
Published as a conference paper at ICLR 2023

CURRICULUM-BASED CO-DESIGN OF MORPHOLOGY
AND CONTROL OF VOXEL-BASED SOFT ROBOTS

Yuxing Wang1, 2
∗
, Shuang Wu2, Haobo Fu2†, Qiang Fu2, Tiantian Zhang1, Yongzhe Chang1,

Xueqian Wang1†

1Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
2Tencent AI Lab, Shenzhen, China

ABSTRACT

Co-design of morphology and control of a Voxel-based Soft Robot (VSR) is chal-
lenging due to the notorious bi-level optimization. In this paper, we present a
Curriculum-based Co-design (CuCo) method for learning to design and control
VSRs through an easy-to-difficult process. Specifically, we expand the design
space from a small size to the target size gradually through a predefined curricu-
lum. At each learning stage of the curriculum, we use reinforcement learning to
simultaneously train the design policy and the control policy, which is enabled by
incorporating the design process into the environment and using differentiable pol-
icy representations. The converged morphology and the learned policies from last
stage are inherited and then serve as the starting point for the next stage. In em-
pirical studies, we show that CuCo is more efficient in creating larger robots with
better performance by reusing the practical design and control patterns learned
within each stage, in comparison to prior approaches that learn from scratch in the
space of target size.

1 INTRODUCTION

The philosophy of embodied cognition (Pfeifer & Bongard, 2006; Pfeifer et al., 2014) inspires the
domain of robotics that a robot’s ability to interact with the environment depends both on its brain
(control policy) and body (morphology), which are inherently coupled (Spielberg et al., 2019; Gupta
et al., 2021). However, finding an optimal robot morphology and its controller for solving a given
task is often unfeasible. The major challenge for this endeavor is the enormous combined design
and policy space. Firstly, the freedom to pick the number of multi-material modules and the ways
they are connected makes it notoriously difficult to explore the design space (Medvet et al., 2022).
For instance, in a robot simulator (Liu et al., 2020), there are over 4×108 possible morphologies for
a robot composed of only 12 modules. Secondly, the evaluation of a morphology requires a separate
training procedure for its unique controller.

In this work, we consider the co-optimization of design and control of Voxel-based Soft Robots
(VSRs) (Bhatia et al., 2021), a form of modular soft robots composed of elastic, multi-material cubic
blocks. Unlike fragile fully-integrated robots, they can be easily disassembled and reassembled to
adapt to a wide range of environments (Shah et al., 2020; Pigozzi et al., 2022). For efficiently
exploring the modular robot design space, prior approaches commonly rely on artificial evolution
(Sims, 1994; Cheney et al., 2013; Medvet et al., 2021), which maintains a population of design
prototypes and adopts a bi-level optimization loop, where the outer loop of morphology optimization
is based on the fitness of individual controllers from the inner loop. These methods, however, tend
to learn from scratch in the target design space where there is a significant combinatorial explosion.
Thus, they spend a large amount of time on policy optimization and evaluation. Additionally, their
separate training procedures significantly hinder the experience of design and control to be shared
across different robots.

∗This work was done during an internship at Tencent AI Lab, Shenzhen, China.
†Correspondence to: Haobo Fu (haobofu@tencent.com) and Xueqian Wang (wang.xq@sz.tsinghua.edu.cn)

1

Published as a conference paper at ICLR 2023

Environment

𝝅𝜽𝑪
Control

policy

(A)

Stage 1

……

Curriculum

Design

Control 0 1 2 3

5 6 7 8

Empty voxel

Rigid voxel

Soft voxel

Horizontal actuator

Vertical actuator

4

9

Design steps

Control steps(C)

(B)

Stage 2 Stage 3

Inherit Inherit

G
ra

d
ie

n
t-

b
as

ed
 R

L
 t

ra
in

in
g

𝝅𝜽𝑫
Design

policy

……

𝝅𝜽𝑪
Control

policy
𝝅𝜽𝑪

Control

policy

𝝅𝜽𝑫
Design

policy
𝝅𝜽𝑫

Design

policy

Figure 1: Schematic of our approach CuCo. (A) We investigate the brain-body co-design problem of
VSRs by establishing an easy-to-difficult optimization process between a small design space (e.g.,
3× 3) to the target space (e.g., 7× 7). (B) In 3× 3 design space, the design policy performs a finite
number of steps to develop a VSR which is initiated by a single voxel. (C) A VSR is composed of
5 kinds of voxels.

In view of these challenges, we propose a Curriculum-based Co-design (CuCo) method for learning
to design and control VSRs from easy to difficult (Figure 1). CuCo draws inspiration from Cur-
riculum Learning (CL) that starting with easier tasks can help the agent learn better when presented
with more difficult tasks later on (Bengio et al., 2009). The key to our approach is expanding the de-
sign space from a small size to the target size gradually through a predefined curriculum. Precisely,
at each stage of the curriculum, we learn practical design and control patterns via Reinforcement
Learning (RL) (Schulman et al., 2017), which is enabled by incorporating the design process into
the environment and using differentiable policy representations. The converged morphology and the
learned policies from last stage are inherited and then serve as the starting point for the next stage.
Due to the exploitation of the previous knowledge of design and control, CuCo can quickly produce
robust morphologies with better performance in larger dimensional settings.

To handle incompatible state-action spaces and make the control patterns transferable across vari-
ous morphologies, we model the local observations of all voxels as a sequence and adopt the self-
attention mechanism (Vaswani et al., 2017) in our control policy to capture the internal dependencies
between voxels, which caters to the need for dynamically accommodating changes in morphologies.
We also add material information to each voxel’s observation, thus the control policy is conditioned
on the robot’s morphology, which eliminates the need for a population of prototypes and enables
experience to be shared across different robots, bringing better sample efficiency and flexibility. For
the design policy, we propose to utilize a Neural Cellular Automata (NCA) (Mordvintsev et al.,
2020), which takes multiple actions to grow a robot from an initial seed (morphology). NCA en-
codes complex patterns in a neural network and generates different developmental outcomes while
using a smaller set of trainable parameters.

In this paper, we make the following contributions: (1) We propose CuCo, a curriculum-based co-
design approach for learning to design and control VSRs. (2) We demonstrate that the practical de-
sign and control patterns learned in small design spaces can be exploited to produce high-performing
morphologies in larger dimensional settings. (3) We showcase that our NCA-based design policy
and self-attention-based control policy can share design and control patterns across different sizes
of morphologies, bringing better sample efficiency and flexibility. (4) Comprehensive experimen-
tal studies show that CuCo is more efficient in creating larger robots with better performance, in
comparison to prior approaches that learn from scratch in the target design space.

2 RELATED WORK

Brain-body Co-design. Co-designing a robot to solve a given task has been challenging for robot
designers for decades (Sims, 1994; Wang et al., 2019b; Nygaard et al., 2020; Medvet et al., 2021;
Hejna et al., 2021; Ma et al., 2021). Related works can be roughly divided into two categories,
gradient-free and gradient-based. Most gradient-free methods rely on artificial evolution to explore

2

Published as a conference paper at ICLR 2023

the vast design space. Cheney et al. (2013) evolve VSRs with 3D voxels over materials and actu-
ators. Bhatia et al. (2021) create a large-scale benchmark and several population-based co-design
algorithms. Walker & Hauser (2021) evolve a sculpting adaptation system that allows VSRs to
change their bodies to adapt to the environment. Talamini et al. (2021) propose a task-agnostic
approach for automatically designing morphologies. While the population-based approaches are
not easily trapped in local optima, they are sample inefficient and computationally expensive. Be-
sides, most of these works rely on open-loop controllers, which simplify the control as a periodic
sequence of actuation that depends only on the time (e.g., sinusoidal control signals), preventing
robots from learning non-periodic behaviour. In contrast, gradient-based methods, especially rein-
forcement learning methods, have been conducted for optimizing rigid-bodied robots. Ha (2019)
uses a population-based policy gradient method to improve robot design. Pathak et al. (2019) con-
struct a self-organized modular robotic system that can generalize to unseen morphologies and tasks.
Luck et al. (2019) train a surrogate for efficiently evaluating morphologies. Schaff et al. (2019) main-
tain a distribution over morphological parameters. Chen et al. (2020) learn a hardware-conditioned
policy. Yuan et al. (2022) optimize a transform-and-control policy based on Graph Neural Network
(GNN) in a fixed design space. Our work falls into the second category, instead, we focus on a
scalable modular robot design space assigned by a curriculum. Within each learning stage, we unify
the processes of design and control as a single decision-making process like (Yuan et al., 2022).
However, both the design policy and the control policy of our work are exploited across stages as
they are not restricted by robots’ morphological topologies.

Curriculum Learning. Curriculum learning follows the spirit that training the agent with a series
of tasks organized according to different complexity can speed up the convergence of the learning
process (Bengio et al., 2009). It has achieved tremendous success in both RL and robotic commu-
nities (Li et al., 2020; Iscen et al., 2021; Jiang et al., 2021b). In RL, one of the keys to curriculum
learning is how to generate and assign tasks. Dennis et al. (2020); Jiang et al. (2021a); Parker-Holder
et al. (2022) focus on Unsupervised Environment Design (UED), which automatically constructs a
distribution over environment variations, while Matiisen et al. (2020); Portelas et al. (2020) inves-
tigate teacher algorithms that monitor the learning progress and generate curricula to guide student
algorithms to learn in difficult environments. In robotics, Wang et al. (2019a; 2020) generate an
endless progression of increasingly challenging environments to evolve robust robots. Fang et al.
(2021) propose a method to learn skills via automated generation of diverse tasks. In this work, we
adopt a fixed curriculum by increasing the size of the robot design space according to the learning
progress, as the number of possible robot morphologies increases exponentially with the expansion
of each dimension of the design space.

Learning a general Controller. Another related line is learning generalizable control policies.
Many such approaches utilize GNNs (Sanchez-Gonzalez et al., 2018; Wang et al., 2019b; Huang
et al., 2020; Yuan et al., 2022) that condition the policy input on a graph representation related to the
robot morphology. However, for modular robot systems, GNNs have the limitation of aggregating
multi-hop information (Pigozzi et al., 2022), which makes modules not completely interchangeable,
and the system could be influenced by information loss, greatly limiting their flexibility. Instead,
Transformer (Vaswani et al., 2017) is not restricted by the input graph topology, as it can be charac-
terized as a fully connected GNN with attentional aggregation (Kurin et al., 2021). It is shown that
generalization can be further enhanced by modularization, due to the success of modeling dynamic
structures via self-attention (Gupta et al., 2022; Trabucco et al., 2022).

3 BACKGROUND

Voxel-based Soft Robots. We investigate VSRs composed of multi-material cubic blocks (e.g., soft
voxels, rigid voxels and actuator voxels) organized in a 2-D grid (Figure 1 (C)). The connectivity
describes the connection pairs of adjacent voxels. During the simulation, voxels (except empty
voxels) only sense locally, and based on the input sensory information, a controller outputs control
signals to vary the volume of actuator voxels. Similar to biological tissues, they can be easily
expanded and contracted to complete a wide variety of tasks (Bhatia et al., 2021).

Reinforcement Learning. In contrast to prior co-design works which seldom involve the learning
of control, we use reinforcement learning to simultaneously train the design policy and the control
policy. In the domain of RL, the problem is usually modeled as a Markov Decision Process (MDP),

3

Published as a conference paper at ICLR 2023

C
ateg

o
rical d

istrib
u

tio
n

Sample Assign
MLP…

𝒔𝒕
𝒅 𝒂𝒕

𝒅

𝒔𝒕+𝟏
𝒅

Cropping

Flatten

Sliding window

Padding

…

Figure 2: Visualization of a single design step. A multilayer perceptron is incorporated in NCA,
which determines a cell’s state by taking its current state and its neighboring cells’ states as the
input and mapping it to a categorical action distribution. As a result, each cell of the body is updated
to the state with the sampled action.

which can be specified by a 5-tuple (S,A, P, r, γ). With the state space S and the action space A,
P : S × S × A → [0, 1] is the transition function of the environment, r(s, a) : S × A → R is
the reward function, and the discount factor γ ∈ (0, 1] specifies the degree to which rewards are
discounted over time. The goal of the RL agent is to find a policy to maximize the total expected
reward Eπ[

∑∞
t=0 γ

tr(st, at)], here the policy is represented by a deep neural network parameterized
as πθ(at|st), which maps from states to distributions over actions. In this work, we employ Proximal
Policy Optimization (PPO) (Schulman et al., 2017), a popular RL algorithm base on Policy Gradient
(PG). PPO uses Kullback-Leibler (KL) divergence to penalize the change between the old and the
current policy to avoid instabilities from drastic changes in the policy’s behaviour.

Neural Cellular Automata. Since we incorporate the design process into the environment, our ob-
jective is to find a design policy that can take in arbitrary VSRs’ morphologies and output a series
of actions to modify them. Typically, VSRs can be characterized as multi-cellular systems which
develop from a small set of initial cells (Horibe et al., 2021). We represent our design policy as a
Neural Cellular Automata (NCA) (Mordvintsev et al., 2020; Sudhakaran et al., 2022; Palm et al.,
2022), which begins with some initial seeds and updates their states according to local rules param-
eterized by a multilayer perceptron, thus, NCA is agnostic to the robot’s morphological topology,
making it possible for scaling the learned rules to different design spaces.

Self-attention. Self-attention was proposed due to the challenges in handling long sequences
(Vaswani et al., 2017). The goal is to dynamically track the relationships between components,
which can be viewed as an adaptive weights mechanism. Given the input vectors X , WQ,WK and
WV are three trainable weight matrices. Q,K and V are the query, key, and value vectors where
Q = XWQ,K = XWK and V = XWV . The importance scores are firstly computed by the dot
product between Q and K and then scaled by a non-linear function. Self-attention is typically inte-
grated into the Transformer block, which also contains a feed-forward neural network, and each of
these two submodules has a residual connection around it and is succeeded by a normalization layer.
Our work here specifically uses a Transformer encoder, enabling our control policy to dynamically
accommodate changes in morphologies.

4 CUCO: LEARNING TO DESIGN AND CONTROL FROM EASY TO DIFFICULT

Given a modular design space (e.g., 7×7), exploring all possible combinations is unfeasible. The key
to our approach is to expand this design space from a small size to the target size gradually through
a predefined curriculum, which divides the whole optimization process into several stages (Figure
1 (A)). We maintain a design policy πθD and a control policy πθC from the beginning to the end,
thus the overall policy is represented as πθ = {πθD (a

d
t |sdt ,Ψt), πθC (a

c
t |sct ,Ψt)} where Ψt ∈ {0, 1}

is a binary value indicating whether the robot is being created or controlled, sdt and sct represent
the state information received at each time step of design and control, respectively. Within each
stage, we simultaneously optimize the design and control through reinforcement learning, which
is enabled by unifying the two processes into a single MDP. Specifically, at the beginning of each
episode, the design policy πθD (a

d
t |sdt ,Ψt) performs ND steps to develop a robot from an initial

seed, and no rewards are assigned to these steps (Figure 1 (B)). The resulting robot is then presented

4

Published as a conference paper at ICLR 2023

...

L
in

ear P
ro

jectio
n

... ...

Task-related

observation

Action

distribution

Multi-Head

Attention

Add & Norm

Feed

Forward

Add & NormP
o

sitio
n
 em

b
ed

d
in

g

× 𝑘

Transformer

blocksLocal

observation

...

D
eco

d
er

Concatenation

Replication & Concatenation

Figure 3: Visualization of the network architecture of the control policy. We model the local obser-
vations of all voxels as a sequence and utilize a Transformer encoder to process the current state.

in the simulator and controlled by πθC (a
c
t |sct ,Ψt). Thus, the design policy will be informed by

the future environmental rewards collected by the control policy under the designed morphology.
After collecting the desired number of trajectories, the two policies are jointly updated using PPO
(Schulman et al., 2017). From one stage to the next, the design space is expanded according to
the curriculum and the converged morphology from last stage will serve as the new initial seed.
The learned design policy and the control policy are inherited and then fine-tuned to produce larger
bodies. In the remaining section, we describe details about each component of CuCo.

4.1 DESIGN POLICY

Figure 2 demonstrates a single design step when developing a VSR. The design space is surrounded
by empty voxels, and each voxel is represented as a discrete value that corresponds to its mate-
rial property (e.g., empty voxel=0, soft voxel=1, rigid voxel=2, horizontal actuator=3 and vertical
actuator=4). The state vector sdi for each voxel is composed of its type and the types of its neigh-
borhood (e.g., Neumann or Moore neighborhood) (Horibe et al., 2021). Practically, let N be the
size of the design space, the MDP state of a design step is represented by sdt = {sd1

t , sd2
t , ..., sdN

t }.
Here, the design policy πθD (a

d
t |sdt ,Ψt) is a multilayer perceptron parameterized by θD, which maps

sdt to a categorical action distribution created by the output logits. The dimension of the input layer
corresponds to the number of a cell’s neighbors (e.g, 9 in Figure 2), and the dimension of the output
layer corresponds to the total number of material types (e.g, 5 in Figure 2). During training, the
new cell state is determined by sampling from the distribution. While evaluating, the design policy
selects the action that corresponds to the highest logit value.

At the beginning of each episode of the first learning stage, a single voxel placed at the center of
the design space is used as the initial seed, and the rest voxels’ states are set to zero. After ND

design steps, all voxels are updated according to the policy’s outputs. In the next learning stage,
the converged morphology from last stage will be placed at the center of the design space as the
new initial seed. Meanwhile, the weights of the learned design policy are also inherited. Since
the morphology defines the connectivity, here, we let the design policy learn the connectivity on its
own. We do not assign any design-related rewards to the design steps and terminate the episode if
the resulting design does not meet the connectivity or has no actuators.

4.2 CONTROL POLICY

Once a robot is designed, it is presented in the simulator and consumed by the control policy
πθC (a

c
t |sct ,Ψt). We model the local observations of all voxels as a sequence. The input state at

time step t is represented as sct = {svt , s
g
t }, where svt = {sv1t , sv2

t , ..., svNt }, svit is composed of each
voxel’s local information which contains the relative position of its four corners with respect to the
center of mass of the robot and its material information. sgt is the task-related observation such as
terrain information of the environment and goal-relevant information.

5

Published as a conference paper at ICLR 2023

To capture the internal dependencies between voxels and dynamically accommodate changes in
morphologies, we incorporate the self-attention mechanism into the control policy. As shown in
Figure 3, we apply a learnable position embedding layer after the linear projection layer. The local
observation, the output feature of the Transformer and the task-related observation are concatenated
before passing them through a decoder. In our work, the control policy outputs the mean µ of the
continuous action, and we use a constant standard deviation (a fixed diagonal covariance matrix
Σ) to create the Gaussian distribution πθC (a

c
t |sct ,Ψt) = N (µ(sct ,Ψt),Σ). All actions are clipped

within the range of [0.6, 1.6]. During training, the action is randomly sampled from the distribution.
While evaluating the policy, only the mean action is used for control.

4.3 POLICY UPDATE AND THE CURRICULUM

We simultaneously train the design policy and the control policy using PPO, which is based on the
Actor-Critic architecture. In our work, the critic network has the same architecture as the control
policy network. It estimates the value function Eπθ

[
∑T

t=0 γ
tr] which suggests a possible policy

distribution. Here, we estimate the value for the whole morphology by averaging the value per
voxel. With the policy gradient method, all policies are updated in the direction of maximizing the
predicted value. When estimating the value of a design step, we set the environment state sc to
zero. We apply a predefined curriculum according to the training progress as the number of possible
robot designs increases exponentially with each additional cube. During training, we increase the
dimension of the design space when the target number of policy iterations is reached.

5 EMPIRICAL EVALUATION

In this section, we demonstrate the effectiveness of CuCo on various tasks. We seek to answer
the following questions: (1) Does CuCo provide an effective mechanism for learning to design and
control VSRs? (2) How does CuCo compare to prior approaches which learn from scratch in the
space of target size in terms of the final performance and the produced morphologies? (3) What
impact does each component of CuCo bring to the learning process?

5.1 EXPERIMENT SETTINGS

We create a modular robot design space described in Section 4 and 8 task-related environments
based on Evolution Gym (Bhatia et al., 2021). The environment details can be found in Appendix A
and our codes are available online1. We compare CuCo with a number of approaches, both RL-based
and population-based. All baselines are introduced as follows:

CuCo-NCU: CuCo-NCU utilizes the same network architectures as CuCo but eliminates the cur-
riculum component. It learns to design and control from scratch in the space of target size. This
method helps us to investigate the effectiveness of the curriculum.

Additionally, we compare CuCo with three evolutionary methods proposed in (Bhatia et al., 2021).
The inner loop of control optimization is also driven by PPO, and the outer loop of morphology
optimization is implemented by three state-of-the-art design optimization algorithms.

GA: Genetic Algorithm directly encodes the VSR’s morphology as a vector where each element is
tailored to the voxel’s material property in order. It keeps a proportion of robots with high fitness
as survivors at the end of each generation, and then the survivors undergo mutation conducted by
randomly changing each voxel.

CPPN-NEAT: In this method, the morphology of VSR is indirectly encoded by a Compositional
Pattern Producing Network (CPPN) (Stanley, 2007; Cheney et al., 2013), which relies on having
access to the whole design space. The training of CPPN is accomplished by NeuroEvolution of
Augmenting Topologies (NEAT) (Stanley & Miikkulainen, 2002).

BO: Bayesian Optimization (BO) is widely used to help solve black-box problems. It trains a
surrogate model based on Gaussian Process (GP) to alleviate the computational burden of expensive
fitness evaluation (Kandasamy et al., 2018).

1https://github.com/Yuxing-Wang-THU/ModularEvoGym

6

https://github.com/Yuxing-Wang-THU/ModularEvoGym

Published as a conference paper at ICLR 2023

Table 1: Mean and standard error of all results across environments and baselines. Results with the
highest mean are shown in bold. ∗ indicates that the method reaches the upper bound of the score.

Environment CuCo CuCo-NCU GA CPPN-NEAT BO
Walker ∗10.46± 0.01 8.90± 2.01 ∗10.45± 0.02 ∗10.46± 0.01 9.38± 1.13
Pusher 11.74± 1.43 1.73± 2.19 7.88± 1.30 9.66± 1.24 8.73± 1.16
Jumper 13.08± 1.09 0.79± 1.98 1.85± 1.31 3.82± 2.33 1.28± 0.78
UpStepper 4.40± 0.28 2.45± 1.70 2.58± 0.74 3.65± 0.50 2.43± 0.53
PlatformJumper 3.13± 0.93 1.58± 0.19 2.03± 0.50 2.36± 0.07 1.60± 0.03
Thrower 3.59± 1.61 2.88± 0.60 1.75± 0.19 1.60± 0.28 1.91± 0.21
Climber 0.54± 0.09 0.28± 0.28 0.58± 0.66 1.54± 0.52 0.83± 0.91
Lifter 0.00± 0.00 0.00± 0.00 0.04± 0.04 0.00± 0.00 0.10± 0.16

CuCo-NCUCuCo GA CPPN-NEAT BO

R: 1.63 R: 7.07 R: 9.97 R: 8.71

Stage 1

R: 2.95 R: 6.57 R: 11.95

Stage 2 Stage 3

R: 3.82 R: 7.71 R: 6.05 R: 7.26R: 5.53 R: 11.26 R: 12.80

R: 0.13 R: 6.91 R: 8.03 R: 6.87R: 5.14 R: 11.06 R: 12.80

Figure 4: Visualization of converged morphologies of all methods across three different runs in
Pusher. Below each VSR is its average performance over 5 tests. More visual results can be found
in this video.

Following the convention in the literature (Cheney et al., 2013; Horibe et al., 2021), we consider
a 2-D design space where all dimensions are equal in size. The curriculum defines three stages
(3 × 3 → 5 × 5 → 7 × 7) for Walker, Pusher, Jumper and Lifter. For the remaining tasks, the
curriculum is set to (3 × 3 → 5 × 5). We run all experiments with the same number of time
steps. For CuCo, this amounts to 1000 policy updates per stage. We employ a population of 12
agents for all population-based methods and report the performance of the best individual. Further
implementation details can be found in Appendix D.

5.2 OVERALL PERFORMANCE

In Table 1, we list the final performance of each method, and the result is reported over 7 different
runs per environment. Learning curves for all methods and visualization results of converged mor-
phologies can be found in Appendix B.1. We observe that within error margins, CuCo outperforms
the baselines in 5 of the 8 environments, while only CPPN-NEAT and BO can achieve limited suc-
cess in Climber and Lifter, respectively. In Section 6, we discuss in detail these two cases. Without
the guidance of the curriculum, CuCo-NCU performs poorly on most tasks since learning to design
and control from scratch in a high-dimensional space is challenging.

We demonstrate the converged morphologies of all methods across three different runs and their
corresponding performance in Figure 4, and for CuCo, we visualize the converged design of each
stage. Direct encoding methods like GA and BO prefer horse-like morphologies composed of ran-

7

https://yuxing-wang-thu.github.io/publication/cuco/

Published as a conference paper at ICLR 2023

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Policy iterations (×103)

0.0

2.5

5.0

7.5

10.0

12.5

Pe
rfo

rm
an

ce

Pusher
CuCo
CuCo-NAT
CuCo-NCU

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Policy iterations (×103)

0.0

2.5

5.0

7.5

10.0

Pe
rfo

rm
an

ce

Walker

Figure 5: Ablations of the self-attention mechanism and the curriculum.

domly organized voxels. However, voxels from the last two robots created by GA often collide with
each other, preventing robots from learning efficient control policies. CuCo-NCU fails to discover
practical policies. In contrast, we find that CuCo can develop beneficial homogeneous tissue struc-
tures by module reuse, which can also be observed in many creatures, such as insects and vertebrates
with several repeated body segments determined by homologous genes in different species (Dellaert,
1995). When the robot is moving, we can see that groups of voxels are expanded or compressed
simultaneously, leading to coordinated behaviour.

Interestingly, VSRs designed by CuCo obtain different skills for pushing a box. The first rhino-like
robot chooses to push the box with its “horn”. The second robot makes full use of vertical actuators
to let the box roll forward, while the third one uses horizontal actuators to pop the box out. As
shown in the video, CuCo also produces robots that can keep the balance as well as find a better
launch angle when throwing the box. Although GA and BO produce VSRs with arms, they are not
strong enough to throw the box further. CPPN-NEAT generates much simpler patches based on the
global information of the design space. In Appendix B.2, we further investigate differences between
CPPN and NCA when chosen as the indirectly encoded design policy for CuCo. In sum, CuCo
holds great potential for exploiting practical design and control patterns learned in small spaces to
produce high-performing robots in larger dimensional settings.

5.3 ABLATIONS

We perform ablation studies to take a closer look at the behaviour of CuCo. Firstly, we demonstrate
the learning curves of CuCo and CuCo-NCU (Figure 5) to show that following an easy-to-difficult
curriculum is much more efficient than learning from scratch in the target design space. Especially in
Pusher, CuCo-NCU spends a large amount of time learning the connectivity. Secondly, we remove
the self-attention mechanism used in our control policy and construct a new ablation CuCo-NAT.
Evidently, after removing the self-attention mechanism, the control policy fails to dynamically adapt
to morphological changes, resulting in much lower performance. In Appendix C, we analyze the
attention matrices that CuCo learns. These two ablations indicate that the curriculum and the self-
attention mechanism are indeed crucial for finding better solutions.

Another key feature of CuCo is the mechanism of inheritance. Between the two learning stages, the
converged morphology, the learned design and control policies are inherited. We perform additional
ablation studies to measure the impact of the inheritance on the subsequent learning process. We
design the following ablations: (1) CuCo-NIM: No inheritance of the converged morphology from
last stage; (2) CuCo-NID: No inheritance of the design policy. We reset the parameters of the
design policy at the end of each stage; (3) CuCo-NIC: No inheritance of the control policy. We
reset the parameters of the control policy at the end of each stage; (4) CuCo-NIDC: No inheritance
of the design policy and the control policy. We reset all network parameters at the end of each
stage. The learning curves of all ablations are shown in Figure 6, and for better visualization, we
plot these curves from the second learning stage. By comparing CuCo with CuCo-NID and CuCo-
NIDC, it is worth noting that the inheritance of the design policy plays a critical role during the
learning process. Even if the control policy is reset (CuCo-NIC), the performance is less affected.
Additionally, the inheritance of the converged morphology also contributes to the learning process,
as new morphologies can be quickly built by expanding the old morphology.

8

https://yuxing-wang-thu.github.io/publication/cuco/

Published as a conference paper at ICLR 2023

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Policy iterations (×103)

0.0

2.5

5.0

7.5

10.0

12.5

Pe
rfo

rm
an

ce

Pusher
CuCo
CuCo-NIM
CuCo-NID
CuCo-NIC
CuCo-NIDC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Policy iterations (×103)

0.0

2.5

5.0

7.5

10.0

Pe
rfo

rm
an

ce

Walker

Figure 6: Ablations of the inheritance mechanism. The plots show that the inheritance of the design
policy plays a critical role during the learning process.

6 DISCUSSION AND CONCLUSION

In this work, we proposed CuCo, a curriculum-based co-design method for learning to design and
control voxel-based soft robots through an easy-to-difficult process. Compared with previous ap-
proaches that learn from scratch in the target design space, our method is more efficient in producing
larger robots with better performance as it follows a predefined curriculum and effectively exploits
the knowledge of design and control obtained in small dimensional settings. Empirical evaluations
on various robot control tasks show that CuCo outperforms prior methods in terms of the final per-
formance, producing intriguing robot designs with repeated body segments.

However, compared with GA and BO, we also observe that CuCo tends to produce more regular
shapes, resulting in failures on some complex tasks (e.g., Climber and Lifter) which may require
robots to have irregular body structures (e.g., thin limbs or fingers). We speculate that there are two
reasons for the failure: (1) Design. In our work, NCA is encouraged to learn the connectivity on
its own and we do not assign any design-related rewards. Specifically, we check the connectivity
at each design step and terminate the episode if the resulting design does not meet the connectivity
or has no actuator voxels. Therefore, NCA becomes conservative in using empty voxels. Due to
the mechanism of inheritance, this kind of design pattern would be further extended in larger design
spaces, restricting the exploration of irregular morphologies. (2) Control. For some challenging
tasks, when it is hard for the control policy to explore and exploit the environmental reward, the de-
sign policy is also hard to be informed because we formulate the processes of design and control into
a single MDP. Fortunately, the failures also suggest that we can add design rewards to guide NCA to
explore some counterintuitive structures, and using more complex NCA architectures (Sudhakaran
et al., 2022) may also help the exploration of irregular designs. Hence an important future work is
creating an efficient mechanism for balancing the exploration and exploitation abilities of NCA.

During the learning process, we do not constrain the number of modules for each type of material.
Thus, the optimization is uncontrolled. A future direction would be to investigate the constrained
co-design method. We found that CuCo performs well under the fixed curriculum, a promising
direction of future work would involve extending our method to automatic curriculum learning. In
CuCo, two kinds of developmental processes happen on different timescales. Within each stage,
the robots grow under the restriction of body size. From one stage to the next, robots will become
bigger and stronger. However, size is not the only morphological characteristic of living creatures.
An important line of exploration is to extend CuCo to help study the morphogenesis of virtual
creatures. Co-designing physical VSRs (Kriegman et al., 2019; 2020) using our method is expected
to further extend the horizon.

7 ACKNOWLEDGEMENT

We thank the anonymous reviewers for their helpful comments in revising the paper. This work is
partially supported by Tencent Rhino-Bird Research Elite Program (2022).

9

Published as a conference paper at ICLR 2023

REFERENCES

Dylan S. Banarse, Yoram Bachrach, Siqi Liu, Guy Lever, Nicolas Manfred Otto Heess, Chrisantha
Fernando, Pushmeet Kohli, and Thore Graepel. The body is not a given: Joint agent policy
learning and morphology evolution. In AAMAS, 2019.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
ICML ’09, 2009.

Jagdeep Bhatia, Holly Jackson, Yunsheng Tian, Jie Xu, and Wojciech Matusik. Evolution gym: A
large-scale benchmark for evolving soft robots. In NeurIPS, 2021.

Tianjian Chen, Zhanpeng He, and Matei T. Ciocarlie. Hardware as policy: Mechanical and compu-
tational co-optimization using deep reinforcement learning. In CoRL, 2020.

Nick Cheney, Robert MacCurdy, Jeff Clune, and Hod Lipson. Unshackling evolution: evolving soft
robots with multiple materials and a powerful generative encoding. In GECCO ’13, 2013.

Frank Dellaert. Toward a biologically defensible model of development. 1995.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,
and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment
design. Advances in neural information processing systems, 33:13049–13061, 2020.

Kuan Fang, Yuke Zhu, Silvio Savarese, and Li Fei-Fei. Discovering generalizable skills via auto-
mated generation of diverse tasks. ArXiv, abs/2106.13935, 2021.

Agrim Gupta, Silvio Savarese, Surya Ganguli, and Li Fei-Fei. Embodied intelligence via learning
and evolution. Nature Communications, 12, 2021.

Agrim Gupta, Linxi (Jim) Fan, Surya Ganguli, and Li Fei-Fei. Metamorph: Learning universal
controllers with transformers. ArXiv, abs/2203.11931, 2022.

David R Ha. Reinforcement learning for improving agent design. Artificial Life, 25:352–365, 2019.

Donald J. Hejna, P. Abbeel, and Lerrel Pinto. Task-agnostic morphology evolution. ArXiv,
abs/2102.13100, 2021.

Kazuya Horibe, Kathryn Walker, and Sebastian Risi. Regenerating soft robots through neural cellu-
lar automata. In EuroGP, 2021.

Wenlong Huang, Igor Mordatch, and Deepak Pathak. One policy to control them all: Shared modular
policies for agent-agnostic control. In ICML, 2020.

Atil Iscen, George Yu, Alejandro Escontrela, Deepali Jain, Jie Tan, and Ken Caluwaerts. Learning
agile locomotion skills with a mentor. 2021 IEEE International Conference on Robotics and
Automation (ICRA), pp. 2019–2025, 2021.

Minqi Jiang, Michael Dennis, Jack Parker-Holder, Jakob Foerster, Edward Grefenstette, and Tim
Rocktäschel. Replay-guided adversarial environment design. Advances in Neural Information
Processing Systems, 34:1884–1897, 2021a.

Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. Prioritized level replay. In International
Conference on Machine Learning, pp. 4940–4950. PMLR, 2021b.

Kirthevasan Kandasamy, Akshay Krishnamurthy, Jeff G. Schneider, and Barnabás Póczos. Paral-
lelised bayesian optimisation via thompson sampling. In AISTATS, 2018.

Sam Kriegman, S. Walker, Dylan S. Shah, Michael Levin, Rebecca Kramer-Bottiglio, and
Josh C. Bongard. Automated shapeshifting for function recovery in damaged robots. ArXiv,
abs/1905.09264, 2019.

Sam Kriegman, Amir Mohammadi Nasab, Dylan S. Shah, Hannah Steele, Gabrielle Branin, Michael
Levin, Josh C. Bongard, and Rebecca Kramer-Bottiglio. Scalable sim-to-real transfer of soft robot
designs. 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), pp. 359–366,
2020.

10

Published as a conference paper at ICLR 2023

Vitaly Kurin, Maximilian Igl, Tim Rocktäschel, Wendelin Boehmer, and Shimon Whiteson.
My body is a cage: the role of morphology in graph-based incompatible control. ArXiv,
abs/2010.01856, 2021.

Rich Gang Li, A. Jabri, Trevor Darrell, and Pulkit Agrawal. Towards practical multi-object manipu-
lation using relational reinforcement learning. 2020 IEEE International Conference on Robotics
and Automation (ICRA), pp. 4051–4058, 2020.

Sida Liu, David Matthews, Sam Kriegman, and Josh C. Bongard. Voxcraft-sim, a gpu-accelerated
voxel-based physics engine. 2020.

Kevin Sebastian Luck, Heni Ben Amor, and Roberto Calandra. Data-efficient co-adaptation of
morphology and behaviour with deep reinforcement learning. In CoRL, 2019.

Pingchuan Ma, Tao Du, John Z. Zhang, Kui Wu, Andrew Spielberg, Robert K. Katzschmann, and
Wojciech Matusik. Diffaqua: A differentiable computational design pipeline for soft underwater
swimmers with shape interpolation. ACM Trans. Graph., 40:132:1–132:14, 2021.

Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. Teacher–student curriculum learn-
ing. IEEE Transactions on Neural Networks and Learning Systems, 31:3732–3740, 2020.

Eric Medvet, Alberto Bartoli, Federico Pigozzi, and Marco Rochelli. Biodiversity in evolved voxel-
based soft robots. Proceedings of the Genetic and Evolutionary Computation Conference, 2021.

Eric Medvet, Giorgia Nadizar, and Federico Pigozzi. On the impact of body material properties
on neuroevolution for embodied agents: the case of voxel-based soft robots. Proceedings of the
Genetic and Evolutionary Computation Conference Companion, 2022.

A. Mordvintsev, E. Randazzo, Eyvind Niklasson, and Michael Levin. Growing neural cellular au-
tomata. Distill, 2020.

Tønnes F. Nygaard, David Howard, and Kyrre Glette. Real world morphological evolution is fea-
sible. Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion,
2020.

Rasmus Berg Palm, Miguel González Duque, Shyam Sudhakaran, and Sebastian Risi. Variational
neural cellular automata. ArXiv, abs/2201.12360, 2022.

Jack Parker-Holder, Minqi Jiang, Michael Dennis, Mikayel Samvelyan, Jakob Foerster, Edward
Grefenstette, and Tim Rocktäschel. Evolving curricula with regret-based environment design.
arXiv preprint arXiv:2203.01302, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In NeurIPS, 2019.

Deepak Pathak, Chris Lu, Trevor Darrell, Phillip Isola, and Alexei A. Efros. Learning to control
self-assembling morphologies: A study of generalization via modularity. In NeurIPS, 2019.

Rolf Pfeifer and Josh C. Bongard. How the body shapes the way we think - a new view on intelli-
gence. 2006.

Rolf Pfeifer, Fumiya Iida, and Max Lungarella. Cognition from the bottom up: on biological inspi-
ration, body morphology, and soft materials. Trends in Cognitive Sciences, 18:404–413, 2014.

Federico Pigozzi, Yujin Tang, Eric Medvet, and David Ha. Evolving modular soft robots without
explicit inter-module communication using local self-attention. Proceedings of the Genetic and
Evolutionary Computation Conference, 2022.

Rémy Portelas, Cédric Colas, Katja Hofmann, and Pierre-Yves Oudeyer. Teacher algorithms for
curriculum learning of deep rl in continuously parameterized environments. In Conference on
Robot Learning, pp. 835–853. PMLR, 2020.

11

Published as a conference paper at ICLR 2023

Alvaro Sanchez-Gonzalez, Nicolas Manfred Otto Heess, Jost Tobias Springenberg, Josh Merel, Mar-
tin A. Riedmiller, Raia Hadsell, and Peter W. Battaglia. Graph networks as learnable physics
engines for inference and control. ArXiv, abs/1806.01242, 2018.

Charles B. Schaff, David Yunis, Ayan Chakrabarti, and Matthew R. Walter. Jointly learning to
construct and control agents using deep reinforcement learning. 2019 International Conference
on Robotics and Automation (ICRA), pp. 9798–9805, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. ArXiv, abs/1707.06347, 2017.

Dylan S. Shah, Bilige Yang, Sam Kriegman, Michael Levin, Josh C. Bongard, and Rebecca Kramer-
Bottiglio. Shape changing robots: Bioinspiration, simulation, and physical realization. Advanced
Materials, 33, 2020.

Karl Sims. Evolving 3d morphology and behavior by competition. Artificial Life, 1:353–372, 1994.

Andrew Spielberg, Allan Zhao, Yuanming Hu, Tao Du, Wojciech Matusik, and Daniela Rus.
Learning-in-the-loop optimization: End-to-end control and co-design of soft robots through
learned deep latent representations. In NeurIPS, 2019.

Kenneth O. Stanley. Compositional pattern producing networks: A novel abstraction of develop-
ment. Genetic Programming and Evolvable Machines, 8:131–162, 2007.

Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topolo-
gies. Evolutionary Computation, 10:99–127, 2002.

Shyam Sudhakaran, Elias Najarro, and Sebastian Risi. Goal-guided neural cellular automata: Learn-
ing to control self-organising systems. ArXiv, abs/2205.06806, 2022.

Jacopo Talamini, Eric Medvet, and Stefano Nichele. Criticality-driven evolution of adaptable mor-
phologies of voxel-based soft-robots. Frontiers in Robotics and AI, 8, 2021.

Brandon Trabucco, Mariano Phielipp, and Glen Berseth. Anymorph: Learning transferable polices
by inferring agent morphology. In ICML, 2022.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. ArXiv, abs/1706.03762, 2017.

Kathryn Walker and Helmut Hauser. Evolution of morphology through sculpting in a voxel based
robot. In ALIFE, 2021.

Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O. Stanley. Poet: open-ended coevolution of
environments and their optimized solutions. Proceedings of the Genetic and Evolutionary Com-
putation Conference, 2019a.

Rui Wang, Joel Lehman, Aditya Rawal, Jiale Zhi, Yulun Li, Jeff Clune, and Kenneth O. Stanley.
Enhanced poet: Open-ended reinforcement learning through unbounded invention of learning
challenges and their solutions. In ICML, 2020.

Tingwu Wang, Yuhao Zhou, Sanja Fidler, and Jimmy Ba. Neural graph evolution: Towards efficient
automatic robot design. ArXiv, abs/1906.05370, 2019b.

Ye Yuan, Yuda Song, Zhengyi Luo, Wen Sun, and Kris M. Kitani. Transform2act: Learning a
transform-and-control policy for efficient agent design. ArXiv, abs/2110.03659, 2022.

12

Published as a conference paper at ICLR 2023

A ENVIRONMENT DETAILS

In this section, we provide details about the tasks simulated in Evolution Gym platform (Banarse
et al., 2019).

Position. po is a 2-dim vector that represents the position of the center of mass of an object o in the
simulation at time t. pox and poy are x and y components of this vector, respectively. po is calculated
by averaging the positions of all the point-masses that make up object o at time t.

Velocity. vo is a 2-dim vector that represents the velocity of the center of mass of an object o in the
simulation at time t. vox and voy are x and y components of this vector, respectively. vo is calculated
by averaging the velocities of all the point-masses that make up object o at time t.

Orientation. θo is a 1-dim vector that represents the orientation of an object o in the simulation at
time t. Let pi be the position of point mass i of object o. θo is computed by averaging over all i the
angle between the vector pi − po at time t and time 0. This average is a weighted average weighted
by ||pi − po|| at time 0.

Other observations. ho
b(d) is a vector of length (2d+1) that describes elevation information around

the robot below its center of mass. More specifically, for some integer x ≤ d, the corresponding
entry in vector ho

b(d) will be the highest point of the terrain which is less than poy between a range
of [x, x+ 1] voxels from pox in the x-direction.

A.1 WALKER

Figure 7: Walker environment.

In this task, the robot is rewarded by walking as far as possible on flat terrain. The target design
space is 7× 7. The task-specific observation is vrobot, and the reward R is:

R = ∆probotx (1)

which rewards the robot for moving in the positive x-direction. The robot receives a reward of 1 for
reaching the end of the terrain. The episode duration reaches a 500 time steps.

A.2 PUSHER

Figure 8: Pusher environment.

In this task, the robot pushes a box initialized in front of it. The target design space is 7 × 7. The
task-specific observation is formed by concatenating vectors {vbox, pbox − probot, vrobot}, and the
reward R = R1 +R2, where R1 is:

R1 = 0.5 ·∆probotx + 0.75 ·∆pboxx (2)

which rewards the robot and box for moving in the positive x-direction, and R2 is:

R2 = −∆|pboxx − probotx | (3)

13

Published as a conference paper at ICLR 2023

which penalizes the robot and box for separating in the x-direction. The robot also receives a one-
time reward of 1 for reaching the end of the terrain. The episode duration reaches a 500 time steps.

A.3 UPSTEPPER

Figure 9: UpStepper environment.

In this task, the robot climbs up stairs of varying lengths. The target design space is 5× 5. The task-
specific observation is formed by concatenating vectors {vrobot, θrobot, hrobot

b (5)}, and the reward
R is:

R = ∆probotx (4)
which rewards the robot for moving in the positive x-direction. The robot also receives a one-time
reward of 2 for reaching the end of the terrain. The episode duration reaches a 600 time steps.

A.4 JUMPER

Figure 10: Jumper environment.

In this task, the robot jumps as high as possible in place on flat terrain. The target design space is
7× 7. The task-specific observation is formed by concatenating vectors {vrobot, hrobot

b (2)}, and the
reward R is:

R = 10 ·∆proboty − 5 · |∆probotx | (5)
which rewards the robot for moving in the positive y-direction and penalizes the robot for any motion
in the x-direction. The episode duration reaches a 500 time steps.

A.5 PLATFORMJUMPER

Figure 11: PlatformJumper environment.

In this task, the robot traverses a series of floating platforms at different heights. The tar-
get design space is 5 × 5. The task-specific observation is formed by concatenating vectors
{vrobot, θrobot, hrobot

b (5)}, and the reward R is:

R = ∆probotx (6)
which rewards the robot for moving in the positive x-direction, The robot also receives a one-time
penalty of −3 for rotating more than 90 degrees from its originally orientation in either direction or
for falling off the platforms (after which the environment resets). The episode duration reaches a
1000 time steps.

14

Published as a conference paper at ICLR 2023

A.6 THROWER

Figure 12: Thrower environment.

In this task, the robot throws a box initialized on top of it. The target design space is 5 × 5. The
task-specific observation is formed by concatenating vectors {vbox, pbox − probot, vrobot}, and the
reward R = R1 +R2, where R1 is:

R1 = ∆pboxx (7)
which rewards the box for moving in the positive x-direction, and R2 is:

R2 =

{
−∆probotx if probotx ≥ 0
∆probotx otherwise

(8)

which penalizes the robot for moving too far from x = 0 when throwing the box. The episode
duration reaches a 300 time steps.

A.7 CLIMBER

Figure 13: Climber environment.

In this task, the robot climbs as high as possible through a flat, vertical channel. The target design
space is 5× 5. The task-specific observation is vrobot, and the reward R is:

R = ∆proboty (9)

which rewards the robot for moving in the positive y-direction. The robot also receives a one-time
reward of 1 for reaching the end of the channel. The episode duration reaches a 400 time steps.

A.8 LIFTER

Figure 14: Lifter environment.

In this task, the robot lifts a box out of a hole. The target design space is 7 × 7. The task-specific
observation is formed by concatenating vectors {pbox − probot, vrobot, vbox, θbox}, and the reward
R = R1 +R2 +R3, where R1 is:

R1 = 10 ·∆pboxy (10)
which rewards the robot for moving the beam in the positive y-direction, and R2 is:

R2 = −10 ·∆|gx − pboxx | (11)

15

Published as a conference paper at ICLR 2023

0.0 0.5 1.0 1.5 2.0 2.5
Simulation steps (×107)

0.0

2.5

5.0

7.5

10.0

Pe
rfo

rm
an

ce

Walker

0.0 0.5 1.0 1.5 2.0 2.5
Simulation steps (×107)

0.0

2.5

5.0

7.5

10.0

12.5

Pe
rfo

rm
an

ce

Pusher

0.0 0.5 1.0 1.5 2.0 2.5
Simulation steps (×107)

10

5

0

5

10

15

Pe
rfo

rm
an

ce

Jumper
CuCo
CuCo-NCU
GA
BO
CPPN-NEAT

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Simulation steps (×107)

0

1

2

3

4

5

Pe
rfo

rm
an

ce

UpStepper

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Simulation steps (×107)

0

1

2

3

4

Pe
rfo

rm
an

ce

Thrower

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Simulation steps (×107) 1e7

2

1

0

1

2

3

Pe
rfo

rm
an

ce

PlatformJumper

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Simulation steps (×107)

0.0

0.5

1.0

1.5

2.0

2.5

Pe
rfo

rm
an

ce

Climber

0.0 0.5 1.0 1.5 2.0 2.5
Simulation steps (×107)

1.0

0.5

0.0

0.5

Pe
rfo

rm
an

ce

Lifter

Figure 15: Learning curves of all methods.

which penalizes the robot for moving the box away from a goal x-position,gx. This ensures that the
robot lifts the box straight up, and R3 is:

R3 =

{
0 if proboty ≥ ty

20 ·∆proboty otherwise
(12)

which penalizes the robot for falling below a threshold height ty (at which point the robot has fallen
into the hole). The episode duration reaches a 300 time steps.

B ADDITIONAL EXPERIMENTS

B.1 LEARNING CURVES AND MORPHOLOGY RESULTS

Figure 15 plots the learning curves of all methods across various environments. In Figure 16, we
provide visualization results of morphologies constructed using CuCo and baselines. In Figure 17,
we demonstrate the development of robot morphologies during CuCo’s learning process in UpStep-
per and Pusher environments, respectively.

B.2 THE CHOICE OF DESIGN POLICY

We perform an additional experiment to investigate the importance of using the NCA architecture
as CuCo’s design policy. Here, we replace NCA with a Compositional Pattern Producing Network
(CPPN) (Stanley, 2007) which takes the global information (e.g., x and y coordinates of the design
space) as the input and directly generates the robot design parameters. We refer to this method as
CuCo-CPPN. Note that the converged morphology and the design policy are not inheritable in CuCo-
CPPN as the input dimension of CPPN is related to the design space. Figure 18 shows the learning
curves of CuCo-NCA and CuCo-CPPN in Pusher and Walker. Evidently, CuCo-NCA outperforms
CuCo-CPPN in terms of convergence speed and final performance. It shows that NCA can encode
practical design patterns and successfully leverage them in larger design spaces, while CPPN does
not significantly facilitate the learning process.

16

Published as a conference paper at ICLR 2023

CuCo-NCUCuCo GA CPPN-NEAT BO

R: 10.45 R: 10.46 R: 8.87R: 10.46 R: 7.98

R: 1.33 R: 5.07 R: 1.67R: 14.50 R: -1.05

R: 2.37 R: 3.06 R: 2.59R: 4.25 R: 1.95

Walker

UpStepper

Jumper

R: 1.75 R: 1.67 R: 1.12R: 4.97 R: 3.06

R: 0.81 R: 2.07 R: 1.77R: 0.63 R: 0.50

R: 1.80 R: 2.03 R: 1.62R: 4.02 R: 1.52

Thrower

Platform

Jumper

Climber

R: 0.002 R: 0.00 R: 0.26R: 0.00 R: 0.00

Lifter

Figure 16: Visualization of converged morphologies of all methods across various environments.
Below each VSR is its average performance over 5 tests.

C ATTENTION MATRICES ANALYSIS

Self-attention brings better interpretability than multilayer perceptron. In this section, we analyze the
attention matrices that CuCo learns. We use only one Transformer encoder layer, thus we visualize
the generated attention matrix after one input state passes through the attention layer. Figure 19
demonstrates the learned attention matrices of the critic network when designing a robot, where the
voxel 9 is assigned with more attention scores. Figure 20 shows attention matrices produced by

17

Published as a conference paper at ICLR 2023

Stage 2

Stage 3

Curriculum

Policy iterations (× 103)

Stage 1

0.2 0.4 0.6 0.8 1.0

Stage 2

Stage 1

0.2 0.4 0.6 0.8 1.0

Policy iterations (× 103)

Curriculum

Figure 17: Visualization of CuCo’s learning process. The x-axis represents the number of policy
iterations and the y-axis represents the curriculum. We show morphologies produced within each
stage from left to right.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Policy iterations (×103)

0.0

2.5

5.0

7.5

10.0

12.5

Pe
rfo

rm
an

ce

Pusher
CuCo-NCA
CuCo-CPPN

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Policy iterations (×103)

0.0

2.5

5.0

7.5

10.0

Pe
rfo

rm
an

ce

Walker
CuCo-NCA
CuCo-CPPN

Figure 18: A comparison of using NCA and CPPN as the design policy. The results are averaged
over 7 runs and suggest that the NCA architecture contributes to the performance greatly.

the control policy network. The color of each attention score tells the strength of the compatibility
between inputs and interprets what is driving the current behaviour. When the robot’s front foot
(voxel 9) or the rear foot (voxel 7) touches the ground, the corresponding voxels are assigned with
greater wights, which is consistent with humans’ intuition and common sense.

18

Published as a conference paper at ICLR 2023

Figure 19: Attention matrices of 10 design steps.

V-9

Figure 20: Attention matrices of 2 control steps.

D IMPLEMENTATION DETAILS

We use PyTorch (Paszke et al., 2019) to implement our proposed method. We take the official
implementation of Transformer from Pytorch and add the position embedding. All hyperparameters
for CuCo are listed in Table 2. For baseline algorithms, we use the official implementations of GA,
CPPN-NEAT and BO from Evolution Gym (Bhatia et al., 2021). We employ a population of 12
agents for all population-based methods. Following the convention in the literature, we use multiple
CPU threads to accelerate the training of PPO. For all the environments used in this paper, it takes
around 1 day to train our model on a computer with 12 CPU cores and an NVIDIA RTX 3090 GPU.

19

Published as a conference paper at ICLR 2023

Table 2: Hyperparameters of CuCo.

Hyperparameter Value

Use GAE True
GAE parameter λ 0.95
Learning rate 2.5 · 10−4

Use linear learning rate decay True
Clip parameter 0.1
Value loss coefficient 0.5
Entropy coefficient 0.01
Time steps per rollout 2048
Num processes 4

PPO Optimizer Adam
Evaluation interval 10
Discount factor γ 0.99
Clipped value function True
Observation normalization True
Observation clipping [−10, 10]
Reward normalization True
Reward clipping [−10, 10]
Policy epochs 8
Policy iterations per stage 1000

Neighborhood Moore
Input dimension 9
Output dimension 5

NCA Growth factor False
Hidden layers (64, 64)
Activation function Tanh
Design steps 10

Number of layers 1
Number of attention heads 1

Transformer Embedding dimension 64
Feedforward dimension 128
Non linearity function ReLU
Dropout 0.0

20

