be
used to find M∗. (e) A true MST of the data points. (f) The
overlap between the initial forest and this true MST, which
can be used to certify γ ≤ 1.12 for this example.

p ≥ 1 (not necessarily a constant), any algorithm that
finds a set M ⊆ I that is feasible for (1) and satisfies
wX (M) ≤ p · wX (M∗) requires Ω(n2) queries.

Proof of Theorem 3.1. Let X be a set of n points that are
partitioned into two sets P1 and P2 of size n/2. Define a
distance function d such that d(a, b) = 1 for a randomly
chosen pair (a, b) ∈ P1 × P2, and such that d(x, y) = 2p
for all other pairs (x, y) ∈

(X
2

)
\{(a, b)}. Note that this d is

a metric. The MFC problem on this instance is identical to
solving BCP on P1 and P2. The unique optimal solution is
exactly M∗ = (a, b), and no other choice of M ⊆ I comes
within a factor p of this solution. Thus, any p-approximation
algorithm must find the pair (a, b) with distance 1 among a
collection of Ω(n2) pairs, where all other pairs have distance
2p. This requires Ω(n2) queries.

The MFC coarsened graph. The MFC problem is equiv-
alent to finding a minimum spanning tree in a coars-
ened graph GP = (VP , EP) with node set VP =
{v1, v2, . . . , vt} where vi represents component Pi. We

4

Approximate Forest Completion for Metric Minimum Spanning Trees

(a) Computing ŵij (b) GP w.r.t. ŵ (c) MFC-Approx output

Figure 3: (a) Finding the minimum distance between components Pi and Pj (dashed line) is an expensive bichromatic
closest pair problem. MFC-Approx instead performs a cheaper nearest neighbor query for a representative point in each
component (si and sj , shown as stars). (b) Applying this to each pair of components produces a weight function ŵ for the
coarsened graph GP . Finding an MST of GP with respect to ŵ yields (c) a 2.62-approximation for MFC.

refer to vi as the ith component node. This graph is com-
plete: EP includes all pairs of component nodes. Figure 2c
provides an illustration of the coarsened graph. Finding an
MFC solution M∗ ⊆ I is equivalent to finding an MST
in GP (see Figure 2d) with respect to the weight function
w∗ : EP → R+ defined for every i, j ∈ {1, 2, . . . , t} by

w∗
ij = w∗(vi, vj) = d(Pi, Pj) = min

x∈Pi,y∈Pj

d(x, y). (2)

Computing w∗
ij exactly requires solving a bichromatic clos-

est pair problem over sets Pi and Pj . A straightforward
approach for computing w∗

ij is to check all |Pi| · |Pj | pairs
of points in Pi × Pj . However, in the worst case where
cluster sizes are balanced, computing all of w∗ requires
Ω(n2) queries, which is not surprising given Theorem 3.1.
Nevertheless, this notion of a coarsened graph will be very
useful in developing approximation algorithms for MFC.

MFC as a learning-augmented framework. Our approach
fits the framework of learning-augmented algorithms in that
the initial forest can be viewed as a prediction for a partial
metric MST, such as the forest obtained by running several
iterations of a classical MST algorithm. In an ideal set-
ting, the initial forest would be a subset of an optimal MST.
If so, then an optimal solution to MFC would produce an
optimal metric MST. We relax this by introducing a more
general way to measure how much an optimal MST “over-
laps” with initial forest components. Let TX represent the
set of minimum spanning trees of GX , and T ∈ TX denote
an arbitrary MST. For components P = {P1, P2, . . . , Pt},
let T (Pi) denote the induced subgraph of T on Pi, and
let T (P) =

⋃t
i=1 T (Pi) denote the edges of T contained

inside components of P . Larger values of wX (T (P)) indi-
cate better initial forests, since this means an optimal MST
places a larger weight of edges inside these components.
We define the γ-overlap for the initial forest to be the ratio

γ(P) = wX (Et)
/

max
T∈TX

wX (T (P)). (3)

This measures the weight of edges that the initial forest

places inside P , relative to the weight of edges an optimal
MST places inside P . When P is clear from context we
will simply write γ. Lower ratios for γ are better. Because
of the minimizing property of any MST, and because Et is
fully connected within each Pi even though an MST need
not be, we always have γ(P) ≥ 1. This bound is tight
exactly when the initial forest is contained in some optimal
MST. For a reasonable initial forest where each Pi is a set of
nearby points and Ti is a reasonably good spanning tree for
Pi, we would expect γ to be larger than 1 but still not too
large. Figure 2f provides an example where we can certify
that γ ≤ 1.12 by comparing against one optimal MST. We
later show experimentally that we can quickly obtain initial
forests with small γ-overlap for a wide range of datasets
and metrics. In practical applications we typically would
not compute γ, as this is more computationally expensive
that solving the original metric MST problem. However,
using γ as a theoretical measure of quality, we will design
a learning-augmented algorithm that improves on worst-
case results when the quality is good, while still recovering
standard worst-case results when the quality is bad.

4. Approximate Completion Algorithm
We now present an algorithm that approximates MFC to
within a factor c < 2.62. We also prove it can be viewed as
a learning-augmented algorithm for metric MST, where the
approximation factor depends on the γ-overlap of the initial
forest. Pseudocode for our algorithm is provided in the
appendix. Here in the main text we give a full description
of the algorithm along with visual aids in Figure 3. Due to
space constraints, proofs are relegated to the appendix.

Algorithm description. Our algorithm starts by choosing
an arbitrary point si ∈ Pi for each i ∈ {1, 2, . . . , t} to be
the component’s representative (starred nodes in Figure 3).
The algorithm computes the distance between every point
x ∈ X and all of the other representatives. For every pair of

5

Approximate Forest Completion for Metric Minimum Spanning Trees

distinct components i and j we compute the weights:

wi→j = min
xi∈Pi

d(xi, sj) (the closest Pi node to sj) (4)

wj→i = min
xj∈Pj

d(xj , si) (the closest Pj node to si). (5)

We then define the approximate edge weight between com-
ponent nodes vi and vj to be:

ŵij = min{wi→j , wj→i}. (6)

This upper bounds the minimum distance w∗
ij between the

two components (Figure 3a). Computing this for all pairs
of components creates a new weight function ŵ for the
coarsened graph GP (Figure 3b). The algorithm keeps
track of the points in X that define these edge weights in
GP . It then computes an MST in GP with respect to ŵ,
then identifies the corresponding edges in GX , to produce
a feasible solution for MFC (Figure 3c). We refer to this
algorithm as MFC-Approx.

Approximation guarantees. For our analysis we separate
edges of the coarsened graph GP = (VP , EP) into two cate-
gories. For an arbitrary constant β > 1, edge (vi, vj) ∈ EP
is β-bounded if ŵij ≤ βw∗

ij , otherwise it is β-unbounded.
The following Lemma bounds the weight of β-unbounded
edges in terms of the initial forest.

Lemma 4.1. Let β > 1 be arbitrary. If ŵij > βw∗
ij , then

ŵij < min{wX (Ti), wX (Tj)} · β/(β − 1).

Lemma 4.1 aids in proving the following guarantee.

Theorem 4.2. MFC-approx is a β-approximation algo-
rithm for MFC for β = (3 +

√
5)/2 < 2.62.

The key proof idea is to separately bound the weight of β-
bounded and β-unbounded edges. If MFC-Approx includes
a β-bounded edge in its MST of GP , the weight of this
edge is bounded in terms of the optimal edge weights w∗.
Our analysis then uses Lemma 4.1 to bound the cost of β-
unbounded edges in terms of the weight of the initial forest.
The approximation factor in Theorem 4.2 is obtained by
choosing a value of β that best balances these two types of
costs. While this provides rough intuition, the full proof
requires many additional details and some other supporting
results, in order to ensure we can properly bound the weight
of all β-bounded and β-unbounded edges in the resulting
spanning tree at once. Appendix B provides full details.
With a similar proof technique, we prove MFC-Approx
is a learning-augmented algorithm for metric MST whose
performance depends on the quality of the initial forest.

Theorem 4.3. Let GX be an implicit metric graph and
P be an initial partitioning with γ-overlap γ = γ(P).
MFC-Approx returns a spanning tree of GX that approx-
imates the optimal metric MST to within a factor β =
1
2

(
2γ + 1 +

√
4γ + 1

)
≤ 2γ + 1.

The total runtime of MFC-Approx is Õ(ntQX + t2) where
QX is the complexity for one distance query in X . This is
subquadratic as long as tQX = o(n). When QX = Õ(1),
the memory, runtime, and query complexity are all sub-
quadratic as long as t = o(n). We emphasize that this is the
runtime just for the MFC problem, and does not incorporate
the time it takes to compute an initial forest. Appendix C
provides a more detailed runtime analysis that also consid-
ers one strategy for finding initial forests. The appendix also
addresses ways to improve the algorithm in practice with
little to no change in approximation guarantee.

5. Related Work
The most relevant related work is discussed within context
throughout the manuscript. Here we discuss connections to
other relevant work on MST algorithms.

MST algorithms with predictions. Our work shares simi-
larities, though ultimately orthogonal goals and results, with
other work on learning-augmented and query-minimizing
algorithms for MSTs. Erlebach et al. (2022) assume access
to (possibly erroneous) predictions for each edge weight
in a graph (not necessarily a metric graph) and the goal is
to minimize the number of (non-erroneous) edge-weight
queries in order to compute an exact MST. Berg et al. (2023)
considered an online setting where edge-weight predictions
are all provided a priori but true weights are only revealed in
an online fashion. After revealing a true weight, an irrevoca-
ble decision must be made about including or excluding the
edge from a spanning tree. Bateni et al. (2024) considered
MST computations in metric graphs, in settings where one
has access both to a weak oracle (providing a similar type
of edge-weight prediction) and a strong oracle giving true
distances. They focus on bounding the number of strong
oracle queries needed to find an exact or approximate MST.
These prior works share similarities with our work in their
goal to minimize certain types of queries. However, they
differ in that the learning-augmented information takes the
form of edge-weight predictions, rather than an initial forest.
These works also perform Ω(n2) queries in the worst case,
which is prohibitive for large n. Our work is distinctive in
its focus on subquadratic algorithms for approximate MSTs.

Algorithms for metric MST. Many previous papers fo-
cus on improving algorithmic guarantees for variants of
the metric MST problem, especially for the special case
of Euclidean distances. For d-dimensional Euclidean
space when d = O(1), an exact MST can be computed
in O(n2−2/(⌈d/2⌉+1)+ε) time (Agarwal et al., 1990), and
a (1 + ε)-approximate solution can be found in time
O(n log n + (ε−2 log2 1

ε)n) time, where the big-O nota-
tion hides constants of the form O(1)d (Arya & Mount,
2016). For high-dimensional spaces, there are also known

6

Approximate Forest Completion for Metric Minimum Spanning Trees

approaches for obtaining c-approximate Euclidean MSTs
where subquadratic runtimes depend on the value of the
desired approximation factor c > 1 (Har-Peled et al., 2013;
2012). There are also many recent improved theoretical
results for parallel and streaming variants of the metric MST
problem (Jayaram et al., 2024; Chen et al., 2022; 2023;
Wang et al., 2021; Azarmehr et al., 2025; March et al.,
2010), most of which again focus on the Euclidean case.

Partitioning heuristics for MSTs. There are several ex-
isting divide-and-conquer techniques for finding an approx-
imate Euclidean MST (Chen, 2013; Zhong et al., 2015;
Mishra & Mohanty, 2020; Jothi et al., 2018). Similar
to our approach, these methods begin by partitioning the
data into smaller components, using methods such as k-
means (Zhong et al., 2015; Jothi et al., 2018), finding com-
ponents of a k-NN graph (Chen, 2013), or using recursive
partitioning techniques (Mishra & Mohanty, 2020). An
MST for the entire dataset is obtained using various heuris-
tics for connecting components internally and then connect-
ing disjoint components. This often involves computing an
MST on some form of coarsened graph as a substep. De-
spite high-level similarities, these methods differ from our
forest completion framework in that they focus exclusively
on Euclidean space, an assumption that is essential for the
partitioning schemes used and the techniques for connect-
ing components. The other major difference is that these
approaches do not attempt to provide any type of approxi-
mation guarantee, which is our main focus.

Alternate uses of the acronym MFC. Liu et al. (2014)
used MFC to denote a feature selection technique they called
MST-based Feature Clustering. This involves computing an
MST, but does not involve any notion of forest completion.
Kor et al. (2011) studied distributed algorithms for verifying
whether a tree is a minimum spanning tree of a graph. Their
problem assumes an input graph is partitioned among many
processors, and the candidate tree consists of marked edges
that are partitioned into a so-called MST fragment collection
(MFC). These fragments bear a cursory resemblance with
the forest used as input to METRIC FOREST COMPLETION
problem, but Kor et al. (2011) do not focus on metric graphs
or completing initial forests. Furthermore, their problem
and approach rely on evaluating a full graph in memory,
which is intractable in our setting.

6. Experiments
We run a large number of numerical experiments on syn-
thetic and real-world datasets to show the practical utility
of our MFC framework. The overall utility of our approach
relies both on the performance of MFC-Approx as well as
our ability to obtain good initial forests. We therefore evalu-
ate both aspects in practice. Our experiments are designed

to address the following questions:
Q1. How does this framework perform in terms of runtime

and spanning tree cost?
Q2. What γ-overlap (see Eq. 3) can be achieved in practice

by scalable partitioning heuristics?
Q3. How does practical performance compare with the the-

oretical bound in Theorem 4.3?
Q4. How do differences in the structure of the data and

choice of distance metric affect performance?
Implementation details and experimental setup. We im-
plemented our algorithms in templated C++ code which
allows for easy specialization of different distance metrics.
Experiments were run on a research server with two AMD
EPYC 7543 32-Core Processors and 1 TB of RAM running
Ubuntu 20.04.1. The code was compiled with clang version
20.0.0 with O3 using libc++ version 20.0.0.

To generate an initial forest, we partition data points using a
simple k-center algorithm and compute an exact MST for
each component using Kruskal’s algorithm. The runtimes
we report include the time it takes to compute an initial
forest with this approach. See Appendix C.2 for details on
how this initial forest computation affects runtimes. We
compare against an exact MST for all of X , computed by
generating all

(
n
2

)
edge weights then running Kruskal’s algo-

rithm. We evaluate our framework in terms of runtime and
cost ratio (i.e., the spanning tree cost divided by the weight
of an optimal MST). We also compute a bound γ̄ ≥ γ(P)
on γ-overlap for our initial forest, obtained by computing
the overlap between the initial forest and the one optimal
MST we compute for our comparisons. Appendix D pro-
vides additional details about our experimental setup, design
choices, and evaluation techniques.

Uniform random data. We run a large number of experi-
ments on uniform random data in d-dimensional Euclidean
space to illustrate the strong performance of our MFC frame-
work in terms of runtime and spanning tree quality (address-
ing Q1 and Q2) in a simple controlled setting. Figure 4
shows results for d ∈ {8, 256} as n increases across a range
of choices for component number t. See Appendix D for
results on a wider range of dimensions d.

As t increases, we see improvements in asymptotic speedups
over the exact baseline algorithm (up to a 300x speedup for
d = 8 and 30x speedup for d = 256). As t increases
the quality of the approximate spanning tree also decreases
slightly, but the cost approximation ratio still remains very
good (i.e., close to 1) in all cases. The γ-overlap bound
γ̄ tend to be small for low dimensions, but gets large as d
increases (e.g., γ̄ close to 30 for d = 256). For a given γ̄,
Theorem 4.3 guarantees roughly a (2γ̄ + 1)-approximation.
For d = 8 this approximation ranges from 3 to 6, while for
d = 256 it ranges from 3 to around 60. Despite this, the cost
ratios obtained remain very close to 1, and even improve

7

Approximate Forest Completion for Metric Minimum Spanning Trees

1.2
1.4
1.6
1.8
2.0
2.2
2.4

0 10000 20000 30000

γ
up

pe
r

bo
un

d
Uniform Random Points d=8

5
10
15
20
25
30

0 10000 20000 30000

Uniform Random Points d=256

1.02
1.04
1.06
1.08
1.10
1.12
1.14

0 10000 20000 30000

C
os

t r
at

io

1.01

1.02

1.03

1.04

1.05

0 10000 20000 30000

0

100

200

300

400

0 10000 20000 30000
n

R
un

tim
e

ra
tio

0
5

10
15
20
25
30
35

0 10000 20000 30000
n

• t = 16 ▲ t = 32 ■ t=64 + t = 128 ⊠ t = 256

Figure 4: Results on synthetic uniform random data for
dimensions d ∈ {8, 256}. Each point represents the average
of 16 samples of the data for a fixed n and choice of com-
ponent number t for our framework. Runtime ratio is the
ratio between the runtime of the optimal MST divided by
the runtime of our method. See main text for discussion.

slightly as d increases. This tells us first of all that in actual
numerical experiments, our approach greatly exceeds our
theoretical bounds (addressing Q3). We conjecture that
for these high-dimensional point clouds (which lack any
underlying structure), there are a large number of spanning
trees that are nearly optimal in terms of weight but are
structurally very different from an optimal spanning tree
(which may be unique). This could lead to high γ values
despite our good cost ratios.

Improved results on clustered data. Although γ̄ is large
for high-dimensional uniform random data, the lack of struc-
ture in this synthetic data is atypical for most applications.
For example, metric spanning trees are often computed as
the first step in clustering data. Therefore, as part of our
answers to Questions Q2 (on γ values) and Q4 (on the struc-
ture of the data), we explore how our framework performs
on datasets with some level of clustering structure. We be-
gin by running a similar set of experiments as in Figure 4,
but we instead sample points uniformly at random from the
Fashion-MNIST dataset, where points represent images of

Fashion-MNIST d = 784

1.2
1.3
1.4
1.5
1.6
1.7

0 10000 20000 30000
n

γ
up

pe
r

bo
un

d

1.01

1.02

1.03

1.04

1.05

0 10000 20000 30000
n

C
os

t r
at

io

• t = 16 ▲ t = 32 ■ t=64 + t = 128 ⊠ t = 256

Figure 5: Results for Fashion-MNIST. Each point is the
average of 16 samples for fixed n and t.

Gaussian Random Points d = 8

1.00

1.25

1.50

1.75

2.00

3264 128 256
Number of Gaussians (g)

γ
up

pe
r

bo
un

d

t = 16
t = 32
t = 64
t = 128
t = 256

1.000

1.025

1.050

1.075

1.100

3264 128 256
Number of Gaussians (g)

C
os

t r
at

io

Figure 6: Results on synthetic data with clustering structure:
mixtures of g Gaussians. Cost ratio and γ-overlap bound
γ̄ is minimized when g roughly matches the number of
components t in our MFC framework.

clothing items. Although images do not perfectly cluster
into different classes, there is still clear underlying structure
(e.g., we expect images of sneakers to look different from
images of trousers). Figure 5 shows that for this dataset,
our MFC framework achieves slightly better cost ratios and
far better γ-overlap bounds than for uniform random data
(Figure 4), even though the dimension of Fashion-MNIST
points (d = 784) is much larger than the dimensions we con-
sidered for uniform data. We also observed similar trends
in runtime improvements as in Figure 4 (see Appendix D).

We further examine the effect of clustering structure in a
controlled setting by generating mixtures of g Gaussians
in 8-dimensional Euclidean space, where parameters are
selected to produce good (even if imperfect) clustering struc-
ture. For each Gaussian we generate ⌊20000/g⌋ points, so
that n ≈ 20000 for each dataset. Figure 6 shows γ̄ values
and cost ratios for a range of component numbers t as g
varies. Significantly, the quality of our spanning trees gets
better and better as the number of components t gets closer
to the number of Gaussians g (i.e., true number of clusters
in the data). This is illustrated by sharp valleys in the plots
for γ̄ and cost ratio when t ≈ g. Furthermore, even when
t and g are not close to each other, γ̄ values and cost ratios
are still smaller than the ones obtained on uniform random
data with the same dimension d = 8 (see Figure 4). This

8

Approximate Forest Completion for Metric Minimum Spanning Trees

Table 1: Results on real-world datasets.

Dataset OPT t

16 32 128

Cooking γ̄ - 1.77 2.01 2.42
Cost Ratio 1 1.04 1.05 1.07
Run Ratio 1 4.39 6.52 9.97

n ≈ 40k Run (min) 23.1 5.3 3.5 2.3

Movie γ̄ - 1.40 1.51 1.95
Cost Ratio 1 1.01 1.01 1.02
Run Ratio 1 4.03 5.01 9.34

n ≈ 33k Run (min) 484.2 120.3 96.6 51.9

Kosarak γ̄ - 1.29 1.74 2.79
Cost Ratio 1 1.01 1.01 1.03
Run Ratio 1 2.68 5.99 18.17

n ≈ 32k Run (min) 182.3 68.0 30.4 10.0

Names γ̄ - 1.02 1.06 1.22
Cost Ratio 1 1.01 1.02 1.05
Run Ratio 1 0.92 0.95 1.03

n = 30k Run (min) 2.0 2.1 2.1 1.9

GG- γ̄ - 1.39 1.46 1.40
unalign. Cost Ratio 1 1.09 1.10 1.07

Run Ratio 1 2.56 3.27 2.12
n = 2.5k Run (min) 239.3 98.0 74.9 113.2

GG- γ̄ - 1.22 1.37 1.51
aligned Cost Ratio 1 1.07 1.12 1.15

Run Ratio 1 1.60 2.38 5.85
n = 30k Run (min) 33.1 22.1 15.1 6.7

Fashion γ̄ - 1.17 1.24 1.41
Cost Ratio 1 1.01 1.02 1.03
Run Ratio 1 4.67 7.18 12.13

n = 30k Run (min) 11.4 2.7 1.8 1.0

indicates that clustering structure helps our framework even
when the number of underlying clusters is unknown. See
Appendix D for additional plots, including runtimes.

Additional results on real data. We continue to address
Q4 by running experiments on 7 real-world datasets and cor-
responding metrics, which have often been used as bench-
marks for similarity search algorithms and clustering al-
gorithms. Cooking (Kaggle, 2015; Amburg et al., 2020),
Kosarak (Bodon; Aumueller et al., 2024), and MovieLens
(Movie) (Harper & Konstan, 2015; Aumueller et al., 2024)
are set data so we use Jaccard distance. Names (Remy,
2021) and GreenGenes-Unaligned (GG-unalign.) (DeSantis
et al., 2006) contain variable-length strings so we use Leven-
shtein edit distance. GreenGenes-Aligned (GG-align) (De-
Santis et al., 2006) consists of fixed-length strings (all with
7682 characters) so we use Hamming distance. For Fashion-
MINST (Xiao et al., 2017) we use Euclidean distance. See
Appendix D for additional details on datasets.

Table 1 displays cost ratios, runtimes, and γ-overlap bound
γ̄ for our MFC framework. For some datasets, we are unable
to compute the exact minimum spanning tree in a reason-
able amount of time and space, so we subsample the data
16 times for a fixed value of n and report mean results (see
Appendix D for standard deviations). The γ̄ values tend
to be very good in practice (nearly always below 2), rein-
forcing the observation that our framework and theoretical
guarantees are better when there is structure in the data.

In some cases, runtimes get worse as t increases too much,
but this matches expectations and can be guarded against in
practice. For example, for the GreenGenes-Unaligned (GG-
unalign) dataset we consider small subsets of size n = 2500
since data objects are long strings, and computing Leven-
shtein distances is expensive. When t = 256, the average
partition size for the initial forest is roughly 10 points. In
this case, the MFC step is extremely expensive. Our frame-
work is designed for situations where t is asymptotically
much smaller than n, hence Table 1 illustrates the decrease
in performance we would naturally expect when t is too
large. Another observation is that we only see runtime im-
provements for the Names dataset for larger t. It turns out
this is because of extreme outliers in the Names dataset
causing our clustering approach to create one large cluster
containing most names. This can be guarded against by
improving the initial clustering on the data. Appendix D
provides additional details, including a breakdown of the
time spent on each step of the MFC framework.

7. Conclusions and Discussion
We have presented a new framework for finding spanning
trees in arbitrary metric spaces, which is highly scalable and
grounded in rigorous approximation guarantees. This frame-
work is based on completing an initial forest, which can be
obtained efficiently using practical heuristics. This paper fo-
cuses on serial implementations and theoretical guarantees,
as our framework already provides many advantages in this
setting. At the same time, our work is strongly motivated
by massive-scale clustering applications that require high-
performance computing capabilities, and the algorithm we
developed is highly parallelizable. A natural direction for
further research is to develop parallel versions of our algo-
rithm that can be run on a much larger scale. There are also
many remaining questions in the serial setting. One direc-
tion is to try to improve on the (

√
5 + 3)/2-approximation

guarantee while still using subquadratic time, or obtain an
approximation with better dependence on the γ-overlap pa-
rameter. Another direction is to prove lower bounds for
the best possible approximation guarantees for subquadratic
algorithms. There are also many opportunities to explore
more efficient and practical methods for obtaining the initial
forest that serves as the input to the MFC problem.

9

Approximate Forest Completion for Metric Minimum Spanning Trees

Acknowledgements
This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344 (LLNL-
CONF-2002129), and was supported by LLNL LDRD
project 24-ERD-024.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Agarwal, P. K., Edelsbrunner, H., Schwarzkopf, O., and

Welzl, E. Euclidean minimum spanning trees and bichro-
matic closest pairs. In Proceedings of the Symposium on
Computational Geometry, pp. 203–210, 1990.

Almansoori, M. K., Meszaros, A., and Telek, M. Fast and
memory-efficient approximate minimum spanning tree
generation for large datasets. Arabian Journal for Science
and Engineering, pp. 1–14, 2024.

Amburg, I., Veldt, N., and Benson, A. Clustering in graphs
and hypergraphs with categorical edge labels. In Proceed-
ings of The Web Conference, pp. 706–717. Association
for Computing Machinery, 2020.

An, L., Xiang, Q.-S., and Chavez, S. A fast implemen-
tation of the minimum spanning tree method for phase
unwrapping. IEEE transactions on medical imaging, 19
(8):805–808, 2000.

Arya, S. and Mount, D. M. A fast and simple algorithm
for computing approximate Euclidean minimum span-
ning trees. In Proceedings of the Symposium on Discrete
Algorithms, pp. 1220–1233. SIAM, 2016.

Aumueller, M., Bernhardsson, E., and Faitfull, A. Ann
benchmarks. https://github.com/erikbern/
ann-benchmarks, 2024.

Azarmehr, A., Behnezhad, S., Jayaram, R., Łącki, J., Mir-
rokni, V., and Zhong, P. Massively parallel minimum
spanning tree in general metric spaces. In Proceedings
of the Symposium on Discrete Algorithms, pp. 143–174.
SIAM, 2025.

Bai, X. and Coester, C. Sorting with predictions. Advances
in Neural Information Processing Systems, 36:26563–
26584, 2023.

Barrow, J. D., Bhavsar, S. P., and Sonoda, D. Minimal
spanning trees, filaments and galaxy clustering. Monthly

Notices of the Royal Astronomical Society, 216(1):17–35,
1985.

Bateni, M., Dharangutte, P., Jayaram, R., and Wang, C.
Metric clustering and MST with strong and weak distance
oracles. In Proceedings of the Conference on Learning
Theory, pp. 498–550. PMLR, 2024.

Berg, M., Boyar, J., Favrholdt, L. M., and Larsen, K. S.
Online minimum spanning trees with weight predictions.
In Proceedings of the International Algorithms and Data
Structures Symposium, pp. 136–148. Springer-Verlag,
2023.

Bodon, F. Kosarak Dataset (Frequent Itemset Mining
Dataset Repository). http://fimi.uantwerpen.be/data/.

Borůvka, O. O jistém problému minimálním. 1926.

Callahan, P. B. and Kosaraju, S. R. Faster algorithms for
some geometric graph problems in higher dimensions. In
Proceedings of the Symposium on Discrete Algorithms,
volume 93, pp. 291–300, 1993.

Chatterjee, S., Connor, M., and Kumar, P. Geometric mini-
mum spanning trees with GeoFilerKruskal. In Proceed-
ings of the International Symposium on Experimental
Algorithms, pp. 486–500. Springer, 2010.

Chazelle, B. A minimum spanning tree algorithm with
inverse-ackermann type complexity. Journal of the ACM
(JACM), 47(6):1028–1047, 2000.

Chen, X. Clustering based on a near neighbor graph and a
grid cell graph. Journal of Intelligent Information Sys-
tems, 40:529–554, 2013.

Chen, X., Jayaram, R., Levi, A., and Waingarten, E. New
streaming algorithms for high dimensional EMD and
MST. In Proceedings of the 54th Annual ACM SIGACT
Symposium on Theory of Computing, pp. 222–233, 2022.

Chen, X., Cohen-Addad, V., Jayaram, R., Levi, A., and
Waingarten, E. Streaming Euclidean MST to a constant
factor. In Proceedings of the Symposium on Theory of
Computing, pp. 156–169. Association for Computing
Machinery, 2023.

Davies, S., Moseley, B., Vassilvitskii, S., and Wang, Y.
Predictive flows for faster Ford-Fulkerson. In Interna-
tional Conference on Machine Learning, pp. 7231–7248.
PMLR, 2023.

DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M.,
Brodie, E. L., Keller, K., Huber, T., Dalevi, D., Hu, P.,
and Andersen, G. L. Greengenes, a chimera-checked
16S rRNA gene database and workbench compatible with
ARB. Appl Environ Microbiol, 72(7):5069–5072, Jul

10

https://github.com/erikbern/ann-benchmarks
https://github.com/erikbern/ann-benchmarks

Approximate Forest Completion for Metric Minimum Spanning Trees

2006. ISSN 0099-2240 (Print); 1098-5336 (Electronic);
0099-2240 (Linking). doi: 10.1128/AEM.03006-05.

Dong, W., Moses, C., and Li, K. Efficient k-nearest neighbor
graph construction for generic similarity measures. In
Proceedings of the International Conference on World
Wide Web, pp. 577–586, 2011.

Ergun, J., Feng, Z., Silwal, S., Woodruff, D. P., and Zhou,
S. Learning-augmented k-means clustering. Machine
learning, 2022.

Erlebach, T., de Lima, M. S., Megow, N., and Schlöter, J.
Learning-augmented query policies for minimum span-
ning tree with uncertainty. In Proceedings of the Euro-
pean Symposium on Algorithms, 2022.

Gonzalez, T. F. Clustering to minimize the maximum in-
tercluster distance. Theoretical computer science, 38:
293–306, 1985.

Gower, J. C. and Ross, G. J. Minimum spanning trees
and single linkage cluster analysis. Journal of the Royal
Statistical Society: Series C (Applied Statistics), 18(1):
54–64, 1969.

Har-Peled, S., Indyk, P., and Motwani, R. Approximate
nearest neighbor: Towards removing the curse of dimen-
sionality. Theory of Computing, 8(14):321–350, 2012.

Har-Peled, S., Indyk, P., and Sidiropoulos, A. Euclidean
spanners in high dimensions. In Proceedings of the Sym-
posium on Discrete Algorithms, pp. 804–809. SIAM,
2013.

Harper, F. M. and Konstan, J. A. The movielens datasets:
History and context. ACM Trans. Interact. Intell. Syst., 5
(4), 2015. ISSN 2160-6455. doi: 10.1145/2827872. URL
https://doi.org/10.1145/2827872.

Held, M. and Karp, R. M. The traveling-salesman problem
and minimum spanning trees. Operations research, 18
(6):1138–1162, 1970.

Hoffmann, M., Erlebach, T., Krizanc, D., Mihalák, M.,
and Raman, R. Computing minimum spanning trees
with uncertainty. In Proceedings of the Symposium on
Theoretical Aspects of Computer Science, pp. 277–288,
2008.

Indyk, P. Sublinear time algorithms for metric space prob-
lems. In Proceedings of the Symposium on Theory of
Computing, pp. 428–434, 1999.

Iwabuchi, K., Steil, T., Priest, B., Pearce, R., and Sanders, G.
Towards a massive-scale distributed neighborhood graph
construction. In Proceedings of the SC’23 Workshops
of The International Conference on High Performance

Computing, Network, Storage, and Analysis, pp. 730–738,
2023.

Jayaram, R., Mirrokni, V., Narayanan, S., and Zhong,
P. Massively parallel algorithms for high-dimensional
Euclidean minimum spanning tree. In Proceedings of
the Symposium on Discrete Algorithms, pp. 3960–3996.
SIAM, 2024.

Jothi, R., Mohanty, S. K., and Ojha, A. Fast approximate
minimum spanning tree based clustering algorithm. Neu-
rocomputing, 272:542–557, 2018.

Kaggle. What’s cooking? https://www.kaggle.
com/c/whats-cooking, 2015.

Kor, L., Korman, A., and Peleg, D. Tight bounds for dis-
tributed MST verification. In Proceedings of the Interna-
tional Symposium on Theoretical Aspects of Computer
Science. Schloss-Dagstuhl-Leibniz Zentrum für Infor-
matik, 2011.

Kraska, T., Beutel, A., Chi, E. H., Dean, J., and Polyzotis,
N. The case for learned index structures. In Proceedings
of the International Conference on Management of Data,
pp. 489–504, 2018.

Kruskal, J. B. On the shortest spanning subtree of a graph
and the traveling salesman problem. Proceedings of the
American Mathematical Society, 7(1):48–50, 1956.

La Grassa, R., Gallo, I., and Landro, N. Ocmst: One-class
novelty detection using convolutional neural network and
minimum spanning trees. Pattern Recognition Letters,
155:114–120, 2022.

Labbé, M., Landete, M., and Leal, M. Dendrograms, min-
imum spanning trees and feature selection. European
Journal of Operational Research, 308(2):555–567, 2023.

Lin, H., Luo, T., and Woodruff, D. Learning augmented
binary search trees. In International Conference on Ma-
chine Learning, pp. 13431–13440. PMLR, 2022.

Liu, Q., Zhang, J., Xiao, J., Zhu, H., and Zhao, Q. A su-
pervised feature selection algorithm through minimum
spanning tree clustering. In Proceedings of the Interna-
tional Conference on Tools with Artificial Intelligence, pp.
264–271. IEEE, 2014.

Loberman, H. and Weinberger, A. Formal procedures for
connecting terminals with a minimum total wire length.
Journal of the ACM (JACM), 4(4):428–437, 1957.

Malkomes, G., Kusner, M. J., Chen, W., Weinberger, K. Q.,
and Moseley, B. Fast distributed k-center clustering with
outliers on massive data. Advances in Neural Information
Processing Systems, 28, 2015.

11

https://doi.org/10.1145/2827872
https://www.kaggle.com/c/whats-cooking
https://www.kaggle.com/c/whats-cooking

Approximate Forest Completion for Metric Minimum Spanning Trees

March, W. B., Ram, P., and Gray, A. G. Fast Euclidean mini-
mum spanning tree: algorithm, analysis, and applications.
In Proceedings of the SIGKDD international conference
on Knowledge Discovery and Data mining, pp. 603–612,
2010.

McClintock, J. and Wirth, A. Efficient parallel algorithms
for k-center clustering. In Proceedings of the Interna-
tional Conference on Parallel Processing, pp. 133–138.
IEEE, 2016.

Megow, N., Meißner, J., and Skutella, M. Randomization
helps computing a minimum spanning tree under uncer-
tainty. SIAM Journal on Computing, 46(4):1217–1240,
2017.

Mishra, G. and Mohanty, S. K. Efficient construction of an
approximate similarity graph for minimum spanning tree
based clustering. Applied Soft Computing, 97:106676,
2020.

Mitzenmacher, M. and Vassilvitskii, S. Algorithms with
predictions. Communications of the ACM, 65(7):33–35,
2022.

Narasimhan, G. and Zachariasen, M. Geometric minimum
spanning trees via well-separated pair decompositions.
Journal of Experimental Algorithmics, 6, 2001.

Nguyen, T., Chaturvedi, A., and Nguyen, H. L. Im-
proved learning-augmented algorithms for k-means and
k-medians clustering. In International Conference on
Learning Representations, 2023.

Prim, R. C. Shortest connection networks and some gen-
eralizations. The Bell System Technical Journal, 36(6):
1389–1401, 1957.

Remy, P. Name dataset. https://github.com/
philipperemy/name-dataset, 2021.

Shamos, M. I. and Hoey, D. Closest-point problems. In Pro-
ceedings of the Symposium on Foundations of Computer
Science, pp. 151–162. IEEE, 1975.

Shin, Y., Lee, C., Lee, G., and An, H.-C. Improved learning-
augmented algorithms for the multi-option ski rental
problem via best-possible competitive analysis. In In-
ternational Conference on Machine Learning, pp. 31539–
31561. PMLR, 2023.

Vaidya, P. M. Minimum spanning trees in k-dimensional
space. SIAM Journal on Computing, 17(3):572–582,
1988.

Wang, Y., Yu, S., Gu, Y., and Shun, J. Fast parallel algo-
rithms for Euclidean minimum spanning tree and hier-
archical spatial clustering. In Proceedings of the Inter-
national Conference on Management of Data, pp. 1982–
1995, 2021.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms, 2017.

Xu, Y. and Uberbacher, E. C. 2D image segmentation using
minimum spanning trees. Image and Vision Computing,
15(1):47–57, 1997.

Xu, Y., Olman, V., and Xu, D. Clustering gene expression
data using a graph-theoretic approach: an application of
minimum spanning trees. Bioinformatics, 18(4):536–545,
2002.

Zhong, C., Malinen, M., Miao, D., and Fränti, P. A fast
minimum spanning tree algorithm based on k-means. In-
formation Sciences, 295:1–17, 2015.

12

https://github.com/philipperemy/name-dataset
https://github.com/philipperemy/name-dataset

Approximate Forest Completion for Metric Minimum Spanning Trees

A. Strategies for Finding an Initial Forest
In order for our approach to be meaningful for large-scale metric MST problems, we must be able to obtain a reasonably
good initial forest without this dominating our overall algorithmic pipeline. Here we discuss two specific strategies for
initial forest computations, both of which are fast, easy to parallelize, and motivated by techniques that are already being
used in practice in large-scale clustering pipelines. In particular, there are already a number of existing heuristics for finding
MSTs and hierarchical clusters that rely in some way on partitioning an initial dataset and then connecting or merging
components (Zhong et al., 2015; Jothi et al., 2018; Mishra & Mohanty, 2020; Chen, 2013). These typically focus only
on point cloud data, do not apply to arbitrary metric spaces, and do not come with any type of approximation guarantee.
Nevertheless, they provide examples of fast heuristics for large-scale metric spanning tree problems, and serve as motivation
for our more general strategies below.

Strategy 1: Components of a k-NN graph. A natural way to obtain an initial forest for GX is to compute an approximate
k-nearest neighbor graph for a reasonably small k, which can be accomplished with the k-NN descent algorithm (Dong
et al., 2011) or a recent distributed generalization of this method (Iwabuchi et al., 2023). This efficiently connects a
large number of points using small-weight edges. The k-NN graph will often be disconnected, and we can use the set of
connected components as our initial components P = {P1, P2, . . . , Pt}. The exact number of components will depend on
the distribution of the data and the number of nearest neighbors computed. For larger values of k, the k-NN graph is more
expensive to compute, but then there are fewer components to connect, so there are trade-offs to consider. The components
of the k-NN graph will typically not be trees but will be sparse (the average degree is O(k)), so we can use classical MST
algorithms to find spanning trees for all components in

∑t
i=1 Õ(k · |Pi|) = Õ(kn) time. The exact runtime of the k-NN

descent algorithm depends on various parameters settings, but prior work reports an empirical runtime of O(n1.14) (Dong
et al., 2011), with strong empirical performance across a range of different metrics and dataset sizes. We remark that k-NN
computations have already been used elsewhere as subroutines for large-scale Euclidean MST computations (Almansoori
et al., 2024; Chen, 2013).

Strategy 2: Fast clustering heuristics. Another approach is to form components P = {P1, P2, . . . , Pt} by applying a
fast clustering heuristic to X such as a distributed k-center algorithm (Malkomes et al., 2015; McClintock & Wirth, 2016).
Even the simple sequential greedy 2-approximation algorithm for k-center can produce an approximate clustering using
O(nk) queries (Gonzalez, 1985). Approximate or exact minimum spanning trees for each Pi can be found in parallel.
The remaining step is to find a good way to connect the forest. Similar approaches that partition the initial dataset using
k-means clustering also exist (Zhong et al., 2015; Jothi et al., 2018), though this inherently forms clusters based on Euclidean
distances. For all of these clustering-based approaches, the number of components t for the initial forest is easy to control
since it exactly corresponds to the number of clusters k. Smaller k leads to larger clusters, and hence finding an MST of
each Pi is harder. However, there are then fewer components to connect, so there is again a trade-off to consider. We remark
that it may seem counterintuitive to use a clustering method as a subroutine for finding an MST, since one of the main
reasons to compute an MST is to perform clustering. We stress that Strategy 2 uses a cheap and fast clustering method that
identifies sets of points that are somewhat close in the metric space, without focusing on whether they are good clusters for a
downstream application. These cheaper clusters are then just part of a broader and more sophisticated hierarchical clustering
pipeline.

B. Proofs
We now provided full details for proving the main approximation results in Section 4 for MFC-Approx. Pseudocode is
shown in Algorithm 1.

Lemma 4.1. Let Pi and Pj be an arbitrary pair of components and let β > 1. If ŵij > βw∗
ij , then

ŵij <
β

β − 1
min{wX (Ti), wX (Tj)}. (7)

Proof. For each i ∈ {1, 2, . . . , t}, we denote the maximum distance between a point in Pi and its component representative
si by αi = maxx∈Pi d(x, si). Let x∗

i ∈ Pi and x∗
j ∈ Pj be points satisfying d(x∗

i , x
∗
j) = d(Pi, Pj) = w∗

ij . We use the

13

Approximate Forest Completion for Metric Minimum Spanning Trees

Algorithm 1 MFC-Approx

Input: X = {x1, x2, . . . , xn}, components P = {P1, P2, . . . , Pt}, component spanning trees {T1, T2, . . . , Tt}
Output: Spanning tree for implicit metric graph of X
for i = 1, 2, . . . t do

Select arbitrary component representative si ∈ Pi

5: end for
for i = 1, 2, . . . t− 1 do

for j = i+ 1, . . . , t do
wi→j = minxi∈Pi

d(xi, sj) // closest a Pi node comes to sj
wj→i = minxj∈Pj

d(xj , si) // closest a Pj node comes to si
10: ŵij = min{wi→j , wj→i} // set weight for edge (vi, vj)

end for
end for
T̂P = OPTIMALMST({ŵij}i,j∈[t]) // find optimal MST on complete t-node graph

Return spanning tree T̂ of GX by combining
⋃t

i=1 Ti with edges from T̂P .

(reverse) triangle inequality and the definition of αi to see that:

d(x∗
i , x

∗
j) = min

xj∈Pj

d(x∗
i , xj) ≥ min

xj∈Pj

d(si, xj)− d(si, x
∗
i) ≥ min

xj∈Pj

d(si, xj)− αi = wj→i − αi ≥ ŵij − αi.

Similarly we can show that

d(x∗
i , x

∗
j) = min

xi∈Pi

d(xi, x
∗
j) ≥ min

xi∈Pi

d(sj , xi)− d(sj , x
∗
j) ≥ min

xi∈Pi

d(sj , xi)− αj = wi→j − αj ≥ ŵij − αj .

In other words, we have the bound w∗
ij ≥ ŵij −min{αi, αj}. Combining this with the assumption that ŵij > βw∗

ij gives

ŵij > βw∗
ij ≥ βŵij − βmin{αi, αj} =⇒ β

β − 1
min{αi, αj} > ŵij .

The proof follows from the observation that αi ≤ wX (Ti). To see why, note that there exists some x ∈ Pi such that
d(x, si) = αi. Since Ti is a spanning tree of Pi, it must contain a path from si to x with sum of edge weights at least αi.

In addition to Lemma 4.1, our main approximation guarantees rely on two other simple supporting observations. We include
a full proof here for completeness. The first amounts to the observation that a tree has arboricity and degeneracy 1. The
second supporting observation deals with MSTs in a graph that includes edges of weight zero.

Observation 1. If T = (V,ET) is an undirected tree, there is a way to orient edges in such a way that every node has at
most one outgoing edge.

Proof. The proof is constructive. Define an iterative algorithm that removes a minimum degree node at each step and deletes
all its incident edges. Orient the deleted edges so that they start at the node that was removed. Note that a tree always
contains a node of degree 1, and removing such a node leads to another tree with one fewer node. Thus, this procedure will
orient edges of the original graph in such a way that each node has at most one outgoing edge.

Observation 2. Let w(1) : E → R+ and w(2) : E → R+ be two nonnegative weight functions for an undirected graph
G = (V,E). Assume there is an edge set Z ⊆ E such that

w(1)(i, j) = w(2)(i, j) = 0 for every (i, j) ∈ Z.

Then there exist spanning trees M1 and M2 for G such that Mi is an MST for G with respect to w(i) for i ∈ {1, 2}, and
M1 ∩ Z = M2 ∩ Z.

Proof. The proof is constructive. Recall that Kruskal’s algorithm finds an MST by ordering edges by weight (starting with
the smallest and breaking ties arbitrarily in the ordering) and then greedily adds each edge a growing spanning tree if and

14

Approximate Forest Completion for Metric Minimum Spanning Trees

only if it connects two previously disconnected components. Fix an arbitrary ordering σZ of edges in Z. When applying
Kruskal’s algorithm to find minimum spanning trees of G with respect to w(1) and w(2), we can choose orderings for these
functions that exactly coincide for the first |Z| edges visited. Namely, we place edges in Z first, using the order given by σZ .
The first |Z| steps of Kruskal’s algorithm will be identical when building MSTs with respect to w(1) and w(2). Thus, if M1

and M2 are the spanning trees obtained for w(1) and w(2) respectively using this approach, we know these trees will include
the same set of edges from Z and discard the same set of edges from Z, i.e., M1 ∩ Z = M2 ∩ Z.

To aid in proving our main approximation results, we first cover some useful notation. Let T ∗
P represent an MST of

GP with respect to the optimal weight function w∗ : EP → R+ and T̂P represent an MST of GP with respect to the
approximate weight function ŵ : EP → R+. The edges of T ∗

P map to a set of edges M∗ in GX that optimally solves the
METRIC FOREST COMPLETION problem, and the edges in T̂P map to an edge set M̂ . The weight of these edges is given
by wX (M∗) = w∗(T ∗

P) and wX (M̂) = ŵ(T̂P), respectively. Let T ∗ be the spanning tree of GX defined by combining⋃t
i=1 Ti with M∗ and T̂ be the spanning tree (returned by MFC-Approx) that combines

⋃t
i=1 Ti with M̂ . These have

weights given by

wX (T ∗) = w∗(T ∗
P) +

t∑
i=1

wX (Ti) (8)

wX (T̂) = ŵ(T̂P) +

t∑
i=1

wX (Ti). (9)

We now restate and then prove Theorems 4.2 and 4.3 using the new notation above.

Theorem 4.2 The spanning tree T̂ returned by Algorithm 1 satisfies

wX (T ∗) ≤ wX (T̂) ≤ βwX (T ∗)

for β = (3 +
√
5)/2 < 2.62, where T ∗ is a solution to the MFC problem. In other words, T ∗ is a spanning tree of GX with

minimum weight among all spanning trees that complete the initial forest
⋃t

i=1 Ti.

Proof. For our analysis we consider two hypothetical weight functions w∗
0 and ŵ0 for GP = (VP , EP), defined by zeroing

out the β-unbounded edges in w∗ and ŵ:

w∗
0(vi, vj) =

{
w∗

ij if (vi, vj) is β-bounded, i.e., ŵij ≤ βw∗
ij

0 otherwise

ŵ0(vi, vj) =

{
ŵij if (vi, vj) is β-bounded, i.e., ŵij ≤ βw∗

ij

0 otherwise.

By Observation 2, there exist spanning trees T ∗
0 and T̂0 for GP that are optimal with respect to w∗

0 and ŵ0, respectively,
which contain the same exact set of β-unbounded edges. Let U represent this set of β-unbounded edges in T̂0 and T ∗

0 . Let
B∗ be the set of β-bounded edges in T ∗

0 and B̂ be the set of β-bounded edges in T̂0. Because T̂P is an MST with respect to
ŵ we know that:

ŵ(T̂P) ≤ ŵ(T̂0) = ŵ(U) + ŵ(B̂). (10)

We will use this to upper bound the weight of T̂P in terms of T ∗. First we claim that

ŵ(B̂) ≤ βw∗(T ∗
P). (11)

15

Approximate Forest Completion for Metric Minimum Spanning Trees

This follows from the following sequence of inequalities:

ŵ(B̂) = ŵ0(B̂) since ŵ and ŵ0 coincide on β-bounded edges

= ŵ0(B̂) + ŵ0(U) since ŵ0 is zero on β-unbounded edges

= ŵ0(T̂0) since T̂0 = B̂ ∪ U

≤ ŵ0(T
∗
0) since T̂0 is optimal for ŵ0

= ŵ0(B
∗) since ŵ0 is zero on β-unbounded edges

≤ βw∗
0(B

∗) since ŵ0 ≤ βw∗
0 on β-bounded edges

= βw∗
0(T

∗
0) since T ∗

0 = B∗ ∪ U and w∗
0(U) = 0

≤ βw∗
0(T

∗
P) since T ∗

0 is optimal for w∗
0

≤ βw∗(T ∗
P) since w∗

0 ≤ w∗ for all edges.

Next we bound ŵ(U). From Lemma 4.1, we know that ŵij ≤ β/(β − 1)min{wX (Ti), wX (Tj)} for every (vi, vj) ∈ U .
Because T̂P is a tree on GP , we know by Observation 1 that we can orient its edges in such a way that each node in
VP = {v1, v2, . . . , vt} has at most one outgoing edge. We can therefore assign each (vi, vj) ∈ U to one of its nodes in such
a way that each node in VP is assigned at most one edge from U . Assume without loss of generality that we write edges in
such a way that edge (vi, vj) ∈ U is assigned to node vi. Thus,

ŵ(U) =
∑

(vi,vj)∈U

ŵij ≤
∑

(vi,vj)∈U

β

β − 1
wX (Ti) ≤

β

β − 1

t∑
i=1

wX (Ti). (12)

Combining these gives our final bound

wX (T̂) = ŵ(T̂P) +

t∑
i=1

wX (Ti) by Eq. (9)

≤ ŵ(B̂) + ŵ(U) +

t∑
i=1

wX (Ti) by Eq. (10)

≤ βw∗(T ∗
P) +

(
β

β − 1
+ 1

) t∑
i=1

wX (Ti) by Eqs. (11) and (12)

≤ max

{
β,

β

β − 1
+ 1

}(
w∗(T ∗

P) +

k∑
i=1

wX (Ti)

)
= βwX (T ∗) by Eq. (8) and our choice of β

For the last step that we have specifically chosen β = (3 +
√
5)/2 to ensure that β = 1 + β/(β − 1), as this leads to the

best approximation guarantee using the above inequalities.

Theorem 4.3 Let GX be an implicit metric graph and P be an initial partitioning with γ-overlap γ = γ(P). Algorithm 1
returns a spanning tree of T̂ of GX that satisfies

wX (TX) ≤ wX (T̂) ≤ βwX (TX) (13)

where TX is an MST of GX and β = 1
2

(
2γ + 1 +

√
4γ + 1

)
≤ 2γ + 1.

Proof. We use the same terminology and notation as in the proof of Theorem 4.2. The only difference is that we do not
necessarily use β = (3 +

√
5)/2. For an arbitrary β ≥ 1, we can still prove in the same way that

wX (T̂) ≤ βw∗(T ∗
P) +

(
β

β − 1
+ 1

) t∑
i=1

wX (Ti). (14)

16

Approximate Forest Completion for Metric Minimum Spanning Trees

The γ-overlap of the initial forest implies there exists an MST TX of GX satisfying:

t∑
i=1

wX (Ti) = γwX (IX), (15)

where IX is the set of edges of TX inside components P of the initial forest. Let BX be the set of edges in TX that cross
between components, so that wX (TX) = wX (BX) + wX (IX). Since TX is a spanning tree, BX must contain a path
between every pair of components, meaning that BX corresponds to a spanning subgraph of the coarsened graph GP . Since
T ∗
P defines an MST of GP with respect to w∗, which captures the minimum distances between pairs of components, we

know
w∗(T ∗

P) ≤ wX (BX). (16)

Putting the pieces together we see that

wX (T̂) ≤ βwX (BX) +

(
1 +

β

β − 1

)
γwX (IX) ≤ max

{
β, γ

(
1 +

β

β − 1

)}
wX (TX). (17)

This will hold for any choice of β ≥ 1. In order to prove the smallest approximation guarantee, we choose β satisfying:

β = γ

(
1 +

β

β − 1

)
.

The solution for this equation under constraint β ≥ 1 and γ ≥ 1 is

β =
1

2

(
2γ + 1 +

√
4γ + 1

)
≤ 2γ + 1.

C. Additional Details for MFC Framework
This section of the appendix provides additional details about our algorithm MFC-Approx and our broader framework
for metric MST computation. This includes a more detailed runtime analysis and several practical considerations about
computing initial forests.

C.1. Runtime analysis for MFC-Approx

MFC-Approx finds the distance between each point in X and each of the t component representatives, for a total of O(nt)
distance queries. It then finds an MST of a dense graph with

(
t
2

)
edges, which has runtime and space requirements of Õ(t2).

Thus, the algorithm has subquadratic memory and query complexity as long as t = o(n). The runtime is Õ(ntQX + t2)
where QX is the complexity for one distance query in X , which also is subquadratic as long as tQX = o(n). In settings
where QX = Õ(1), the memory, runtime, and query complexity are all subquadratic as long as t = o(n).

C.2. Practical considerations for our MFC framework

The practical utility of the MFC framework will also depend on the time it takes to find an initial forest. The precise runtime
for computing a such a forest depends on various design choices and trade-offs when using any strategy. To provide some
intuition for the overall cost of applying the MFC framework, we provide a rough complexity analysis for the k-center
strategy (see Appendix A) assuming an idealized case of balanced clusters. The simple 2-approximation for k-center chooses
an arbitrary first cluster center, and chooses the ith cluster center to be the point with maximum distance from the first i− 1
centers (Gonzalez, 1985). This requires O(nt) distance queries. For this strategy, we can use the cluster centers as the
component representatives for MFC-Approx, which allows us to compute ŵ without any additional queries. If clusters
are balanced in size, we can compute minimum spanning trees for all clusters using O(n2/t) queries and a runtime of
Õ(QXn2/t), simply by querying all inner-cluster edges and running a standard MST algorithm. In this balanced-cluster
case, combining the initial forest complexity with the complexity of our MFC algorithm, the entire pipeline for finding a
spanning tree takes Õ(QX (n2/t+ nt) + t2). This is minimized by choosing t =

√
n clusters, leading to a complexity that

grows as n1.5. For unbalanced clusters, one must consider different trade-offs for cluster-balancing strategies, which could

17

Approximate Forest Completion for Metric Minimum Spanning Trees

be beneficial for runtime but may affect initial cluster quality. We could also improve the runtime at the expense of initial
forest quality by not computing an exact MST for each cluster. For example, we could recursively apply our entire MFC
framework to find a spanning tree of each cluster. We cover other practical considerations and runtimes for certain ways of
computing initial forests in Appendix A.

There are several other ways to relax our overall MFC framework and algorithm to make our approach faster while still
satisfying strong approximation guarantees. For metrics with high query complexity, we can use approximate queries with
only minor degradation in approximation guarantees. For example, for high-dimensional Euclidean distance we can apply
Johnson-Lindenstrauss transformations to reduce the query complexity while approximately maintaining distances. As
another relaxation, we can replace the exact nearest neighbor search steps in MFC-Approx (to find the minimum distance
between a representative si in an entire cluster Pj) with an approximate nearest neighbor search. If for some ε > 0 we
find a (1 + ε)-approximate nearest neighbor in each component for every component representative si, this will make our
approximation guarantees worse by at most a factor (1 + ε). There are also numerous opportunities for parallelization, such
as parallelizing distance queries and MST computation for components.

There are also several ways in which we could potentially improve the spanning tree quality of our algorithm in practice
with little effect on runtime. As one specific example, when approximating the distance between components Pi and Pj of
the initial forest, we could compute x̃i = argminx∈Pi

d(x, sj) and x̃j = argminx∈Pj
d(x, si) and then use the following

weight for the coarsened graph:
w̃ij = min{d(x̃i, sj), d(x̃j , si), d(x̃j , x̃i)}.

This differs from Algorithm 1 only in that it additionally checks the distance d(x̃j , x̃i) to see if this provides an even
closer pair of points between Pi and Pj . Although this does not always improve results, it can never be worse in terms of
approximations. Figure 3a provides an example where w̃ij is noticeably better than ŵij . An interesting future direction is
to implement this and also explore other heuristics that could improve the practical performance of our method without
affecting our theoretical guarantees.

D. Additional Details on Empirical Results
In this section we provide more in-depth explanations behind our experimental setup, implementations, evaluation, and
empirical results.

Generating initial forests. To generate initial forests, we first partition data points using the standard greedy 2-
approximation algorithm for k-center clustering (Gonzalez, 1985), as this is simple, fast, and works for arbitrary metrics.
We consider results for a range of different component numbers t = k. After partitioning the data, we compute an exact
minimum spanning tree for each component, mirroring an approach used by previous divide-and-conquer algorithms for
large-scale Euclidean MST approximations (Jothi et al., 2018; Zhong et al., 2015; Mishra & Mohanty, 2020). Computing
exact MSTs for all t components is often the most expensive step of our MFC framework as it requires generating all edges
inside each component. Even so, we find this leads to significant runtime improvements over applying the exact algorithm to
the entire dataset, while achieving extremely good approximation ratios.

Baseline and evaluation criteria. We compare against an exact MST computed by generating all
(
n
2

)
edge weights

then running Kruskal’s algorithm. The bottleneck in Kruskal’s algorithm is sorting the O(n2) edge weights, leading to
an O(n2 log n) runtime. Although more sophisticated algorithms could achieve a runtime of O(n2) for arbitrary metrics,
Kruskal’s algorithm is still fast (optimal up to a log factor in terms of runtime) and has the added benefit of being simple
to implement and work with in practice. We note furthermore that any speed-up in our baseline algorithm for the full
MST would also instantly improve the runtime of our MFC framework, since we use the same solver to find MSTs for the
partitions in the initial forest.

We evaluate our MFC framework (both the initial forest generation and the completion step) in terms of runtime, a bound
on γ-overlap, and cost ratio (i.e., the spanning tree cost divided by the weight of the optimal MST). To find our upper
bound for γ, which we denote as γ̄, we compute the overlap between the initial forest and the MST found by the baseline.
This amounts to computing the ratio in Eq. (3), except without optimizing over all possible minimum spanning trees in
the denominator. When all edge weights are unique, this produces the exact value of γ. We therefore expect this to be an
especially good approximation of γ for our Euclidean point cloud datasets, since distances between random points tend to
be unique (or nearly all unique).

18

Approximate Forest Completion for Metric Minimum Spanning Trees

Real-world datasets. We run experiments on several real-world datasets that have been used as benchmarks for similarity
search algorithms (e.g., k-NN search benchmarks) and clustering algorithms. These serve well as benchmarks for metric
MST computations since they involve a variety of different types of data (e.g., numerical data, sets, strings) and distance
functions (e.g., Euclidean, Jaccard, Hamming, Levenshtein edit distance). In some cases we used the entire dataset in our
numerical experiments, whereas in other cases we subsample a larger dataset. We run experiments on implicit graphs with
up to n = 39,774 nodes, which means we are considering graphs with over 700 million edges. Our MFC framework in fact
scales up to even larger graphs, but we restrict to graphs with under 1 billion edges since in this regime we are still able to
compute an optimal MST to use as a point of comparison. We summarize the dataset type and distance metric in Table 2,
and provide more details for each dataset below.

• Cooking. Each data object is a set of food ingredients defining a recipe. There are 6714 ingredients and 39,774
recipes. We use Jaccard distance as this is set data. The original raw data comes from the What’s Cooking? Kaggle
dataset (Kaggle, 2015), which was parsed into the current set of sets by Amburg et al. (2020).

• MovieLens-10M. This is a set of sets derived from movie ratings (Harper & Konstan, 2015). We consider a subset of
the parsed dataset provided on the ANN Benchmarks Repository (Aumueller et al., 2024), restricting to sets with 64
items or more, in order to work with a dataset where n is slightly larger than 30,000. We apply Jaccard distance.

• Kosarak. This dataset is derived from click-stream data from a Hungarian news portal (Bodon) and is a standard bench-
mark for nearest neighbor algorithms (Aumueller et al., 2024). The original data (available from the Frequent Itemset
Mining Dataset Repository at http://fimi.uantwerpen.be/data/kosarak.dat) comprises 990,002 sets
defined over a collection of 41,270 items. We restricted to sets of size at least 40, leading to a set of 32,295 sets. We
apply Jaccard distance.

• Fashion-MNIST. Each point in the Fashion-MNIST dataset represents a 28×28 grayscale image of an item of clothing
(e.g., sneakers, trousers), encoded as a vector of size d = 784. The total number of class labels is 10. We use Euclidean
distance for this dataset, following the ANN Benchmarks Repository (Aumueller et al., 2024).

• Names-US. Each data object is a last name for someone in the United States, obtained from the Names dataset available
online at https://github.com/philipperemy/name-dataset. We consider this dataset as it provides a
natural benchmark for computing spanning trees on short sequence data using Levenshtein edit distance. Each UTF-8
code point was treated as a separate character for the purpose of the edit distance. Last names in the dataset vary in
length from 0 to 252 characters where 0 indicates no last name. The average length of the last names is 6.67 with a
standard deviation of 2.470. Computing an exact minimum spanning tree for the entire (very large) dataset is infeasible,
so our experimental results consider samples of names of size n = 30,000.

• GreenGenes-Unaligned and GreenGenes-Aligned. GreenGenes is a chimera-checked 16S megagenomic sequence
dataset (DeSantis et al., 2006), which is frequently used as a benchmark for sequence clustering. We use version 13.5
of the data, accessed by following instructions on the USEARCH benchmarks website (https://www.drive5.
com/usearch/benchmark_ggclust.html). The data is provided in two formats: as unaligned variable length
sequences (ranging from 1111 to 2368 characters; mean length is 1401.06 with a standard deviation of 57.083), and as
aligned sequences of a fixed length of 7682. Following a standard and natural approach, we used Levenshtein edit
distance for the unaligned sequences and Hamming distance for the aligned sequences. Since the dataset is far too large
to compute a full spanning tree, we subsample groups of n sequences at a time. Computing Levenshtein distances on
unaligned sequences is very expensive, so we restrict to n = 2500 for this case.

D.1. Additional details for uniform random data

For our uniform random data experiments we consider random point clouds of size n in d-dimensional Euclidean space
where the value for a point in each dimension is drawn uniformly from [−1, 1]. The first two columns of Figure 4
show results for d ∈ {8, 256} as n increases from 1000 to 30000, using a different color for each choice of component
number t ∈ {16, 32, 64, 128, 256} for which we ran our MFC framework. Here in Figure 7 we show results for for
d ∈ {4, 16, 64, 128}, which show the same basic trends.

As t increases, we see larger and larger speedups over the exact baseline algorithm, with up to a 300x speedup for d = 8
and up to a 30x speedup for d = 256. Our results match the asymptotic behavior we would expect from a simple runtime

19

http://fimi.uantwerpen.be/data/kosarak.dat
https://github.com/philipperemy/name-dataset
https://www.drive5.com/usearch/benchmark_ggclust.html
https://www.drive5.com/usearch/benchmark_ggclust.html

Approximate Forest Completion for Metric Minimum Spanning Trees

Table 2: List of different datasets used for real world experiments.

Dataset Type of Data Distance Metric

Cooking (Amburg et al., 2020) Sets Jaccard distance
Kosarak (Bodon) Sets Jaccard distance
MovieLens-10M (Harper & Konstan, 2015) Sets Jaccard distance
Fashion-MNIST (Xiao et al., 2017) 784 dimensional points Euclidean distance
Names-US (Remy, 2021) Short variable-length strings Levenshtein edit distance
GreenGenes-Unaligned (DeSantis et al., 2006) Long variable-length strings Levenshtein edit distance
GreenGenes-Aligned (DeSantis et al., 2006) 7682 character strings Hamming distance

1.1
1.2
1.3
1.4
1.5
1.6
1.7

0 10000 20000 30000

γ
up

pe
r

bo
un

d

1.02
1.04
1.06
1.08
1.10
1.12
1.14

0 10000 20000 30000

C
os

t r
at

io
Uniform Random Points d=4

0

200

400

600

800

0 10000 20000 30000
n

R
un

tim
e

ra
tio

1.5
2.0
2.5
3.0
3.5
4.0

0 10000 20000 30000

γ
up

pe
r

bo
un

d

1.02
1.04
1.06
1.08
1.10
1.12
1.14

0 10000 20000 30000

C
os

t r
at

io

Uniform Random Points d=16

0
50

100
150
200
250
300
350

0 10000 20000 30000
n

R
un

tim
e

ra
tio

2
4
6
8

10
12
14

0 10000 20000 30000

γ
up

pe
r

bo
un

d

1.02

1.04

1.06

1.08

0 10000 20000 30000

C
os

t r
at

io

Uniform Random Points d=64

0
20
40
60
80

0 10000 20000 30000
n

R
un

tim
e

ra
tio

5
10
15
20

0 10000 20000 30000

γ
up

pe
r

bo
un

d

1.01
1.02
1.03
1.04
1.05
1.06

0 10000 20000 30000

C
os

t r
at

io

Uniform Random Points d=128

0
10
20
30
40
50

0 10000 20000 30000
n

R
un

tim
e

ra
tio

• t = 16 ▲ t = 32 ■ t=64 + t = 128 ⊠ t = 256

Figure 7: Results on synthetic uniform random data for dimensions d ∈ {4, 16, 64, 128}. Each point in each plot represents
an average over 16 sampled point clouds for a fixed n and choice of component number t. Runtime ratio is the ratio
between the runtime for the optimal MST algorithm divided by the runtime of our MFC framework (including initial forest
generation). Cost ratio is the ratio between the spanning tree weight for our method and the optimal MST weight. The γ
upper bound is computed by comparing the initial forest overlap with the one optimal MST computed.

20

Approximate Forest Completion for Metric Minimum Spanning Trees

analysis: for a fixed value of t the ratio between the exact algorithm runtime and the runtime of the MFC framework
converges to a constant as n increases. As t or d increases, we need a larger value of n to reach this asymptotic speedup. As
t increases and the asymptotic runtime improves, the quality of the approximate spanning tree decreases slightly, but the
cost approximation ratio still remains very good (i.e., close to 1) in all cases. The γ-overlap bound γ̄ tend to be small for low
dimensions, but gets large as d increases (e.g., γ̄ close to 30 for d = 256). Nevertheless, cost ratios remain very close to 1,
and even improve slightly as d increases.

D.2. Additional details for clustered data

For our experiments on Gaussian synthetic data (Figure 6), we generate a mixture of g Gaussians in d-dimensional Euclidean
space with g ranging from 8 to 300. For each Gaussian we generate ⌊20000/g⌋ points, so that n ≈ 20000 for each dataset.
The mean of each Gaussian is chosen uniformly at random from an 8-dimensional box where each axis ranges from −5 to 5.
The standard deviation of each dimension of each Gaussian is chosen uniformly at random between 0.5 and 0.8. In practice
these parameters generate good (but not perfect) clustering structure. We then run our MFC framework for each choice of
initial component number t ∈ {16, 32, 64, 128, 256}.

Figure 8 shows results for a wider range of d values and includes runtime ratio plots as well. We see good performance in
runtime improvements, with larger values of t leading to a larger asymptotic speedup (up to a 400x speedup for t = 256 and
d = 8). The cost ratio and γ̄ values show the same basic trend for all dimensions: the quality of the spanning tree returned
by our method is the best when t ≈ g. Thus, when we have a good estimate of the number of number of true underlying
clusters in a dataset, we can leverage this information when generating an initial forest and running our MFC framework.

D.3. Additional details and results for real-world data

In Table 3 we include expanded results for the real-world datasets. This includes results for a wider range of t values
(number of components generated for the initial forest), and details for the proportion of time spent on the three main steps
of our MFC framework:

1. k-centering: obtaining the initial partitioning P using a greedy 2-approximaton for k-centering (Gonzalez, 1985).

2. Sub-MST: Using Kruskal’s algorithm to find optimal MSTs {Ti}ti=1 for the components of P .

3. MFC-Approx: Approximating the MFC problem using MFC-Approx.

As anticipated, the most expensive step in this pipeline is typically computing optimal MSTs for the components (Sub-MST
step). However, as t increases, the k-centering step and the MFC-Approx algorithm become a significant portion of the
overall runtime, and even dominate in extreme cases. We remark that the MFC-Approx step is always dominated by the time
it takes to form the coarsened graph GP . The time spent finding an MST of GP is negligible for all datasets and choices of t
we considered.

We note several trends in the performance of our MFC framework from Table 3. Across all datasets (and corresponding
distance metrics), the γ̄ values tend to be very good: usually below 2 and never above 3.2. As expected, γ̄ values get slightly
worse as t increases. This is also true for cost ratios, but cost ratios nevertheless remain very good in all cases (always below
1.2 and typically much better). In general, runtimes improve as t increases up to a certain point. Once t becomes too large,
computing MSTs for the components found by k-centering is no longer the bottleneck. When the number of components
becomes too large, the k-centering step and building the coarsened graph become too expensive. This is especially clear on
the GreenGenes-Unaligned dataset, but the same behavior can be observed in other cases as well.

Names-US Dataset One exception to the general runtime trends is that running the MFC framework on the Names-US
dataset, for small values of t, is in fact slower than computing an optimal MST. On this dataset, we found that the k-centering
step in our MFC framework tends to form a disproportionately large component, and finding an MST of a very large
component takes nearly as long as finding an MST of the entire dataset. Combining this with the time taken on other steps
in our MFC framework can lead to a larger overall runtime. This behavior (having a single large cluster) is likely tied to the
fact that the Names-US dataset contains extreme outlier strings which causes our simple k-centering implementation to
create tiny clusters for these outliers, while grouping most other non-outlier strings into a single large cluster. Despite this
bad behavior, we note that runtime ratios do continue to increase as t increases and our MFC framework is faster for the
largest t values.

21

Approximate Forest Completion for Metric Minimum Spanning Trees

1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40

3264 128 256

γ
up

pe
r

bo
un

d

1.02
1.03
1.04
1.05
1.06
1.07
1.08
1.09

3264 128 256

C
os

t r
at

io

Gaussian Random Points d=4

0
100
200
300
400
500
600

0 100 200 300

R
un

tim
e

ra
tio

1.0

1.2

1.4

1.6

1.8

2.0

3264 128 256

γ
up

pe
r

bo
un

d

1.00

1.02

1.04

1.06

1.08

1.10

3264 128 256

C
os

t r
at

io

Gaussian Random Points d=8

0

100

200

300

400

500

0 100 200 300

R
un

tim
e

ra
tio

1.0
1.5
2.0
2.5
3.0
3.5
4.0

3264 128 256
Number of Gaussians (g)

γ
up

pe
r

bo
un

d

1.00

1.02

1.04

1.06

1.08

1.10

3264 128 256
Number of Gaussians (g)

C
os

t r
at

io

Gaussian Random Points d=32

0

50

100

150

200

0 100 200 300
Number of Gaussians (g)

R
un

tim
e

ra
tio

• t = 16 ▲ t = 32 ■ t=64 + t = 128 ⊠ t = 256

Figure 8: Results on synthetic data with clustering structure: mixtures of g Gaussians for various d. Cost ratio and γ-overlap
bound γ̄ is typically minimized when the number of Gaussians g roughly matches the number of components t used by our
MFC framework.

Fashion-MNIST d = 784

1.2
1.3
1.4
1.5
1.6
1.7

0 10000 20000 30000
n

γ
up

pe
r

bo
un

d

1.01

1.02

1.03

1.04

1.05

0 10000 20000 30000
n

C
os

t r
at

io

0
2
4
6
8

10
12

0 10000 20000 30000
n

R
un

tim
e

ra
tio

• t = 16 ▲ t = 32 ■ t=64 + t = 128 ⊠ t = 256

Figure 9: Results for Fashion-MNIST. Each point is the average of 16 samples for fixed n and t.

22

Approximate Forest Completion for Metric Minimum Spanning Trees

Names-US Modified k-centering t = 256

0

10000

20000

0 10000 20000 30000
n

M
ax

im
um

 C
om

po
ne

nt
 S

iz
e

1.05

1.10

1.15

1.20

0 10000 20000 30000
n

C
os

t R
at

io

1

2

3

4

5

0 10000 20000 30000
n

R
un

tim
e

R
at

io

▲ Original k-centering • Modified k-centering

Figure 10: Results comparing a slightly modified version of k-centering to the unmodified version on the Names-US
dataset when t = 256. The x-axis reports the number of names n sampled from the larger dataset. The modified version of
k-centering first runs normal k-centering with k = t/2, then it further refines the largest cluster by running k-centering on
that cluster with k = t/2 + 1, resulting in a total of t components. Additionally, when the distance between a point and
multiple cluster centers is equal, the point is added to the smallest of those clusters. This reduces the size of the largest
component (left plot), resulting in slightly worse cost ratios (middle plot) but better runtime improvements (right plot).

1.000

1.005

1.010

1.015

1.020

1.025

0 10000 20000 30000
n

M
F

C
 A

pp
ro

xi
m

at
io

n
R

at
io Uniform Random Points d=8

1.0000

1.0005

1.0010

1.0015

1.0020

1.0025

0 10000 20000 30000
n

Uniform Random Points d=256

1.00

1.01

1.02

1.03

0 10000 20000
n

Names−US

• t = 16 ▲ t = 32 ■ t=64 + t = 128 ⊠ t = 256

Figure 11: Results showing the MFC approximation ratio achieved on both synthetic and real world data. The MFC
approximation ratio equals the weight of the spanning tree produced using our MFC approximation divided by the weight of
the spanning tree produced by optimally completing the initial forest (i.e., optimally solving MFC). The input to the MFC
algorithm here is produced using the same process as previous experiments, using k-centering for clustering and optimally
solving the MST problem on individual components.

We found that a slightly modified version of our k-centering step provides a simple way to improve results on the Names-US
dataset. This modified version first runs normal k-centering to form k = t/2 initial clusters, then runs the k-centering
algorithm again on the largest cluster to break it into t/2 + 1 components. This creates the same number of components as
running k-centering once with parameter k = t on the dataset. Additionally, when iterating through points to assign them
to clusters after the centers have been chosen, if a point has the same distance to multiple cluster centers, this modified
k-centering algorithm assigns the point to the cluster with the current fewest number of points. Figure 10 shows results for
the full MFC pipeline on the Names-US dataset when we used this modified version of k-centering for t = 256. We also
show results in a new entry at the end of Table 3. We can see that this simple modification to the k-centering algorithm
improves the results significantly on the Names-US dataset for both small and large values of t.

D.4. Approximation for MFC Problem

Our previous results all focused on approximations for the MST problem using our MFC framework, i.e., comparing
in-practice approximations against the bound in Theorem 4.3 given in terms of γ. Figure 11 shows approximation ratios for
just the METRIC FOREST COMPLETION problem. In other words, we compare against the weight of the best spanning
tree that completes the initial forest, rather than against the weight of an optimal spanning tree for the original dataset.
Theorem 4.2 shows this ratio must be less than 2.62. In practice, we are consistently under 1.1, far better than the theoretical
guarantee.

23

Approximate Forest Completion for Metric Minimum Spanning Trees

Table 3: Results for real-world datasets using various types of metrics. Runtimes are in minutes. For the last 5 datasets we
report averages and standard deviations for 16 different samples of size n. The last three rows for each dataset report the
proportion of time spent on each step of the MFC framework.

Dataset OPT t = 16 t = 32 t = 64 t = 128 t = 256

Cooking γ̄ - 1.770 2.014 2.222 2.421 3.144
Cost Ratio 1 1.040 1.051 1.059 1.069 1.089

n = 39774 Runtime Ratio 1 4.391 6.524 8.689 9.966 15.598
Runtime (mins) 24.2±0.61 5.3 3.5 2.7 2.3 1.5
k-centering % - 0.006 0.016 0.038 0.082 0.321
Sub-MST % - 0.989 0.971 0.923 0.826 0.355
MFC-approx % - 0.004 0.013 0.038 0.092 0.324

MovieLens γ̄ - 1.395 1.513 1.690 1.955 2.283
Cost Ratio 1 1.010 1.012 1.017 1.022 1.028

n = 33240 Runtime Ratio 1 4.026 5.014 6.287 9.337 9.529
Runtime (mins) 536.0±15.58 120.3 96.6 77.0 51.9 50.8
k-centering % - 0.016 0.028 0.054 0.130 0.238
Sub-MST % - 0.978 0.959 0.912 0.765 0.508
MFC-approx % - 0.006 0.013 0.034 0.104 0.253

Kosarak γ̄ - 1.289 1.737 2.281 2.788 3.129
Cost Ratio 1 1.007 1.013 1.020 1.025 1.029

n = 32295 Runtime Ratio 1 2.682 5.994 15.159 18.174 12.583
Runtime (mins) 182.2±0.26 68.0 30.4 12.0 10.0 14.5
k-centering % - 0.010 0.036 0.146 0.363 0.464
Sub-MST % - 0.985 0.935 0.725 0.339 0.138
MFC-approx % - 0.005 0.028 0.128 0.297 0.397

GreenGenes-Unalign. γ̄ - 1.388±0.08 1.460±0.07 1.460±0.06 1.402±0.04 1.314±0.02

Cost Ratio 1 1.092±0.02 1.104±0.01 1.095±0.01 1.075±0.01 1.055±0.00

n = 2500 Runtime Ratio 1 2.555±0.55 3.270±0.52 3.156±0.36 2.116±0.08 1.159±0.04

Runtime (mins) 239.3±6.24 98.0±23.0 74.9±11.9 76.7±8.8 113.2±4.0 206.5±6.0

k-centering % - 0.068±0.01 0.172±0.03 0.331±0.03 0.448±0.01 0.492±0.01

Sub-MST % - 0.885±0.03 0.692±0.06 0.377±0.08 0.134±0.01 0.047±0.01

MFC-approx % - 0.047±0.01 0.136±0.03 0.292±0.05 0.418±0.01 0.461±0.01

GreenGenes-Aligned γ̄ - 1.224±0.07 1.368±0.10 1.466±0.06 1.512±0.05 1.531±0.03

Cost Ratio 1 1.074±0.02 1.117±0.03 1.143±0.02 1.147±0.01 1.141±0.01

n = 30000 Runtime Ratio 1 1.604±0.51 2.375±0.82 3.918±1.99 5.849±2.83 7.026±1.69

Runtime (mins) 33.1±0.17 22.1±4.9 15.1±3.7 9.9±3.1 6.7±2.6 5.0±1.3

k-centering % - 0.003±0.00 0.010±0.00 0.033±0.02 0.098±0.05 0.232±0.05

Sub-MST % - 0.994±0.00 0.983±0.01 0.940±0.03 0.817±0.09 0.550±0.12

MFC-approx % - 0.002±0.00 0.007±0.00 0.027±0.02 0.084±0.05 0.216±0.07

Fashion-MNIST γ̄ - 1.173±0.02 1.237±0.03 1.320±0.05 1.405±0.03 1.527±0.05

Cost Ratio 1 1.013±0.00 1.017±0.00 1.023±0.00 1.029±0.00 1.036±0.00

n = 30000 Runtime Ratio 1 4.675±1.42 7.176±2.55 10.027±2.85 12.129±2.64 12.698±1.83

Runtime (mins) 11.4±0.31 2.7±0.8 1.8±0.7 1.2±0.4 1.0±0.2 0.9±0.1

k-centering % - 0.008±0.00 0.024±0.01 0.067±0.02 0.162±0.03 0.339±0.05

Sub-MST % - 0.986±0.00 0.963±0.01 0.896±0.03 0.746±0.06 0.462±0.07

MFC-approx % - 0.004±0.00 0.013±0.01 0.036±0.01 0.090±0.02 0.197±0.03

Names-US γ̄ - 1.020±0.02 1.059±0.02 1.139±0.04 1.219±0.05 1.322±0.07

Cost Ratio 1 1.005±0.00 1.015±0.01 1.034±0.01 1.051±0.01 1.071±0.01

n = 30000 Runtime Ratio 1 0.923±0.16 0.954±0.18 0.939±0.17 1.027±0.19 1.138±0.21

Runtime (mins) 2.0±0.28 2.1±0.2 2.1±0.2 2.1±0.2 1.9±0.2 1.7±0.1

k-centering % - 0.003±0.00 0.005±0.00 0.009±0.00 0.019±0.00 0.038±0.00

Sub-MST % - 0.995±0.00 0.992±0.00 0.985±0.00 0.970±0.01 0.937±0.01

MFC-approx % - 0.001±0.00 0.003±0.00 0.005±0.00 0.011±0.00 0.024±0.01

Names-US γ - 1.034±0.02 1.100±0.03 1.224±0.04 1.479±0.16 2.080±0.22

Reclustered Cost Ratio 1 1.008±0.00 1.026±0.01 1.054±0.01 1.100±0.02 1.170±0.02

N = 30000 Runtime Ratio 1 1.074±0.19 1.114±0.19 1.246±0.25 1.389±0.36 2.688±0.81

Runtime (mins) 1.9±0.31 1.8±0.1 1.7±0.1 1.5±0.1 1.4±0.2 0.7±0.2

k-centering % - 0.003±0.00 0.006±0.00 0.012±0.00 0.024±0.00 0.083±0.02

Sub-MST % - 0.994±0.00 0.990±0.00 0.981±0.00 0.961±0.01 0.860±0.04

MFC-approx % - 0.002±0.00 0.003±0.00 0.007±0.00 0.015±0.01 0.057±0.02

24

