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ABSTRACT

Advances in differentiable numerical integrators have enabled the use of gradient
descent techniques to learn ordinary differential equations (ODEs), where a flexible
function approximator (often a neural network) is used to estimate the system
dynamics, given as a time derivative. However, these integrators can be unsatisfac-
torily slow and unstable when learning systems of ODEs from long sequences. We
propose to learn an ODE of interest from data by viewing its dynamics as a vector
field related to another base vector field via a diffeomorphism (i.e., a differentiable
bijection). By learning both the diffeomorphism and the dynamics of the base
ODE, we provide an avenue to offload some of the complexity in modelling the
dynamics directly on to learning the diffeomorphism. Consequently, by restricting
the base ODE to be amenable to integration, we can speed up and improve the
robustness of integrating trajectories from the learned system. We demonstrate the
efficacy of our method in training and evaluating benchmark ODE systems, as well
as within continuous-depth neural networks models. We show that our approach
attains speed-ups of up to two orders of magnitude when integrating learned ODEs.

1 INTRODUCTION

The problem of fitting an ordinary differential equation (ODE) to observed data is ubiquitous
throughout many disciplines of the natural sciences and engineering (Perko, 1991). Although
traditional approaches have focused on fixed-form system dynamics and inferring their parameters,
here we consider the more general problem of learning ODEs, when their dynamics are completely
unknown. This problem arises, for example, in robot learning where ODEs are often used to
parameterize learned motion (Sindhwani et al., 2018; Singh et al., 2020). In deep learning, this
problem appears within the context of Neural ODEs (Chen et al., 2018), a family of continuous-depth
models where the evolution of hidden states is an ODE. Recent developments in learning ODEs
have allowed the use of differentiable adaptive step-size numerical integrators to train neural network
dynamics via the adjoint method (Chen et al., 2018).

Figure 1: Related vector fields can be thought
of as a vector field “morphed” into another.
(Left) Five integral curves (red) of a vector
field of a Linear ODE, overlaid on grid points
(blue); (Right) Corresponding ”morphed” in-
tegrals of the related vector field and grid.

The learned ODE system allows us to integrate contin-
uous trajectories at different initial conditions. To roll
out long and complicated trajectories with a numer-
ical integrator, the neural network dynamics model
is queried sequentially at each step. This can be un-
satisfactorily slow for time critical applications, such
as those in robot control, and is known to suffer from
numerical instabilities (Gholami et al., 2019; Choro-
manski et al., 2020). With these challenges in mind,
we propose an alternative approach to learning ODEs:
we view the desired target ODE dynamics as a vec-
tor field that is a “morphed” version of an alternative
base vector field via a diffeomorphism, i.e., a bijective
mapping where both the mapping and its inverse are
differentiable. Thus, instead of directly modelling
the time derivative of the desired ODE with a neural
network, we use an invertible neural network to learn the diffeomorphism that relates the target ODE
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to a base ODE. Crucially, by restricting the base ODE to be less complex and more amenable to
integration, we can obtain a solution to the (more complex) target ODE by integrating the simpler
base ODE and passing its solution through the bijection. Figure 1 shows an example of related
vector fields: the simple integral curves in the left figure are passed through a diffeomorphism to
give corresponding complicated curves in the right. Unlike rolling out a trajectory, evaluating the
diffeomorphism needs not to be sequential, allowing for efficient GPU computation.

We investigate restricting the flexibility of the base ODE to improve integration efficiency, and
offloading more of the representation burden to the diffeomorphism. Specifically, we assume the
dynamics of the base ODE to be: (1) linear or (2) modelled by a neural network. Restricting the base
ODE to be linear allows the computation of closed-forms solutions, providing major speed benefits.
In this set-up we can achieve significant speed-ups of up to two orders of magnitude when employing
GPUs, as compared against differentiable integrators with standard settings. We can also restrict the
learned ODE to be provably asymptotically stable by adding simple constraints to the linear base
ODE. Alternatively, when additional flexibility is required, we remove the restrictive assumption
of a linear base ODE and model the dynamics using a neural network. We show that in this setting
we can improve the performance of learning challenging ODEs compared to existing differentiable
integrators, even when we use a simpler neural network for the base ODE.

In summary, our main contributions are:

1. a novel paradigm to learn ODEs from data: invertible neural networks are trained to “morph”
the target ODE to an alternative related base ODE, which can be more tractably integrated;

2. analysis of the base as (i) a linear ODE and (ii) a non-linear ODE with neural network
dynamics. In the linear case, we demonstrate how by restricting the flexibility of the base
ODE, we can obtain closed-form integrals, providing significant speed-ups to integration. In
the non-linear case, we demonstrate that by learning ODEs as related vector fields, we can
flexibly learn challenging ODEs with simpler networks;

3. a principled method to enforce asymptotic stability of learned ODEs, by adding restrictions
to the base ODE.

Proofs and additional details can be found in the appendices.

2 RELATED WORK

Learning of ODEs and Neural ODEs: Dynamical systems governed by ODEs can be found
throughout many disciplines of science and engineering. Earlier work on approximating free-form
dynamics of ODEs include gradient matching (Ramsay et al., 2006) and using Gaussian processes
(Heinonen et al., 2018). Most recent work on this problem model the unknown dynamics with
a neural network and leverage differentiable numerical integrators, which use the adjoint method
(Pontryagin et al., 1962) to train in a memory-usage tractable manner (see, e.g., Chen et al., 2018).

A particular usage of ODE learning is within Neural ODEs, which are neural network models that
model the hidden state as continuous ODEs rather than discrete layers (Chen et al., 2018; Massaroli
et al., 2020). Other continuous neural network models which incorporate an ODE, such as latent
ODEs (Rubanova et al., 2019) have found application in time-series tasks. Subsequent strategies have
been introduced to improve the training of these models, including augmenting the ODE state-space
(Dupont et al., 2019), hyper-network extensions (Choromanski et al., 2020), regularisation techniques
(Finlay et al., 2020; Pal et al., 2021), and investigating integrator step-sizes (Ott et al., 2021). At the
core of all neural ODE models is the differentiable integrator used to learn the underlying ODE. Our
proposed approach improves the learning of the underlying ODE, and is compatible with models
that incorporate learnable ODEs. We note that the term “neural ODE” has typically been used in
the literature to refer to neural networks that incorporate ODEs, including the original work in Chen
et al. (2018). However, “neural ODE” has occasionally been used to refer to an ODE with dynamics
parameterized by a neural network (Norcliffe et al., 2021). To disambiguate, throughout our paper,
we refrained from referring to the latter model as “neural ODEs”, but rather as “ODEs with dynamics
parameterized by a neural network”.

Invertible neural networks and Normalizing Flows: Invertible neural networks (INNs) are a class
of function approximators that learn bijections where the forward and inverse mapping and their
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Jacobians can be efficiently computed (Ardizzone et al., 2019). INNs are typically constructed by
invertible building blocks, such as those introduced in Kingma et al. (2016); Dinh et al. (2017); Durkan
et al. (2019). Advances in INNs are largely motivated by normalizing flows (Rezende & Mohamed,
2015; Papamakarios et al., 2021), an approach to construct a flexible probability distribution by
finding a differentiable bijection between the target distribution and a base distribution. Our approach
is similar in spirit to normalizing flows, as we analogously aim to learn a diffeomorphism that
relates the vector fields of the target ODE and some base ODE. However, unlike normalizing flows,
we do not require the burdensome computation of Jacobian determinants (Karami et al., 2019) to
obtain trajectories. A separate line of work, broadly characterized as continuous normalizing flows,
use ODEs to build invertible approximators (Grathwohl et al., 2019; Chen et al., 2018). Our work
proposes the opposite where invertible approximators are used to learn ODEs.

3 PRELIMINARIES

In this section we introduce the problem of learning ODE dynamics with neural networks. We then
describe the notions of tangent spaces and pushforwards, which will be used in section 4 to develop
our method.

3.1 LEARNING ODES WITH NEURAL NETWORKS

Consider a dynamical system given by ordinary differential equations of the form:

y′(t) = f(y(t), t), y(0) = y0, (1)

where t is time, y(t) are the states at time t, and f provides the dynamics. Unlike traditional
approaches where f is assumed known with only a few parameters to estimate from data, here we
consider the more general problem where the dynamics are completely unknown. Thus, we can use a
flexible mapping fω as given by a neural network with parameters ω. Henceforth, we will drop the
explicit dependence on time, and consider the autonomous ODEs given by y′(t) = f(y(t)). Non-
autonomous ODEs, which explicitly depend on time, can be equivalently expressed as autonomous
ODEs by adding a dimension to the states y (Davis et al., 2020). For an initial condition yt0 at
start t0, and some end time te, a solution of the ODE can be evaluated by a numerical integrator
(ODESolve), such as Runge-Kutta methods (Butcher, 1987):

y(te) = yt0 +

∫ te

t0

fω(y(t))dt = ODESolve(fω,yt0 , te − t0). (2)

The learning problem involves estimating, with fω, the dynamics of the ODE, provided nt ob-
servations yobst1 . . .yobstnt at specified times. We can learn the ODE by optimising the parame-
ters ω to minimize a loss between the observations at the given times and the integrated ODE,
`(ω) = Loss({yobsti }

nt
i=1, {y(ti)}

nt
i=1), where {y(ti)}nti=1 are obtained by solving eq. (2). Advances

in the neural ODE literature have introduced differentiable numerical integrators, which allow
gradient-based techniques to be used to optimize l(ω). Furthermore, by using the adjoint sensitivity
method as outlined in Chen et al. (2018), the gradients of adaptive integrators can be obtained in a
memory tractable manner, without differentiating through the integrator operations.

Nevertheless, the flexibility of neural network dynamics for ODE learning comes at the expense of
a high-computational cost and potential numerical instabilities, especially when considering long
trajectories. We will develop in section 4 an alternative method that transforms this problem into that
of learning a simpler ODE along with a diffeomorphism, by treating the dynamics of the original
(target) ODE and simpler (base) ODE as related vector fields.

3.2 TANGENT SPACES AND PUSHFORWARDS

As mentioned above, we shall be analysing the system dynamics of ODEs as vector fields. Here we
briefly introduce the differential geometry notions of tangent spaces and pushforwards, which will be
used to define related vector fields, a core concept underpinning our methodology.

Tangent Spaces: A manifold is a space that locally resembles Euclidean space. Throughout this
paper, all manifolds will be assumed to be differentiable, with defined tangent spaces. For an
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(a) If F maps points p ∈ M to F (p) ∈ N , a single
tangent vector at p, Xp ∈ TpM, can be mapped to
TF(p)N . However, an entire vector field X on M
cannot in general be mapped to a valid vector field on
N . The pushforward by a diffeomorphism is a special
case where a valid vector field can be obtained.

TM TN

M N

DF
X

F

F−1

Y

(b) If vector fields X and Y on manifoldsM andN
respectively are related by diffeomorphism F , then
they are related via the pushforward of F . If Y is
unknown, we have another path to evaluate Y by

N F−1

−−−→M X−→ TM DF−−→ TN .

Figure 2: Vector fields can be related by a diffeomorphisms

n-dimensional manifoldM, at a point p ∈ M, the tangent space TpM is an n-dimensional real
vector space, where each element passes p tangentially and is referred to as a tangent vector. The
tangent space provides a higher-dimensional analogue of a tangent plane at a point on a surface. The
collection of tangent spaces for all points onM is known as the tangent bundle denoted by TM.

Pushfoward: For a mapping F :M → N between two manifolds,M and N , the pushforward
by F is a linear mapping between the tangent spaces of the manifolds, DpF : TpM → TF (p)N .
Tangent vectors at p in the domainM can be mapped to tangent vectors at the corresponding point
F (p) in the codomainN via the pushforward. This is computed by the matrix product of the Jacobian
of F at p, JF (p), and a tangent vector at p.

4 METHODOLOGY

We study the dynamics of ODEs, f , as vector fields, and solutions as their integral curves. We model
the desired ODE dynamics as a target vector field that is related to another base vector field. First,
we introduce the concept of related vector fields, outline how they can be learned, and elaborate on
the benefits of learning them. Then, we describe possible choices of base vector field models.

4.1 RELATED VECTOR FIELDS FOR ODE LEARNING

A vector field X defined on manifoldM is a function that assigns a tangent vector Xp ∈ TpM
to each point p ∈ M. Intuitively, our aim is to construct a mapping F which shapes the manifold
where a base vector field X is defined, such that the pushforward of X by F extrinsically appears
“morphed” to match the data.

What are the requirements of these mappings, for the pushforward of vector fields to be valid?

Provided a mapping between manifolds F :M→N , we can push a single vector, Xp ∈ TpM, to
the tangent space of N at F (p), TF (p)N , via the pushforward, DpF (Xp). Figure 2a sketches out
an example of the pushforward of a tangent vector between tangent spaces. However, this notion
does not extend in general to vector fields. If F is injective and non-surjective, the pushforward of
X outside the image of F is not defined. If F is surjective and non-injective, there may be multiple
differing pushforwards for a point. In special cases when the pushforward by F defines a valid vector
field on the codomain N , the vector field and its pushforward are known to be F -related. Latent
ODEs, as described in (Rubanova et al., 2019), which use an auto-encoder to map input data to a
latent space, where an ODE is learned is similar in spirit to our method. Latent ODEs, however, do
not define a valid vector field in the input space.

Definition 4.1 (Related vector fields). Let F :M→N be a smooth mapping of manifolds. A vector
field X onM and a vector field Y on N are related by F , or F -related, if for all p ∈M,

DpF (Xp) = YF (p). (3)
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Related vector fields arise in particular when F is a diffeomorphism, i.e. a bijective mapping,
where both the mapping itself and its inverse are differentiable.
Proposition 4.1 (Proposition 8.19 in Lee (2012)). Suppose F : M → N is a diffeomorphism
between smooth manifoldsM, N . For every vector field X onM, there is a unique vector field Y
on N that is F -related to X .

By considering the F -related properties of vector fields, we have a pathway to define unknown vector
fields using the pushforward of F , as shown in fig. 2b. If vector field X onM is F -related to some
vector field Y on N , instead of directly evaluating the vector field Y , we can instead obtain tangent

values for any q ∈ N , via N F−1

−−−→M X−→ TM DF−−→ TN . Therefore, the vector attached for each
q ∈ N is, Yq = DF−1(q)F (XF−1(q)) = JF (F

−1(q))XF−1(q), where JF is the Jacobian of F .

4.2 DIFFEOMORPHISM LEARNING VIA INVERTIBLE NEURAL NETWORKS

The machinery to learn invertible mappings has seen extensive development with the progress
of normalizing flows for estimating probability distributions. Invertible neural networks (INNs,
Ardizzone et al., 2019) are function approximators which learn differentiable bijections. INNs can be
trained on a forward mapping, and get the inverse with no additional work, by the definition of their
architecture. In this paper, we use INNs of the type described in Dinh et al. (2017). The basic unit is
a reversible block, where inputs are split into two halves, u1 and u2. The outputs v1 and v2 are:

v1 = u1 � exp(s2(u2)) + t2(u2), v2 = u2 � exp(s1(v1)) + t1(v1), (4)
where � indicates element-wise multiplication, and t1, t2 and s1, s2 are functions modelled by
fully-connected neural networks with non-linear activations. These expressions are clearly invertible:

u1 = (v1 − t2(u2))� exp(−s2(u2)), u2 = (v2 − t1(v1))� exp(−s1(v1)). (5)
Note that the functions t1, t2 and s1, s2 themselves are not required to be invertible.

4.3 ODE SOLUTIONS AS INTEGRAL CURVES OF RELATED VECTOR FIELDS

Why would it be beneficial to construct a desired vector field Y indirectly, by way of a related X?

We shall answer this by considering integral curves on Y , which represent solutions to the ODE
associated with Y . An integral curve of Y onN is a differentiable curve y : R→ N , whose velocity
at each point is equal to the value of Y at that point, i.e. y′(t) = Yy(t) ∈ Ty(t)N , for all t ∈ R. The
integral curves of F -related vector fields are also linked by F : integral curves on one vector field are
uniquely mapped to the other via a single pass through F , and the Jacobian JF is not required.
Proposition 4.2 (Proposition 9.6 in Lee (2012)). Suppose X and Y are vector fields on manifolds
M andN respectively. X and Y are related by mapping F :M→N if and only if for each integral
curve x : R→M, y = F (x) is an integral curve of Y .

In the ODE learning problem outlined in section 3.1, we denote Y to be the vector field associated
with the target ODE. During both training and inference, we need to obtain integral curves y of Y
either by numerical integration, or by y = F (x), where x denotes the corresponding integral curve of
X , related to Y via the diffeomorphism F . Critically, the Jacobian of F does not need to be evaluated
when we are working with the integral curves.

If integral curves ofX can be found in a more efficient, or less error-prone manner, than by numerically
integrating curves of Y , we can leverage the relationship y = F (x) for ODE learning. This can be
done by an INN, Fθ, with parameters θ. We denote the base ODE as x′(t) = gϕ(x(t)), where ϕ are
parameters. We can then use the target ODE within some learning problem, minimising a loss over
target ODE trajectories and observations:

`(θ, ϕ) = Loss
({

yobsti
}nt
i=1

,
{
Fθ(F

−1
θ (y0) +

∫ ti

0

gϕ(x(t))dt)
}nt
i=1

)
, (6)

where there are nt data time points, y0 is an initial condition for the system, and yobsti are ob-
served data points at times ti. After training, the dynamics of the target ODE is given by
y′(t) = JFθ (F

−1
θ (y(t)))gϕ(F

−1
θ (y(t))) and the ODE solutions (integrals) are obtained with:

y(t) = Fθ(F
−1
θ (y0) +

∫ t

0

gϕ(x(t))dt). (7)
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In practice, we are often required to evaluate an entire trajectory, i.e., y(t) at multiple times
t1, . . . , tend with one initial y0, as outlined in Algorithm 1. This allows us to batch up the pass
through Fθ, which makes this highly efficient when executed on a GPU. The benefits of our method
are apparent when it is advantageous to integrate the base ODE and then pass the solution through
the diffeomorphism, Fθ, rather than numerically integrate the target ODE.

Algorithm 1: Efficient integration of learned ODEs
Input :Fθ, gϕ, y0, t1, . . . , tend
Output :y(t1), . . . ,y(tend)

1 x0 ← F−1θ (y0)

2 x(ti)← x0 +
∫ ti
0
gϕ(x(t))dt, for i = 1, . . . , end ;

// The integral is easier to
solve.

3 y(t1), . . . ,y(tend)← Fθ(x(t1), . . . ,x(tend)) ;
// Batched pass through INN can
be efficiently computed on GPUs.

Next, we investigate restricting the flexi-
bility of the base ODE, so that it is more
amenable to integration, offloading the
complexity of learning to the diffeomor-
phism. We consider two choices of base
ODEs: (1) Linear ODE; (2) ODE with neu-
ral network dynamics.

4.4 LINEAR ODE AS BASE: FAST
INTEGRATION AND STRAIGHTFORWARD
ASYMPTOTIC STABILITY

We can speed-up integration significantly
by modelling the base as a Linear ODE, of
the form x′(t) = Ax(t), where x(t) ∈ Rn
are n-dimensional variables, and A ∈ Rn×n. Linear ODEs can be solved very efficiently as they
admit closed-form solutions. Provided an initial solution x0, the solution of x(t) and that of the target
ODE y(t) are: x(t) =

∑n
k=1(lk · x0)rk exp(λkt), and y(t) = Fθ(x(t)),

where lk, rk and λk are the corresponding left, right eigenvectors and eigenvalues of matrix A,
respectively. We learn the eigenvalues and eigenvectors of matrix A jointly with diffeomorphism Fθ.

Linear ODEs are also interesting because their long-term behavior, which is determined by their
eigenvalues, is easy to analyse. We shall see how this property allows us to craft the long-term behavior
of the target ODE. In particular, in many applications, consideration is given to the asymptotic
properties of ODEs, namely what happens to the solutions after a long period of time. Will they
converge to equilibrium points, periodic orbits, or diverge and fly off? Our method provides a
straightforward way to restrict the learned ODE to be asymptotically stable. In robot motion
generation problems, such as that in Sindhwani et al. (2018), we aim to learn an asymptotically stable
ODE. We begin by defining equilibrium points and asymptotic stability of first order ODEs.

Definition 4.2 (Equilibrium point). An equilibrium point y∗ of an ODE y′(t) = f(y(t)), is a point
where f(y∗) = 0.

Definition 4.3 (Asymptotic stability). An ODE y′(t) = f(y(t), t) is asymptotically stable if for
every solution y(t), there exists a δ > 0, such that whenever ||y(t0)− y∗||< δ, then y(t)→ y∗ as
t→∞, where y∗ is some equilibrium point.

Intuitively, asymptotically stable systems of ODEs will always settle at some equilibrium points after
a long period of time. In the context of vector fields related by a diffeomorphism, the asymptotic
stability properties of the ODEs are shared.

Theorem 4.1. Suppose two ODEs x′(t) = g(x(t)), y′(t) = f(y(t)) are related via y(t) = F (x(t)),
where F is a diffeomorphism. If the former ODE is asymptotically stable with ne equilibrium points
x∗1, . . . ,x

∗
ne , then the latter is also asymptotically stable, with equilibrium points F (x∗1), . . . , F (x

∗
ne).

Therefore, if we can restrict the base ODE to be asymptotically stable, then the target ODE learned
by our method is also asymptotically stable. When the base is an n dimensional linear ODE, we can
restrict it to be asymptotically stable by directly learning the eigenvalues, λi for i = 1, . . . , n, and
constraining them to be negative. This can be done by setting λi = −(sλi)2 − ε, where ε is a small
positive constant, and learning sλi instead of learning the eigenvalues.

4.5 NEURAL NETWORK ODE AS BASE: IMPROVED ROBUSTNESS FOR ‘DIFFICULT’ ODES

Using linear systems as base ODEs provides a dramatic increase in speed at the cost of flexibility.
We observe that the computation overhead of a single backward pass F−1θ and a batched single
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forward pass Fθ is minimal when compared with numerical integration which requires sequential
querying. When the ODE is difficult to learn, we can also parameterize the dynamics of the base
ODE using a neural network. This is particularly appealing for ODEs that are considered stiff, with
rapid varying of the solution in time in one dimension, while the other dimensions remain largely
unchanged. Existing differentiable integrators often struggle to directly learn these ODEs. Directly
learning the target ODE will require exceedingly small step-sizes (Hairer et al., 1993). Although by
simply scaling the data before training, we can lessen the stiffness of the ODE to learn, the relatively
rapid changes isolated in a single dimension can still result in the ODE being hard to learn. To tackle
this, we learn a neural network dynamics of the base ODE jointly with the diffeomorphism. The
burden of accurately representing the stiff dynamics is shared by Fθ, providing additional flexibility.
The diffeomorphism can learn to relate the target ODE to a base that is amenable to integration. This
allows us to more accurately learn challenging ODEs, with a much smaller neural network model of
the base ODE, than that used to directly learn the target ODE. As passes of the INN are inexpensive,
we gain a speed-up during integration.

5 EXPERIMENTAL RESULTS

We empirically evaluate the ability of our method to speed up the integration of learned ODEs, along
with the robustness of integration when learning difficult ODE systems. Throughout this section,
we compare the error and integration times of our method against a variety of solvers. We include
fixed step-size solvers: Euler’s, midpoint, and Runge-Kutta 45 (RK4), and the adaptive step-size
solvers Dormand–Prince 5 (DOPRI5) and Dormand–Prince 8 (DOPRI8). Unless specified otherwise,
for fixed step-size solvers, we set the step-size equal to the smallest time increment of outputs. For
adaptive step-size solvers, we set absolute and relative tolerances to 10−5. We augment the ODE
states for all the systems in accordance to Dupont et al. (2019) in all of the ODEs trained during the
experiments, except when recreating latent ODE results from Rubanova et al. (2019), where we use
the original implementation provided by the authors. The differentiable solvers are implemented in
the torchdiffeq library. Details on experiments available in the appendices.

5.1 INTEGRATION SPEED-UPS BY LEARNING WITH A LINEAR ODE BASE

We test our hypothesis that the availability of a closed-form expression for the integral, when using a
linear base ODE, can provide significant integration speed-ups. We evaluate on learning synthetic
ODE systems, real-world robot demonstrations, and within continuous deep learning models. Here,
we report test error/accuracy and integration times. Training times can be found in the appendices.

Learning 3D Lotka-Volterra: We train and evaluate models on data from the 3D Lokta-Volterra
system, which models the dynamics of predator-prey populations. The data is corrupted by white
noise with standard deviation of 0.05. We train our model using a linear base ODE, and assess the
capability of our model in interpolating the data points at 10x the data resolution, and generalizing to
16 hidden test initial conditions to integrate trajectories, also at 10x the data resolution. We report
the integration time for generalization. Figure 3 shows interpolation results and newly generated
trajectories, where we see that our model is able to capture the dynamics of the system. Furthermore,
table 1 provides a quantitative evaluation, where we see that our method is significantly faster

3D Lotka-Volterra Imitation S Imitation cube pick Imitation C
MSE (I) MSE (G) Time (ms) MSE (G) Time (ms) MSE (G) Time (ms) MSE (G) Time (ms)

Ours (Lin) 0.14± 0.1 1.5± 0.1 9.3± 0.4 6.1±1.2 6.6± 0.2 18.6± 6.2 7.1 ± 1.6 8.1± 1.6 7.5± 0.8
Euler 4.5± 0.3 4.6± 0.1 385.6± 14.4 10.3±2.9 724.7± 8.3 14.9± 1.4 728.4± 9.5 7.3± 2.0 753.9± 1.4
Midpoint 0.38± 0.05 5.51± 0.1 670.4± 31.3 10.9±3.3 581.6± 13.3 12.9± 1.3 1267.2± 13.6 6.9± 2.2 1305.4± 14.7
RK4 0.35± 0.005 5.6± 0.2 1316.1± 30.8 10.3±3.0 2501.7± 18.9 15.9± 0.9 2522.8± 23.1 7.6± 2.7 1292.3± 22.0
DOPRI5 0.93± 0.05 5.19± 0.5 264.7± 17.0 10.8±2.8 1277.7± 14.3 14.9± 0.9 504.0± 12.3 7.1± 1.9 623.4± 15.6

Table 1: The mean squared error for interpolation, MSE (I), and generalization, MSE (G), and mean
execution times (in ms, ± 1 standard deviation) on the 3D Lotka-Volterra system and the time critical
motion generation for our method with a linear base ODE and competing augmented ODE models,
with neural network dynamics, with various numerical integrators. Our method, with a linear base
ODE, provides comparable or better accuracy, with significant integration speed-ups.
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than competing approaches using numerical integrators with speed-ups of more than two orders of
magnitude, while achieving comparable or better accuracy.

Ground truth
Pred.
init. cond.

Figure 3: Learning the 3D
Lotka–Volterra. (Left) Interpolat-
ing (red) data (blue); (Right) Generating
trajectories (red) at hidden test initial
conditions and the ground truth (blue).

A Time Critical Application—Robot Motion Genera-
tion as Stable ODE Learning: The ability to quickly
roll-out trajectories is crucial in motion robotics settings.
We consider the application of generating robot manipula-
tor motion trajectories from provided demonstrations. In
particular, Sindhwani et al. (2018) showed that modelling
the motion as trajectories of a stable ODE is critical for
generalizing and being robust to perturbations in initial
conditions. The goal is to learn an ODE system where
trajectories integrated at different starting points mimic
the shown demonstrations. We use three sets of real-world
data from (Khansari-Zadeh & Billard, 2011) of trajectories:
drawing “S” shapes; placing a cube on a shelf; drawing out
large “C” shapes. We use 70% of the data for training, and
test our generalization on the remaining demonstrations.

In these datasets, the motions are known to converge to equilibrium points. Hence, we constrain the
learned ODE to be asymptotically stable. We report the performance and run-times of generalizing to
new starting points in table 1. We see that our approach is competitive in the quality of generalized
trajectories, while achieving speed-ups of more than two-orders of magnitude.

Figure 4: We model latent dynamics of rotating MNIST
“3” characters, as an ODE. We learn the ODE via a diffeo-
morphism and a linear base ODE. Given an unseen test “3”
character, we efficiently generate a image sequence of rotat-
ing “3”s (illustrated here, from upper left to lower right).

ODE Learning for Continuous
Deep Learning Models: We evaluate
our method as a component of Latent
ODEs (Rubanova et al., 2019), a con-
tinuous deep learning model. Latent
ODEs embed the time series observa-
tions as hidden states via an encoder-
decoder. An ODE, with dynamics pa-
rameterized by a neural network, is fit
on the hidden states which allows for
irregularly sampled series. In these ex-
periments, our method is applied with
a linear ODE base to learn the dynamics governing the hidden states. We report results for the periodic
curves and the human activity classification problem used in the original latent ODE paper (Rubanova
et al., 2019), as well as for ECG classification and image sequence generation. The periodic curves
problem requires us to reconstruct trajectories at different resolutions, with 100 and 1000 time-steps.
The human activity classification dataset contains readings over the body of subjects over time,
and the problem has a sequence-to-sequence setup, requiring us to predict the human activity at
each time point. The ECG problem is a sequence classification problem, where the sequences are
ECG signals. In the image sequence generation problem, we train on 100 sequences of rotating “3”
characters, similar to that in Yildiz et al. (2019), learning a high-dimensional ODE which governs
a latent representation of the image rotation over time. We test on 100 unseen “3” characters and
report results at 10x training resolution. The performance and times spent on integrating the hidden
state dynamics are reported in table 2. We observe that by leveraging the closed-form expression of
integrals of the base ODEs, we achieve ODE integration times that are hundreds of times faster, while
achieving competitive performances against compared differentiable integrators. We note that the
main cost of the integral in our method is the pass through the invertible neural network. GPUs allow
us to batch the pass at practically constant cost, whereas the sequential nature of integrators give
linear increases in run-time. A qualitative evaluation of our method on the image sequence problem is
shown in fig. 4. We observe the structure of the rotated “3” character remains consistent with the test
initial image. Our approach, when restricted to a linear base ODE, is able to learn high-dimensional
ODEs which can be integrated significantly faster, without compromising performance.

5.2 ROBUST INTEGRATION BY LEARNING WITH A NON-LINEAR NEURAL NETWORK BASE

We test our hypothesis that using a neural network base ODE allows us to learn ODEs that are
difficult to integrate. We learn and evaluate models trained on the chaotic Lorenz system, and the stiff
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Periodic 100 Periodic 1000 Human Activity ECG Image Seq.
MSE Int. time MSE Int. time Acc. Int. time Acc. Int. time MSE Int. time

Ours (Lin) 0.030 2.7± 0.6 0.008 2.8± 0.8 0.864 4.2± 1.8 0.966 7.6± 2.5 0.028 5.7 ± 1.3
Euler 0.040 33.7± 2.6 0.043 326.6± 9.5 0.815 67.9± 2.9 0.963 100.0± 2.8 0.028 103.3±2.5
Midpoint 0.032 54.5± 1.8 0.074 510.1± 15.5 0.865 114.2± 2.4 0.963 169.7± 3.8 0.026 187.9±6.8
RK4 0.039 95.6± 1.6 0.052 1020.0± 60.0 0.857 221.2± 4.2 0.963 325.5± 4.8 0.027 401.2±9.1
DOPRI5 0.045 83.4± 2.2 0.050 264.7± 4.6 0.869 67.9± 5.0 0.963 123.3± 2.6 0.025 194.5± 9.2
DOPRI8 0.041 99.6± 2.3 0.049 282.7± 6.4 0.724 94.8± 1.6 0.963 171.6± 3.6 0.026 399±28.4

Table 2: The mean squared error, accuracy and mean integration times (in ms, ± 1 standard deviation)
when using latent ODEs on the tasks of periodic curve reconstruction using 100 and 1000 time-steps,
the classification problems of human activity and ECG, and the image sequence generation with our
method using a linear base ODE and competing numerical integrators.

1e-6 1e-4 1e-2 1 1e2 1e4 1e6
Time

0

1

2

3

1e 5 ROBER system y2(t)
GT data
Dopri5
Ours

Lorenz ROBER
MAE Time(ms) MAE Time(ms)

Ours 0.20 230±9 0.01 157±8
Euler 10.99 456± 13 0.22 201±6
Midpoint 6.60 805± 43 0.044 340±11
RK4 6.81 1761± 206 0.041 660±18
DOPRI5 7.55 632± 83 0.039 189±7

Figure 5: Results on chaotic (Lorenz) and stiff (ROBER) systems. Left: A trajectory from the learned
Lorentz system in red, with data in blue. Center: The second dimension of the ROBER system,
against time in logscale. Our method is much capable at capturing the sudden variation. Right:
Quantitative evaluation of our method with a non-linear base ODE and competing integrators on
augmented ODEs with neural network dynamics.

Robertson’s system (ROBER, Robertson, 1966). We use a DOPRI5 adaptive step-size integrator to
learn our base ODE, generate trajectories at 10x data resolution. Figure 5 (left) illustrates a generated
trajectory from the Lorenz system, which closely resembles the data points (blue). We can see that
both the initial large and small variations, indicated by the small dense spiral at the end, are captured.
Figure 5 (center) illustrates the particular rapidly changing second dimension of the ROBER system.
We see that the added flexibility of the diffeomorphism allows us to better capture the rapid variations
over time, while the directly learned ODE struggles to handle the sudden increase. Following the
equation rescaling described in Kim et al. (2021), before we train on our method and comparisons,
we rescale our data by the maximum training value in each dimension and operate in logscale time.
Figure 5 (right) provides the performance and integration times of learning with our method and
baseline integrators, where we see that our method is more accurate than competing approaches while
also requiring shorter integration times, due to having a simpler network modelling the dynamics.

6 CONCLUSIONS

We have proposed a novel approach to learning ODEs with unknown dynamics, which uses invertible
neural networks to learn a diffeomorphism relating a desired target ODE to a base ODE that is often
easier to integrate. We have investigated using a base ODE that is linear or parameterized by a neural
network. By leveraging the closed form solution of linear ODEs, our method provides significant
speed-ups and allows for asymptotic property constraints on the learned ODEs. Alternatively, by
using a base ODE parameterized by a neural network, our approach can learn “difficult” ODEs,
with simpler networks modeling their dynamics. We have validated our method by learning ODEs
on synthetic and real-world data, on robotic learning problems and within continuous-depth neural
network models. Future work could explore more on how to balance offloading the burden of learning
to the diffeomorphism and the base ODE.

7 REPRODUCIBILITY STATEMENT

It is extremely important that the work published in ICLR is reproducible. To this end, we have
included source code for our experiments, including code to generate the benchmark dynamical
systems, as supplementary materials to the submission. Furthermore, additional details of experiments
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and data, along with clear explanations of any assumptions and a complete proof of the theoretical
claims are included in the appendix.
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The following sections contain the supplementary text which gives additional results, additional
details about the experiments, and proofs.

A ADDITIONAL RESULTS: REPRESENTATION LOAD OF THE INN

In the setup of using a non-linear neural network base ODE, both the INN and neural network
dynamics are trained jointly. We empirically investigate the representation burden on the invertible
neural network, when using a non-linear neural network base ODE. We train, for 5000 epochs,
augmented ODEs with neural network dynamics models of different parameter sizes, without the
diffeomorphism, on the Lorentz system and report the MAE values of integrating with the dopri5
integrator with the same setup as the Lorentz experiments in Section 5.2. We then compare take the
neural network dynamics model with the smallest number of parameters (with a parameter count of
2256), and add INNs with an increasing number of invertible layers. The results of the ODE with
neural network parameters only, with increasing parameter counts, are tabulated in table 3, while the
results of the neural networks with an increasing number of invertible layers are tabulated in table 4.

Each invertible layer contains 15090 parameters. We note here that the querying the INN (and
thereby having a large INN) adds negligible integration time, as during the entire integration we only
need one forward and one inverse pass of the INN, while the system dynamics needs to be queried
sequentially. We see that, in general, adding parameters to the system dynamics of a learned ODE
and to the diffeomorphism adds to the representation power of our ODE models. However, we clearly
see that the addition of an INN improves performance, and additional layers to the INN, up to around
5 invertible layers, improves performance. We see that the model with 5 invertible layers and a base
ODE of 2256 parameters greatly outperforms the ODE model with only a neural network dynamics
of 83006, while the two models are similar in parameter count. This indicates that the invertible
neural network plays a large role in representing the learned ODE.

NN-dynamics parameter count 2256 8106 17556 30606 47256 67506 83006
MAE 10.95 10.94 10.94 8.04 7.35 7.06 7.08

Table 3: The MAE of interpolating trajectories from the Lorentz system, with ODEs using neural
networks of various sizes.

Number of INN Layers 0 1 2 3 4 5 6 7
MAE 10.95 2.9 2.53 0.76 0.45 0.21 0.38 0.29

Table 4: The MAE of interpolating trajectories from the Lorentz system, with a small base ODE with
2256 parameters and an increasing number of invertible layers.

B ADDITIONAL RESULTS: TRAINING TIMES

We present the training times for directly learning ODEs with our method, using a linear base ODE.
These include the training times on the 3D Lotka-Volterra, and the robot imitation datasets, outlined
in Sections 5.1.1 and 5.1.2 of the main paper. We run training for 1000 iterations, where in each
iteration the batch includes the entire training set. We see that, by leveraging the closed-form solution
of linear ODEs, our method is able to also drastically speed up training. Additionally the parallel
nature of passing through the invertible neural network allows more consistent training times across
datasets.
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3D Lotka-Volterra Imitation S Imitation cube pick Imitation C
Per iter (s) Total (s) Per iter (s) Total (s) Per iter (s) Total (s) Per iter (s) Total (s)

Ours 0.030± 0.002 29.57 0.029± 0.002 29.35 0.031± 0.007 31.34 0.030± 0.004 29.78
Euler 0.131±0.003 130.94 1.740± 0.017 1740.43 1.713± 0.016 1712.53 1.704± 0.010 1703.85
Midpoint 0.235±0.006 235.07 3.228± 0.027 3227.51 3.177± 0.028 3177.37 3.207± 0.025 3206.92
RK4 0.469±0.005 468.52 6.671± 0.048 6671.44 6.388± 0.046 6388.10 6.441± 0.057 6440.61
Dopri5 0.408±0.037 408.36 1.413± 0.034 1413.34 1.246± 0.023 1245.65 1.247± 0.022 1246.67

Table 5: The training times in seconds with standard deviations, for 1000 iterations. By leveraging
the closed-form solution of linear ODEs, training time with our method is consistently orders of
magnitude faster than by using a differentiable numerical integrator.

C ADDITIONAL RESULTS: ABLATION STUDY

We study the effects of the number of layers in the invertible neural network and number of parameters
in the sub-network, which are the main hyper-parameters of the invertible neural networks used. To
this end, we conduct ablation studies of the speed and performance of our method on the real-world
datasets outlined in section 5.1.2 of the paper. Our basic model uses an invertible neural network
with 5 layers and sub-networks in the invertible network had 1500 hidden dimension size. We alter
the number of layers to be: 2, 3, 4, 5, 6, 7, 8, and hidden dimensions of the sub-networks within the
invertible network to be: 500, 1000, 1500, 2000, 2500. The results are presented below:

Imitation S Imitation cube pick Imitation C
No. Layers Sub-Net Hid. Dim. Size Int. time (ms) MSE Int. time (ms) MSE Int. time (ms) MSE

2 1500 3.551± 0.585 122.40 2.993±0.103 41.51 2.914±0.049 20.69
3 1500 4.589± 1.193 130.49 4.026±0.129 15.00 5.150±1.407 26.20
4 1500 5.418± 0.746 24.54 6.294±0.939 26.18 5.374±0.382 10.33
5 1500 6.461± 0.686 4.40 7.401±1.531 26.56 7.463±1.929 13.16
6 1500 7.529± 0.698 8.17 8.993±2.212 17.16 8.994±2.781 18.27
7 1500 9.426± 1.664 4.91 9.858±1.828 20.39 9.669±1.240 25.76
8 1500 10.636± 2.541 5.62 10.732±2.111 14.56 10.958±2.518 6.57
5 500 7.159± 1.475 5.62 8.018±2.109 19.37 7.315±1.483 6.22
5 1000 6.972± 1.247 6.04 6.376±0.203 11.02 7.297±1.311 6.37
5 1500 7.031± 1.289 4.40 7.321±1.236 26.56 6.901±0.802 13.16
5 2000 7.787± 1.363 6.23 7.443±1.457 14.05 7.776±2.514 9.48
5 2500 7.208± 1.628 10.92 6.521±0.082 11.66 7.611±1.687 5.59

Table 6: Ablation study results of different configurations for the invertible neural network model.

We see that as we increase the number of invertible network layers, the integration times increase,
while the hidden dimension size of the sub-networks within the invertible network does not visibly
affect the integration times. Overall, the generalisation performance improves as the number of
invertible layers are used, up to some number of layers. Beyond this number of layers, adding layers
does not vary performance significantly. Additionally, the hidden dimension sizes, for the values
tested do not greatly vary the generalisation performance.

D PROOFS

Proofs for Propositions 4.1 and 4.2 can be found in Lee (2012) as Propositions 8.19 and 9.6.

Theorem 4.1. Suppose two ODEs x′(t) = g(x(t)), y′(t) = f(y(t)) are related via y(t) = F (x(t)),
where F is a diffeomorphism. If the former ODE is asymptotically stable with ne equilibrium
points x∗1, . . . ,x

∗
ne , then the latter ODE is also asymptotically stable, with equilibrium points

F (x∗1), . . . , F (x
∗
ne).

Proof. First we show F (x∗1), . . . , F (x
∗
ne) are equilibrium points of ODE y′(t) = f(y(t)). By

y(t) = F (x(t)), we can write the time derivatives y′ at F (x) as

y′(t) = f(F (x(t))) =
dF (x(t))

dt
= JF (x(t))g(x(t)), (8)
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where JF (x(t)) is the Jacobian of F . F is a diffeomorphism and hence invertible over its domain. By
the inverse function theorem (Dontchev & Rockafellar, 2009), the Jacobian JF (x(t)) is invertible,
and furthermore, by the invertible matrix theorem (Horn & Johnson, 2012), it has a null-space
containing only the zero vector. Therefore, y′(t) = f(F (x(t))) = JF (x(t))g(x(t)) = 0 if and only
if g(x(t)) = 0. As g(x∗(t)) = 0 for x∗ ∈ {x∗1 . . .x∗ne}, then we also have f(F (x∗(t))) = 0, hence
y∗ ∈ {F (x∗1), . . . , F (x∗ne)} gives equilibrium points for y′(t) = f(y(t)).

We now show asymptotically stability of y′(t) = f(y(t)), by the existence of a Lyapunov function
(Lefschetz & Alverson, 1962), Vy : Rn → R, where n is the dimension of y, such that ∂Vy(y)

∂t < 0

for all y ∈ Rn \ {F (x∗1), . . . , F (x∗ne)}, and ∂Vy(y
∗)

∂t = 0 for y∗ ∈ {F (x∗1), . . . , F (x∗ne)}. The
existence of such a Lyapunov function is a necessary and sufficient condition for stability. We
assume the candidate function to be Vy = Vx(F

−1(y)), where Vx is a valid Lyapunov function
of the asymptotically stable x′(t) = g(x(t)), with ∂Vx(x)

∂t < 0 for x ∈ Rb \ {x∗1, . . . ,x∗ne} and
∂Vx(x

∗)
∂t = 0 for x∗ ∈ {x∗1, . . . ,x∗ne}. Consider the time derivative of the candidate function:

∂Vy(y)

∂t
=
∂Vy
∂y

∂y

∂t
=
∂Vy
∂y

f(y) (9)

=
(∂Vx
∂x

∂F−1

∂y

∂F

∂x
g(x)

)
x=F−1(y)

(10)

=
(∂Vx
∂x

JF (x)
−1JF (x)g(x)

)
x=F−1(y)

(11)

=
(∂Vx
∂x

g(x)
)
x=F−1(y)

=
(∂Vx(x)

∂t

)
x=F−1(y)

. (12)

Equation (11) by the inverse function theorem (Dontchev & Rockafellar, 2009). Therefore, our
candidate Vy is a valid Lyapunov function for y′(t) = f(y(t)). Thus, the system y′(t) = f(y(t)) is
asymptotically stable.

E ADDITIONAL IMPLEMENTATION DETAILS

We run all of our experiments on a machine with an Intel i7-3770k 3.50GHz processor, 32GB
RAM and an NVIDIA GTX1080 GPU, with 8GB vRAM. For all of our experiments, we use
the optimizer ADAM with step-size 10−4, except for the experiments in the Latent ODE, which
where we use the standard set-up from the Latent-ODE repository (Rubanova et al., 2019).
The dynamics models of compared ODEs have the architecture: Input->dense(Input dimen-
sions, 150)->tanh()->dense(150,150)->tanh()->dense(150,150)->tanh()->dense(150,150)->tanh()-
>dense(150,150)->tanh()->dense(150,output dimensions)->output. Except for the Latent-ODE com-
parisons where settings from the original repository (Rubanova et al., 2019) is used. For all of the
experiments, except latent ODE experiments where we follow the original set-up, we train for 5000
iterations in total.

For all the experiments where we directly learn a dynamical system, we use an invertible neu-
ral network with 5 invertible layers, and sub-networks with one hidden layer of 1500 units.
For non-linear base ODEs parameterized with a simple neural networks, we use the architec-
ture: Input->dense(Input dimensions,30)->tanh()->dense(30,30)->tanh()->dense(30,30)->tanh()-
>dense(30,Output dimensions)->Outputs. Additionally, all learned dynamics, both with ours and
compared methods, excepted when adhering to the original Latent-ODE set-up, were augmented
with the same number of additional zeros as original state dimensions, for example 3 dimensional
systems were augmented to 6 dimensions. An exception to this is the high-dimensional image rotation
problem, where we found that adding half as many augmented states as the original state dimensions
was sufficient.

The Lotka-Volterra system used has the dynamics:
x′(t) = x(t)(0.75− 0.75y(t)) (13)

y′(t) = y(t)(−0.75 + 0.75x(t)− 0.75z(t)) (14)

z′(t) = z(t)(−0.75 + 0.75y(t)) (15)
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for t ∈ [0, 7] with initial conditions {(5, 5, 1), (2, 6, 6), (3, 1, 4), (7, 1, 2), (6, 2, 4),
(3, 3, 1), (2, 2, 2), (4, 4, 3), (3, 3, 4), (1, 1, 5)}.
The Lorenz system used has the dynamics:

x′(t) = 10(y(t)− x(t)) (16)

y′(t) = x(t)(28− y(t))− x(t) (17)

z′(t) = x(t)y(t)− 8

3
z(t) (18)

for t ∈ [0, 2] with the initial conditions (0.15, 0.15, 0.15).

The Robertson’s system used has the dynamics:

x′(t) = −0.04x(t) + 3× 104y(t)z(t) (19)

y′(t) = 0.04x(t)− 3× 104y(t)2 − 104y(t)z(t) (20)

z′(t) = 3× 104y(t)2 (21)

for t ∈ [0, 120] with the initial conditions (1, 0, 0). During training and evaluation, we rescale the
data dimensions, and roll out the ODE in log-space.

In the latent-ODE problem setup, an observable time-series is assumed to have latent variables which
follow some ODE dynamics, and uses an Encoder -> ODE -> Decoder architecture where
an ODE is used to model the hidden latent dimensions between the Encoder and Decoder. Note that
a valid ODE is not guaranteed in the space of observable data, but only in the latent dimensions.
Our set-up follows the repository given by Rubanova et al. (2019), with the training settings for the
Encoder and Decoder architecture as below:

Periodic 100: We train the entire model for 500 epochs with Adamax optimizer and an initial learning
rate of 10−2. We sub-sample 5% of the original time points and the size of the latent state is 10.
The noise weight is set as 0.01 and the total number of time points is 100. For the Neural ODE
architectures, there is one layer in the recognition ODE and one layer in the generative ODE, and 100
unit per layers. For the GRU unit there exists 100 units per layer for the GRU update network. All the
above settings are exactly the same as the configuration given in repository (Rubanova et al., 2019).

Periodic 1000: Settings are the same as Periodic 100, except that the total number of time points is
set as 1000 to predict for finer time steps.

Human Activity: The model is trained for 200 epochs, with a dimensionality of 15 in the latent state.
There are 4 layers in the recognition ODE and 2 layers in the generative ODE, and 500 units per layer.
The GRU unit has exists 50 units per layer.

ECG: Settings are the same as the classification task of Human Activity, except that we use the ECG
Heartbeat data available at Dataset (2018), removing the ‘0’ class.

Rotating Image Sequence: We use the first 100 MNIST “3” characters as training and the next “3”
characters as test. We create a sequence of 44 images for each initial character until we rotate the
initial image by 180 degrees. During testing, we integrate to obtain a sequence of 440, at 10x data
resolution. We obtain latent representations of each image by training a convolutional autoencoder
to obtain a 64 dimension latent vector. We fit the ODE on these latent dimensions, with an ADAM
optimizer with learning rate 5× 10−4.

ODE dimensions and sequence lengths: The following table contains details on the dimensions
of the ODE models. For latent ODE models, these are the dimensions of the latent state. We also
provide the lengths of the integrated trajectories of the ODEs during inference.

F ADDITIONAL FIGURES

We provide figures for learning an additional Lorenz system for t ∈ [0, 5], with trajectory at initial
condition (−3.1,−1.15, 8.15). We see that our method, with a base ODE parameterized by a neural
network, can generate trajectories that closely match the ground truth:
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Dimensions of ODE to Learn Time points in Trajectory
3d-LV 3 700
Imitate S 2 1000
Pick cube 3 1000
Imitate C 3 1000
Periodic 100 10 100
Periodic 1000 10 1000
Human Activity 15 157
ECG 15 188
Rotating MNIST 64 440
Lorenz 3 800
Robertson 3 500

Figure 6: A learned Lorenz system with the generated trajectory, at 10x data resolution, and ground
truth.
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Figure 7: A learned Lorenz system with the generated trajectory, at 10x data resolution, and ground
truth, rolled out in time
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We provide the change in coordinates over time, for the trajectory shown in figure 5(a) in the paper:
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Figure 8: The corresponding plot showing the coordinates over the time interval of a learned Lorenz
system over t ∈ [0, 2], at 10x data resolution, which corresponds to the 3d figure shown as fig 5 (left).

We provide additional plots of trajectories, at different start points, from a learned Lotka-Volterra
system. The ground truth data is in blue, while generated trajectory, of 10x data resolution, is in red.

Figure 9: We see that trajectories from the learned Lotka-Volterra system, in red, closely matches the
ground truth, in blue.

We provide an additional figure for trajectories generated at unseen starting points after being trained
on the “imitation C” training data. The four generated trajectories are in red, while the ground truths
are in blue. Our generated trajectories match the ground truth, and accurately capture the motion of
drawing a “C” character.
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Figure 10: Robot motion trajectories in red, that imitate drawing a “C” character. The ground truth is
given in blue.

G LICENSES FOR PACKAGES

Common scientific packages used in our code include: (i) Numpy (Harris et al., 2020) (BSD license),
for general linear algebra and miscellaneous math operations (ii) Matplotlib (Hunter, 2007) (BSD
compatible custom license), for plotting figures.

More specialized packages used include (i) FrEIA (Ardizzone et al., 2019) (MIT license), for invert-
ible neural networks; (ii) TorchDiffEq (Chen et al., 2018) (MIT license), for differentiable numerical
integrators; (iii) Pytorch (Paszke et al., 2019) (BSD license), for optimisation and automatic differen-
tiation; (iv) Latent-ODE (Rubanova et al., 2019) (MIT license), for latent ODE implementation.
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