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Abstract

Video anomaly detection plays a significant role in intelligent
surveillance systems. To enhance model’s anomaly recogni-
tion ability, previous works have typically involved RGB, op-
tical flow, and text features. Recently, dynamic vision sensors
(DVS) have emerged as a promising technology, which cap-
ture visual information as discrete events with a very high
dynamic range and temporal resolution. It reduces data re-
dundancy and enhances the capture capacity of moving ob-
jects compared to conventional camera. To introduce this rich
dynamic information into the surveillance field, we created
the first DVS video anomaly detection benchmark, namely
UCF-Crime-DVS. To fully utilize this new data modality, a
multi-scale spiking fusion network (MSF) is designed based
on spiking neural networks (SNNs). This work explores the
potential application of dynamic information from event data
in video anomaly detection. Our experiments demonstrate the
effectiveness of our framework on UCF-Crime-DVS and its
superior performance compared to other models, establish-
ing a new baseline for SNN-based weakly supervised video
anomaly detection.

Dataset and Code —
https://github.com/YBQian-Roy/UCF-Crime-DVS

Introduction
Video anomaly detection (VAD) is a crucial research direc-
tion in the fields of computer vision and machine learn-
ing, which plays a significant role in intelligent video
surveillance system (Zhou, Yu, and Yang 2023). For VAD
tasks, content-rich datasets are effective in evaluating the
strengths and weaknesses of algorithms and models. Bench-
mark datasets help define the scope of problems that can
be solved. Some of the common publicly available bench-
mark datasets for VAD include UCSD-Peds (Li, Mahade-
van, and Vasconcelos 2013), Avenue (Lu, Shi, and Jia 2013),
Street Scene (Ramachandra and Jones 2020), Shanghai Tech
(Luo, Liu, and Gao 2017), TAD (Lv et al. 2021), and UCF-
Crime (Sultani, Chen, and Shah 2018), which cover vari-
ous monitoring scenarios and anomalous events. Generally,
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Figure 1: The overview of our contributions.

these datasets are first processed through a feature extractor
to obtain RGB features or optical flow features. RGB fea-
tures capture the appearance information of the video, while
optical flow features focus on the motion information.

Recently, dynamic vision sensors (DVS) (Lichtsteiner,
Posch, and Delbruck 2008; Brandli et al. 2014), also known
as event cameras, have garnered significant attention due to
their high dynamic range, high temporal resolution, and low
latency. DVS is a bionic visual sensor inspired by human
retinal peripheral neurons. It uses a difference-based sam-
pling model to generate event data only when pixel bright-
ness changes above a threshold. Unlike traditional images,
event streams encode visual information as discrete events,
dramatically reducing data redundancy and preserving tem-
poral characteristics. This efficient information processing
has enabled event cameras to capture moving objects in the
frame better than conventional cameras and reduce system-
level power consumption by up to 100 times (Delbrück et al.
2010; Posch, Matolin, and Wohlgenannt 2010). However,
despite their advantages, event cameras have not yet been
applied to the field of VAD. Therefore, we introduced the
first DVS dataset in this field using an event camera, called
UCF-Crime-DVS, to explore the potential of it in VAD.

However, Artificial Neural Networks (ANNs) do not han-
dle event streams well due to the discrete nature of event
data. Unlike ANNs, Spiking Neural Networks (SNNs) re-
ceive event format data as input and use discrete, binary
spike signals, leading to a natural advantage in handling
event streams (Chen et al. 2023). Therefore, to better utilize
event data in the field of VAD, this paper introduces a fully
SNN-based VAD framework called MSF. Given the unique



Dataset Sensors Class Resolution Sec Per Example Object
N-Caltech101(Orchard et al. 2015) ATIS 101 240 × 180 0.3s images
N-MNIST(Orchard et al. 2015) ATIS 10 28 × 28 0.3s images
CIFAR10-DVS(Li et al. 2017) DAVIS128 10 128 × 128 - images
N-ImageNet(Kim et al. 2021) Samsung-Gen3 1000 346 × 260 - images
ES-ImageNet(Lin et al. 2021) - 1000 224 × 224 - images
DVS-Gesture(Amir et al. 2017) DAVIS128 11 128 × 128 6s action
N-CARS(Sironi et al. 2018) ATIS 2 128 × 128 0.1s cars
ASL-DVS(Bi et al. 2019) DAVIS240 24 346 × 260 0.1s hand
ASLAN-DVS(Bi et al. 2020) DAVIS240c 432 240 × 180 - action
HMDB-DVS(Bi et al. 2020) DAVIS240c 51 240 × 180 19s action
UCF101-DVS(Bi et al. 2020) DAVIS240c 101 240 × 180 25s action
PAF(Miao et al. 2019) DAVIS346 10 346 × 260 5s action
DailyAction(Liu et al. 2021) DAVIS346 12 346 × 260 5s action
HARDVS(Wang et al. 2024) DAVIS346 300 346 × 260 5-10s action
Bullying10K(Dong et al. 2024) DAVIS346 10 346 × 260 2-20s action
UCF-Crime-DVS (Ours) IMX636 14 1280 × 720 avg 242s anomaly

Table 1: Overview of various DVS datasets.

dynamics and temporal complexity of event data, effec-
tively processing this complexity is important. TIM (Shen
et al. 2024) enhances the spiking self-attention (SSA) mech-
anism’s ability to handle these challenges. Consequently,
our MSF incorporates TIM to improve the model’s temporal
processing of event data.

To the best of our knowledge, this work pioneers the ex-
ploration of applying event data to VAD. The overview of
our work is illustrated in Figure 1. First, we constructed
an event-based dataset for VAD. With this dataset, we then
present the MSF framework, a fully spiking neural network
architecture designed to better detect anomalous events from
event streams. Overall, our contributions can be summarized
as follows:

• We present the first large DVS dataset for VAD, in order
to apply the rich dynamic information and high temporal
resolution of DVS in VAD.

• We propose a multi-scale SNN-based framework for
DVS-based VAD. The Temporal Interaction Module
(TIM) is innovatively incorporated in the convolution-
based SNNs framework to enhance the integration of
spiking features, demonstrating its effectiveness on other
time-series tasks.

Related Works
Event Camera Applications
Event cameras have been widely used in computer vision
applications. For example, TEF (Han et al. 2023) recon-
structs image signals by converting the high temporal res-
olution of the event signals into precise radiance values.
SAN (Zhang et al. 2023) allows flexible input spatial scal-
ing and uses self-supervised fine-tuning to enhance general-
ization performance for removing motion blur from images.
STNet (Zhang et al. 2022) dynamically extracts and fuses
information from temporal and spatial domains for single-
target tracking. ExACT (Zhou et al. 2024) introduces a novel

approach to event-based action recognition by employing
a cross-modal conceptualization. Although event cameras
have been applied in many areas of computer vision, they
have not yet been utilized in VAD. Therefore, our work ex-
plores this possibility.

Weakly Supervised Video Anomaly Detection
Our work is a weakly supervised video anomaly detection
(WSVAD) task. The mainstream approach to it is multi-
instance learning (MIL), proposed by (Sultani, Chen, and
Shah 2018). Specifically, MIL treats each video as a ”bag”
and divides each video into equal-length, non-overlapping
segments called instances. All instances in normal videos
are called positive bags, while those that contain at least one
abnormal instance are called negative bags, representing ab-
normal videos. In MIL, learning is performed by decreasing
the predicted anomaly score for each instance in the posi-
tive bag and increasing the score only for the instance with
the largest anomaly score in the negative bag. Overall, WS-
VAD can be summarized in three stages: 1) each video is
segmented into multiple clips, and features are extracted by
a pre-trained encoder; 2) anomaly scores are generated using
a multilayer perceptron (MLP); 3) the model is optimized
using the MIL framework.

Spiking Neurons
Since event cameras record the visual input as asynchronous
discrete events, they are inherently suitable to cooperate with
SNNs. Spiking neurons in forward propagation can be sum-
marized in three steps: charge, fire, and reset (Fang et al.
2021a). In this paper, we choose the leaky integrate-and-fire
(LIF) neuron model (Gerstner et al. 2014), which is widely
adopted in SNNs due to its simplicity and ability to capture
key aspects of neuronal dynamics. The dynamic model of
LIF can be written in the following form:

ut+1,l = τut,l +Wlot,l−1, (1)

ot,l = Θ(ut,l − Vth), (2)
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Figure 2: Presentation of our dataset and comparison between the DVS and RGB version of UCF-Crime.

ut+1,l = τut,l · (1− ot,l) +Wlot+1,l−1, (3)

where τ is leaky factor and ut,l denotes membrane potential
of the neurons in layer l at time step t. Wl and ol represent
the weight parameters and the fired spikes, respectively. Θ
denotes Heaviside step function. When ut,l ≥ Vth equals
to one, otherwise equals to zero. The membrane potential
accumulates with the input until a given threshold Vth is ex-
ceeded, then the neuron delivers a spike and the membrane
potential ut,l is reset to zero.

UCF-Crime-DVS Dataset
For VAD, datasets are as fundamental as models. In our pa-
per, we construct the first event-based VAD dataset, named
UCF-Crime-DVS. Our dataset contains 1900 event streams
across 13 anomaly classes, aligned with the original UCF-
Crime dataset (Sultani, Chen, and Shah 2018). It includes
1610 training sets with video-level labels and 290 test sets
with frame-level labels, maintaining an equal number of nor-
mal and abnormal videos in both. Table 1 compares the
parameters with other DVS dataset, highlighting that our
dataset has a high resolution of 1280×720 and an average
duration of 242 seconds per video, totaling 128 hours. This
far exceeds the specifications of other DVS datasets. Next,
we will demonstrate the characteristics of the dataset and
provide a detailed description of the dataset construction
process.

Characteristics of Event Data
Unlike pixel points in RGB video, which has three channels
(red, green, blue), event data consists of only two channels
(OFF,ON). Specifically, each event can be represented by
e = (x, y, p, t), where (x, y) represents the position, p ∈

Metavison SDK Playing UCF-Crime

Event Camera

Figure 3: The final shooting environment setup.

{0, 1} indicates the polarity, and t represents the timestamp
(microsecond, µs). Events where the brightness increases
above the threshold are called ON events, while those where
the brightness decreases are called OFF events. As men-
tioned above, the event camera uses a difference-based sam-
pling model and a threshold mechanism to generate events.
This mechanism allows event cameras to capture faster mov-
ing object and more dynamic information than RGB cam-
eras while ignoring most static information. As shown in
Figure 2, the dynamic subjects in our dataset are clearly
presented, whereas the static background is barely visible.
Additionally, small events at the frame edges, such as in
Shoplifting031 and Stealing018, can be captured by the
event camera.

Dataset Construction
Pre-Production Stage. First of all, we prepared an event
camera with a resolution of 1280×720 and IMX636 sensors
provided by Prophesee, and a 32” 4K monitor to play the
original UCF-Crime dataset. The dataset was captured in a



light-free environment, where the only light perceived by the
event camera came from the monitor playing the videos.

Dataset Pre-Processing Stage. We combined the videos
in the original dataset by class into single long videos for
playback and recorded the number of frames in each video.

Dataset Shooting Stage. Metavision SDK is used to con-
trol the event camera. We adjusted the aperture and focus
distance to capture sharp images. To reduce background
noise, we fine-tuned the bias settings while following the
event rate and the display to assess the noise impact. The
final shooting setup is presented in Figure 3.

Dataset Post-Processing Stage. When the event dataset
is recorded, we slice the long event stream by the length of
each video segment, ensuring alignment with the original
dataset. Since the discrete event data cannot be easily pro-
cessed by the downstream networks, it need to be converted
into a more usable format. The mainstream method inte-
grates the event data into event frames based on the number
of event frames or duration for downstream tasks. Similarly,
we merged each event stream into event frames at designated
time intervals.

All events e in every 533,328 µs (corresponding to 16
video frames) are integrated into an event frame Ej which
represents j-th event frame. Define e∆t = (x, y, p) as the
event in ∆t, where ∆t = tjr − tjl . The process of integrat-
ing event can be expressed as:

Ej(x, y, p) =

tjr−1∑
t=tjl

1(e∆t = (xt, yt, pt)), (4)

here, Ej(x, y, p) denotes the pixel value at position (x, y, p)
with which is integrated from the event data within the spec-
ified time interval [tjl , tjr ) and 1 is an indicator function that
equals 1 only when e∆t = (xt, yt, pt).

Methods
To effectively process the binary event streams dataset, we
propose a multi-scale spiking fusion (MSF) network for
WSVAD. Benefiting from the high temporal resolution and
rich dynamic details of event data, the proposed multi-scale
spiking fusion module can efficiently exploit temporal fea-
tures. The complete structure of MSF is shown in Figure 4.

Problem Statement

Let X = {xi}ni=1 represent the training set containing n
event stream videos from the proposed UCF-Crime-DVS
dataset, and T = {ti}ni=1 denote the temporal duration,
where ti is the event frame number of the i-th event stream.
Additionally, we use Y = {yi}ni=1, where yi = {0, 1}, to
represent the video anomaly label set. In the testing stage,
the anomaly score vector for i-th video is defined as si =
{sj}tj=1, where sj = {0, 1}, and sj is anomaly score of the
j-th event clip.

Feature Extraction
Most VAD tasks start with feature extraction. We use Hardvs
dataset (Wang et al. 2024), a large event-based action recog-
nition dataset, to pre-train a Spikingformer (Zhou et al.
2023), which serves as our feature extractor. The features
of UCF-Crime-DVS are then extracted using the pre-trained
Spikingformer. After that, we obtain the event stream fea-
ture F with dimensions t × D from the training video x,
where D is the dimension of clip features. According to the
multi-instance learning principle, the feature F is fed into
our MSF.

Multi-Scale Spiking Fusion
When dealing with event data, particularly for VAD, it is
crucial to efficiently extract and retain temporal features
while discovering temporal dependencies. Our proposed
multi-scale spiking fusion module (MSF) captures both
multi-resolution local spiking dependencies (light green
block in Figure 4) within individual clip, and global spik-
ing dependencies (light yellow block in Figure 4) between
event clips. Finally, these dependencies are seamlessly in-
tegrated based on the unique characteristics of the spiking
feature (light blue block in Figure 4).

Local Spiking Feature. MSF uses pyramidal dilated con-
volution {P1,P2,P3} over the temporal domain to learn
multi-scale representations of event clips. It learns the multi-
scale spiking features from the feature F = {fd}Dd=1. Given
the feature fd ∈ Rt, the one-dimensional dilated convolu-
tion operation is performed using the kernel Wp,d ∈ Rω

with p ∈ {1, ..., D/4}, d ∈ {1, ..., D}, and ω indicating the
filter size, which is defined as:

fp =

D∑
d=1

Wp,d ∗ fd, (5)

where ∗ denotes the dilated convolution operator, and
fp ∈ Rt represents the output feature after applying di-
lated convolution in the time dimension. The features Fp ∈
Rt×D/4that have been concatenated by fp are then passed
through spike neurons to obtain the spiking features:

FP = Lif(Fp), (6)
where Lif is the leaky integrate-and-fire spike neuron.

Global Spiking Feature. Despite of the local temporal de-
pendencies, global ones are also important. We introduce
a lightweight SpikingGCN to further capture the temporal
dependencies across different event clips, which is shown
in the yellowish green block in Figure 4. Our global tem-
poral extraction module first downscales the features from
F ∈ Rt×D to Fc ∈ Rt×D/4 with Fc = Conv1×1(F). Spik-
ingGCN then models global temporal dependencies of spik-
ing feature in terms of feature similarity and relative dis-
tance.

Feature similarity branch generates the adjacency matrix
Msim for SpikingGCN using event frame-wise cosine sim-
ilarity method, which is denoted as follows,

Msim =
FcFc⊤

∥Fc∥2 · ∥Fc∥2
. (7)
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Figure 4: The framework of our proposed MSF. The LSF and GSF represents the local and global spiking feature extractor
module, respectively. LCE denotes cross-entropy loss, and LC denotes center loss.

We employ the position distance branch to capture long-
distance relationships between objects or scenes by measur-
ing their positional differences across event frames, as illus-
trated below:

Mdis(i, j) =
−|i− j|

σ
, (8)

it means the proximity between event frames i and j de-
pends solely on their relative positions in time, independent
of other factors. The hyperparameter σ is used to adjust the
degree of influence.

Overall, the modified SpikingGCN can be summarized as
follows:

FG = Lif
([
Soft(Msim);Soft(Mdis)

]
FcW

)
, (9)

where W is the unique learnable weight used to transform
the input feature space into another feature space. Soft in-
dicates the Softmax normalization, which is used to ensure
the sum of each row of Msim and Mdis equals to one.

Multi-Scale Spiking Interaction. We use residual con-
catenation to prevent features from being over-smoothed and
concatenate global spiking features with local spiking fea-
tures, which can be describe as,

F̄ = [F(l)]l∈L ∈ Rt×D, (10)

where L = {P1,P2,P3,G}. FP and FG refer to the learned
local and global temporal features respectively.

As previously mentioned, event data possesses unique
dynamics and temporal intricacies, whereas the membrane
potentials of spiking neurons exhibit a cumulative nature.
Therefore, the extracted temporal information initially man-
ifests as membrane potentials rather than spikes. Conse-
quently, traditional ANN-based temporal learning methods,
such as MTN (Tian et al. 2021), fail to effectively integrate
the multi-scale features of event clips, leading to substantial
under-utilization of information from different time steps.
To exploit the hidden information across various time steps,
we employ the Temporal Interaction Module (TIM) (Shen
et al. 2024) to fuse historical spike information with current
spike information. The hyperparameter α is used as a weight
parameter, allowing the model to balance the combination of
historical states and current inputs during computation. This
can be mathematically expressed by the following equation:

FTIM = αConv(FTIM[t− 1]) + (1− α)F̄[t]. (11)

TIM demonstrates a dual mechanism for temporal infor-
mation processing: immediate feature extraction and histor-
ical state integration. This approach not only extracts key
features from the current input but also effectively utilizes
the implicit state information from previous time steps. This
design achieves an organic combination of short-term and
long-term dependencies, enabling the model to capture the
complex dynamics in event data.



Methods Architecture Supervision AUC(%) FAR(%)
Sultani et al. (Sultani, Chen, and Shah 2018) ANNs Weakly-supervised 55.56 8.69
3C-Net (Narayan et al. 2019) ANNs Weakly-supervised 59.22 9.50
AR-Net (Wan et al. 2020) ANNs Weakly-supervised 60.71 8.51
Wu et al. (Wu et al. 2020) ANNs Weakly-supervised 58.58 34.35
RTFM (Tian et al. 2021) ANNs Weakly-supervised 52.67 13.19
TSA (Joo et al. 2023) ANNs Weakly-supervised 51.86 22.36
SEW-ResNet (Fang et al. 2021a) SNNs Weakly-supervised 53.99 11.79
PLIF (Fang et al. 2021b) SNNs Weakly-supervised 54.74 9.17
baseline(Zhou et al. 2023) SNNs Weakly-supervised 62.78 11.52
MSF(Ours) SNNs Weakly-supervised 65.01 3.27

Table 2: AUC and FAR of the proposed method against other methods on UCF-Crime-DVS. These methods are adapted to our
achitecture and re-trained on the UCF-Crime-DVS.

LSF GSF TIM AUC(%) FAR(%)
- - - 62.78 11.52
✓ - - 62.44 5.06
- ✓ - 60.32 6.80
- - ✓ 50.06 0.68
✓ ✓ - 55.69 7.27
✓ - ✓ 64.39 2.80
- ✓ ✓ 64.07 5.13
✓ ✓ ✓ 65.01 3.27

Table 3: Ablation study for different module.

Anomaly Scorer. After MSF, a fully connected (FC) layer
and a sigmoid function are employed as an anomaly scorer
to generate the anomaly score vector si:

si = Sigmoid(FC(FTIM)). (12)

Loss Function
The classic dynamic multiple-instance learning (DMIL) loss
and center loss are implemented for our proposed MSF.

DMIL Loss. The DMIL loss is to enlarge the inter-class
distance of instances, which can be represented as follows:

LDMIL =
1

ki

∑
sji∈Si

[−yilog(s
j
i )

+ (1− yi)log(1− sji )]

, (13)

where sji is descending sorted anomaly score vector of the
i-th video, Si = {sji | j = 1, 2, ..., ki} consists of top-ki
elements in si and yi = {0, 1} is the video anomaly label.

Center Loss. The center loss used for anomaly score re-
gression collects the anomaly scores of normal event clips,
reducing the intra-class distance. It can be represented as,

Lc =


1
ti

ti∑
j=1

∥∥∥sji − ci

∥∥∥2
2
, if yi = 0

0, otherwise

, (14)

64.75%
64.71%

64.78%

64.87%

65.01%

64.82%

64.55%

64.65%

64.75%

64.85%

64.95%

65.05%

0 0.2 0.4 0.5 0.6 0.8

AUC(%)

50.8%

65.0%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

Outside MSF Inside MSF

Figure 5: Ablation study for TIM. Left: Performance com-
parison with different position of TIM. Right: Performance
comparison with different α values.

τ 0.2 0.25 0.4 0.5 0.625 0.8
AUC(%) 63.99 63.96 64.37 64.78 65.01 64.00

Table 4: Performance comparison with different time con-
stant τ on UCF-Crime-DVS.

ci =
1

ti

ti∑
j=1

sji , (15)

where ci is the center of anomaly score vector si. Overall,
the total loss function of our MSF model is given by:

L = LDMIL + λLc. (16)

Experiments
We validated our UCF-Crime-DVS dataset and MSF frame-
work using a VAD task. Additionally, we tested the ability
of each module with ablation experiments.

Experiments Setup
Training Dataset. We use our UCF-Crime-DVS dataset to
test and verify our proposed method. Our UCF-Crime-DVS
dataset is aligned with the UCF-Crime dataset, covering 13
classes of anomalies in 1,610 training videos with video-
level labels and 290 test videos with frame-level labels.
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Training Details. Following (Sultani, Chen, and Shah
2018), each event stream is divided into non-overlapped
clips. Empirically, we set k = 4 for our dataset. We use the
Adam optimizer with a weight decay of 0.0005, and a learn-
ing rate of 0.0001. For σ in Eq.8 and λ in Eq.16, we set them
as 1 and 20, respectively. Each batch contains 60 samples,
split equally between normal and abnormal video sequences,
which are randomly selected from the training set. The mod-
els for conducting experiments are implemented based on
Pytorch (Paszke et al. 2019), SpikingJelly (Fang et al. 2023)
and a server with single RTX4090 GPU.

Evaluation Metrics. We use two standardized perfor-
mance metrics to evaluate the anomaly detection capability
of the model: Area Under of Curve (AUC) of the frame-level
Receiver Operating Characteristics (ROC) and False Alarm
Rate (FAR) with a threshold 0.5. The combined assessment
of these two metrics not only reflects the overall discrimina-
tive ability of the model, but also its reliability and stability
in real-world application scenarios.

Performance Analysis
Table 2 presents a comparison of our method against other
methods on UCF-Crime-DVS dataset. It can be seen that
compared classical VAD frameworks do not perform well
on this dataset. Some methods have a FAR of more than
20%, suggesting they are unable to process event data ef-
fectively. Other SNN-based architectures with deeper net-
work layers also fail to achieve a high AUC and low FAR
at the same time, indicating that simply increasing the net-
work complexity does not improve the VAD performance.
Our MSF, on the other hand, achieves an AUC of 65.01% for
anomaly detection, along with a FAR of only 3.27%, which
has 3% more AUC and 8% lower FAR than our baseline. It
establishes a new baseline for event-based WSVAD.

Ablation Study
A series of ablation studies presented in Table 3 demonstrate
that optimal performance is achieved when all three modules
are combined. In contrast, the performance of the LSF-GSF
combination, as well as each module individually, is subop-
timal. This can be attributed to the fact that both LSF and
GSF expand feature representations in the temporal domain,
with the LSF lacking interconnections and the GSF smooth-
ing features, which imposes a challenge for anomaly local-

ization. However, integrating the TIM module with LSF and
GSF significantly improves performance, highlighting the
TIM module’s critical role in effectively integrating infor-
mation across time steps.

Ablations for TIM. As shown in the left of Figure 5, we
conducted ablation experiments to examine the impact of
TIM placement. The results reveal a more than 10% accu-
racy difference between the two placements, indicating that
the optimal placement of TIM is within the MSF module. In-
tegrating TIM within MSF enables seamless fusion of tem-
poral features across multiple time steps, ensuring accurate
capture of temporal dependencies and improving anomaly
detection performance. Additionally, as seen in the right of
Figure 5, any non-zero value for α yields better results than
setting α to zero. MSF achieves its best performance when
α is set to 0.6, indicating that the introduction of temporal
interaction significantly enhances performance.

Ablations for Time Constant. A smaller time constant τ
results in more leakage of the membrane potential over time,
potentially leading to a loss of temporal information. To op-
timize the model, we performed ablation experiments on the
time constants τ . Table 4 shows that the model’s ability to
detect anomalies initially increases with τ , reaching a peak
accuracy of 65.01% when τ is set to 0.625. However, when
τ exceeds 0.625, AUC begins to decline, dropping further
at 0.8. This suggests that an excessively large τ reduces the
model’s temporal memory capacity. Therefore, it is indis-
pensable to select an appropriate τ through experimentation.

Visualization

A set of visualization are presented in Figure 6. Noting that
certain scene transitions and the opening or closing credits
exhibit similar characteristics to the explosion events, e.g.
flickering visuals and a surge in event occurrences. It makes
detecting explosion events in our dataset very challeng-
ing. However, our model still successfully recognizes explo-
sion events such as Explosion022, highlighting its robust-
ness. Additionally, for subtle anomalous events like stealing,
which are difficult to detect visually, our model is able to
identify these weak anomalies to some extent, as illustrated
by the case of Stealing036. Although the visualized anomaly
scores do not consistently exceed the anomaly threshold in
anomalous segments, this is because some anomalous events
include relatively stationary segments that did not trigger
DVS, resulting in partial loss of these events.

Conclusion
In this paper, we present the first event-based VAD dataset
and introduce the MSF framework for SNN-based VAD.
Extensive experiments demonstrate that our method outper-
forms others on UCF-Crime-DVS, highlighting its potential
for real-world applications. While our method has not yet
achieved such high accuracy of traditional approaches on
RGB dataset, it offers a fresh perspective on VAD and lays
the foundation for future research.
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