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Abstract

Deep autoregressive generative models have demonstrated promising results in unconditional
generation tasks for structured data, such as images. However, their effectiveness in condi-
tional generation remains relatively underexplored. We hypothesize that previous models,
including autoregressive diffusion models, need to efficiently amortize across all possible
generation orders, allowing them to parameterize any conditional distribution between data
elements. This capability makes them particularly well-suited for data acquisition tasks,
where collecting data to maximize predictive accuracy is critical. In this work, we propose
a novel method for active data acquisition using autoregressive diffusion models, achieving
promising results. However, we observe that when these models are trained with a fixed
deterministic or stochastic order, they often struggle to generate content accurately dur-
ing testing if the masking mechanism changes. To address this, we introduce a new deep
generative model that leverages intrinsic data information along with self-supervision prin-
ciples. Our approach is both simple and highly flexible, extending established autoregressive
frameworks by probabilistically modeling the per-element generation process as a mixture
of semi-supervised mechanisms. This method provides a robust framework for conditional
generation across various masking patterns. Experimental results demonstrate significant
improvements in both simplicity and accuracy for conditional generation tasks, outperform-
ing conventional methods that rely on random permutations or simultaneous generation of
all dimensions.

1 Introduction

The ability to effectively generate data conditioned on prior inputs or specific attributes can significantly
enhance the relevance and utility of model outputs in practical settings. Conditional generation tasks are
crucial for developing generative models that can produce specific outcomes based on given conditions, a
capability essential for applications ranging from personalized content creation to targeted data augmenta-
tion. Among the various deep generative models, latent variable models such as Variational Autoencoders
(VAEs, Kingma & Welling, 2013) or Denoising-Diffusion Probabilistic Models (DDPMs, Ho et al., 2020) offer
efficient frameworks for these tasks by modelling the joint distribution of data and conditions and generating
data from the conditioned latent space. VAEs can efficiently handle incomplete data (Mattei & Frellsen,
2019; Nazabal et al., 2020; Ma et al., 2020; Peis et al., 2022). However, they require approximate inference,
selecting appropriate priors (Maaløe et al., 2019; Vahdat & Kautz, 2020; Child, 2020; Tomczak & Welling,
2018), and inference models (Kingma et al., 2016; 2021) can introduce significant complications. DDPMs
have shown promise in matching conditional distributions accurately but often produce predictive outcomes
that do not align semantically with the conditioning inputs (Lugmayr et al., 2022). Adversarial methods
like Generative Adversarial Networks (GANs, Goodfellow et al., 2014) provide powerful capabilities for gen-
erating high-quality images but are notoriously difficult to train and, in their basic form, do not naturally
support conditional generation.

In contrast, deep autoregressive models are particularly well-suited for conditional generation tasks, thanks
to their inherent design and straightforward learning process via maximum likelihood estimation. In the
last decade, they have emerged as state-of-the-art in the generative model landscape (Graves, 2013; Van den
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Figure 1: Samples generated by SFARM trained with different datasets. Columns represent intermediate
generation steps. Odd rows represent the sampled xzi

. Even rows show the likelihood parameters given by
fθ(x∆zi

|xzi−1).

Oord et al., 2016c;b;a; Brown et al., 2020). While these models excel in scenarios where the order of data
points is critical, adapting them for applications without a clear natural ordering, such as pixel generation
within images, remains challenging. Conventional methods typically restrict generation to fixed sequences,
such as left-to-right or top-to-bottom (Van den Oord et al., 2016c;b; Salimans et al., 2017), which limits the
flexibility required to synthesize complex, diverse, and high-dimensional datasets.

Apart from including auxiliary models to provide abstract information (Van den Oord et al., 2016b), various
strategies have been proposed to circumvent these constraints. Order-agnostic autoregressive models (Uria
et al., 2014; Hoogeboom et al., 2022) encompass frameworks for amortizing the unsorted generation by
accumulating elements with random order permutations and feeding them to a single model for predicting
new elements. They show success in efficiently learning the O(S!) possible generation trajectories. In
our work, we propose a wider family of models, for which we show that Autoregressive Diffusion Models
(ARDMs, Hoogeboom et al., 2022) can be reformulated as a specific case. We design the order mechanism
by pre-defining Markov chain transition probabilities, with one possible choice being the discrete uniform,
equivalent to a random permutation of the elements.

Our main contributions are the following:

• We present a new family of order-agnostic autoregressive models that generalizes previous approaches
by defining a mixture of probabilistic activation mechanisms via Markov transition probabilities for
generating new elements.

• We show that previous order-agnostic models with amortization over random permutations can be
reformulated within our definitions.

• We demonstrate the effectiveness of our proposed method in efficient information acquisition.

• We demonstrate the superiority of our proposed family of models over alternatives in relevant down-
stream tasks that require conditional generation.

2 Related Work

Autoregressive Models Autoregressive models generate data by following a predefined factorization
order. While this order is intuitive for time series or video data, it is less apparent for images. PixelRNN
(Van den Oord et al., 2016c) introduced a method for sequentially constructing images from top to bottom
and left to right using recurrent neural networks. PixelCNN (Van den Oord et al., 2016b) later adopted a
convolutional approach to pixel-by-pixel image generation, improving computational efficiency and scalability
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while retaining high-quality synthesis. PixelCNN++ (Salimans et al., 2017) further advanced PixelCNN by
incorporating gated convolutional layers, downsampling for larger images, and a discretized logistic mixture
likelihood function to enhance output quality.

Despite these advancements, PixelCNN and its variants struggled to generate diverse and realistic samples
from complex datasets. To address this, the authors conditioned the generation process on a pre-trained
classifier’s output from CIFAR-10 and integrated PixelCNN as a decoder within a Variational Autoencoder
(VAE) framework, leading to the development of PixelVAE (Gulrajani et al., 2016). Nevertheless, Pix-
elCNN’s architecture still faced limitations in independently producing a wide array of complex, realistic
images.

Recent advancements in autoregressive models and Latent Diffusion Models (Rombach et al., 2022) have
inspired new approaches, such as training autoregressive models on learned latent spaces. For example,
Kingma et al. (2016) demonstrated how inverse autoregressive flow could enhance the flexibility of the vari-
ational posterior. Similarly, Tschannen et al. (2023) explored fitting Transformers to the latent space of a
β-VAE (Higgins et al., 2017; Burgess et al., 2018), while Dupont et al. (2022) attempted to fit Autoregres-
sive Transformers to modulation vectors representing data functions. However, challenges in establishing a
meaningful ordering have hindered the success of these approaches.

Autoregressive Diffusion Models The flexibility of autoregressive models can enhanced by amortizing
the generation of any element at any step with a single network. Building on the order-agnostic training
procedure proposed by Uria et al. (2014) and the efficient learning process of DDPMs (Ho et al., 2020),
Hoogeboom et al. (2022) uniformly sample the space of permutations of pixel indices and parameterized
the resulting conditional likelihoods via U-Nets (Ronneberger et al., 2015). Their method, ARDM, which is
equivalent to Discrete Diffusion Models when using the absorbing state (Austin et al., 2021), is also applicable
to continuous data, and demonstrated remarkable generation quality and was successfully applied to lossless
compression. Our approach aligns with ARDM’s learning objective but generalizes it by explicitly modelling
the activation probability per step and element as a Markov chain. This formulation accommodates any
stochastic factorization, with random permutation being just one possible mechanism. We will elaborate on
this in the subsequent sections.

Semi-supervision within autoencoding frameworks The application of semi-supervised techniques
in VAEs, particularly through the use of masked data (He et al., 2022), has revolutionized the field of deep
generative models by introducing new strategies for improving interpretability (Senetaire et al., 2023), or
incomplete data handling by uniformly masking training data (Ma et al., 2019; 2020; Peis et al., 2022) and
factorizing the likelihood across elements (Mattei & Frellsen, 2019; Nazabal et al., 2020). These approaches
facilitate robust conditional generation, enabling the models to infer unobserved data segments based on the
observed portions.

Other examples of introducing semi-supervision to VAEs include the Self-VAE (Gatopoulos & Tomczak,
2021), which utilizes deterministic and discrete transformations of data for both conditional and uncondi-
tional sampling while simplifying the objective function. The study explores the use of single self-supervised
transformations like downscaling or edge detection as latent variables and extends this concept to a hierar-
chical architecture, demonstrating benefits over traditional VAEs. The Super-Resolution VAE (Gatopoulos
et al., 2020) addresses the issue of blurriness in generated images, a common drawback in traditional VAEs,
by incorporating semi-supervision: adding a downscaled version of the original image as a random variable
in the model.

3 Stochastically Factorized Autoregressive Models

In this section, we present our proposed method. We introduce SFARM in the context of autoregressive
modelling to later derive its likelihood-based objective and its simplification for efficient learning.
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3.1 Notation

Let us denote a data point by x ∈ X , where X represents the data space. For example, in tabular data, X
is in RD, with D the dimensionality or number of features, and in the context of images, X is RC×H×W ,
being C the number of channels, H and W the height and width, respectively. We use j for indexing the
sorted elements of a data point, such as a pixel within an image. Whilst the number of elements in tabular
data corresponds to the dimensionality itself of a data point, an image consists of H ×W elements, denoted
as pixels, where each is of dimensionality C. Importantly, our i refers to the generation step, which does not
follow any spatial or temporal natural orders.

3.2 Introducing SFARM

Within an autoregressive framework, xi is denoted as each intermediate stage of a generated data point,
culminating in the final observable x. We consider the autoregressive probability distribution

p(x) =
S∏

i=1
p(xi|x<i). (1)

Equation equation 1 is generally applied to a pre-defined deterministic generation trajectory. In broader
terms, one can decide if features in tabular data are generated left-to-right, or if pixels of an image are
generated sequentially in a left-right, top-bottom order, like in Van den Oord et al. (2016c;b); Salimans et al.
(2017); Gulrajani et al. (2016). These constraints limit the expressivity of a network for synthesizing complex
high-dimensional data. As demonstrated by Van den Oord et al. (2016b), auxiliary models are required to
guide the generation process and increase the diversity.

Our proposed model, depicted in Figure 2 and denoted as SFARM for Stochastically Factorized AutoRegressive
Model, distinguishes itself from previous autoregressive models for images, such as (Van den Oord et al.,
2016c;b; Salimans et al., 2017), by allowing the intermediate stages of the autoregressive generation, denoted
by xzi

, to follow a stochastic schedule. This is achieved by indexing x with a latent variable zi, rather than
a deterministic one. We make use of a random activation mask, a binary variable with the same structure of
the data, denoted by z. For tabular data, z ∈ {0, 1}D, whilst for images, z ∈ {0, 1}H×W . Specifically, the
notation xzi represents the data elements in x indexed by zi.

In simpler terms, each structured element of zi is a binary indicator determining whether the corresponding
element in x is active. An element being inactive means it is zero-masked in zi. A collection of sequential
activation masks z0:S , where S refers to the number of generation steps (i.e., S ≡ D for tabular data,
S ≡ H × W assuming only one dimension is revealed at every step), defines the order or autoregressive
generations.

To further increase the generation flexibility, we assume that the sequence of masks comes from a uniform
mixture of masking mechanisms, where we can easily define different masking schemes to train the model
for conditional generation,

p(z0:S) = 1
M

M∑
k=1

p(z0:S |m). (2)

Within these definitions, the joint distribution of a sequence of masks, a masking mode, and an observed
data point can be expressed as

p(x, z0:S , m) = p(z0) 1
M

S∏
i=1

p(zi|zi−1, m) pθ(x∆zi
|xzi−1 , i), (3)

where the notation ∆zi refers to the difference between activation masks zi and zi−1, i.e., the points activated
at step i.
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Figure 2: Probabilistic graph of the SFARM generative model.

3.3 Stochastic Factorization

As stated above, we can probabilistically model the patterns ruling the activation of new elements, by
defining p(zi|zi−1, m) as a first-order Markov chain. In the following lines, we are omitting the conditioning
on m for simplicity. The dynamics of this chain are detailed by two conditionally independent distributions:

p(zi|zi−1) = p(z↑
i |zi−1) · p(z↓

i |zi−1). (4)

Here, z↑
i refers to elements already active in zi−1 (“up”), with each of these elements following a delta

distribution, p(z↑
ij |zi−1) = δ(1) that enforces them to remain activated. Conversely, z↓

i includes elements yet
to be activated (“down”), i.e. z↓

i = (zik : zi−1,k = 0). It is the distribution of this variable that will define
the activation process. Within our framework, any discrete activation distribution can be chosen, with the
only constraints of p(z0) = δ(0), denoting the empty mask, and conversely p(zS) = δ(1), referring to the
fully activated mask. In particular, we allow for both generating single or multiple elements within each
step.

3.4 SFARM likelihood-based objective

In our approach, we conceptualize the proposed method as a latent variable model, with the latent variable
being a sequence of binary matrices representing a trajectory of element activations. The Markov transition
probabilities of the latent sequence are pre-defined by design.

The goal is to amortize the generation of any new element in zi, which we denote by ∆zi, activated under
the stochastic schedule. With that purpose, we define a neural imputation model pθ(x∆zi

|xzi−1 , i, m) im-
plemented by a U-Net network (Ronneberger et al., 2015), with learnable parameters θ for predicting the
next data element from the previous state, and embeddings of both the generation step i, and the masking
mode m. Like in DDPMs (Ho et al., 2020), time embeddings of the step i are fed into this network.

The log marginal likelihood can be expressed as

log p(x) = logEp(z0:S ,m)[pθ(x|z0:S , m)] ≥ Ep(z0:S ,m) [log pθ(x|z0:S , m)] = L(x; θ), (5)

which holds by Jensen’s inequality and defines a proper Evidence Lower Bound (ELBO). Note that our
lower bound is equivalent to the standard ELBO used in VAEs if the variational posterior q(z|x) coincides
with the prior p(z). As in a diffusion-based model, but with a different mechanism, we give up learning any
meaningful structure in the latent space for the sake of flexible autoregressive generation. The parameters θ
are thus learned by performing SGD for the optimization problem

θ∗ = arg max
θ

{∑
n

L(n)(x(n); θ)
}

, (6)

where, based on the autoregressive properties, we can express the log-likelihood from equation 5 as

L(x, θ) =
S∑

i=0
Ep(z0:i,m)

[
log pθ(x∆zi

|xzi−1 , i, m)
]

=
S∑

i=0
Li(x, θ). (7)
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Algorithm 1 Training SFARM

Input: x(1:N), fθ, p(z0:S)
repeat

i ∼ U(0, S), m ∼ U(0, m) zi−1 ∼ p(zi−1)
L̂i = 1

S−i+1
∑

log pθ(xz↓
i
|xzi−1)

θ ← Adamθ(L̂i)
until converged

Algorithm 2 Sampling from SFARM

Input: fθ, p(z0:S)
Initialize: xz0 = 0
for i = 1, . . . , S do

x ∼ pθ(x|xzi−1)
zi ∼ p(zi|zi−1)
xzi

= xzi−1 + x∆zi

end for

Here, we employ the notation Ep(z0:i) for a nested expectation Ep(z0)
[
Ep(z1|z0) [...]

]
, and we define Li(x, θ)

as the i-th term of the ELBO.

To compute the ELBO, as defined in Eq. equation 7, one must consider the summation over all possible
trajectories and masking modes that could lead to generating a data point. Specifically, this involves exploring
all the O(S!) number of trajectories, or equivalently, all the conditional models p(xzi

|xzi−1) defined by any
z:S under any stochastic activation scheme, m. However, even for data structures with a few elements, the
count of possible activation sequences becomes prohibitively large.

Consequently, an approximation of the ELBO is required. A straightforward approach would involve (i)
approximating the objective via Monte Carlo methods by sampling entire sequences from p(z0:S) and (ii)
processing the entire trajectory to perform a single optimization step. However, this poses a significant
computational challenge, especially for datasets with a large number of elements. To address this, we
propose an alternative, simplified objective that significantly enhances the computational efficiency of the
learning process.

3.4.1 Simplified objective

In addressing the computational challenges inherent in autoregressive models, particularly with high-
dimensional data, we propose an alternative formulation of the objective in equation 7,

L(x; θ) = S · EU(i) [Li(x; θ)] , (8)

where drawing inspiration from DDPMs’ (Ho et al., 2020) amortization over time steps, we use the Law
of the Unconscious Statisticians (LOTUS) to reformulate the summation over generation steps as an ex-
pectation over uniformly distributed steps i. By drawing a sample i ∼ U(0, S), we approximate the
ELBO by a single term, i.e., L̂(x; θ) = S · Li(x; θ). Further, by utilizing the Law of Total Expectation,
Ep(zi−1)

[
Ep(zi|zi−1) [f(zi)]

]
= Ep(zi)[f(zi)], a more compact expression of Li can be formulated. This law

simplifies the nested expectation of each term in equation 7 to

Li(x, θ) = Ep(zi−1,m)
[
Ep(zi|zi−1,m)

[
log pθ(x∆zi

|xzi−1 , i, m)
]]

, (9)

enabling us to articulate the objective in terms of marginal probabilities at step i−1. The outer expectation
can be approximated via Monte Carlo if we have access to samples from the marginal distribution of the
mask at any step p(zi). The inner expectation can be analytically solved and gives

L̂i(x, θ) =
∑

zi∈z↓
i

p(zi|zi−1, m) log pθ(xzi |xzi−1 , i, m). (10)

This approach enhances computational efficiency while maintaining the model’s effectiveness in learning the
desired element activation trajectories. In simpler terms, for images, we focus on training to impute unob-
served pixel portions of images using randomly incomplete versions as inputs, and weight the per-element
likelihoods according to the pre-defined kernels. Notably, our method stands out as i) it does not require
an additional regularization term, simplifying the training process while maintaining robust and effective
performance; and ii) it permits performing optimization steps with a single forward pass, and without
necessarily forwarding through the entire trajectory.
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Special case of uniform activation distribution We can easily impose a one-element-per-step genera-
tion by defining the activation distribution as Categorical. By setting the initial activation to p(z0j) = δ(0)
for all elements, i.e., no active data points, complete data observation is ensured at i = S. Furthermore, we
can restrict to uniform activation, meaning that every non-activated pixel is equally likely to be activated,
by choosing a uniform Categorical distribution with probability 1

S−i+1 . With these assumptions, and con-
sidering the case with a single masking mode, equation 10 coincides with the learning objective of ARDMs
(Hoogeboom et al., 2022),

L̂i(x, θ) = 1
S − i + 1

∑
zi∈z↓

i

log pθ(xzik
|xzi−1 , i). (11)

which is also a widely spread strategy in previous successful autoregressive models for text like BERT (Devlin,
2018), or for images, like MaskGIT (Chang et al., 2022), that use uniform masking schemes. Additionally, we
derive the marginal distribution of elements at any given step using the total probability theorem (details are
in Appendix B.1), ending in p(zi) = C (αi) with αi = i

S . This parameter indicates the marginal probability
of an element’s activation at step i, reflecting the proportion of i relative to the total number of steps S. In
fact, as we will demonstrate later, this choice allows for encouraging generation diversity by evenly weighting
all the amortized autoregressive models.

3.5 Masking Modes

Our proposed SFARM offers greater flexibility compared to alternative methods such as ARDMs, primarily
due to its customizable activation sequences. By carefully designing p(z0:S), SFARM can better accommodate
various meaningful activation mechanisms, which is particularly beneficial for conditional generation tasks.
For instance, when applied to images, generating interior patches based on existing content can be highly
useful. However, restricting the model to a single generation mechanism may not be suitable for all scenarios.

To address this limitation, we propose that z0:S be derived from a mixture of activation mechanisms,
allowing us to incorporate multiple activation strategies as required. We define m as the masking mode
indicator, enabling us to express p(z0:S |m), as shown in equation 2.

For image-based tasks, we consider up to seven activation mechanisms, including random, left-to-right,
right-to-left, top-to-bottom, bottom-to-top, interior patches, and exterior patches. These modes are defined
by dividing the activation sequence into two stages, (a) and (b), where complementary spatial regions are
generated in each stage, and the second stage in conditioned on the first. This partitioning facilitates a
consistent mathematical formulation for the distributions, irrespective of the masking mode m:

p(z0:S |m) = p(z(a)
0:S′ |m) · p(z(b)

S′:S |z
(a)
0:S′ , m). (12)

Within this framework, p(z(a)
0:S′) and p(z(b)

S′:S |z
(a)
0:S′) are defined similarly to the previously introduced p(z0:S).

New points are activated uniformly using a categorical distribution over the non-activated points within
stages (a) and (b). The distinction between (a) and (b) lies in their respective spatial regions, each containing
a distinct set of elements, allowing for more diverse and flexible generation patterns.

3.6 Likelihood Approximation

For training, we use a simplified objective that leads to better results and faster convergence. However, to
evaluate the model, we seek more accurate approximations of the true likelihood. Given that the sample
space of z is finite and discrete, the marginal likelihood can be written as

p(x) = Ep(z)[pθ(x|z)] =
S!∑

k=1
pθ(x|z(k))p(z(k)). (13)

Here, z represents the full activation sequence, and we omit the sub-index 0:S for simplicity. Each z(k)

corresponds to one of the S! possible activation sequences. While this expression is analytically solvable,
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Figure 3: Image imputation with different models and datasets. First row: incomplete data fed to the model.
Second to last row: data completion by VAE, MIWAE, RePaint and SFARM. Columns represent unobserved
percentages in [5,10,20,30,50,90].

considering all S! activation sequences is impractical. A Monte Carlo approximation,

p(x) ≈ 1
K

∑
k

pθ(x|z(k)), (14)

would be particularly effective if p(z↓
i |zi−1) is set as a discrete uniform, and for this reason we choose to fix

the masking mode to uniform for evaluating the likelihood. This approach, unlike other types of models,
avoids the need for more sophisticated approximations, e.g., importance weighting (Mattei & Frellsen, 2019)
or MCMC methods (Caterini et al., 2018; Thin et al., 2021) in VAEs.

3.7 Efficient data acquisition with SFARM

Learning conditional distributions is particularly relevant when active learning downstream tasks are con-
sidered. Active Feature Acquisition (Melville et al., 2004; Saar-Tsechansky et al., 2009; Huang et al., 2018)
stands out among various Active Learning strategies, particularly in cost-sensitive scenarios where it is cru-
cial to balance the enhancement of predictive accuracy with the expenses associated with obtaining new
feature-level data. Recent contributions have explored deep generative modelling frameworks for iteratively
gathering valuable insights by selecting features that optimize an information-theoretic reward function,
thereby improving prediction quality. The reward function can be defined within SFARM notation as

R(i, ∆xzi
) = I(xΦ; x∆zi

|xzi−1), (15)

where xΦ is the target element. This process is known as Sequential Active Information Acquisition (SAIA).
Ma et al. (2019; 2020) proposed practical approaches for estimating a complex reward function using a VAE
encoder that accommodates incomplete data. Peis et al. (2022) further developed the framework using a
simpler sampling-based method for estimating the reward function, i.e. the Mutual Information.

However, all of the VAE-based methods require intractable marginalizations of the continuous latent variables
in order to compute the reward in equation 15, and mainly opt by approximations based on Gaussian
proposals. In contrast with VAEs, we have access to the conditional distribution of any subset of the data
point structure given the rest, without needing to approximate an intractable integral.
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Figure 4: Conditional generation by ARDM (Hoogeboom et al., 2022) (third row) and our SFARM (last row).
First row: original test data. Second row: incomplete data fed to the model.

4 Experiments

The evaluation of SFARM is organized into quantitative and qualitative experiments that empirically analyze
its performance. Namely, we compare our method with the following deep generative models that allow for
a flexible and efficient conditional generation and use similar neural architectures:

• VAE from (Kingma & Welling, 2013) trained with fully observed data.

• MIWAE: an Importance Weighted Autoencoder (Burda et al., 2016) variation from Mattei &
Frellsen (2019) that handles incomplete data more accurately.

• DDPM: a Denoising Diffusion Probabilistic Model (Ho et al., 2020). For conditional generation,
we use the RePaint strategy presented by Lugmayr et al. (2022).

We employ the same proposed network architecture for every model. All the autoencoding-based models use
the top-down part of the network as encoder and a bottom-up part as the decoder, without including skip
connections. All the details on the experimental setup and reproducibility can be found in A. We evaluate
SFARM over diverse image benchmark datasets, including MNIST, Fashion-MNIST, CIFAR10, CelebA-HQ
(64,64) and ImageNet (64, 64), and tabular datasets, including Energy, Yatch and Concrete. Our code is
accessible at https://anonymous.4open.science/r/FARM_pre-D61C/.

4.1 Conditional generation
Table 1: Test NLL of tabular datasets on the nor-
malized unobserved features by our model and
baselines.

VAE MIWAE SFARM

Energy 4.90± 0.59 4.74± 0.56 0.21± 2.14
Yatch 4.42± 0.83 4.14± 1.22 2.50± 1.19
Concrete 4.10± 0.08 3.06± 0.17 1.05± 0.06

In this section, we evaluate the conditional generation
capabilities of SFARM and compare it with baseline models.
Figure 3 shows the results for image completion when the
input is uniformly masked. The columns represent the
percentage of non-activated (missing) pixels, i.e., E[zi]
for the uniform case. The first row displays the input to
the model, rows 2–4 show the outputs from the baselines,
and row 5 presents the outputs from SFARM.

We highlight the ability of SFARM to fill in the non-observed pixels compared to the baselines, even when only
5% of the image is observed. Except for MIWAE and SFARM, other models struggle to achieve accurate details
when larger portions of the image are missing. SFARM inherently processes global properties in fewer steps
and incorporates finer details earlier than MIWAE, leading to more accurate and realistic image completions.

Next, we evaluate the performance of SFARM compared to ARDM, specifically in the context of using a uniform
masking mode. As shown in Figure 4, ARDM has difficulty conditionally generating content when the
observed mask differs from the uniform mask seen during training. In contrast, SFARM maintains robustness
across varying masking patterns, demonstrating its superior ability to adapt to different conditions.
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Figure 5: SAIA experiment for the Yatch (a), Energy (b) and Concrete (c) datasets.

Figure 6: Samples from SFARM trained on Fashion-MNIST, CIFAR-10, CelebA-HQ (64,64) and ImageNet
(64,64). We employ temperature parameters to shrink the scale of the learned distributions, which increases
the quality of the images with the sacrifice of decreasing diversity.

To demonstrate the flexibility of SFARM in handling various data structures, we include results on missing
data imputation with tabular datasets from UCI (Dheeru & Taniskidou, 2017), specifically on Energy, Yatch
and Concrete. In this context, our model can be seen as a mixture of all possible belief networks with
sequential knowledge. We employ simple, 3-layered MLPs, and concatenate time embeddings to the input,
for modelling the conditional distributions. The results reported in Table 1 show that SFARM is superior over
the baselines.

4.2 Active information acquisition
Table 2: Test NLL results on binarized MNIST
and CIFAR of our SFARM and recent state-of-the-
art methods.

Model Test NLL
Binarized MNIST (nats)
Locally Masked PixelCNN (Jain et al., 2020) 77.58
Efficient VDVAE (Hazami et al., 2022) 79.09
PixelRNN (Van den Oord et al., 2016c) 79.20
PixelCNN (Van den Oord et al., 2016c) 81.30
SFARM (ours) 78.12

Table 3: Test NLL results on CIFAR-10 of our
SFARM and recent state-of-the-art methods.

Model Test NLL FID
CIFAR-10 (b/dim)
IAF-VAE (Kingma et al., 2016) ≤ 3.11
BIVA (Maaløe et al., 2019) ≤ 3.08
NVAE (Vahdat & Kautz, 2020) ≤ 2.91
VDVAE (Child, 2020) ≤ 2.87
ARDM-Upscale 4 (Hoogeboom et al., 2022) 2.64
PixelCNN++ (Salimans et al., 2017) 2.92
DDPM (Ho et al., 2020) 3.7 13.51
Improved DDPM (Nichol & Dhariwal, 2021) 2.94 3.27
CTM (Kim et al., 2023) 2.43 1.63
FM w/ OT (Lipman et al., 2022) 2.99 6.35
SFARM (ours) 2.97 20.52

Results for the SAIA scenario are presented in Figure 5.
It is evident that foundational VAEs do not offer an ac-
curate solution for dynamically acquiring new variables.
The recent MIWAE model demonstrates increased accu-
racy and faster discovery of relevant information. As it
can be appreciated, our proposed method outperforms
MIWAE, indicating that SFARM is the first autoregressive
model that can serve as an efficient framework for data
acquisition.

4.3 Unconditional generation

SFARM is not only specially suited to conditional genera-
tion. We show that diverse generations can be achieved
when sampling from scratch. In Figure 6, we include sam-
ples from three different image datasets.

Also, we include in Table 2 the resulting test negative log-
likelihoods on MNIST and CIFAR-10. Whilst for MNIST,
our NLL is comparable to the recent state of the art, for
CIFAR-10, results are not that competitive.
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Figure 7: CIFAR-10 samples from SFARM after performing 2, 8, 32, 128 and 512 generation steps.
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Figure 8: Evolution of the FID score of CIFAR-10 samples from SFARM over the number of generation steps.

4.3.1 Reducing sampling steps

One of the main limitations of SFARM is its sampling speed. To achieve the sharpest generations, it performs
autoregressive steps, generating content element by element. However, due to its flexible design, SFARM can
generate multiple elements simultaneously, as the trained network pθ(xzi |xz<i) outputs the distribution of
any unobserved element conditioned on arbitrarily observed elements.

A straightforward approach to improve sampling speed is to reduce the number of steps from S to S′ by
generating groups of elements at each step. In this approach, i′ is a downsampled version of the original i.
Results following this strategy are provided in Figure 7. Low values of S′ produce decent results.

5 Limitations

Despite the promising results, the proposed family of models has some limitations. One notable limitation is
that achieving high generation quality requires sampling fewer elements per step, which can slow down the
generation process compared to one-step methods like VAEs. There are potential solutions for compacting
information within the initial steps of the activation chain, which we plan to explore in future work.

6 Conclusion

In this paper, we introduced a novel family of deep generative models that leverage intrinsic data information
and self-supervision principles, effectively generalizing previous order-agnostic models. By randomizing the
per-element generation trajectory with a controlled stochastic approach, our models handle both structured
and unstructured data types, demonstrating significant improvements in flexibility, simplicity, and accuracy.
Our experiments, including image completion, missing data imputation and active information acquisition,
show superiority or comparable performance in producing high-quality, realistic conditional samples even
with minimal observed data.
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A Experimental details

A.1 Likelihood functions

The parametric families that we employ for the likelihood pθ(xzi
|xzi−1) of different data types vary depend-

ing on their nature. We mainly employed Gaussian distributions for tabular datasets, Bernoulli distributions
B(fθ(xzi−1)) for binary images, and following Kingma et al. (2016), a mixture of discretized logistic distri-
butions for coloured images, where both the locations µl, and scale sl parameters are learned through a
function fθ(xzi−1).
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A.2 Architecture details

Table 4 outlines the key hyperparameters used to reproduce our experiments. We use an input processor
that expands the image channels to the desired base_channels, with one-quarter of these channels reserved
for the class and activation mode embeddings. The in_planes parameter denotes the depth after the initial
1x1 convolution preceding the U-Net layers. The layers parameter refers to the number of symmetric
downsampling and upsampling layers in the U-Net architecture. Each layer doubles the input depth while
reducing the spatial dimensions by a factor of two. Additionally, we incorporate sinusoidal time embeddings
into every U-Net block, adding them to the intermediate representations.

Following ARDMs, the smallest resolution processed by the U-Net is 32 × 32 (except for MNIST, where it
remains at 28× 28). This approach is typical for tasks involving NLL optimization and lossless compression,
which often require high-resolution feature maps (Mentzer et al., 2019).

For tabular datasets, we utilize MLP networks with concatenated time embeddings. In this case,
units/layer refers to the number of hidden units per layer in the MLP. “DL” stands for Discretized Logistic
as defined by (Kingma et al., 2016), while “MoDL” refers to the Mixture of Discretized Logistics proposed
by (Salimans et al., 2017). All models were trained using Nvidia Quadro RTX 5000 GPUs.

Table 4: Key hyperparameters for reproducing the experiments.

Parameter MNIST Fashion-MNIST CIFAR-10 CelebA-HQ (64 x 64) ImageNet (64 x 64) Tabular datasets
base_channels 32 32 256 256 256 -
in_planes 32 32 128 128 128 -
layers 1 1 1 2 2 3
blocks/layer 4 4 32 16 16 -
units/layer - - - - 32
likelihood Bernoulli DL MoDLs MoDLs MoDLs Gaussian
n_mix - - 30 30 30 -
batch_size 128 128 32* 16* 16* 100
epochs 300 300 3000 3000 20 2K
lr 2× 10−4 2× 10−4 2× 10−4 2× 10−4 2× 10−4 10−3

* Parallelized over 4 GPUs.

B Further theoretical analysis

B.1 Marginal distribution of elements in the activation masks: the Uniform case

In this section, we aim to determine the parameters of the marginal distribution p(zij) when p(z↓
i |zi−1) is

defined as a Categorical distribution with uniform probabilities. Building on the discussions from Section 3.3,
the conditional distribution for elements yet to be activated is given by the following Categorical distribution
with uniform probabalities.

p(z↓
i |zi−1) = C

(
1

S − i + 1

)
. (16)

For simplicity, we will omit the notation z↓
i in this context. The per-element probabilities can be expressed

as
p(zij = 1|zi−1) = 1

S − i + 1 . (17)

By leveraging the total probability theorem, we can derive
p(zij = 1) = p(zi−1,j = 0) · p(zij = 1|zi−1,j = 0) + p(zi−1,j = 1) · p(zij = 1|zi−1,j = 1). (18)

Letting αi = p(zij = 1) and substituting the relevant conditional probabilities from Equation equation 16,
we obtain

αi = (1− αi−1) · 1
S − i + 1 + αi−1 = 1 + αi−1(S − i)

S − i + 1 . (19)

Starting from α0 = 0, we calculate α1 = 1
S . For α2, the calculation follows

α2 = 1 + α1(S − 2)
S − 1 = 2(S − 1)

S(S − 1) = 2
S

. (20)
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Thus, the marginal probability of activation adheres to the formula

p(zij = 1) = i

S
. (21)

Or equivalently, the marginal probability of the element of a mask at step i is given by

p(z↓
i ) = C(i/S) (22)
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