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ABSTRACT

While Large Language Models (LLMs) have exhibited impressive performance in
long-form question-answering tasks, they frequently present a hazard of produc-
ing factual inaccuracies or hallucinations. An effective strategy to mitigate this
hazard is to leverage off-the-shelf LLMs to detect hallucinations after the gen-
eration. The primary challenge resides in the comprehensive elicitation of the
intrinsic knowledge acquired during their pre-training phase. However, existing
methods that employ complex reasoning chains predominantly fall short of ad-
dressing this issue. Moreover, since existing methods for hallucination detection
tend to decompose the text into isolated statements, they are unable to understand
the inherent in-context semantics in long-form content. In this paper, we pro-
pose a novel framework, SelfElicit, which synergizes the self-elicitation of intrin-
sic knowledge of large language models and long-form continuity understanding.
Specifically, we leverage self-generated thoughts derived from prior statements as
catalysts to elicit the expression of intrinsic knowledge, which is integrated with
graph structures to alleviate induced hallucinations and guide the factual evalua-
tion by effectively organizing the elicited knowledge. Extensive experiments on
real-world QA datasets demonstrate the effectiveness of self-elicitation and the
superiority of our proposed method.

1 INTRODUCTION

Large Language Models (LLMs) pre-trained on massive text corpora and fine-tuned to follow hu-
man instructions have shown remarkable performance in various neutral language tasks (Bai et al.,
2023; Touvron et al., 2023; GLM et al., 2024). However, there remains a concern regarding their
tendency to generate hallucinations (Bang et al., 2023), producing sentences with plausible looking
yet factually unsupported content (Huang et al., 2023)1 and hurting their reliability in real-world
scenarios expecting factually-accurate responses (Wei et al., 2024). For example, a model-generated
non-factual statement “Gliclazide can be taken at any time of the day×, regardless of whether it is
on an empty stomach or after meals×” might mislead patients into taking medication at incorrect
times since this medication is recommended to be taken with the meal (NHS, 2024). An important
strategy to alleviate hallucinations is to detect hallucinations after the generation (Lee et al., 2023;
Manakul et al., 2023; Mishra et al., 2024; Guan et al., 2024).

Numerous methods have been proposed for the hallucination detection task. Several methods rely
on retrieval (Min et al., 2023; Xia et al., 2024; Li et al., 2023b; Wei et al., 2024; Yue et al., 2024;
Sansford et al., 2024) or probes (Li et al., 2023a; Zhang et al., 2024a; Chuang et al., 2024; Wang
et al., 2024), but external databases or probe training corpus are not always available in all scenarios.
Therefore, many studies focus on using the intrinsic capabilities of off-the-shelf LLMs acquired
through pre-training, where the key challenge is how to effectively elicit the intrinsic knowledge
from the models. Some methods prompt to model to implicitly utilize their knowledge to identify
hallucinations by assessing confidence levels (Kadavath et al., 2022; Mahaut et al., 2024; Zhao et al.,
2024). In contrast, other methods explicitly elicit intrinsic knowledge to enhance detection accuracy.
For example, some works (Manakul et al., 2023; Mündler et al., 2024; Miao et al., 2024) prompt
the model to generate statements from various perspectives and contrast these statements to quantify

1In this paper, we mainly focus on factuality (external) hallucinations and leave faithfulness (internal) hal-
lucinations for future work (Huang et al., 2023).
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Figure 1: Schematic illustration of hallucination detection from long-form content. (a) Statements
are isolatedly evaluated. (b) Prior statements are incorporated as context. Our method investigates
and demonstrates (c) how prior self-generated thoughts can elicit models’ intrinsic knowledge.

the semantic consistency. Other works (Kang et al., 2023; Dhuliawala et al., 2024; Farquhar et al.,
2024; Setty & Setty, 2024) ask the model to answer verification questions generated according to
facts within the statements. While insightful, we contend that these methods either require complex
manual prompts or involve intricate reasoning processes, which limit their elicitation capacity and
increase the risk of accumulated inaccuracies and hallucinations.

Additionally, an inherent characteristic of long-form content is the in-context semantics among sen-
tences, a logical and consistent relationship between different elements of meaning, such as coher-
ence, comparison, and causality. For instance, the preceding statement, “Gliclazide is an oral hypo-
glycemic medication” and the subsequent statement, “It is suitable for adult type 2 diabetes patients
whose blood sugar cannot be adequately controlled by diet alone” demonstrate logical coherence
and progression. The first statement identifies the category and function of the medication while the
second statement further elaborates on its medical application. However, existing long-form hallu-
cination detection methods (Zhang et al., 2020; Min et al., 2023; Wei et al., 2024; Li et al., 2024a)
generally decompose the long-form text into isolated statements that each is fact-checked individ-
ually (Figure 1 (a)), overlooking such semantic continuity and limiting their reasoning capabilities.
Providing prior contextual information to models (Figure 1 (b)) can present a more natural chain of
meanings, thereby benefiting both the understanding and evaluation of subsequent statements.

In this work, we present SelfElicit, an integrated framework designed to effectively elicit a model’s
intrinsic knowledge and utilize semantic continuity to improve hallucination detection in long-form
content. Specifically, it follows an iterative process in which the model first evaluates the factuality
of statements conditioned on prior contextual information. It then engages in reflection to elicit the
intrinsic knowledge and finally incorporates these reflections as context to enhance subsequent eval-
uations (Figure 1 (c)). To mitigate hallucinations arising during the self-elicit process, we integrate a
knowledge hypergraph into the iterative framework, which facilitates knowledge retention, dedupli-
cation, and resolution of inconsistencies. Our extensive experiments demonstrate that self-eliciting
can act as an effective catalyst to improve both the factuality and diversity of models’ knowledge
expression and our method outperforms existing methods for long-form hallucination detection. To
sum up, our contributions include:

• We study a novel concept of self-eliciting large language models for hallucination detection.
We show that using self-generated thoughts from prior statements as catalysts prompts the
models to effectively express intrinsic knowledge and facilitates hallucination detection.

• We propose a new framework, SelfElicit, for long-form hallucination detection, which syn-
ergizes the self-eliciting mechanism with semantic continuity understanding. We design a
knowledge hypergraph to carefully organize the elicited knowledge and effectively alleviate
hallucination snowballing.

• SelfElicit framework consistently demonstrates superior performance in long-form halluci-
nation detection using real-world datasets with modern language models. We further show
that self-eliciting enhances knowledge expression with better factuality and diversity.

2 PRELIMINARIES

2.1 TASK

In this paper, we investigate the task of retrieval-free long-form hallucination detection. Given the
user query and the original long-form response generated by a generator LM, the target is to utilize
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an analyzer LM to evaluate whether there is any factual incorrectness in the response. This task
focuses on hallucination detection in the post-generation phase and uses the intrinsic capabilities of
off-the-shelf LLMs, rather than relying on external databases or fine-tuning.

Long-form Hallucination Detection. Given a user query Q and an original response R that can
be parsed into sentences R = {r1, r2, · · · }, the long-form hallucination detection task is to classify
whether there is any factual incorrectness in each sentence and the entire response. Formally,

ŷ1, ŷ2, · · · = fLM (Q, {r1, r2, · · · }),
Ŷ = fLM (Q,R),

where fLM refers to an algorithm with a language model. ŷi is the binary prediction for each
sentence ri and Ŷ is the binary prediction for the entire response R, with positive value referring to
hallucinated and negative value referring to factual.

2.2 KNOWLEDGE HYPERGRAPH

A knowledge hypergraph is used to store and describe the relationships of knowledge statements
with a graph structure. Each vertice v refers to an entity. Each hyperedge e connecting any number
of vertices refers to a knowledge relating to these entities, which are denoted as e.nodes. For
example, edge “The mechanism of Gliclazide is to lower blood glucose by stimulating pancreatic
β-cells to secrete insulin“ connects vertices “Gliclazide”, “blood glucose”, “pancreatic β-cells”,
and “insulin” as the statement is directly related to these concepts. We denote a graph as:

G = (V,E),

where V and E respectively refer to the vertice set and the edge set. Compared with vanilla knowl-
edge graphs constructed by triples symbolizing knowledge regarding only two entities, a hyper-
edge interconnects any number of entities and thus is more suitable for describing complex knowl-
edge (Chen et al., 2024).

3 METHODOLOGY

Figure 2 provides an overview of our framework. Given long-form content to be fact-checked, we
first extract important entities and statements representing the knowledge to be checked. We then
present the framework along with a knowledge hypergraph to iteratively evaluate the factuality of
each statement via (1) sampling on the graph to acquire contextual information, (2) evaluating the
factuality of each statement and eliciting the intrinsic knowledge by reflection, and (3) updating the
graph to retain the elicited thoughts and resolving inconsistencies that might suggest fabrication or
induced hallucinations.

3.1 STATEMENT EXTRACTION

A common practice to better detect hallucinations is to decompose a long-form text into statements
each containing one piece of information (Min et al., 2023; Wei et al., 2024). In our early exper-
iments, we further found that explicitly identifying named entities before the extractions enhances
the association of extracted statements to the theme of the given content and alleviates the problem
of information missing. Formally,

e1, e2, · · · = LM(Instett, r1, r2, · · · ), (1)
s1, s2, · · · = LM(Inststate, e1, e2 · · · , r1, r2, · · · ), (2)

where ei is the entity set corresponding to sentence ri. si refers to the statements extracted from
sentence ri concerning entities ei. Instett and Inststate respectively refer to instruction for entity
and statement extraction. In practice, the above processes can be achieved in a single chain-of-
thought (Wei et al., 2022) reasoning with a prompt with domain expertise.

We then construct the initial knowledge hypergraph as G0 = (V,E0), whose vertice set includes all
identified entities, i.e. V = e1 ∪ e2 ∪ · · · , and edge set is empty, i.e. E0 = ∅.

3
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Figure 2: The overall framework of SelfElicit. Given a long-form text, we extract statements and
employ an iterative diagram to detect hallucinations via ①sampling relative contextual information
and ②evaluating their factuality in order. The intrinsic knowledge of the model is ③elicited by
reflecting and then ④adaptively ⑤merged with the existing knowledge hypergraph.

3.2 GRAPH-GUIDED SELF-ELICITATION

Knowledge Sampling. Given graph Gi−1 = (V,Ei−1) retaining self-generated knowledge dur-
ing prior evaluation of statements {s1, s2, · · · , si−1}, a graph sampling procedure is conducted to
provide contextual information and intermediate thoughts to the evaluation of current statement si.
Specifically, we extract sub-graphs from Gi−1 that are most relevant to si. A set of relative entities
Vi is first identified by word matching, i.e. Vi = {vj |vj in si, vj ∈ V}. Then, sub-graphs with
multiple granularities are extracted using the combinations of the relative entities as queries:

V̂i(k) = Combine(Vi, k), (3)

Êi(k) = {e|e.nodes == V̂i(k), e ∈ Ei−1}, (4)

Êi = ∪{Êi(k)|α ≤ k ≤ β}, (5)

where Combine(·) refers to k-length combinations of elements Vi. α and β are hyperparameters
balancing the relevance and scope. Lower α refers to a more relaxed matching strategy for a wider
sampling scope, while higher α refers to a stricter matching strategy for contextual information with
stronger relevance. Finally, all sampled edges Êi are linearized to obtain contextual statements Ci.

Fact-Evaluation. Following (Kadavath et al., 2022; Manakul et al., 2023; Zhao et al., 2024; Tian
et al., 2024), we prompt the models to evaluate the correctness of a given statement si by asking
whether the statement is True, False, or Not Sure. This straightforward prompt has shown
relatively stable and competitive performance (Zhao et al., 2024; Mahaut et al., 2024). We prepend
the sampled contextual statements Ci to the prompt to leverage semantic continuity for better un-
derstanding and reasoning.

The probabilities of True and False tokens are obtained at the first output token position and
normalized. The latter is regarded as the final hallucination score of the statement si, denoting as p̂i.

Intrinsic Knowledge Elicitation. Language models pre-trained on a large corpus abstract the fac-
tual knowledge in their weights, i.e. intrinsic knowledge (Petroni et al., 2019). Efforts have been
made to elicit the intrinsic knowledge to facilitate fact-checking (Weller et al., 2024; Li et al., 2024b;
Manakul et al., 2023; Miao et al., 2024; Mündler et al., 2024; Dhuliawala et al., 2024; Zhao et al.,
2024). Nevertheless, we conclude that these methods mostly have complicated reasoning chains,
and tend to suffer from induced hallucinations or accumulated inaccuracy, limiting their overall ca-
pacity for elicitation. Moreover, we argue that prompting the model to provide reflections on the
evaluation is a more convenient method, which guides the model to provide elaborations on its judg-
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ment and think of further steps, consequently eliciting the intrinsic knowledge conditioned on the
verified statement. The overall fact-evaluation and reflection process is formulated as follows:

Oeval
i , Orefl

i = LM(Ci, Insteval, si), (6)
where Insteval is the evaluation and reflection instruction. In practice, we notice that the reflections
Orefl

i might include background, coherent thoughts, detailed elaboration, and suggestions relevant
to the verified statement. We only keep reflection sentences with objective knowledge with manually
crafted rules and LLM prompting, similar to the data preprocessing (Appendix C.3).

3.3 ELICITED KNOWLEDGE STORAGE

Graph Updating. After eliciting intrinsic knowledge conditioned on the statement, we store it in
the graph and handle potential knowledge inconsistencies to provide factual contextual information
for evaluating subsequent statements. Specifically, the selected reflection Orefl

i is first converted
into candidate edges by (1) extracting knowledgeable statements from the reflection, (2) identifying
entities from V that verbally matched in each statement as vertices, and (3) creating an edge for each
statement. Formally,

c1, c2, · · · , cN = Candidate(Orefl
i ), (7)

Vnew
j = {v|v in cj , v ∈ V}, 1 ≤ j ≤ N, (8)

Enew
i = {enewj |enewj .nodes == Vnew

j , 1 ≤ j ≤ N}, (9)

where function Candidate(·) refers to sentence tokenization or model-based knowledge extraction.
enewj refers to a new edge connecting vertices Vnew

j and representing one piece of information cj .
N is the number of extracted knowledgeable statements. We then iteratively merge each new edge
in Enew

i into graph Gi−1 to obtain the updated graph Gi:
Ei = Merge(Ei−1,Enew

i ). (10)

Conflicts Resolving. However, LLMs might produce hallucinations during the reflection pro-
cess, especially when reflecting on ambiguous or unfamiliar statements. Similar to previous
works (Mündler et al., 2024; Yehuda et al., 2024), we notice that in such cases, the generated state-
ments tend to be inconsistent with each other, appearing to have identical entities yet contradictory
meanings. The phenomenon of inconsistency can also be found when two sentences from the origi-
nal response contradict each other, which might indicate faithfulness hallucinations.

To this end, it is crucial to carefully resolve the inconsistencies to avoid the propagation of hal-
lucinations (Zhang et al., 2023a). Specifically, we predict the semantic relationship between the
conflictive statements, enew ∈ Enew

i and eorig ∈ Ei−1, that share identical vertice sets, i.e.
enew.nodes == eorig.nodes. A Natural Language Inference (NLI) method is utilized to predict
their semantic relationship and resolve conflicts:

• Neutral: The two statements describe different entities, or different aspects of the same
entities, and can coexist. We keep both statements in the updated graph.

• Entail: The content of the two statements is identical, describing the same aspect of the
same entities, with consistent meaning. We replace the original statement with the new one
to avoid duplication.

• Contradict. The two statements describe the same aspect of the same entities, but their
meanings are directly opposite, presenting a contradiction. In this case, we ask the model
to contrast these statements and revise them for a final resolution.

In practice, we can either use a pre-trained NLI model or prompt LLMs to predict the semantic
relationships (see Appendix D.3). The resolving process between two conflictive edges is conducted
iteratively until all candidate edges in Enew

i have been incorporated into the graph.

To sum up, the knowledge hypergraph is iteratively extended by the elicited knowledge in parallel
with the evaluation of statements, by which the semantic continuity information can also be incor-
porated into the graph, facilitating subsequent evaluation and elicitation.

Output. After obtaining the hallucination score p̂ for all statements, we aggregate the scores with
maximum to obtain the predictions ŷi for each original sentence ri and Ŷ for the original response
R. The pseudo-code is shown in Appendix B. The prompts and cases are listed in Appendix F.
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Table 1: Full hallucination detection results. S: sentence-level metrics. R: response-level metrics.
Red: the best. Blue: the second best.

Methods SelfElicit IO ContextIO HistoryIO CoT CoVE FaR SelfChkGPT ChatProtect
Metric F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC

MedHallu-ZH

Qwen S 0.269 0.810 0.187 0.771 0.191 0.760 0.238 0.782 0.192 0.638 0.165 0.597 0.207 0.763 0.085 0.500 0.085 0.512
R 0.475 0.671 0.441 0.598 0.430 0.603 0.453 0.653 0.402 0.571 0.395 0.548 0.441 0.613 0.395 0.500 0.395 0.517

GLM3 S 0.228 0.798 0.182 0.756 0.153 0.733 0.213 0.781 0.131 0.564 0.170 0.661 0.139 0.702 0.085 0.494 0.134 0.611
R 0.445 0.622 0.421 0.598 0.424 0.582 0.435 0.614 0.395 0.527 0.423 0.567 0.405 0.554 0.395 0.500 0.395 0.558

WikiBio

Qwen S - 0.594 - 0.527 - 0.587 - 0.543 - 0.500 - 0.527 - 0.543 - 0.539 - 0.512
R - 0.653 - 0.628 - 0.522 - 0.614 - 0.566 - 0.524 - 0.508 - 0.639 - 0.657

Llama2 S - 0.556 - 0.516 - 0.534 - 0.477 - 0.534 - 0.553 - 0.506 - 0.572 - 0.517
R - 0.698 - 0.559 - 0.534 - 0.540 - 0.531 - 0.636 - 0.522 - 0.708 - 0.704

MedHallu-EN

Qwen S 0.242 0.803 0.182 0.762 0.168 0.743 0.233 0.779 0.192 0.596 0.085 0.500 0.187 0.763 0.226 0.682 0.085 0.505
R 0.463 0.656 0.436 0.622 0.443 0.614 0.472 0.659 0.395 0.570 0.395 0.498 0.445 0.630 0.428 0.623 0.395 0.505

Qwen2 S 0.282 0.820 0.275 0.805 0.247 0.802 0.254 0.811 0.211 0.636 0.259 0.672 0.217 0.784 0.232 0.675 0.087 0.523
R 0.479 0.667 0.466 0.665 0.460 0.661 0.456 0.656 0.422 0.595 0.440 0.614 0.447 0.640 0.444 0.636 0.395 0.537

Llama2 S 0.181 0.748 0.137 0.697 0.139 0.705 0.133 0.667 0.142 0.594 0.085 0.499 0.140 0.709 0.103 0.561 0.136 0.550
R 0.408 0.582 0.410 0.555 0.407 0.509 0.413 0.551 0.395 0.537 0.395 0.497 0.411 0.558 0.397 0.547 0.395 0.568

Llama3 S 0.211 0.773 0.156 0.724 0.170 0.741 0.147 0.662 0.223 0.666 0.184 0.699 0.184 0.730 0.158 0.634 0.208 0.601
R 0.447 0.622 0.406 0.546 0.405 0.572 0.413 0.605 0.449 0.626 0.421 0.562 0.422 0.586 0.417 0.613 0.414 0.600

GPT4o
mini

S 0.329 0.682 0.185 0.560 0.183 0.564 0.250 0.597 0.279 0.686 0.277 0.703 0.085 0.520 0.135 0.623 0.085 0.512
R 0.494 0.668 0.395 0.559 0.395 0.574 0.395 0.586 0.487 0.661 0.488 0.658 0.395 0.521 0.395 0.603 0.395 0.505

1st count S 13 0 0 0 1 1 0 1 0
R 9 0 0 3 2 0 0 1 1

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

We conduct long-form hallucination detection experiments on two medical datasets (MedHallu-
ZH and MedHallu-EN dataset, see Appendix C.2), and a biography dataset (WikiBio (Manakul
et al., 2023)) with the following off-the-shelf language models: Qwen1.5-7B-chat (Qwen (Bai et al.,
2023)), Qwen2.5-7B-Instruct (Qwen2 (Bai et al., 2023)), ChatGLM3-6B (GLM (GLM et al., 2024)),
Llama2-7B-chat (Llama2 (Touvron et al., 2023)), Llama-3-8B-Instruct (Llama3 (AI@Meta,
2024)), and GPT4o-mini. All language models use greedy decoding (temperature=0) during text
generation for stable outputs. All experiments are conducted with transformers (Wolf et al., 2020)
4.43.0 on a Centos machine with Nvidia A800-80G GPUs.

Baselines. We compare our method with the following baselines, including classic self-eval (IO (Ka-
davath et al., 2022; Mahaut et al., 2024)), long-form enhanced methods (ContextIO, HistoryIO),
and methods with various elicitation approaches: chain-of-thought (CoT (Wei et al., 2022) and
FaR (Zhao et al., 2024)), self-ask (CoVE (Dhuliawala et al., 2024)), and self-consistency (Self-
CheckGPT (Manakul et al., 2023), ChatProtect (Mündler et al., 2024)). For all methods, we use
an identical IO prompt after their original procedures to obtain the hallucination score for a fair
comparison (i.e. only elicitation approaches are different). The details are listed in Appendix C.1.

Metrics. Hallucination detection is a classification task, where positive labels refer to non-factual
statements. We use F1 and AUROC as metrics, for sentence-wise and response-wise predictions.
Since the threshold variance affects the metrics (Huang et al., 2024), we search for the best threshold
values with the highest sentence/response F1 metrics independently on the validation set and regard
non-factual scores larger than the thresholds as positive predictions on the test set.

4.2 MAIN RESULTS

Table 1 shows the overall detection results. Methods requiring multi-step reasoning (CoT, CoVE,
SelfCheckGPT, and ChatProtect) generally have inferior performance compared with other meth-
ods. This observation is partial because the primary benefit of multi-step reasoning comes in the
ability to execute symbolic steps and track the output (Sprague et al., 2024), rather than directly
assessing the factuality, leading to limited performance gain. Moreover, we observe that the inaccu-
racies and hallucinations (e.g. information missing when generating questions for CoVE and triple
ambiguity for ChatProtect) accumulate as the reasoning steps increase, resulting in their overall lim-
ited capacity to fully utilize the models’ intrinsic knowledge. On the contrary, IO and ConfScore
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use more straightforward prompts to utilize the models’ knowledge, consequently reducing the risk
of inaccuracy accumulation and resulting in their better overall performance.

Moreover, context-argument methods (ContextIO and HistoryIO) show better performance than
vanilla IO, which proves that using in-context information can benefit the understanding of the
current statement. The better performance of HistoryIO suggests that the generated reflections on
prior statements might already include some intrinsic knowledge expressed verbally, which reduces
the reasoning burden of the current evaluation.

It can also be observed that the latest-generation models (Qwen2 and Llama3) outperform their
previous-generation counterparts (Qwen and Llama), which is owed to their stronger capability.
With appropriate algorithms, the performance of previous-generation models surpasses the latest-
generation models (e.g. SelfElicit+Llama2 > IO+Llama3), highlighting the importance of effective
knowledge elicitation methods and hallucination detection frameworks.

These observations motivate us to carefully guide the model to express its intrinsic knowledge and
to avoid hallucination accumulation. Conceptually, our method uses self-generated thoughts from
prior statements to promote the elicitation and resolve the semantic inconsistencies between the
elicited and the existing knowledge, which helps to avoid the snowballing of hallucinated content.
Moreover, the iteratively updated diagram also benefits the model in statement understanding and
evaluation by capturing semantic continuity. The synergy of these components eventually results in
the superior performance of SelfElicit. Statistically, our method outperforms the best baselines over
5.1%/9.4% on MedHallu-zh with Qwen, 5.6%/4.0% on MedHallu-zh with ChatGLM, 5.3%/4.1% on
MedHallu-en with Qwen, and 1.0%/-0.6% on MedHallu-en with Llama on sentence/response-wise
AUC metrics. These results demonstrate the overall effectiveness of our method.

4.3 ELICITATION QUALITY
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Figure 3: Factuality and diversity of elicited knowledge with different elicitation methods. x-axis
refers to the statements’ serial number. Higher metrics are better.

We take a deeper look into the elicitation by comparing the factuality and diversity of the elicited
knowledge with different elicitating methods: (1) FaR: generating relevant information before the
evaluation, (2) IO: generating reflections without context, (3) context: generating reflections with
prior statements as context, and (4) elicit: generating reflections with previously generated thoughts
as context. The reflections are generated with Qwen on the MedHallu-zh dataset and assessed with
GPT4 on their factuality (whether the reflection is factual) and diversity (whether the reflection is
different from the statement). The results averaged based on the statements’ serial numbers are
shown in Figure 3 with variance. Results with larger sequence numbers are discarded due to the
limited number of statements.

We observe that (1) the information generated with FaR has the lowest factuality rates and highest
diversity, indicating that it has a higher risk of fabricating its intrinsic knowledge, which explains
the occasional performance degradation of FaR compared to IO in Table 1. We owe that using
calibration-based evaluation before expressing related knowledge, rather than reversing their order,
will prompt the model to reason over the correctness of the statement, which restricts the diversity
but alleviates fabrications. (2) Moreover, prefixing context before reflection (context) improves
both the factuality and diversity of the generated statements in most cases (v.s IO), which shows
that leveraging the semantic continuity can facilitate the model to understand the statements and
provide more faithful and comprehensive reasoning over the knowledge. (3) Elicit shows a similar
trend with context and consistently outperforms. The observation indicates that the self-elicitation
mechanism has a similar ability to capture continuity and might suggest that self-generated thoughts
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(a) MedHallu-zh, Qwen (b) MedHallu-en, Qwen

(c) MedHallu-zh, ChatGLM (d) MedHallu-en, Llama
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Figure 4: Full ablated results. Higher metrics are better.

are more favorable than the given statements to catalyze further reasoning over related knowledge.
In summary, these results have demonstrated that self-elicitation effectively improves the expression
of intrinsic knowledge with better faithfulness and comprehensiveness, which provides insights into
why self-elicitation works.

4.4 ABLATION STUDY

We conduct an ablation study to demonstrate the effectiveness of each component of our method.
The variants include: (1) w/o context: evaluating the statements without sampled contextual knowl-
edge, which is equivalent to vanilla self-eval (Kadavath et al., 2022; Mahaut et al., 2024), (2) w/o
elicit: using prior statements rather than refections as context, (3) w/o sample: linearizing the entire
graph rather than sampling relevant knowledge as context, (4) w/o conflict: merging all new edges
without inconsistencies mitigation, and (5) full: full SelfElicit method with all components.

Case of evaluation with contextual information

=====without contextual information=====

Description: Therefore, a reduction of Lp(a) 

from 800 to 600 may be considered normal to 

some extent, especially when taking these 

lifestyle factors into account.

Is the above description:

A True

B False

C Not sure

=========Evaluation & Reflection=======

A True.

Based on the given description, it seems to 

suggest that a reduction of of Lp(a) from 800 to 

600 could be seen as within a reasonable range 

or normal, considering certain lifestyle factors. 

The statement does not explicitly state that it's 

definitely true for all cases, but it implies a level 

of acceptability.

=========with contextual information=========

Context: Lp(a) levels should be between 10 and 125 

nanomoles per liter, which is a common way to express 

blood lipid concentrations…

Description: Therefore, a reduction of Lp(a) from 800…

Is the above description:

A True

B False

C Not sure

==========Evaluation & Reflection ==========

B False.

According to the context provided, the reference range 

for Lp (lipoprotein) levels is between 10 and 125 

nanomoles per liter, which is considered normal. An 

Lp(a) value of 800 would fall outside this normal range, 

as it is significantly elevated. Elevated Lp(a) is 

considered a risk factor for cardiovascular problems due 

to its potential to form plaques in arteries…

Self-elicited during 
prior evaluations

Figure 5: A comparison of evaluation and reflec-
tion without(left) or with(right) contextual infor-
mation. Red : non-factual content. Green : fac-
tual content. Blue : newly elicited content.

Figure 4 shows the results of all variants. We
have the following observations. (1) w/o con-
text shows a salient performance degradation
compared with other variants in a majority of
cases, which provides an intuitive demonstra-
tion of the contextual understanding in long-
form content. However, in several cases (e.g.
response-wise metrics in sub-figure (d)), vari-
ants with context provide inferior performance.
We have conducted a manual review of the
predictions and found that the model some-
times misunderstood the task of fact-checking,
which we believe can be largely solved with
stronger models (e.g. Qwen in sub-figure (b)).
(2) Variants without sampling or conflict mit-
igation provide relatively inferior performance
compared to full, even perform worse in several
cases (e.g. AUC in sub-figure (b,c,d)). We also
observe that providing irrelevant or self-contradictory context to the models will greatly disturb their
focus and affect their reasoning, demonstrating the importance of knowledge sampling and conflict
mitigation components. (3) Versus all ablated variants, the full method generally provides the best
performance. The full method outperforms 4.0% over w/o context, 3.0% over w/o elicit, 2.1% over
w/o sample, and 6.5% over w/o conflict on average, highlighting the synergistic effect of integrating
all the constituted parts.

4.5 CASE STUDY

We show a case of evaluation with/without contextual information in Figure 5. Figure 5 left shows
that the model has difficulty evaluating the statement since the reasoning includes eliciting intrinsic
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Case of elicited inaccuracy and mitigation via self-consistency

======================Evaluation Query====================== 

Description: Dermovate and Daivonex are used for treating psoriasis vulgaris.

Is the above description:

A True

B False

C Not Sure

====================Evaluation & Reflection====================

B False. Dermovate and Daivonex are not recognized or well-known treatments for 

psoriasis vulgaris. Psoriasis is a common skin condition that typically responds to 

medications like topical corticosteroids, vitamin D analogs, phototherapy…

=====================================Conflict Detection Query =====================================

Please determine the semantic relationship between the following two sentences. There are three possible types of relationships:

1. [entail]…2. [contradict]…3. [neutral]…

Please analyze sentence A and sentence B, and choose one of the relationships. Please briefly explain your reasoning.

Sentence A: Dermovate and Daivonex are referring to prescription medications or ingredients that are commonly used in the 

treatment of psoriasis vulgaris, a skin condition.

Sentence B: Dermovate and Daivonex are not recognized or well-known treatments for psoriasis vulgaris.

Judgment result:

====================================Conflict Detection Response====================================

[contradict] Sentence A states that… Sentence B claims that… Both sentences are about Dermovate and Daivonex in relation to 

psoriasis, but their meaning are opposite - one suggests they are hopeful, while the other says they are not.

=====================================Conflict Mitigation Query =====================================

Sentence A: Dermovate and Daivonex are referring to prescription medications or ingredients that are commonly used in the…

Sentence B: Dermovate and Daivonex are not recognized or well-known treatments for psoriasis vulgaris.

Please consider the logic and factual basis of the sentences. Choose the sentence you think is correct and select from the following two 

options: [Sentence A is correct][Sentence B is correct]

====================================Conflict Mitigation Response====================================

[Sentence A is correct]. Sentence A states that…On the other hand, Sentence B claims that… Therefore, if both sentences are 

describing the same aspect, Sentence A would be the more accurate one.

① Model generating 
hallucinations for 
unfamiliar knowledge

③ Semantic 
conflicts are 
detected

④ Mitigated 
via self-
consistency

Dermovate Daivonex

Psoriasis vulgaris
② Identical 

vertices

P

D
D Edge: 

Dermovate and 
Daivonex are 
referring to 
prescription…

=======Knowledge Hypergraph=======

…

Figure 6: A showcase of generating inaccurate reflection and how the accumulation of inaccuracy is
mitigated by conflict detection. Red : non-factual content. Green : factual content.

knowledge about the normal range of Lp(a) and then comparing the values. Figure 5 right shows
that self-elicited thoughts during the evaluation of prior statements provide direct information (the
normal range of Lp(a)) to facilitate the evaluation of the current statement. A piece of intrinsic
knowledge about the indication of Lp(a)( blue ) is also elicited as long as the evaluation.

Figure 6 shows another case of the model failing to evaluate the factuality due to unfamiliarity with
specific knowledge and how the accumulation of inaccuracy is mitigated by conflict detection. Since
Dermovate and Daivonex are trade names that are less exposed than their pharmaceutical names, the
model ①fails to fact-check the statement and generates erroneous reflections ( red ). Such generated
hallucinations will accumulate and finally affect the reasoning of subsequent evaluations. However,
since the erroneous reflection ②shares an identical vertice set (Dermovate, Daivonex, and Psoriasis)
with existing edges in the hypergraph, the ③NLI-based component is activated and predicts their
semantic contradict. Finally, the conflict is ④mitigated to avoid the accumulation of errors via LLM
reasoning.

5 DISCUSSIONS

5.1 INFERENCE COSTS

Table 2 and Appendix E.2 show the inference costs for all methods. We observe that SelfCheckGPT,
ChatProtect, and CoVE have lower efficiency in both the number of model calls and tokens gener-
ated since these methods require multiple reasoning steps to elicit the knowledge. We also observe
that SelfElicit has a cost that ranks moderately among all methods while achieving on average the
best performance. Conceptually, the sampling and the merging of new edges (①⑤ in Figure 2) are
both rule-based and the reflection and resolving procedure (③④ in Figure 2) contribute the majority
of overhead. These results demonstrate that it might be unnecessary to design complicated reason-
ing steps to prompt the expression of intrinsic knowledge and using self-elicitation can have better
performance and efficiency during hallucination detection.
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Table 2: Inference costs for all methods with the Qwen model. Perform.: average AUC metrics.
#Call: number of LLM calls. #Token: number of generated tokens.

Dataset Method Relative
Perform.↑ #Call↓ Relative

#Call↓
#Token↓

(k)
Relative
#Token↓

MedHallu-zh

IO -7.9% 7,552 -39.4% 390 -61.7%
ContextIO -8.1% 7,552 -39.4% 399 -60.9%
HistoryIO -3.1% 7,552 -39.4% 370 -63.7%

CoT -18.4% 7,552 -41.6% 734 -28.1%
CoVE -22.7% 36,852 +196.0% 1,828 +79.2%
FaR -7.1% 14,104 +13.3% 2,309 +126.4%

SelfCheckGPT -32.5% 130,912 +951.3% 13,711 +1244.0%
ChatProtect -30.5% 138,758 +1014.3% 5,703 +459.0%
SelfElicit - 12,452 - 1,020 -

MedHallu-en

IO -5.2% 7,422 -37.3% 636 -54.7%
ContextIO -7.0% 7,422 -37.3% 657 -53.2%
HistoryIO -1.2% 7,422 -37.3% 489 -65.2%

CoT -20.1% 7,422 -37.3% 1,096 -22.0%
CoVE -31.6% 38,696 +226.7% 2,484 +76.8%
FaR -5.9% 14,104 +19.1% 2,752 +95.9%

SelfCheckGPT -10.5% 131,066 +1006.5% 10,828 +670.9%
ChatProtect -30.8% 164,010 +1284.6% 6,398 +355.5%
SelfElicit - 11,845 - 1,405 -

5.2 CONNECTION WITH RAG

SelfElicit and retrieval-argument generation (RAG) (Jin et al., 2024; Luo et al., 2024; Sun et al.,
2024) share some similarities in their schemas: sampling relative knowledge from a knowledge
graph to facilitate the down-streaming tasks. Recent works (Sansford et al., 2024; Yuan et al., 2024;
Niu et al., 2024) have demonstrated the performance gain to incorporate external knowledge graphs
for hallucination detection. Differently, our work organizes a knowledge graph elicited from the
model itself, rather than relying on external databases. Moreover, compared with RAG methods
where databases are stand-alone, the self-elicited knowledge hypergraph in our framework is depen-
dent on the model and evolves in parallel with the evaluation process. Theoretically, our method is
orthogonal to these RAG methods and can be integrated with these methods into a unified design,
which might further benefit both the elicitation and hallucination detection.

5.3 LIMITATIONS

Some of the limitations are: (1) this paper primarily focuses on technological methods to elicit the
intrinsic knowledge of models, leaving the question of whether LLMs either abstract knowledge
over linguistic forms or merely memorize statements (Carlini et al., 2022) to future works. (2)
Due to the lack of large-scale, long-form datasets with domain expertise, we focus on two medical
datasets collected from an online QA platform and a biography dataset. Although the models are
not specialized for specific domains, conducting experiments on other domains would provide more
comprehensive and credible conclusions. (3) Since the capacity of the models theoretically restricts
the performance upper bound, methods for continual improvements remain an open question. (4)
The sampling and conflict detection strategies will fail in some specific cases and such failure might
accumulate during the iteration.

6 CONCLUSION

In this paper, we have investigated the task of detecting hallucinations from long-form content. Ex-
isting methods predominantly fall short of comprehensively elicitating the intrinsic knowledge of
models and overlook the semantic continuity within long-form content. To address these issues,
we present a novel framework, SelfElicit, that uses self-generated thoughts from prior statements
to elicit the models’ intrinsic knowledge. It is integrated with a knowledge hypergraph to enable
effective knowledge organization via retention, deduplication, and inconsistency mitigation, there-
fore synergizing self-elicitation and contextual understanding in a unified diagram. Experiments on
real-world, multilingual datasets with modern large language models have shown the effectiveness
of self-elicitating and demonstrated the superiority of the proposed framework.
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ETHICAL CONSIDERATIONS

The statements and examples provided in this paper are intended for demonstration purposes only
and may contain non-factual information. Our intent is to illustrate concepts rather than present
verified facts. Readers are strongly advised to consult with professional healthcare providers or
academic experts before taking any medical actions.

REPRODUCABILITY STATEMENT

We provide the source code of the implementations of all methods in https://anonymous.
4open.science/r/SelfElicit-DFCE. Due to privacy concerns, the datasets used in our
experiments can not be included during the peer review process. However, we are committed to
making the data publicly available upon the acceptance of our paper. The large language models used
in our work are publicly accessible online: Qwen1.5-7B-chat2, Qwen2.5-7B-Instruct3, ChatGLM3-
6B4, Llama2-7B-Chat5, and Llama3.1-8B-Instruct6.
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A RELATEDWORKS

A.1 HALLUCINATION DETECTION

Retrieval-argument methods. Extracting relevant knowledge from external authentic database and
incorporating it with the query is a common way of detecting hallucination (Min et al., 2023; Tian
et al., 2024; Gou et al., 2024; Li et al., 2024b; Xia et al., 2024). (Li et al., 2023b; Yu et al., 2023;
Wei et al., 2024) proposed to update the retrieval results with LLM until the retrieved documents
adequately support answering the questions. (Kamoi et al., 2024), (Yuan et al., 2024) and (Sansford
et al., 2024) extracted keywords as entities and knowledge as triples and retrieved reference triples
from knowledge graphs or texts. Additionally, (Yue et al., 2024) contrasted the supportive arguments
and refuting arguments derived from retrieval evidence.

Innerstate-based methods. Innerstate-based methods aim to understand the hallucination within
the hidden activations of deeper model layers (Azaria & Mitchell, 2023; Zhang et al., 2024b; Wang
et al., 2024). They usually required probes pre-trained on a specific dataset to detect the hallucina-
tions (Li et al., 2023a; Zhang et al., 2024a).

Uncertainty-based methods. We categorize existing uncertainty-based hallucination detection
methods into three categories. (1) Some methods focus on the token probabilities of white-box
LLMs. (Kadavath et al., 2022; Tian et al., 2024) proposed a calibration-based method to evaluate
the correctness of the content with multiple-choice questions. Extending the token entropy estima-
tion (Manakul et al., 2023) with keyword focusing, (Zhang et al., 2023b) proposed to penalize the
attention score of the hallucinated token to avoid snowballing (Zhang et al., 2023a). FaR (Zhao
et al., 2024) elicited the intrinsic knowledge relevant to the query and reflected on the knowledge
to improve the calibration. (2) Some methods propose to ask LLMs to express their uncertainty
verbally (Mahaut et al., 2024). (Tao et al., 2024) leverages reinforcement learning guided by a tai-
lored dual-component reward function. (3) Other methods aim at the semantic consistency over
sentences (Kuhn et al., 2023; Manakul et al., 2023; Mündler et al., 2024; Miao et al., 2024). Self-
CheckGPT (Manakul et al., 2023) and (Kuhn et al., 2023) and (Farquhar et al., 2024) estimated
the variance of the meaning of generated content. (Cohen et al., 2023) discovered the inconsis-
tencies with the interaction between LLMs. InterrogateLLM (Yehuda et al., 2024) reversed the
query-response pair and estimated the variation of reconstructed queries for semantic uncertainty.
ChatProtect (Mündler et al., 2024) and SelfCheck (Miao et al., 2024) detected hallucinations by
comparing the original content and the regenerated one. EVER (Kang et al., 2023), CoVE (Dhu-
liawala et al., 2024), (Zhang et al., 2024c), (Farquhar et al., 2024), and QuestGen (Setty & Setty,
2024) generated questions corresponding to each fact within the content, answered the generated
question, and measured the coherence between the answer and the original content.

Compared with the above works, our method uses self-generated thoughts as a catalyst to elicit
intrinsic knowledge, without external databases, finetuning, or complex multi-step reasoning, while
the iterative schema can capture the semantic continuity of long-form content.

A.2 LARGE LANGUAGE MODELS WITH KNOWLEDGE GRAPHS

Efforts have been made to facilitate large language models for reasoning or factuality with knowl-
edge graphs. GoT (Besta et al., 2024) used a graph structure to guide the reasoning of LLMs.
(Yuan et al., 2024) proposed to extract knowledge graphs from external text databases and regarded
fact-checking as a task of NLI. GraphRAG (Edge et al., 2024) built a graph-based text index by
deriving entity knowledge graphs from the source documents and generating summaries for hi-
erarchical graph communities. RoG (Luo et al., 2024) synergized LLMs reasoning with KGs to
improve the ability of knowledge traceability and knowledge correctability. ToG (Sun et al., 2024)
and Graph-CoT (Jin et al., 2024) treated the LLM as an agent to interactively explore related entities
and relations on KGs and perform reasoning based on the retrieved knowledge. Re-KGR (Kamoi
et al., 2024) and StructGPT (Jiang et al., 2023) leveraged knowledge graphs as external databases
and directly retrieved reference information for factual QA. (Sansford et al., 2024) converted the
response into a candidate knowledge graph and fact-checked each individual triple in the graph.
Compared with the above methods, our method does not rely on external knowledge graphs but uses
self-elicited knowledge to construct the graph to facilitate hallucination detection.
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B ALGORITHM

Algorithm 1 shows the pseudo-code of SelfElicit.

Algorithm 1: Self-elicitation Procedure.
Input : Sentences {r1, r2, · · · }, a language model LM, a NLI Model NLI.
Output: Sentence-wise non-factual scores ŷ1, ŷ2, · · · , and response-wise score Ŷ .
/* Extract entities and statements */

1 s1, s2, · · · , e1, e2, · · · ← LM(r1, r2, · · · );
/* Graph-guided self-elicitation */

2 Initialize graph G0 with vertice set V← e1 ∪ e2 ∪ · · · , and edge set E0 ← ∅;
3 for si ∈ {s1, s2, · · · } do

/* Knowledge sampling */
4 for k ∈ [α, β] do
5 Sample Êi(k) from graph Gi−1 with related vertives V̂i(k);
6 end
7 Aggregate all Êi(k) and linearize to context Ci;

/* Fact-evaluation & Elicitation */

8 Evaluate si given context Ci with LM, obtaining score p̂i and reflection Orefl
i ;

/* Graph Update */

9 Obtain new edges Enew
i from reflection Orefl

i ;
10 Eorig ← Ei−1;
11 for e ∈ Enew

i do
12 Etemp ← ∅;
13 if e has identical vertice set to any edge ē ∈ Eorig then
14 rel← NLI(e, ē);
15 if rel is ’entail’ then Add e to Etemp ;
16 else if rel is ’neutral’ then Add e and ē to Etemp ;
17 else /* mitigate conflicts */
18 ê← LM(e, ē);
19 Add ê to Etemp;
20 else
21 Add e to Etemp;
22 end
23 Eorig ← Etemp

24 end
25 Update graph Gi with edge set Eorig;
26 end
27 Obtain sentence predictions ŷ by aggregating scores from statements;
28 Obtain response prediction Ŷ by aggregating scores from sentences;

C EXPERIMENTAL DETAILS

C.1 BASELINES

Our comparison includes representative methods that focus on retrieval-free, training-free methods
for post-generation fact-checking, including classic self-eval,

• IO(Kadavath et al., 2022): Probability of False token following a query whether the
statement is factual or not.

long-form argument methods,

• ContextIO: Prior evaluated statements are prefixed as contextual information.
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• HistoryIO: Historical information (queries and responses) of prior evaluations are prefixed
as contextual information.

and methods with various elicitation approaches (chain-of-thought (Wei et al., 2022), self-ask, and
self-consistency).

• CoT(Wei et al., 2022): Prompting to evaluate the factuality of the given statement after
step-by-step reasoning.

• CoVE(Dhuliawala et al., 2024): Generating verification questions given the statement, an-
swering the questions independently, and summarizing for final evaluation.

• FaR(Zhao et al., 2024): Eliciting the knowledge relevant to the statement from models and
asking models to reflect on them to generate the final answer.

• SelfCheckGPT(Manakul et al., 2023): Querying to assess whether the statement is sup-
ported by stochastic context answering the original user query.

• ChatProtect(Mündler et al., 2024): Extracting knowledge triples, cloze triples, and pre-
dicting the contradiction between the given and the new statements.

We have excluded some related methods designed to quantify the uncertainty of generator LM during
generating statements rather than analyzer LM on the post-generation stage (Fadeeva et al., 2024;
Zhang et al., 2023b; Yehuda et al., 2024) and methods required training on specific datasets before
detecting hallucinations (Zhang et al., 2024a; Wang et al., 2024; Li et al., 2023a; Chuang et al., 2024)
or focusing on retrieval-argument generation (Min et al., 2023; Tian et al., 2024; Li et al., 2024b;
Xia et al., 2024). For all methods, we use an identical IO prompt after their original procedures to
obtain the hallucination score for a fair comparison, i.e. only elicitation approaches are different.

C.2 DATASET

We have collected a substantial dataset, namely MedHallu, by collecting genuine user queries
and the corresponding responses generated by LLMs from an online healthcare QA platform. This
corpus mainly encompasses chronic diseases, cancer, and psoriasis and includes a Chinese version
(with postfix zh) and an English version (with postfix en). The query-response pairs are prepro-
cessed with the following steps to obtain response-wise and sentence-wise hallucination labels.

Step 1: Parsing. The long-form response is first segmented into sentences by punctuation. Then,
following (Wei et al., 2024), GPT-4 is used to split sentences into atomic claims, which refers to a
fundamental unit for a piece of information.

Step 2: Labeling. We ask medical experts to label whether each LLM-generated response includes
any factual error or misunderstands the user query. Then, GPT-4 is used to label each sentence given
the response-wise human labels to obtain sentence-wise labels and claim-wise labels. The labeling
prompt is shown in Figure 13. We carefully check every positive sentence/claim labeled by GPT-4
such that they actually include factual errors.

Step 3: Multi-language. We use GPT4 to translate the original Chinese QA pairs, sentences, and
claims into English. The prompt is constituted of the original user query and the LLM-generated
response and includes instructions to ask the LLM to take special care of the medical terminologies.
The translation prompt is shown in Figure 12.

Step 4: Remove Duplicate & Split. Samples with duplicated queries and responses are re-
moved. Then all samples are randomly shuffled and split into train/validation/test sets with a ratio
of 0.6/0.1/0.3.

Table 3 shows the statistics of the datasets. Table 4 show a sample from MedHallu-en. For the
WikiBio7 dataset, the split ratio is 0/0.3/0.7 and both minor and major inaccuracies are regarded as
non-factual.

7https://huggingface.co/datasets/potsawee/wiki_bio_gpt3_hallucination
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Table 3: Statistics of MedHallu-zh and MedHallu-en datasets. pos%: proportion of non-
factuality. #Sentence/Sample: number of sentences per sample. #Claim/Sample: number
of claims per sample.

Split Total (pos%) #Sentence/Sample #Claim/Sample
Sample Sentence Claim avg. min. max. avg. min. max.

Train 1,622 (27.6%) 10,688 (5.3%) 11,677 (4.7%) 6.59 1 22 7.20 1 30
Validate 270 (24.1%) 1,809 (4.4%) 1,970 (3.8%) 6.70 1 21 7.30 2 23

Test 812 (24.6%) 5,534 (4.4%) 5,984 (4.1%) 6.81 1 30 7.37 1 26

User:
When should Gliclazide be taken? Why?
Response:
Gliclazide is an oral hypoglycemic medication. It is suitable for adult type 2 diabetes patients whose
blood sugar cannot be controlled by diet alone. Generally, Gliclazide can be taken at any time of
the day, regardless of whether it is on an empty stomach or after meals. This is mainly because the
mechanism of action of Gliclazide is to lower blood sugar by stimulating the secretion of insulin
from pancreatic β-cells, and this process is not affected by meal intake. It should be noted that the
specific timing and dosage of medication should be determined based on individual differences and
the doctor’s advice. In addition, during the use of Gliclazide, it is necessary to regularly monitor
blood sugar levels and adjust the dosage according to medical advice. Do not increase or decrease the
dosage or stop taking the medication on your own to avoid adverse reactions such as hypoglycemia.
Labeling: × Incorrect. Gliclazide should be taken before each meal.

Sentences:
1. Gliclazide is an oral hypoglycemic medication✓
2. It is suitable for adult type 2 diabetes patients whose blood sugar cannot be controlled by diet
alone✓
3. Generally, Gliclazide can be taken at any time of the day, regardless of whether it is on an empty
stomach or after meals×
4. This is mainly because the mechanism of action of Gliclazide is to lower blood sugar by stimulat-
ing the secretion of insulin from pancreatic β-cells, and this process is not affected by meal intake×
5. It should be noted that the specific timing and dosage of medication should be determined based
on individual differences and the doctor’s advice✓
6. In addition, during the use of Gliclazide, it is necessary to regularly monitor blood sugar levels
and adjust the dosage according to medical advice✓
7. Do not increase or decrease the dosage or stop taking the medication on your own to avoid adverse
reactions such as hypoglycemia✓
Claims:
1. Gliclazide is an oral hypoglycemic medication✓
2. Gliclazide is suitable for adult type 2 diabetes patients whose blood sugar cannot be adequately
controlled by diet alone✓
3. Gliclazide can be taken at any time of the day×
4. Gliclazide can be taken either on an empty stomach or after meals×
5. The mechanism of action of Gliclazide is to lower blood glucose by stimulating pancreatic β-cells
to secrete insulin✓
6. The action process of Glargine is not affected by food intake✓
7. The specific timing and dosage of Gliclazide medication should be determined based on individ-
ual differences and the doctor’s recommendations✓
8. During the use of Gliclazide, it is necessary to regularly monitor blood sugar levels and adjust the
dosage according to the doctor’s instructions✓
9. Do not adjust the dosage or discontinue the medication on your own when using Gliclazide✓
10. Adjusting the dosage of Gliclazide on your own may lead to adverse reactions such as hypo-
glycemia✓

Table 4: A sample of the dataset in MedHallu-en. Labeling refers to the human annotation of the
response.
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C.3 DATA PREPROCESSING

As stated in previous works (Deng et al., 2024), the sentences might include information irrelevant
to the central idea of the document. Verifying all information is inefficient and even misleading since
some statements are simple repetitions of the user query or include subjective thoughts that are not
directly relevant to the concept of factuality. To this end, we identify sentences that contain check-
worthy statements, including assertions and thoughts regarding objective knowledge. Specifically,
we provide the LLMs instructions and few-shot samples with domain-specific expertise and ask
them to judge whether a sentence includes any objective knowledge. The selected check-worthy
sentences are denoted as {r1, r2, · · · }. The detailed prompt can be found in the Appendix F.

D MORE EXPERIMENTS

D.1 MODEL SCALABILITY
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Figure 7: Performance and cost with different model scales. We use logarithmic coordinates for
both x-axes and y-axis in sub-figure (b).

We study the relationship between model scale and performance. We choose methods with prefer-
able performance and efficiency (IO, ConfScore, CoT, FaR, and SelfElicit) for comparison and use
the Qwen1.5-chat (Bai et al., 2023) family with model sizes 0.5, 1.8, 4, 7, 14, 32, and 110.

The scaling of the performance and cost is shown in Figure 7. We have the following observations.
(1) The trend generally follows the scaling law that larger models tend to have better performance
and the inference costs also increase nearly linearly with the model size. However, the performance
seems to be saturated for the 110B models, having an insignificant increase. (2) We notice a salient
performance and cost degradation of the 4B model and a slightly higher cost for the 1.8B model.
After manually checking the output, we found that the average output length of the 1.8B models
is much longer than that of the 4B model. We owe it to the models’ preference obtained during
pre-training, rather than during hallucination detection. (3) Both the 7B and 14B models achieve a
good balance between performance and cost. Therefore, we choose the 7B model or models with
a similar scale to conduct all experiments in this paper. (4) Comparing all baselines, our SelfElicit
almost achieves the best performance with all model scales, while having relatively similar inference
with CoT.

D.2 HYPERPARAMETER SENSITIVITY

By changing the α and β hyper-parameters in Equation 3, we can change the sampling scope from
the knowledge hypergraph. We conduct experiments to investigate the choices of these hyper-
parameters, and matching strategy. Matching strategy strict refers to sample an edge iff the
query Vi(k) exactly match the vertice set of an edge, i.e. e.nodes == Vi(k). relax refers to sam-
ple an edge if the query Vi(k) is a subset of the vertices of an edge, i.e. e.nodes ∈ Vi(k), providing
a wider sampling scope.

Table 5 shows the result with different α-β pairs. We set the maximum value of both hyperparam-
eters to 3 practically, since we found that combinations of more than 3 entities rarely sample any
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Table 5: Results with different α-β pairs with Qwen on MedHallu-zh.

Match α β
sentence paragraph

F1 F2 AUC F1 F2 AUC

strict

1 1 0.272 0.373 0.794 0.458 0.642 0.656
1 2 0.265 0.371 0.815 0.452 0.639 0.651
1 3 0.269 0.364 0.810 0.475 0.643 0.671
3 3 0.242 0.347 0.783 0.434 0.621 0.611

relax

1 1 0.237 0.355 0.735 0.461 0.638 0.635
1 2 0.264 0.373 0.816 0.453 0.639 0.655
1 3 0.264 0.368 0.814 0.452 0.639 0.651
3 3 0.255 0.353 0.760 0.444 0.620 0.622

edges. It can be observed that the evaluation performance is sensitive to the knowledge context sam-
pled from the graph. A conservative sampling strategy (α = 1, β = 1) will limit the utility of the
knowledge in the graph, resulting in a performance closer to baselines IO (see Table 1). On the con-
trary, an excessively unrestricted sampling (α = 3, β = 3) will result in more irrelevant information
and longer input length, thereby deteriorating the performance. Therefore, we practically set α = 1
and β = 3 in all other experiments for convenience.

D.3 NLI METHOD

Table 6: Comparison of prompt and NLI model for semantic relationship prediction.

Dataset LLM Method Sentence-wise Response-wise
F1 F2 AUC F1 F2 AUC

MedHallu-zh Qwen LLM prompt 0.269 0.363 0.809 0.474 0.643 0.671
NLI model 0.269 0.367 0.794 0.469 0.640 0.664

ChatGLM LLM prompt 0.228 0.360 0.798 0.445 0.634 0.622
NLI model 0.227 0.356 0.793 0.452 0.640 0.625

MedHallu-en
Qwen LLM prompt 0.242 0.362 0.803 0.462 0.645 0.655

NLI model 0.237 0.358 0.789 0.455 0.640 0.647

Llama LLM prompt 0.180 0.296 0.747 0.408 0.628 0.581
NLI model 0.179 0.289 0.746 0.397 0.627 0.572

We compare two different methods to predict the semantic relationship between two statements
having identical entities: LLM prompts or specific pre-trained NLI models. For LLM prompts,
we use prompt shown in Figure 9 and for NLI models, we use StructBERT8 for MedHallu-zh and
DeBERTa9 for MedHallu-en and WikiBio. The results are listed in Table 6. It can be observed that
using prompts consistently performs better than using specific NLI models. However, the differences
are trivial and therefore we decided to use prompts in our implementation for convenience.

E SUPPLEMENTARY RESULTS

E.1 DETAILED ABLATION RESULTS

Table 7 shows the detailed ablation results.

E.2 MORE RESULTS OF INFERENCE COSTS

Table 8 shows the more results on inference costs.

F PROMPTS

8https://modelscope.cn/models/iic/nlp_structbert_nli_chinese-large
9https://huggingface.co/microsoft/deberta-large-mnli
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Table 7: Detailed ablation metrics of all variants.

Dataset LLM Variant Sentence-wise Response-wise
F1 F2 AUC F1 F2 AUC

MedHallu-zh

Qwen

w/o context 0.251 0.362 0.743 0.443 0.620 0.621
w/o elicit 0.252 0.362 0.796 0.440 0.633 0.615

w/o sample 0.262 0.389 0.812 0.454 0.637 0.651
w/o conflict 0.265 0.359 0.808 0.469 0.642 0.667

full 0.269 0.363 0.809 0.474 0.643 0.671

ChatGLM

w/o context 0.211 0.355 0.787 0.442 0.635 0.613
w/o elicit 0.214 0.357 0.789 0.442 0.644 0.613

w/o sample 0.215 0.331 0.774 0.429 0.629 0.619
w/o conflict 0.211 0.349 0.787 0.440 0.636 0.610

full 0.228 0.360 0.798 0.445 0.634 0.622

MedHallu-en

Qwen

w/o context 0.231 0.355 0.794 0.440 0.628 0.621
w/o elicit 0.234 0.357 0.800 0.442 0.624 0.623

w/o sample 0.230 0.365 0.802 0.433 0.638 0.627
w/o conflict 0.226 0.301 0.671 0.401 0.620 0.572

full 0.242 0.362 0.803 0.462 0.645 0.655

Llama

w/o context 0.145 0.277 0.702 0.419 0.636 0.585
w/o elicit 0.170 0.284 0.727 0.408 0.629 0.569

w/o sample 0.170 0.281 0.726 0.404 0.627 0.563
w/o conflict 0.169 0.268 0.668 0.406 0.620 0.569

full 0.180 0.296 0.747 0.408 0.628 0.581

Table 8: Inference costs of ChatGLM and Llama.

Dataset Method Relative
Perform.↑ #Call↓ Relative

#Call↓
#Token↓

(k)
Relative
#Token↓

ChatGLM

IO -4.6% 7552 -55.3% 144 -87.8%
ContextIO -7.3% 7552 -55.3% 119 -89.9%
HistoryIO -1.7% 7552 -55.3% 191 -83.8%

CoT -23.2% 7,552 -55.3% 505 -57.0%
CoVE -13.6% 35,152 +108.0% 1,318 +12.1%
FaR -11.6% 14,104 -16.5% 1,550 +32.0%

SelfCheckGPT -30.0% 135,472 +701.6% 8,710 +641.3%
ChatProtect -17.7% 115,144 +581.3% 2,291 +95.0%
SelfElicit - 16,901 - 1,175 -

Llama

IO -5.6% 7,422 -34.9% 526 -60.1%
ContextIO -9.1% 7,422 -34.9% 718 -45.6%
HistoryIO -8.0% 7,422 -34.9% 449 -66.0%

CoT -14.9% 7,422 -34.9% 1,285 -2.7%
CoVE -25.1% 35,222 +208.7% 3,277 +148.2%
FaR -15.8% 14,104 +23.6% 4,030 +205.1%

SelfCheckGPT -16.7% 130,912 +1047.4% 17,913 +1256.4%
ChatProtect -15.9% 148,618 +1202.6% 12,560 +851.1%
SelfElicit - 11,409 - 1,321 -
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Prompt for identifying named entities and extracting knowledge statements

You are a knowledge extractor. Your task is to identify named entities from the given sentences and 

extract the knowledge points related to these entities.

Steps:

1. For each sentence, identify the named entities within. Named entities include, but are not 

limited to: {{entity types}}                                                                                                 

Please use the format “Named entities in sentence 1: Entity 1 (Type 1)” to list all the named 

entities you find.

2. For each identified named entity, extract all the related knowledge points, ensuring the 

semantic integrity of the points, and that they can be understood independently from the 

original sentence. If independent knowledge points cannot be extracted, please return the 

original sentence directly. Please use the format “Knowledge points in sentence 1: [Knowledge 

point 1][Knowledge point 2]”to list all the knowledge points you find.

{{few shot}}

Your task is to provide named entities and knowledge points based on the following sentence:

{{sentence}}

Named entities:

Figure 8: Prompt for identifying named entities and extracting knowledge statements in Section 3.1.

Prompt for detecting the relation between two statements

Please determine the semantic relationship between the following two sentences. There are three 

possible types of relationships:

1. [entail]: The content of the two sentences is the identical, describing the same aspect of the same 

object, with consistent content.

2. [contradict]: The two sentences describe the same aspect of the same object, but the content is 

directly opposite, presenting a contradiction.

3. [neutral]: The two sentences describe different objects, or different aspects of the same object, 

and can coexist.

Please analyze sentence A and sentence B, and choose one of the relationships. Please briefly 

explain your reasoning.

Sentence A: {{SENTENCE_A}}

Sentence B: {{SENTENCE_B}}

Judgment result:

Figure 9: Prompt for detecting the relation between two statements.
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Prompt for mitigating the conflicts between two statements

Please read the following two sentences.

These two sentences describe the same aspect of the same object, but their content is contradictory. 

Your task is to judge which sentence is more accurate based on your own understanding.

Sentence A: {{SENTENCE_A}}

Sentence B: {{SENTENCE_B}}

Judging criteria:

Please consider the logic and factual basis of the sentences. Choose the sentence you think is 

correct and select from the following two options:

[Sentence A is correct]

[Sentence B is correct]

Figure 10: Prompt for mitigating the conflicts between two statements.

Prompt for identifying check-worthy sentences with domain expertise

You will be handling questions and answers related to medical consultations and healthcare. Your 

task is to categorize a sentence from the response based on its content. Classify the sentence 

accurately under one of the following categories:

1. [Medical Knowledge]: Includes objective descriptions of medical knowledge, detailing specific 

diseases, symptoms, medications, methods, etc. Examples include:

a. Ezetimibe is a cholesterol absorption inhibitor that reduces cholesterol absorption in the gut, 

thereby lowering blood lipids

....

2. [Personal Condition]: Describes the current state of a specific patient (complaints, history, 

laboratory data, signs), without including treatment or advice. Examples include:

a. Age 48, tumor marker carcinoembryonic antigen 100

....

3. [Lifestyle]: Discusses health and lifestyle habits other than treatment. Examples include:

a. Increasing physical exercise can effectively reduce the risk of cardiovascular disease

....

4. [Other]: Sentences that do not fit into any of the above categories, such as emotional 

expression type, subjective evaluation type, non-medical type, etc.

Please identify which category the following sentence from the response belongs to:

{{sentence}}

Figure 11: Prompt for identifying check-worthy sentences with domain expertise for MedHalluZH
and MedHalluEN.
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Prompt for translating samples

=================================User=================================

Please translate the following sentences about medicine into English. Only output the translated 

sentences with serial numbers and nothing else. Sentences to be translated into English:

1. {{sentence 1}}

2. {{sentence 2}}

3. {{sentence 3}}

...

Please translate:

Figure 12: Prompt for translating Chinese dataset into English version.

Prompt for labeling sentences according to the experts’ comment

==============================Instructions:==============================

1. You are given several sentences and a comment. The comment points out the incorrectness of 

some of the sentences. Your task is to find the incorrect sentence pointed out by the comment.

2. The sentences are given in a list. Each sentence starts with “- ”.

3. The comment might include satisfaction issues, correctness issues, and universal issues. But 

you should only focus on the correctness issues.

4. Find the incorrect sentences pointed out by the comment. Note that in some cases all sentences 

might be correct and there is no incorrect sentence.

5. You  should only copy the incorrect sentences as a list, with each item starting with “- ”. Do not 

include other formatting. If there is no incorrect sentence, reply “- ”.

6. The sentences are annotated with <sentence>. The comment is annotated with <comment>. 

Your task is to do this for the given <sentence> and <comment>.

<sentence>

- {{sentence 1}}

- {{sentence 2}}

<comment>

{{comment}}

Figure 13: Prompt for LLM-aided labeling.
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