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Abstract
In coded aperture snapshot spectral compressive imaging (CASSI) systems, hyper-
spectral image (HSI) reconstruction methods are employed to recover the spatial-
spectral signal from a compressed measurement. Among these algorithms, deep
unfolding methods demonstrate promising performance but suffer from two issues.
Firstly, they do not estimate the degradation patterns and ill-posedness degree from
CASSI to guide the iterative learning. Secondly, they are mainly CNN-based, show-
ing limitations in capturing long-range dependencies. In this paper, we propose a
principled Degradation-Aware Unfolding Framework (DAUF) that estimates param-
eters from the compressed image and physical mask, and then uses these parameters
to control each iteration. Moreover, we customize a novel Half-Shuffle Transformer
(HST) that simultaneously captures local contents and non-local dependencies. By
plugging HST into DAUF, we establish the first Transformer-based deep unfolding
method, Degradation-Aware Unfolding Half-Shuffle Transformer (DAUHST), for
HSI reconstruction. Experiments show that DAUHST surpasses state-of-the-art
methods while requiring cheaper computational and memory costs. Code and
models are publicly available at https://github.com/caiyuanhao1998/MST

1 Introduction
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Figure 1: PSNR-FLOPS comparisons of
DAUHST and SOTA unfolding methods.

Hyperspectral images (HSIs) have more spectral bands than
normal RGB images to store more detailed information.
Thus, HSIs are widely applied in image recognition [1, 2, 3],
object detection [4, 5, 6], tracking [7, 8, 9], medical image
processing [10, 11, 12], remote sensing [13, 14, 15, 16],
etc. To obtain HSIs, traditional imaging systems use spec-
trometers to scan the scenes along the spectral or spatial
dimensions, usually requiring a long time. These imaging
systems fail to capture dynamic objects. Recently, snap-
shot compressive imaging (SCI) systems [17, 18, 19] have
been developed to capture HSIs at video rate. Among
these SCI systems, coded aperture snapshot spectral imaging
(CASSI) [17, 20, 21] stands out for its impressive perfor-
mance. CASSI uses a coded aperture and a disperser to
modulate the HSI signal at different wavelengths, and then
mixes all modulated signal to generate a 2D compressed
measurement. Subsequently, HSI restoration methods are employed to solve the CASSI inverse
problem, i.e., restore the HSIs from the measurement. These methods are divided into four categories.

(i) Model-based methods [17, 22, 23, 24, 25, 26, 27, 28] rely on hand-crafted image priors, e.g.,
total variation [26], sparsity [17, 22], low-rank [23], etc. These methods have theoretically proven
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properties and can be interpreted. Yet, these methods need manual parameter tweaking, which slows
down reconstruction. Also, they suffer from limited representation capacity and generalization ability.

(ii) Plug-and-play (PnP) algorithms [29, 30, 31] plug pre-trained denoising networks into traditional
model-based methods to solve the HSI reconstruction problem. Nonetheless, the pre-trained networks
in PnP methods are fixed without re-training, therefore limiting the performance.

(iii) End-to-end (E2E) algorithms employ a powerful model, usually a convolutional neural network
(CNN) [12, 20, 32, 33], to learn the E2E mapping function from a measurement to the desired HSIs.
E2E methods enjoy the power of deep learning. However, they learn a brute-force mapping from the
compressed measurement to the underlying spectral images, thereby ignoring the working principles
of CASSI systems. They come without theoretically proven properties, interpretability, and flexibility
because the imaging models widely differ from each other for various hardware systems.

(iv) Deep unfolding methods [34, 35, 36, 37, 38, 39] adopt a multi-stage network to map the
measurement into the HSI cube. Each stage usually includes two phases, i.e., linear projection
followed by passing the signal through a single-stage network that learns the underlying denoiser
prior. In deep unfolding methods, the network architecture is intuitively interpretable by explicitly
characterizing the image priors and the system imaging model. Besides, these methods also enjoy the
power of deep learning and thus have great potential. Yet, this potential has not been fully explored.

Existing deep unfolding algorithms suffer from two issues. (a) The iterative learning is highly related
to the CASSI system. However, current unfolding methods do not estimate CASSI degradation
patterns and ill-posedness degree to adjust the linear projection and denoising network in each iteration.
(b) Existing deep unfolding methods are mainly CNN-based, therefore showing limitations in
capturing non-local self-similarity and long-range dependencies, both critical for HSI reconstruction.

Recently, the emerging Transformer [40] has provided a solution to tackle the drawbacks of CNN.
Due to its strong capability in modeling the interactions of non-local spatial regions, Transformer
has been widely applied in image classification [41, 42, 43], object detection [44, 45, 46], semantic
segmentation [47, 48, 49], human pose estimation [50, 51, 52], image restoration [53, 54, 55], etc.
Yet, the use of Transformer is confronted with two main issues. (a) The computational complexity of
global Transformer [42] is quadratic to the spatial dimensions. This cost is sometimes unaffordable.
(b) The receptive fields of local Transformer [41] are limited within position-specific windows. Thus,
some tokens with highly-related contents can not match each other when computing self-attention.

To address the above problems, in this paper, we firstly formulate a principled Degradation-Aware
Unfolding Framework (DAUF) based on maximum a posteriori (MAP) theory for HSI reconstruction.
Different from previous deep unfolding methods, our DAUF implicitly estimates informative parame-
ters from the degraded compressed measurement and the physical mask used in the modulation. Then
DAUF feeds the parameters, which capture key cues of CASSI degradation patterns and ill-posedness
degree, into each iteration to adaptively scale the linear projection and provide the noise level informa-
tion for the denoising network. Secondly, we design a novel Half-Shuffle Transformer (HST) as the
denoiser prior in each iteration. Our HST can jointly extract local contextual information and model
non-local dependencies, while requiring much cheaper computational costs than global Transformer.
We achieve this by customizing a Half-Shuffle Multi-head Self-Attention (HS-MSA) mechanism that
composes the basic unit of HST. More specifically, our HS-MSA has two branches, i.e., local branch
and non-local branch. The local branch calculates the self-attention within the local window while
the non-local branch shuffles the tokens and captures cross-window interactions. We plug HST into
DAUF to establish an iterative architecture, Degradation-Aware Unfolding Half-Shuffle Transformer
(DAUHST). With the proposed techniques, DAUHST models dramatically outperform state-of-the-art
(SOTA) deep unfolding methods with the same number of stages by over 4 dB, as shown in Fig. 1.

In a nutshell, our contributions can be summarized as follows:

(i) We formulate a principled MAP-based unfolding framework DAUF for HSI reconstruction.

(ii) We propose a novel Transformer HST and plug it into DAUF to establish DAUHST. To the best of
our knowledge, DAUHST is the first Transformer-based deep unfolding method for HSI restoration.

(iii) DAUHST outperforms SOTA methods by a large margin while requiring cheaper computational
and memory costs. Besides, DAUHST yields more visually pleasant results in real HSI reconstruction.
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Figure 2: The architecture of our DAUF with K stages (iterations). E estimates informative parameters from
the compressed measurement y and sensing matrix Φ. The estimated parameters α and β are fed into each
stage of subsequent iterative learning. P and D denote the linear projection and denoising network in each stage.

2 Proposed Method
2.1 Degradation Model of CASSI

In CASSI, we denote the vectorized measurement as y ∈ Rn, where n = H(W +d(Nλ−1)). H , W ,
d, andNλ denote the HSI’s height, width, shifting step in dispersion, and total number of wavelengths.
Given the vectorized shifted HSI signal x ∈ RnNλ and the sensing matrix Φ ∈ Rn×nNλ that is
determined by the physical mask, the degradation model of CASSI can be formulated as

y = Φx + n, (1)

where n ∈ Rn represents the vectorized imaging noise on the measurement. As analyzed in
[56, 57, 58], Φ is a fat, sparse, and highly structured matrix that is hard to handle. Please refer to the
supplementary material for details about the mathematical model of CASSI. Then the task of HSI
reconstruction is given y (captured by the camera) and Φ (calibrated based on pre-design), solving x.

2.2 Degradation-Aware Unfolding Framework

Previous unfolding frameworks [34, 35, 36, 37] do not estimate the CASSI degradation patterns to
adjust the iterative learning. To alleviate this limitation, we formulate a principled Degradation-Aware
Unfolding Framework (DAUF) as depicted in Fig. 2. DAUF starts from the MAP theory. In particular,
the original HSI signal could be estimated by minimizing the following energy function as

x̂ = arg min
x

1

2
||y −Φx||2 + τR(x), (2)

where 1
2 ||y−Φx||2 is the data fidelity term, R(x) is the image prior term, and τ is a hyperparameter

balancing the importance. By introducing an auxiliary variable z, Eq. (2) can be reformulated as

x̂ = arg min
x

1

2
||y −Φx||2 + τR(z), s.t. z = x. (3)

This is a constrained optimization problem. To obtain an unfolding inference, we adopt half-quadratic
splitting (HQS) algorithm for its simplicity and fast convergence. Then Eq. (3) is solved by minimizing

Lµ(x, z) =
1

2
||y −Φx||2 + τR(z) +

µ

2
||z− x||2, (4)

where µ is a penalty parameter that forces x and z to approach the same fixed point. Subsequently,
Eq. (4) can be solved by decoupling x and z into the following two iterative sub-problems as

xk+1 = arg min
x
||y −Φx||2 + µ||x− zk||2 , zk+1 = arg min

z

µ

2
||z− xk+1||2 + τR(z), (5)

where k = 0, 1, ... ,K − 1 indexes the iteration. Note that the data fidelity term is associated with a
quadratic regularized least-squares problem, i.e., xk+1 in Eq. (5). It has a closed-form solution as

xk+1 = (ΦTΦ + µI)−1(ΦTy + µzk), (6)

where I is an identity matrix. Since Φ is a fat matrix, (ΦTΦ+ µI) will be large and thus we simplify
the computation of the inverse problem (ΦTΦ + µI)−1 by the matrix inversion formula as

(ΦTΦ + µI)−1 = µ−1I− µ−1ΦT(I + Φµ−1ΦT)−1Φµ−1. (7)
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By plugging Eq. (7) into Eq. (6), we can reformulate Eq. (6) as

xk+1 =
ΦTy + µzk

µ
− ΦT(I + Φµ−1ΦT)−1ΦΦTy

µ2
− ΦT(I + Φµ−1ΦT)−1Φzk

µ
. (8)

In CASSI systems, ΦΦT is a diagonal matrix which can be defined as ΦΦT def
= diag{ψ1, . . . , ψn}.

By plugging ΦΦT into (I + Φµ−1ΦT)−1 and (I + Φµ−1ΦT)−1ΦΦT, we obtain:

(I + Φµ−1ΦT)−1 = diag
{ µ

µ+ ψ1
, ... ,

µ

µ+ ψn

}
,

(I + Φµ−1ΦT)−1ΦΦT = diag
{ µψ1

µ+ ψ1
, ... ,

µψn
µ+ ψn

}
.

(9)

Let y
def
= [y1, . . . , yn]

T and [Φzk]i denotes the i-th element of Φzk. We plug Eq. (9) into Eq. (8) as

xk+1 =
ΦTy

µ
+ zk −

1

µ
ΦT

[y1ψ1 + µ[Φzk]1
µ+ ψ1

, ... ,
ynψn + µ[Φzk]n

µ+ ψn

]T
= zk + ΦT

[y1 − [Φzk]1
µ+ ψ1

, ... ,
yn − [Φzk]n
µ+ ψn

]T
.

(10)

Note that {yi − [Φzk]i}ni=1 can be directly updated by y −Φzk, and {ψi}ni=1 is pre-calculated and
stored in ΦΦT. Thus, by element-wise computation in Eq. (10), xk+1 can be updated very efficiently.
According to Eq. (5), the penalty parameter µ should be large enough so that x and z can approach
approximately the same fixed point. This indicates that µ controls the convergence and output of each
iteration. Thus, instead of manually tweaking µ, we set µ as a series of iteration-specific parameters
to be automatically estimated from the CASSI system. We denote µ in the k-th iteration as µk.

Returning to Eq. (5), we also set τ as iteration-specific parameters and zk+1 can be reformulated as

zk+1 = arg min
z

1

2(
√
τk+1/µk+1)2

||z− xk+1||2 +R(z). (11)

From the perspective of Bayesian probability, Eq. (11) is equivalent to denoising image xk+1 with a
Gaussian noise at level

√
τk+1/µk+1 [29]. To conveniently solve Eq. (11), we set 1

(
√
τk+1/µk+1)2

=

µk+1/τk+1 as parameters to be estimated from CASSI. Let αk
def
= µk, α def

= [α1, ..., αK ], βk
def
=

µk/τk, and β
def
= [β1, ..., βK ]. Then we can formulate our DAUF as an iterative scheme:

(α,β) = E(y,Φ), xk+1 = P(y, zk, αk+1,Φ), zk+1 = D(xk+1, βk+1), (12)

where E denotes the parameter estimator that takes the compressed measurement y and the sensing
matrix Φ of the CASSI system as inputs, P equivalent to Eq. (10) denotes the linear projection,
and D represents the Gaussian denoiser solving Eq. (11). z0 is initialized by passing the shifted
y concatenated with Φ through a conv1 × 1 (convolution with 1×1 kernel). Fig. 2 shows the
architecture of E . It consists of a conv1 × 1, a strided conv3 × 3, a global average pooling, and
three fully connected layers. Through E , DAUF captures critical cues from CASSI by learning
the degradation patterns and ill-posedness degree caused by the mask-modulation and dispersion-
integration. Parameters α and β estimated by E direct the iterative learning by adaptively scaling the
linear projection in Eq. (10) and providing noise level information for the denoiser prior in Eq. (11).

2.3 Half-Shuffle Transformer
When designing the denoiser prior, previous deep unfolding methods [34, 35, 36, 37] mainly adopt
CNNs, showing limitations in capturing long-range dependencies. Directly applying local and global
Transformers will encounter two problems, i.e., limited receptive fields and nontrivial computational
costs. To address these challenges, we propose Half-Shuffle Transformer (HST) to play the role of D.

Network Architecture. As shown in Fig. 3 (a), HST adopts a three-level U-shaped structure built by
the basic unit Half-Shuffle Attention Block (HSAB). Firstly, HST uses a conv3× 3 to map reshaped
xk concatenated with stretched βk into feature X0 ∈ RH×Ŵ×C , where Ŵ = W + d(Nλ − 1).
Secondly, X0 passes through the encoder, bottleneck, and decoder to be embedded into deep feature
Xd ∈ RH×Ŵ×C . Each level of the encoder or decoder contains an HSAB and a resizing module.
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Figure 3: Diagram of HST. (a) HST adopts a U-shaped structure. (b) HSAB consists of an FFN, an HS-MSA, and
two layer normalization. (c) Components of FFN. (d) HS-MSA contains local branch and non-local branch.

In Fig. 3 (b), HSAB consists of two layer normalization (LN), an HS-MSA, and a Feed-Forward
Network (FFN) that is detailed in Fig. 3 (c). The downsampling and upsampling modules are strided
conv4 × 4 and deconv2 × 2. Finally, a conv3 × 3 operates on Xd to generate a residual image
R ∈ RH×Ŵ×Nλ . The output denoised image zk is obtained by the sum of xk and reshaped R.

Half-Shuffle Multi-head Self-Attention. The most important element of HSAB is the proposed
Half-Shuffle Multi-head Self-Attention (HS-MSA) module. Fig. 3 (d) depicts the HS-MSA used in
the first level. The input tokens of HS-MSA are denoted as Xin ∈ RH×Ŵ×C . Subsequently, Xin is
linearly projected into query Q ∈ RH×Ŵ×C , key K ∈ RH×Ŵ×C , and value V ∈ RH×Ŵ×C as

Q = XinWQ, K = XinWK, V = XinWV, (13)

where WQ,WK,WV ∈ RC×C are learnable parameters and biases are omitted for simplification.
Our HS-MSA combines the advantages of global MSA [42] and local window-based MSA [41],
i.e., HS-MSA can jointly capture local contextual information through the local branch and model
long-range dependencies through the non-local branch, all while being computationally cheaper than
global MSA. Specifically, Q,K,V are split into two equal parts along the channel dimension as

Q = [Ql,Qnl], K = [Kl,Knl], V = [Vl,Vnl], (14)

where Ql,Kl,Vl ∈ RH×Ŵ×C2 are fed into the local branch to capture local contents, while
Qnl,Knl,Vnl ∈ RH×Ŵ×C2 pass through the non-local branch to model non-local dependencies.

Local Branch. The local branch computes MSA within position-specific windows. As shown in
the upper path of Fig. 3 (d), Ql,Kl,Vl are partitioned into non-overlapping windows of size M ×M .

Then they are reshaped into R
HŴ
M2 ×M

2×C2 . Subsequently, Ql,Kl,Vl are split along the channel
wise into h heads: Ql = [ Q1

l , . . . ,Q
h
l ], Kl = [ K1

l , . . . ,K
h
l ], and Vl = [ V1

l , . . . ,V
h
l ]. The

dimension of each head is dh = C
2h . Note that Fig. 3 (d) depicts the situation with h = 1 and some

details are omitted for simplification. The local self-attention Ai
l is calculated inside each head as

Ai
l = softmax(

Qi
l Ki

l
T

√
dh

+ Pi
l) Vi

l , i = 1, . . . , h, (15)

where Pi
l ∈ RM2×M2

are learnable parameters embedding the position information.

Non-local Branch. The non-local branch computes cross-window interactions through shuffle
operations inspired by ShuffleNet [59]. In particular, Qnl,Knl,Vnl ∈ RH×Ŵ×C2 are firstly par-
titioned into non-overlapping windows with size M ×M . Then their shapes are transposed from

R
HŴ
M2 ×M

2×C2 to RM
2×HŴ

M2 ×C2 to shuffle the positions of tokens and establish inter-window depen-
dencies. Qnl,Knl,Vnl are split into h heads: Qnl = [ Q1

nl, . . . ,Q
h
nl ], Knl = [ K1

nl, . . . ,K
h
nl ],

5



Algorithms Params GFLOPS S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Avg

TwIST [60] - - 25.16
0.700

23.02
0.604

21.40
0.711

30.19
0.851

21.41
0.635

20.95
0.644

22.20
0.643

21.82
0.650

22.42
0.690

22.67
0.569

23.12
0.669

GAP-TV [26] - - 26.82
0.754

22.89
0.610

26.31
0.802

30.65
0.852

23.64
0.703

21.85
0.663

23.76
0.688

21.98
0.655

22.63
0.682

23.10
0.584

24.36
0.669

DeSCI [23] - - 27.13
0.748

23.04
0.620

26.62
0.818

34.96
0.897

23.94
0.706

22.38
0.683

24.45
0.743

22.03
0.673

24.56
0.732

23.59
0.587

25.27
0.721

λ-Net [33] 62.64M 117.98 30.10
0.849

28.49
0.805

27.73
0.870

37.01
0.934

26.19
0.817

28.64
0.853

26.47
0.806

26.09
0.831

27.50
0.826

27.13
0.816

28.53
0.841

HSSP [35] - - 31.48
0.858

31.09
0.842

28.96
0.823

34.56
0.902

28.53
0.808

30.83
0.877

28.71
0.824

30.09
0.881

30.43
0.868

28.78
0.842

30.35
0.852

DNU [34] 1.19M 163.48 31.72
0.863

31.13
0.846

29.99
0.845

35.34
0.908

29.03
0.833

30.87
0.887

28.99
0.839

30.13
0.885

31.03
0.876

29.14
0.849

30.74
0.863

DIP-HSI [30] 33.85M 64.42 32.68
0.890

27.26
0.833

31.30
0.914

40.54
0.962

29.79
0.900

30.39
0.877

28.18
0.913

29.44
0.874

34.51
0.927

28.51
0.851

31.26
0.894

TSA-Net [20] 44.25M 110.06 32.03
0.892

31.00
0.858

32.25
0.915

39.19
0.953

29.39
0.884

31.44
0.908

30.32
0.878

29.35
0.888

30.01
0.890

29.59
0.874

31.46
0.894

DGSMP [38] 3.76M 646.65 33.26
0.915

32.09
0.898

33.06
0.925

40.54
0.964

28.86
0.882

33.08
0.937

30.74
0.886

31.55
0.923

31.66
0.911

31.44
0.925

32.63
0.917

GAP-Net [36] 4.27M 78.58 33.74
0.911

33.26
0.900

34.28
0.929

41.03
0.967

31.44
0.919

32.40
0.925

32.27
0.902

30.46
0.905

33.51
0.915

30.24
0.895

33.26
0.917

ADMM-Net [37] 4.27M 78.58 34.12
0.918

33.62
0.902

35.04
0.931

41.15
0.966

31.82
0.922

32.54
0.924

32.42
0.896

30.74
0.907

33.75
0.915

30.68
0.895

33.58
0.918

HDNet [32] 2.37M 154.76 35.14
0.935

35.67
0.940

36.03
0.943

42.30
0.969

32.69
0.946

34.46
0.952

33.67
0.926

32.48
0.941

34.89
0.942

32.38
0.937

34.97
0.943

MST-L [61] 2.03M 28.15 35.40
0.941

35.87
0.944

36.51
0.953

42.27
0.973

32.77
0.947

34.80
0.955

33.66
0.925

32.67
0.948

35.39
0.949

32.50
0.941

35.18
0.948

MST++ [62] 1.33M 19.42 35.80
0.943

36.23
0.947

37.34
0.957

42.63
0.973

33.38
0.952

35.38
0.957

34.35
0.934

33.71
0.953

36.67
0.953

33.38
0.945

35.99
0.951

CST-L [62] 3.00M 40.01 35.96
0.949

36.84
0.955

38.16
0.962

42.44
0.975

33.25
0.955

35.72
0.963

34.86
0.944

34.34
0.961

36.51
0.957

33.09
0.945

36.12
0.957

BIRNAT [63] 4.40M 2122.66 36.79
0.951

37.89
0.957

40.61
0.971

46.94
0.985

35.42
0.964

35.30
0.959

36.58
0.955

33.96
0.956

39.47
0.970

32.80
0.938

37.58
0.960

DAUHST-2stg 1.40M 18.44 35.93
0.943

36.70
0.946

37.96
0.959

44.38
0.978

34.13
0.954

35.43
0.957

34.78
0.940

33.65
0.950

37.42
0.955

33.07
0.941

36.34
0.952

DAUHST-3stg 2.08M 27.17 36.59
0.949

37.93
0.958

39.32
0.964

44.77
0.980

34.82
0.961

36.19
0.963

36.02
0.950

34.28
0.956

38.54
0.963

33.67
0.947

37.21
0.959

DAUHST-5stg 3.44M 44.61 36.92
0.955

38.52
0.962

40.51
0.967

45.09
0.980

35.33
0.964

36.56
0.965

36.82
0.958

34.74
0.959

38.71
0.963

34.27
0.952

37.75
0.962

DAUHST-9stg 6.15M 79.50 37.25
0.958

39.02
0.967

41.05
0.971

46.15
0.983

35.80
0.969

37.08
0.970

37.57
0.963

35.10
0.966

40.02
0.970

34.59
0.956

38.36
0.967

Table 1: Comparisons between DAUHST and SOTA methods on 10 simulation scenes (S1∼S10).
Params, FLOPS, PSNR (upper entry in each cell), and SSIM (lower entry in each cell) are reported.

and Vnl = [ V1
nl, . . . ,V

h
nl ]. Then the non-local self-attention Ai

nl is computed in each head as

Ai
nl = softmax(

Qi
nl Ki

nl
T

√
dh

+ Pi
nl) Vi

nl, i = 1, . . . , h, (16)

where Pi
nl ∈ R

HŴ
M2 ×HŴM2 are learnable parameters representing the position embedding. Subsequently,

Ai
nl ∈ RM

2×HŴ
M2 ×dh is unshuffled by being transposed to shape R

HŴ
M2 ×M

2×dh . Then the outputs of
local branch in Eq. (15) and non-local branch in Eq. (16) are aggregated by a linear projection as

HS-MSA(Xin) =
∑h

i=1
Ai
lW

i
l +

∑h

i=1
Ai
nlW

i
nl, (17)

where Wi
l ,W

i
nl ∈ Rdh×C refer to learnable parameters. We reshape the result of Eq. (17) to obtain

the output Xout ∈ RH×Ŵ×C . Instead of globally sampling all tokens, HS-MSA builds inter-window
correlations by shuffle operations. The self-attention is calculated in the local window but with tokens
from non-local regions. Therefore, HS-MSA is much computationally cheaper than global MSA.

3 Experiment
3.1 Experiment Setup

Similar to [20, 32, 36, 38, 61], 28 wavelengths are selected from 450nm to 650nm and derived by
spectral interpolation manipulation for the HSI data. Simulation and real experiments are conducted.

Simulation Dataset. We adopt two datasets, i.e., CAVE [64] and KAIST [65] for simulation
experiments. The CAVE dataset consists of 32 HSIs with spatial size 512×512. The KAIST dataset
contains 30 HSIs of spatial size 2704×3376. Following the settings of [20, 32, 36, 38, 61], the CAVE
dataset is adopted as the training set while 10 scenes from the KAIST dataset are selected for testing.

Real Dataset. Five real HSIs collected by the CASSI system developed in [20] are used for testing.
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Figure 4: Simulation HSI reconstruction comparisons of Scene 2 with 4 (out of 28) spectral channels. The
top-middle shows the spectral curves corresponding to the two green boxes of the RGB image. The top-right
depicts the enlarged patches corresponding to the yellow boxes in the bottom HSIs. Zoom in for a better view.

Implementation Details. We implement DAUHST by Pytorch. All DAUHST models are trained
with Adam [66] optimizer (β1 = 0.9 and β2 = 0.999) using Cosine Annealing scheme [67] for 300
epochs on an RTX 3090 GPU. The initial learning rate is 4×10−4. Patches with spatial sizes 256×256
and 660×660 are randomly cropped from the 3D HSI cubes with 28 channels as training samples for
the simulation and real experiments. The shifting step d in the dispersion is set to 2. The batch size is
5. We set the basic channel C = Nλ = 28 to store HSI information. The weights of D in different
stages are unshared. Data augmentation includes random rotation and flipping. The training objective
is to minimize the Root Mean Square Error (RMSE) between reconstructed and ground-truth HSIs.

3.2 Quantitative Comparisons with State-of-the-Art Methods
Tab. 1 compares the results of DAUHST and 16 SOTA methods including three model-based methods
(TwIST [60], GAP-TV [26], and DeSCI [23]), one PnP method (DIP-HSI [30]), seven E2E methods
(λ-Net [33], TSA-Net [20], HDNet [32], MST [61], MST++ [62], CST [68], and BIRNAT [63]), and
five deep unfolding methods (HSSP [35], DNU [34], DGSMP [38], GAP-Net [36], and ADMM-
Net [37]) on 10 simulation scenes. All algorithms are tested with the same settings as [38, 61].

(i) Our best model DAUHST-9stg (9-stage DAUHST) yields very impressive results, i.e., 38.36 dB
in PSNR and 0.967 in SSIM. DAUHST-9stg significantly outperforms two recent SOTA methods
BIRNAT [63] and MST-L [61] by 0.78 and 3.18 dB, suggesting the effectiveness of our method.

(ii) Our DAUHST models dramatically surpass SOTA methods while requiring cheaper computational
and memory costs. For instance, when compared with the only one Transformer-based E2E method
MST, our DAUHST-2stg outperforms MST-L by 1.16 dB but only costs 68.9% (1.40 / 2.03) Params
and 65.5% (18.44 / 28.15) FLOPS. When compared with CNN-based E2E methods, DAUHST-3stg
surpasses HDNet, TSA-Net, and λ-Net by 2.24, 5.75, and 8.68 dB while only requiring 87.8%, 4.7%,
3.3% Params and 17.6%, 24.7%, 23.0% FLOPS. When compared with RNN-based E2E method
BIRNAT, our DAUHST-5stg is 0.17 dB higher but only costs 2.1% FLOPS and 78.2% Params.
Fig. 1 plots the PSNR-FLOPS comparisons of DAUHST and SOTA unfolding methods. DAUHST
outperforms other competitors with the same number of stages by very large margins, over 4 dB.

3.3 Qualitative Comparisons with State-of-the-Art Methods
Simulation HSI Reconstruction. Fig. 4 depicts the simulation HSI reconstruction comparisons
between our DAUHST and other SOTA methods on Scene 2 with 4 (out of 28) spectral channels. The
top-right part shows the zoomed-in patches of the yellow boxes in the entire HSIs (bottom). As can
be observed that our DAUHST-9stg is more favorable to reconstruct visually pleasant HSIs with more
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Figure 5: Real HSI reconstruction results of DAUHST-3stg and 9 SOTA methods on Scene 1 with 4 (out of 28)
spectra. Only our method can clearly reconstruct the picked flower at all wavelengths. Zoom in for a better view.

detailed contents, cleaner textures, and fewer artifacts while preserving the spatial smoothness of
homogeneous regions. In contrast, previous methods either yield over-smooth results compromising
fine-grained structures, or introduce undesired chromatic artifacts and blotchy textures that are absent
in the ground truth (GT). The top-middle part illustrates the density-wavelength spectral curves
corresponding to the green boxes identified as a and b in the RGB image (top-left). The spectral
curves of DAUHST-9stg achieve the highest correlation and coincidence with the reference curves,
showing the advantage of our proposed DAUHST in spectral-dimension consistency reconstruction.

Real HSI Reconstruction. We further evaluate the effectiveness of DAUHST in real HSI reconstruc-
tion. Following the same settings as [20, 38, 61] for a fair comparison, we re-train DAUHST-3stg with
the real mask on the CAVE and KAIST datasets jointly. To simulate the real imaging situations, the
training samples are also injected with 11-bit shot noise. Fig. 5 shows the visual comparisons between
our DAUHST-3stg and nine SOTA methods. In the top three rows, only our DAUHST-3stg can
reconstruct the flower patch corresponding to the yellow box at all wavelengths while other methods
all fail to recover the entire patch. In the bottom row, DAUHST-3stg restores more HSI structural
details and clearer contents with fewer artifacts. In contrast, other methods recover blurry images,
generate incomplete responses, and are susceptible to the noise corruption. This evidence suggests
that DAUHST is more robust to the noise distortion and more effective in real HSI reconstruction.

3.4 Ablation Study
Break-down Ablation. We adopt baseline-1 that is derived by removing HS-MSA and DAUF from
DAUHST-3stg to conduct the break-down ablation. Our goal is to study the effect of each component
towards higher performance. Baseline-1 is cascaded end to end by three single-stage networks. As
shown in Tab. 2a, baseline-1 achieves 33.05 dB. When we respectively apply DAUF and HS-MSA,
the model achieves 2.32 and 2.44 dB improvements. When we exploit DAUF and HS-MSA jointly,
the model gains by 4.16 dB. These results demonstrate the effectiveness of our DAUF and HS-MSA.

Self-Attention Mechanism. To compare HS-MSA with other MSAs, we adopt baseline-2 that is
obtained by removing HS-MSA from DAUHST-1stg to conduct the ablation in Tab. 2b. We remove
different position embedding schemes to avoid their impacts and only compare MSAs. For fairness,
we keep the Params of MSAs the same by fixing the number of channels and heads. Baseline-2 yields
32.79 dB. We apply global MSA (G-MSA) [42], Swin MSA (SW-MSA) [41], Spectral-wise MSA
(S-MSA) [61], and HS-MSA. Note that we downsample the input feature maps of G-MSA to avoid
memory bottlenecks. As shown in Tab. 2b, HS-MSA yields the most significant improvement of 1.26
dB, which is 0.42, 0.30, and 0.23 dB higher than G-MSA, SW-MSA, and S-MSA. This superiority is
mainly derived from HS-MSA’s ability to jointly capture local contents and non-local dependencies.

Unfolding Framework. We compare our DAUF with previous unfolding frameworks including
DNU [34], ADMM-Net [37], and GAP-Net [36]. For a fair comparison, we replace each single-stage
network of DNU, ADMM-Net, and GAP-Net by our HST. 3-stage architecture is adopted to conduct
ablations. The results are shown in Tab. 2c. Our DAUF significantly outperforms DNU, ADMM, and
GAP by 2.59, 1.69, and 1.63 dB while adding only 0.05M Params and 0.94G FLOPS. This is mainly
because DAUF uses the parameters estimated from the compressed measurement and physical mask
in the CASSI system to direct the iterative learning. These parameters capture critical information of
CASSI degradation patterns and ill-posedness degree, providing key cues for HSI reconstruction.
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Baseline-1 DAUF HS-MSA PSNR SSIM Params (M) FLOPS (G)

X 33.05 0.912 1.06 17.62
X X 35.37 0.938 1.11 18.55
X X 35.49 0.941 2.03 26.23
X X X 37.21 0.959 2.08 27.17

(a) Break-down ablation towards higher performance.

Method Baseline-2 G-MSA SW-MSA S-MSA HS-MSA
PSNR 32.79 33.63 33.75 33.82 34.05
SSIM 0.904 0.920 0.924 0.926 0.930
Params (M) 0.40 0.48 0.48 0.48 0.48
FLOPS (G) 6.85 10.30 9.41 8.89 9.72

(b) Ablation of various self-attention mechanisms.
Framework DNU [34] ADMM [37] GAP [36] DAUF
PSNR 34.62 35.52 35.58 37.21
SSIM 0.930 0.942 0.943 0.959
Params (M) 2.03 2.03 2.03 2.08
FLOPS (G) 26.23 26.23 26.23 27.17

(c) Ablation of different unfolding frameworks.

Baseline-3 α β PSNR SSIM Params (M) FLOPS (G)

X 36.49 0.952 2.03 26.23
X X 36.94 0.957 2.08 27.10
X X 36.83 0.956 2.08 27.17
X X X 37.21 0.959 2.08 27.17

(d) Ablation to study the effect of parameters α and β.
Table 2: Ablation studies on simulation datasets [64, 65]. PSNR, SSIM, Params, and FLOPS are reported.

To study the effect of the estimated parameters α and β, we perform a break-down ablation of DAUF.
We adopt DAUHST-3stg as baseline-3 but α is set as learnable parameters instead of being estimated
by E in Eq. (12) and β is not fed into D. The results are shown in Tab. 2d. Baseline-3 yields 36.49
dB. When α is set to be estimated by E , baseline-3 is improved by 0.45 dB. When β is fed into D,
baseline-3 gains by 0.34 dB. When α and β are exploited jointly in the iterative learning, baseline-3
achieves a significant improvement of 0.72 dB. These results verify that the estimated parameters α
and β are beneficial for the linear projection and denoising network of deep unfolding methods.

To further analyze the roles of the estimated parameters, we visualize zk and xk of Eq. (12), and
plot the curves of α and β as they change with the iteration in Fig. 6. We observe: (i) z0 and x1

yield either blurry or noisy images. There is a significant gap between them. Since αk = µk in
Eq. (5) penalizes the differences between z and x, α1 is estimated to be a large value. From the linear
projection of the second iteration (z1 → x2) on, the gap between z and x decreases substantially.
Therefore, αk are estimated to be small values when k ≥ 2. This indicates that α can adaptively
scale the linear projection P . (ii) The noise corruption is severe in the first iteration. Thus, β1 =
µ1/τ1 = 1/(

√
τ1/µ1)

2, which is inversely proportional to the noise level, is estimated to be a small
value. With further iterations, the noise level decreases, and thus the estimated βk increases. These
results demonstrate that β can provide the information about noise level for the denoising network D.

4 Conclusion
In this paper, we remedy two issues of previous deep unfolding methods, i.e., they do not estimate
informative parameters from the CASSI system to direct the iterative learning and they are mainly
CNN-based showing limitations in capturing long-range dependencies. To cope with these challenges,
we firstly formulate a principled MAP-based unfolding framework DAUF that estimates parameters
from the compressed measurement and physical mask. Then the parameters, which capture critical
cues of CASSI degradation patterns and ill-posedness degree, are fed into each iteration to contextually
scale the linear projection and provide noise level information for the denoising network. Secondly,
we propose a novel Transformer HST that can jointly extract local contents and model non-local
dependencies. By plugging HST into DAUF, we derive the first Transformer-based unfolding method
DAUHST for HSI reconstruction. Comprehensive experiments show that our DAUHST outperforms
SOTA methods by a large margin while requiring much cheaper memory and computational costs.
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Limitation and Social Impact

The main limitation of our work is that the performance improvement of our method comes with
lowering down the inference speed and increasing the model complexity. Until now, spectral snapshot
compressive imaging reconstruction techniques have no negative social impact yet. Our proposed
DAUHST does not present any negative foreseeable societal consequence, either.
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