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Abstract

Combining large language models with logical001
reasoning enhances their capacity to address002
problems in a robust and reliable manner. Nev-003
ertheless, the intricate nature of logical reason-004
ing poses challenges to gathering reliable data005
from the web for building comprehensive train-006
ing datasets, subsequently affecting the per-007
formance on downstream tasks. To address008
this, we introduce a novel logic-driven data009
augmentation approach, AMR-LDA. AMR-010
LDA converts the original text into an Ab-011
stract Meaning Representation (AMR) graph,012
a structured semantic representation that en-013
capsulates the logic structure of the sentence,014
upon which operations are performed to gener-015
ate logically modified AMR graphs. The mod-016
ified AMR graphs are subsequently converted017
back into text to create augmented data. No-018
tably, our methodology is architecture-agnostic019
and enhances both generative large language020
models, such as GPT-3.5 and GPT-4, through021
prompt augmentation, and discriminative large022
language models through contrastive learning023
with logic-driven data augmentation. Empir-024
ical evidence underscores the efficacy of our025
proposed method with improvement in perfor-026
mance across seven downstream tasks, such027
as reading comprehension requiring logical028
reasoning, textual entailment, and natural lan-029
guage inference. Furthermore, our method030
leads on the ReClor leaderboard1. The source031
code and data are publicly available2.032

1 Introduction033

Enabling pre-trained large language models034

(LLMs) to reliably perform logical reasoning is an035

important step towards strong artificial intelligence036

(Chollet, 2019). However, data annotation for logi-037

cal reasoning tasks is a difficult, time-consuming038

and costly process that has led to the scarcity of039

1https://eval.ai/web/challenges/
challenge-page/503/leaderboard/1347

2https://bit.ly/3SuiRVi

large-scale logical reasoning datasets derived from 040

natural language on the web. Therefore, LLMs 041

are usually trained on generic corpora or smaller 042

datasets on logical reasoning that lead to poor gen- 043

eralisation (Wang et al., 2022). The automatic aug- 044

mentation of logical reasoning data has the poten- 045

tial to enhance the generalisation and performance 046

of LLMs on logical reasoning tasks. 047

To address this challenge, we propose a logic- 048

driven data augmentation method based on Ab- 049

stract Meaning Representation (AMR). AMR is a 050

structural representation of the semantic meaning 051

and logical structure of a text via a rooted directed 052

acyclic graph (DAG) (Shou et al., 2022). Figure 1 053

shows an example of AMR graph. The AMR graph 054

can be easily modified by changing the nodes or ar- 055

guments to create logically equivalent or nonequiv- 056

alent graphs. By taking advantage of the ease of 057

logical manipulation of AMR graph and the end-to- 058

end conversion between natural language and AMR 059

graph, our proposed data augmentation is not task- 060

specific or template-dependent, and can generate 061

logically equivalent and nonequivalent sentences 062

that are diverse in language. 063

In order to improve the performance of LLMs 064

on downstream tasks that require logical reason- 065

ing, we investigate two different applications of the 066

proposed logic-driven data augmentation for two 067

different types of language models. In this paper, 068

we call models such as RoBERTa (Liu et al., 2019) 069

and DeBERTa (He et al., 2021) as discriminative 070

large language models, and models like GPT-3.5 071

(OpenAI, 2023a) as generative LLMs. We improve 072

the reasoning ability of discriminative large lan- 073

guage models by applying contrastive learning to 074

identify logically equivalent and nonequivalent sen- 075

tence pairs generated using the proposed data aug- 076

mentation, before fine-tuning the model further on 077

downstream tasks. In order to improve the perfor- 078

mance of generative LLMs on logical reasoning 079

tasks without fine-tuning, we augment the input 080
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:manner

:polarity

:ARG0

:ARG0

:ARG1

w/work-01

S1: The girl believes that the boy doesn't work hard. 
S2: The girl doesn't believe that the boy works hard. 

g/girl

b/believe-01

h/hard-02

-

b2/boy

:polarity

:condition

:op1

:name

:ARG0
:name

:op1

c/clever-01

k/kind-01 p/person

n/name-p2/person

n2/name

“Alan”

“Bob”

:ARG1

S3: If Alan is kind, then Bob is not clever.

Figure 1: An example of AMR. Two sentences with the
same semantic meaning can be represented as the same
AMR graph. “b”, “g”, and “w” are variables. “w/work-
01” refers to the variable “w” has an instance relation
with the AMR concept “work-01”. “work” is the frame
from Propbank (Kingsbury and Palmer, 2002) and “-01”
is the sense of frame. “:ARG0”, “:ARG1”, “:condition”,
“:polarity” are frame arguments, following PropBank
instructions. “:condition” and “:polarity -” are used to
represent conditional and negative relationships.

prompt by extending the question context and op-081

tions using data augmentation. We summarize key082

contributions as follows:083

1. We propose an AMR-based logic-driven data084

augmentation method to automatically con-085

struct logically equivalent/nonequivalent sen-086

tences.087

2. We enhance the logical reasoning of large088

language models through logical-equivalence-089

identification contrastive learning and prompt090

augmentation.091

3. The experimental results show that our092

method can improve large language models’093

performance on downstream tasks including094

logical reasoning, textual entailment and natu-095

ral language inference.096

2 Related Work 097

Logical reasoning is rigorous thinking to derive a 098

conclusion based on a given premise (Seel, 2011; 099

Bronkhorst et al., 2020). Existing datasets on rea- 100

soning can be categorised into two levels: sen- 101

tence level, including tasks like natural language 102

inference that assess if one sentence logically fol- 103

lows from another (e.g., MNLI (Williams et al., 104

2018), RTE (Wang et al., 2018), MRPC (Dolan 105

and Brockett, 2005), QNLI (Rajpurkar et al., 106

2016), QQP (Wang et al., 2018)); passage level, 107

which requires logical deduction from given 108

contexts, questions, and multiple choices (e.g., 109

PARARULE (Clark et al., 2021), PARARULE- 110

Plus (Bao et al., 2022)) and reading comprehension 111

tasks (e.g., ReClor (Yu et al., 2020), LogiQA (Liu 112

et al., 2021)). We introduce an abstract meaning 113

representation-based methodology for logic-driven 114

data augmentation aimed at enhancing models’ log- 115

ical reasoning capabilities across these tasks. 116

There are three primary methods for enhanc- 117

ing the capabilities of pre-trained language mod- 118

els in logical reasoning and general natural lan- 119

guage understanding: 1) Data augmentation with 120

fine-tuning, exemplified by AMR-DA (Shou et al., 121

2022), which employs Abstract Meaning Repre- 122

sentation for paraphrasing, and LReasoner (Wang 123

et al., 2022), which uses templates and syntax 124

parsing for constructing logically equivalent sen- 125

tences; 2) Continual pre-training, with methods like 126

MERIt (Jiao et al., 2022) integrates a meta-path 127

strategy for discerning logical text structures and 128

a counterfactual data augmentation strategy to pre- 129

clude pre-training shortcuts. IDoL (Xu et al., 2023) 130

utilises six logical indicators (Pi et al., 2022; Prasad 131

et al., 2008) to build a logic pre-training dataset 132

from Wikipedia, enhancing the logical reasoning 133

capabilities of pre-trained models. 3) Prompting, 134

notably Chain-of-Thought prompting (Wei et al., 135

2022), to improve multi-step logical reasoning per- 136

formance. Our AMR-LDA surpasses LReasoner- 137

LDA by incorporating a broader range of logical 138

equivalence laws, enabling the automatic construc- 139

tion of more precise logically equivalent sentences. 140

Our contrastive learning method enhance the per- 141

formance of pre-trained models, including MERIt 142

and IDoL, on logical reasoning tasks. Additionally, 143

Our AMR-based logic-driven prompt augmentation 144

can improve large language models’ logical reason- 145

ing capabilities, contrasting with the detrimental 146

effects of CoT Prompting and AMR-DA. 147
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3 Method148

3.1 System Architecture149

Our system, shown in Figure 2, features an AMR-150

Based Logic-Driven Data Augmentation Mod-151

ule that parses sentences into AMR graphs, modi-152

fies the graphs to generate corresponding logically153

equivalent and nonequivalent graphs, then converts154

these back into natural language. The Logical-155

Equivalence-Identification Contrastive Learn-156

ing Module aims to improve the logical reasoning157

ability of discriminative large language models by158

conducting contrastive learning to identify equiva-159

lent and nonequivalent sentence pairs, before fur-160

ther fine-tuning the model on downstream tasks.161

The Prompt Augmentation Module is intended to162

improve the performance of generative autoregres-163

sive LLMs on logical reasoning tasks by applying164

the data augmentation module to the input fed into165

the models at inference time, without performing166

any fine-tuning.167

3.2 AMR-Based Logic-Driven Data168

Augmentation169

We propose Abstract Meaning Representation-170

based Logic-driven Data Augmentation (AMR-171

LDA) to construct logically equivalent and172

nonequivalent sentences automatically. For sim-173

plicity, we consider only individual sentences, and174

propositional logic statements expressed in natual175

language. AMR-LDA involves the following steps:176

1): Convert a sentence into AMR graph. 2): Log-177

ically augment the AMR graph. 3): Convert the178

logically augmented AMR graph back into natural179

language.180

Text-To-AMR Parsing A text-to-AMR model is181

used to parse a sentence into an AMR graph. In182

this step, the input is a natural language sentence183

written in English. The output is a rooted, labeled,184

directed, and acyclic AMR graph that captures the185

main semantic information of the sentence.186

AMR Graph Modification The AMR graph187

is modified to construct logically equivalent and188

nonequivalent graphs. To create logically equiv-189

alent graphs, we consider four different logical190

equivalence laws: double negation, commutative,191

implication, and contraposition laws. These laws192

of logical equivalence are defined below using193

propositional statements A and B, followed by ex-194

amples in natural language (e.g. A is “Alan is kind”195

and B is “Bob is clever”).196

Logical Equivalence Logical equivalence is a 197

fundamental concept in formal logic (Mendelson, 198

2009). It can be formally defined as: Two propo- 199

sitions or statement forms P and Q are logically 200

equivalent if they have the same truth value in every 201

possible circumstance, or in every possible model. 202

This can be denoted as P ≡ Q. This condition can 203

also be described by the statement: P and Q are 204

logically equivalent if and only if the statement “P 205

if and only if Q” is a tautology. A tautology is a 206

statement that is always true, regardless of the truth 207

values of its components. In terms of truth tables, 208

P and Q are logically equivalent if their truth ta- 209

bles are identical, i.e., P and Q have the same truth 210

value for each possible assignment of truth values 211

to their components. 212

Definition 1: Contraposition Law

(A → B) ⇔ (¬B → ¬A)

If Alan is kind, then Bob is clever. ⇔ If Bob is 213

not clever, then Alan is not kind. 214

To implement the contraposition law, we first 215

swap the first half of the sentence with the second 216

half if the AMR parser detects that the sentence is a 217

conditional statement (e.g. “if-then”, as marked by 218

the blue background in Table 1). In the second step, 219

we construct logically equivalent sentences for the 220

four potential scenarios in which the negation may 221

appear. Here, we use one such scenario as an exam- 222

ple. If the first half of the sentence has no negation 223

and the second half of the sentence has no negation 224

either, then we will add the negative polarity argu- 225

ment, “:polarity -”, to the first half and the second 226

half of the sentence to construct logically equiva- 227

lent sentences (marked with the yellow background 228

in Table 1). AMR uses “:polarity -” to represent 229

negation (e.g. “not”). Note that our method is not 230

limited to the word “not”, the negative argument “: 231

polarity -” in the AMR graph may represent other 232

negative words in the original sentence. We dis- 233

cuss those cases in Section 3.2 Definition 4 when 234

describing the implementation for double negation 235

law. An example of the augmentation process be 236

found in Figure 8 in Appendices. 237

Definition 2: Implication Law

(A → B) ⇔ (¬A ∨ B)

If Alan is kind, then Bob is clever. ⇔ Alan is not 238

kind or Bob is clever. 239
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Text-To-AMR Parsing AMR Graph ModificationText AMR-To-Text Generation

Score h4Score h3

Pre-trained LLM

[CLS] S1 [SEP] Positive Sample
[CLS] S1 [SEP] Negative Sample

Score h1

Fine-tuned LLM

Score h2

Downstream Tasks

….

1. AMR-Based Logic-Driven Data Augmentation (AMR-LDA)

2a. Logical-Equivalence-Identification Contrastive Learning for Discriminative LLM

Context: ¬ α → ¬ β, ¬ β → ¬ γ
Option A: ¬ γ → ¬ α 
Option B: γ → α
Option C: ¬ γ → ¬ β
Option D: α → γ

√
Context: ¬ α → ¬ β, ¬ β → ¬ γ
Option A: ¬ γ → ¬ α + AMR-LDA extended option:  α → γ + AMR-LDA extended context: β → α, γ → β 
Option B: γ → α + AMR-LDA extended option:  ¬ α → ¬ γ + AMR-LDA extended context: β → α, γ → β 
Option C: ¬ γ → ¬ β + AMR-LDA extended option:  β → γ + AMR-LDA extended context: β → α, γ → β 
Option D: α → γ + AMR-LDA extended option:  ¬ γ → ¬ α + AMR-LDA extended context: β → α, γ → β 

2b. Prompt Augmentation for Generative LLM

AMR-LDA

:ARG1:condition

:op1

:nam
e

:ARG0 :name

:op1

c/clever-01

k/kind-01 p/person

n/namep2/person

n2/name

“Alan”

“Bob”

Original Text:
S1:  If Alan is kind, 
then Bob is clever.

:polarity

:op1

:name

:ARG1 :name

:op1

:condition
k/kind-01

c/clever-01 p2/person

n2/namep/person

n/name

“Bob”

“Alan”

-

-

:ARG0

:polarity

Generated Logically 
Equivalent/Inequivalent Texts: 
Positive Sample: Alan isn't kind if Bob isn't 
clever.

Randomly delete a “:polarity -” to construct 
negative sample:
Negative Sample: Alan isn’t kind if Bob is 
clever.

Original Text:
S1:  If Alan is kind, then Bob is clever.

Generated Logically Equivalent/Inequivalent Texts: 
Positive Sample: Alan isn't kind if Bob isn't clever.
Randomly delete a “:polarity -” to construct negative sample:
Negative Sample: Alan isn’t kind if Bob is clever.

AMR-LDA

α = you have keyboarding skills.
β = you are able to use a computer.
γ = you are able to write your essays using a word processing program.

Option B

  Solution Path 1 Solution Path 2

Figure 2: Architecture of AMR-LDA (1) and its applications to improve the reasoning performance of discriminative
LLMs with contrastive learning (2a) and autoregressive generative LLMs by augmenting input prompts without
fine-tuning (2b).

We consider two scenarios. If the sentence is240

detected by the AMR parser as a conditional state-241

ment, then we replace the conditional connective242

with a disjunction connective (marked with yellow243

background in Table 1). In the second scenario, if244

the sentence contains disjunction connectives, we245

replace the disjunction connective with conditional246

connective and remove the negative polarity from247

the AMR graph if it exits. Otherwise, a negative248

polarity argument will be added. An example can249

be found in Appendix Figure 6.250

Definition 3: Commutative Law

(A ∧ B) ⇔ (B ∧ A)

Alan is kind and Bob is clever. ⇔ Bob is clever251

and Alan is kind.252

If the AMR graph has a conjunction connective,253

we swap the order of the first half of the graph254

with the second half. An example can be found255

in Table 1 and in Appendix Figure 7. The sub-256

sentence “The wolf is fierce” and “the bald eagle is257

clever” marked as blue have been swapped.258

Definition 4: Double Negation Law 259

A ⇔ ¬¬A 260

Alan is kind. ⇔ Alan is not unkind. 261

We apply the double negation law only to those 262

sentences and their AMR graphs that do not con- 263

tain the “:polarity -” argument which represents 264

negative polarity. There are several words that can 265

be represented as “:polarity -”, such as “not”, “no”, 266

“never”, “none”, and “nothing”. A representative 267

example can be seen in Table 1 and in Appendix 268

Figure 8. The original sentence is “The bald eagle 269

is strong”. The logically equivalent sentence we 270

construct using double negation law is “The bald 271

eagle is not weak”, while the logically nonequiv- 272

alent sentence is “The bald eagle is weak”. Note 273

that the generated sentences do not contain the 274

word “not” twice. We avoid generating sentences 275

with “not” appearing multiple times consecutively 276

because they are uncommon and unnatural. The 277

process of applying double negation law is as fol- 278

lows: convert the sentence into an AMR graph; 279
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Original sentence Positive sample Negative sample

If Alan is kind,
then Bob is clever.

Alan isn’t kind if Bob isn’t clever. Alan isn’t kind if Bob is clever.

Alan is not kind or Bob is clever. Alan is kind or Bob is clever.

The bald eagle is strong. The bald eagle is not weak . The bald eagle is weak .

The bald eagle is clever
and the wolf is fierce.

The wolf is fierce and
the bald eagle is clever .

The wolf is not fierce and
the bald eagle is not clever .

Table 1: Examples of generated logically equivalent (positive) and nonequivalent sentences(negative). The blue
background highlights the parts of the original sentence that have been moved from their original positions. The
yellow background highlights the change in polarity from the original sentence.

augment the AMR graph by adding a negative po-280

larity argument “: polarity -”; convert the modified281

AMR graph back into a natural language sentence;282

lastly, replace the adjective word with its antonym283

by using WordNet (Miller, 1992). To create logi-284

cally nonequivalent sentences, we randomly delete285

or add a negative polarity argument “:polarity -” in286

the AMR graph. Additionally, we randomly sam-287

ple a sentence from the corpus and consider it as288

logically nonequivalent to the original sentence.289

AMR-To-Text Generation Lastly, an AMR-to-290

text model is used to convert the modified AMR291

graph back into natural language, to generate a sen-292

tence that is logically equivalent or nonequivalent293

to the original sentence.294

3.3 Logical-Equivalence-Identification295

Contrastive Learning296

Inspired by SimCSE (Gao et al., 2021) and Sim-297

CLR (Chen et al., 2020), we propose to improve298

dicriminative language models’ logical reasoning299

ability by performing contrastive learning to iden-300

tify logically equivalent and nonequivalent sen-301

tence pairs that are generated using AMR-LDA302

(Figure 2, 2a).303

Contrastive Learning The goal of contrastive304

learning is to minimise the distance of the hidden305

representations of two similar inputs while max-306

imising the distance between two representations307

of dissimilar inputs. Our goal is to optimise the308

model to map logically equivalent sentences to hid-309

den representations that are close to each other.310

h
(
s, s+

)
≫ h

(
s, s−

)
. (1)311

h is a score function used to measure the distance312

between two representations. s is an original sen-313

tence, s+ is a positive sample logically equivalent314

to the original sentence s, s− is a negative sample315

logically nonequivalent to the original sentence s.316

The expected semantic representation distance be- 317

tween s and s+ should be much closer than that of 318

s and s−. The training loss can be written with the 319

following formula: 320

L = −
∑

log
exp (h (+))

exp (h (+)) + exp (h (−))
, (2) 321

where h (+) and h (−) are short for h (s, s+) and 322

h (s, s−). 323

After the contrastive learning step, we further 324

fine-tune the model on downstream tasks, including 325

logical reasoning reading comprehension, natural 326

language inference, and textual entailment. 327

3.4 Prompt Augmentation 328

To improve the performance of generative LLMs 329

(e.g., GPT-3.5 or GPT-4) on logical reasoning tasks, 330

we propose augmenting the input prompt using 331

AMR-LDA before feeding it to the model (Fig- 332

ure 2, 2b). In the example from Figure 2, 2b, the 333

context and options are marked in green and grey, 334

respectively. The original Option B is “If you are 335

able to write your essays using a word processing 336

program, then you have keyboarding skills,” which 337

cannot be explicitly inferred from the context with- 338

out using the logical equivalence law (contrapo- 339

sition law). AMR-LDA is able to augment the 340

original option and generate “If you have no key- 341

boarding skills, then you are not able to write your 342

essays using a word processing program,” which is 343

logically equivalent to the original Option B, now 344

also marked in green. This augmented Option B 345

can be inferred from the given context. Further- 346

more, AMR-LDA is also applied to augmenting 347

sentences within the context. The augmented, logi- 348

cally equivalent sentences from the context are “If 349

you are able to use a computer, then you have key- 350

boarding skills. If you are able to write your essays 351

using a word processing program, then you are 352

able to use a computer,” which are marked in grey 353
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and support the validity of the original Option B.354

Finally, the augmented option and context are com-355

bined and fed as a prompt to GPT-3.5/4. Based on356

the extended information, we can find two solution357

paths marked with grey and green backgrounds un-358

der Module 2b in Figure 2. Solution Path 1 uses359

the sentence from the extended context marked360

with a grey background to support that Option B is361

correct. Solution Path 2 uses the sentence from the362

original context marked with a green background363

to support that the extended Option B is correct.364

Consequently, our method provides more solution365

paths for large language models to more effectively366

solve complex logical reasoning questions.367

4 Experiments368

4.1 Datasets369

ReClor (Yu et al., 2020) and LogiQA (Liu370

et al., 2021) are two challenging logical reasoning371

datasets. ReClor is collected from Graduate Man-372

agement Admission Test (GMAT) and Law School373

Admission Test (LSAT). LogiQA is collected by374

National Civil Service Examination (Liu et al.,375

2021). Additionally, we performed evaluation on376

five datasets for natural language inference and377

textual entailment tasks: MNLI (Williams et al.,378

2018), RTE (Wang et al., 2018), MRPC (Dolan379

and Brockett, 2005), QNLI (Rajpurkar et al., 2016),380

and QQP (Wang et al., 2018). MNLI, RTE, and381

MRPC assess the relationship between two sen-382

tences, while QNLI focuses on the relationship383

between a question and a sentence, and QQP eval-384

uates the relationship between two questions.385

Synthetic Data for Contrastive Learning In386

this paper, we perform contrastive learning for dis-387

criminative large language models on sentences388

augmented from a synthetic dataset. This dataset389

contains 14,962 sentences with different combina-390

tions of 23 entities, 2 relations and 40 attributes.391

Synthetic data is used to generate more controllable392

logical sentences. More details about the synthetic393

dataset can be found in the Appendix Section E.394

4.2 Settings395

We conduct all the experiments on 8 NVIDIA A100396

GPUs, each with 80G of VRAM. We conducted the397

primary experiments on the ReClor and LogiQA398

datasets using three different random seeds, and399

reported the average values in Table 2. We adopted400

the parse_xfm_bart_large and T5Wtense models401

from AMRLib3 to perform text-to-AMR and AMR- 402

to-text conversions when generating logically aug- 403

mented sentence pairs. The reason why we se- 404

lect those two models is explained in subsection C. 405

In our experiments, we use RoBERTa (Liu et al., 406

2019) and DeBERTa (He et al., 2021) as the dis- 407

criminative large language models. We also com- 408

pare our method against MERIt (Jiao et al., 2022) 409

and IDoL (Xu et al., 2023), the leading models 410

on the ReClor leaderboard. As for generative 411

large language models, we utilise GPT-3.5 (gpt- 412

3.5-turbo) (OpenAI, 2023a) and GPT-4 (OpenAI, 413

2023b). More details about the experiment, case 414

studies and confidence intervals can be found in Ap- 415

pendix Section B, D, D.1, and F. 416

4.3 Logical-Equivalence-Identification 417

Contrastive Learning for Discriminative 418

LLM 419

This section evaluates the effectiveness of con- 420

trastive learning on synthetic data augmented us- 421

ing AMR-LDA in order to improve the perfor- 422

mance of discriminative language models on down- 423

stream tasks that require logical reasoning. We 424

compare AMR-LDA against two baseline augmen- 425

tation methods: AMR-DA (Shou et al., 2022) and 426

LReasoner-LDA (Wang et al., 2022). It is impor- 427

tant to note that we do not use the whole system 428

or pipeline from LReasoner, we only use the data 429

augmentation method from LReasoner in our ex- 430

periment. For each augmentation method, 14,962 431

pairs of logically equivalent and logically nonequiv- 432

alent sentences are constructed with a positive to 433

negative sample ratio of 1:1. Twenty percent of 434

the augmented data are used as the validation set 435

during contrastive learning. All the models are 436

further fine-tuned and compared on downstream 437

tasks requiring logical reasoning and natural lan- 438

guage inference. The results as shown in Table 2, 439

suggest that the models trained using AMR-LDA 440

perform better in most cases compared with the 441

other augmentation methods. 442

4.4 Prompt Augmentation for Generative 443

LLM 444

We adopt GPT-3.5 (gpt-3.5-turbo) (OpenAI, 2023a) 445

and GPT-4 (OpenAI, 2023b) as the generative large 446

language models for evaluating the effectiveness of 447

prompt augmentation using AMR-LDA. The exper- 448

iments are performed on the ReClor and LogiQA 449

3https://amrlib.readthedocs.io/en/latest/
models/
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Models/ Datasets
ReClor LogiQA MNLI MRPC RTE QNLI QQP

Dev Test Test-E Test-H Dev Test Eval

RoBERTa 59.73 53.20 72.57 37.97 35.43 34.50 88.95 90.44 83.39 94.73 90.89
RoBERTa LReasoner-LDA 59.46 53.66 72.19 39.10 34.81 34.81 89.41 89.46 86.28 94.25 90.01
RoBERTa AMR-DA 58.66 53.93 66.81 43.80 36.45 37.22 89.74 90.44 86.28 94.42 92.06
RoBERTa AMR-LDA 65.26 56.86 77.34 40.77 40.29 38.14 89.78 90.93 86.64 94.49 93.14

DeBERTaV2 73.93 70.46 80.82 62.31 39.72 39.62 89.45 89.71 84.48 95.00 92.54
DeBERTaV2 LReasoner-LDA 75.73 70.70 84.08 60.17 30.87 28.51 89.23 89.95 87.00 95.15 92.50
DeBERTaV2 AMR-DA 79.06 75.90 84.62 69.04 29.95 30.10 89.92 89.71 83.39 95.02 92.42
DeBERTaV2 AMR-LDA 79.40 77.63 85.75 71.24 42.34 39.88 89.67 90.20 88.09 95.24 92.47

Table 2: Comparison between our proposed AMR-LDA and baseline models. We use RoBERTa-Large, DeBERTaV2-
XXLarge as the pre-trained models. Our fine-tuned LLMs perform equally well or better than baseline methods.

datasets. The experimental results are shown in450

Table 3. The models with prompt augmentation451

achieved better performance in all cases except452

for the “hard” test set for ReClor. We also com-453

pare our method against Chain-of-Thought Prompt-454

ing (CoT) (Wei et al., 2022) and AMR-DA (Shou455

et al., 2022) for prompt augmentation. We apply456

AMR-DA to paraphrase each option and each sen-457

tence in the context, and the rest is the same as458

the AMR-LDA prompt augmentation. We found459

that CoT and augmentation with AMR-DA caused460

a decline in performance for both GPT-3.5 and461

GPT-4 in most cases, except for GPT-4 on LogiQA.462

The performance drop associated with using CoT463

Prompting has been reported by (Xu et al., 2023).464

However, they only sampled 100 cases from the val-465

idation set, whereas we use the entire validation set466

and test set. AMR-DA conducts data augmentation467

by converting the text into an AMR graph and then468

randomly selecting one of the following operations:469

removing, swapping, substituting, or inserting an470

argument into the graph. The modified AMR graph471

is then converted back into a new sentence. This472

modification of the AMR may disrupt the original473

sentence’s structure and introduce noise into the474

prompt, potentially worsening performance.475

GPT-3.5 AMR-LDA performs better than GPT-476

3.5 on the general test set, which includes both477

test-E and test-H. The ReClor test set is hidden, so478

we do not have access to the detailed results for479

test-E and test-H. Therefore, we cannot provide a480

clear explanation as to why AMR-LDA seems to481

decrease the test-H metric for GPT-3.5. However, a482

detailed examination of the results reveals that GPT-483

3.5 achieves only a 0.5375 test accuracy on test-484

H, whereas GPT-4 attains a 0.8857 test accuracy485

on the same test. Furthermore, GPT-4 with AMR-486

LDA performs better on all the ReClor and LogiQA487

test sets. This suggests that GPT-3.5 might not 488

be as effective in comprehending complex logical 489

reasoning as GPT-4 and GPT-3.5 may struggle with 490

understanding augmented prompts. 491

Models/Datasets
ReClor LogiQA

Dev Test Test-E Test-H Dev Test

GPT-3.5 57.02 56.20 59.31 53.75 37.63 37.32
+ CoT 34.80 25.80 27.50 24.46 23.96 24.57
+ AMR-DA 33.20 32.90 34.31 31.78 40.55 31.49
+ AMR-LDA 58.62 56.69 60.90 53.39 40.55 39.47
GPT-4 87.35 89.60 90.90 88.57 43.24 53.88
+ CoT 37.00 24.80 26.13 23.75 23.50 27.03
+ AMR-DA 85.00 85.60 86.36 85.00 51.30 56.06
+ AMR-LDA 87.73 90.20 91.59 89.11 51.92 58.06

Table 3: Comparison of Chain-of-Thought Prompting
(CoT), AMR-DA, and AMR-LDA on GPT-3.5 and GPT-
4, and between GPT-3.5 and GPT-4 alone, for evaluation
on the ReClor and LogiQA test sets.

Models/Datasets RoBERTa
AMR-LDA

RoBERTa
LReasoner-LDA

Depth=1 100.00 100.00
Depth=1 (with altered rules) 100.00 99.87
Depth=2 100.00 100.00
Depth=2 (with altered rules) 99.73 74.00

Table 4: Comparison between AMR-LDA and
LReasoner-LDA with RoBERTa-Large on PARARULE-
Plus and PARARULE-Plus (with altered rules).
Depth=1 means that only one rule was used to infer
the answer. Depth=1 (with altered rules) means one of
the rules has been altered using logical equivalence law.

We assessed the robustness of AMR-LDA and 492

LReasoner-LDA models on the PARARULE-Plus 493

dataset (Bao et al., 2022) by modifying the test set 494

with the contraposition law. Examples from this 495

dataset can be found in Appendix Figures 9 and 10. 496

AMR-LDA showed enhanced robustness on these 497

altered tests compared to LReasoner-LDA. 498
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Models/Datasets Con Con-dou Con-dou
imp

Con-dou
imp-com

RoBERTa-Large as backbone model
ReClor 60.40 60.80 61.80 59.80
LogiQA 37.78 33.17 33.94 38.70
MNLI 89.55 90.15 89.68 89.78
MRPC 90.69 89.22 90.44 90.93
RTE 81.23 85.20 84.84 86.64
QNLI 94.16 94.05 94.51 94.49
QQP 92.12 89.88 92.06 93.14

DeBERTaV2-XXLarge as backbone model
ReClor 81.80 72.20 79.40 78.80
LogiQA 32.25 45.46 38.24 40.55

DeBERTa-Large as backbone model
MNLI 90.80 90.59 90.68 89.67
MRPC 90.20 88.48 89.95 90.20
RTE 84.84 87.36 85.56 88.09
QNLI 95.28 95.04 94.97 95.24
QQP 92.33 92.40 92.29 92.47

Table 5: An experiment to assess the influence of dif-
ferent logical equivalence laws on downstream logical
reasoning and natural language inference tasks. “Con”,
“dou”, “imp” and “com” are the abbreviation for contra-
position law, double negation law, implication law and
commutative law. “Con-dou” denotes data constructed
using both the contraposition law and the double nega-
tion law. Other terms are derived in a similar manner.

Models/Datasets
ReClor LogiQA

Dev Test Test-E Test-H Dev Test

DeBERTaV2-XXLarge 73.93 70.46 80.82 62.31 39.72 39.62
+ AMR-LDA-1:1 78.80 76.10 84.77 69.28 40.55 41.47
+ AMR-LDA-1:2 80.20 76.40 84.77 69.82 47.00 43.93
+ AMR-LDA-1:3 81.20 75.70 84.09 69.10 42.70 41.01

DeBERTaV2-XXLarge + MERIt-1:3 80.20 75.80 85.00 68.57 37.32 42.39
+ AMR-LDA-Con-1:3 82.60 76.60 86.13 69.10 45.00 43.01
+ AMR-LDA-Merged-1:3 81.80 76.90 87.50 68.57 44.54 45.62

DeBERTaV2-XXLarge + IDoL 77.60 74.50 82.95 67.85 39.78 40.24
+ AMR-LDA-Con-1:3 79.20 77.00 85.68 70.17 47.61 44.54
+ AMR-LDA-Merged-1:3 79.40 75.60 86.36 67.14 41.93 41.32

Table 6: An experiment to assess how positive:negative
sample ratios affect downstream tasks. AMR-LDA 1:1
means the ratio of positive and negative samples is 1:1.

4.5 Ablation Studies499

We perform experiments using a subset of the log-500

ical equivalence laws. We present the results in501

Table 5. This ablation study serves as the basis502

for our selection of four logical equivalence rules503

in the main experiment as Table 2 shown. Since504

the test sets are private and used to rank models505

on the leaderboard, we evaluated directly using the506

validation sets instead of the test sets. To make a507

fair comparison, we ensure the sizes of the training508

sets are the same for con, con-dou, con-dou-imp509

and com-dou-imp-com. For this ablation study, we510

constructed training sets of size 1,000.511

We conduct another ablation study where we512

modify the positive and negative sample ratios.513

We select DeBERTaV2-XXLarge as the backbone 514

model. We compare the generated data against 515

our AMR-LDA and MERIt. Table 6 shows that a 516

higher proportion of negative samples may help in- 517

crease the performance on logical reasoning tasks. 518

Furthermore, we chose DeBERTaV2-XXLarge + 519

MERIt-1:3 (Jiao et al., 2022) and DeBERTaV2- 520

XXLarge + IDoL (Xu et al., 2023) as the backbone 521

models. We performed logical equivalence identifi- 522

cation contrastive learning, using data constructed 523

solely from the AMR-LDA contraposition law and 524

subsequently merging all four logical equivalence 525

laws. Subsequent fine-tuning on downstream tasks 526

demonstrated that incorporating more logical equiv- 527

alence laws can enhance the performance of lan- 528

guage models on logical reasoning tasks. 529

5 Conclusion 530

The sparsity of web data related to logical reason- 531

ing constrains the advancement of large language 532

models in their performance on logical reasoning 533

tasks. Existing methods for constructing logically 534

equivalent sentences are restricted to templates and 535

specific datasets. Our AMR-LDA considers more 536

logical equivalence laws than existing methods do, 537

and it does not reply on any ad-hoc templates. 538

We apply AMR-LDA to fine-tuning discrimina- 539

tive LLMs and prompt augmentation of generative 540

LLMs (GPT-3.5 and GPT-4), which yield better 541

results than baseline methods on logical reasoning 542

tasks. 543

6 Human Evaluation 544

Human evaluation is conducted to evaluate the 545

correctness and fluency of the logically manipu- 546

lated sentences generated using AMR-LDA and 547

LReasoner-LDA. We constructed the survey with 548

20 questions, and each question consists of two 549

randomly selected sentences: one from those gener- 550

ated by our AMR-LDA and the other by LReasoner- 551

LDA, respectively. 45 participants participate to 552

the survey anonymously. We ask them to evalu- 553

ate the sentences on two aspects: which sentence 554

is logically equivalent to the original sentence or 555

both of them are logically equivalent to the original 556

sentence. The other one is which sentence is more 557

fluent. 63.92% and 76.44% of people prefer AMR- 558

LDA’s logically equivalent and fluent sentences 559

over those generated by LReasoner-LDA. 560
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7 Limitations561

One limitation of our approach is its reliance on562

AMR for logic-driven data augmentation, which,563

while innovative, may not fully capture the intrica-564

cies of natural language variation and complex log-565

ical constructs encountered in diverse texts. This566

constraint reflects the broader challenge in NLP of567

developing models that can understand and reason568

with the full spectrum of human language, includ-569

ing idiomatic expressions, nuanced context, and570

varied logical frameworks. Our work makes signif-571

icant strides in this direction, yet it also highlights572

the need for continued research to enhance the ro-573

bustness and adaptability of NLP systems to more574

closely mirror human-level comprehension and rea-575

soning capabilities.576

8 Ethics Statement577

All the data used in this paper are either synthet-578

ically generated or open-source datasets. All the579

code used to run the experiments is written using580

open-source libraries or adapted from published581

code from other papers. We will also release our582

code and any synthetically generated data to ensure583

that the work can be reproduced. The human eval-584

uation has been approved by the Ethics Committee585

of the main authors’ employer.586
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A Appendix 740

B Experiment Setup 741

We follow the training script from Huggingface 742

and the default hyperparameters4 to conduct the 743

training and Algorithms 2 and 3 illustrate the neg- 744

ative sample construction and the training pro- 745

cess, respectively. For the contrastive learning, 746

we fine-tune RoBERTa-Large, DeBERTa-Large, 747

and DeBERTaV2-XXLarge using the constructed 748

logical equivalence sentence pair from our AMR- 749

LDA, LReasoner’s logic-driven data augmentation 750

method (LReasoner-LDA) and AMR-DA data aug- 751

mentation method. We use DeBERTaV2-XXLarge 752

for ReClor and LogiQA tasks because DeBER- 753

TaV2 supports multiple-choice question tasks with 754

a DeBERTaV2ForMultipleChoice head. The hy- 755

perparameters for stages 1 and 2 training can be 756

found in Tables 21 and 22. 757

C Conversion Between Texts and AMR 758

In order to decide which models to use to perform 759

text and AMR conversions, we experiment with 760

different combinations of text-to-AMR and AMR- 761

to-text models. In the experiment, a sentence is 762

converted to AMR, and then is converted back to 763

text without any modification to the AMR. We 764

pick the combination that can recover the orig- 765

inal sentence the most, as measured in BLEU 766

score. The results are reported in Table 7. We 767

find that using parse_xfm_bart large as the AMR 768

parser and T5Wtense as the AMR generator pro- 769

duces the highest BLEU score. Therefore, we se- 770

4https://github.com/huggingface/transformers/
tree/main/examples/pytorch/text-classification
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lect them as the text-to-AMR parser and AMR-771

to-text generator in all the remaining experiments.772

Parse_xfm_bart_large is an AMR parser that uses773

BART-Large as the backbone model (Lewis et al.,774

2020). T5Wtense is an AMR generator that uses775

T5 as the backbone model (Raffel et al., 2020).776

Text-To-AMR Parser AMR-To-Text Generator BLEU

Spring 25.08
Spring T5wtense 30.86

T5 24.76

T5
T5wtense 29.33

T5 30.82

parse_xfm_bart_large
T5wtense 38.45

T5 30.10

Table 7: Comparison of different combinations of text-
to-AMR and AMR-to-text models in recovering original
texts after the conversions without any augmentation to
the AMR. We adopt the combination with the highest
BLEU score in the rest of the experiments.

D Case Studies777

We present several case studies comparing our778

AMR-LDA method with LReasoner-LDA in terms779

of constructing logically equivalent sentences.780

These constructions leverage four logical equiv-781

alence laws. LReasoner-LDA, however, does not782

design for the implication law, double negation783

law, or the commutative law, leading to its inability784

to handle scenarios that require these laws. Ad-785

ditionally, LReasoner-LDA struggles to construct786

logically equivalent sentences using the contrapo-787

sition law when encountering new sentences not788

found in the ReClor and LogiQA datasets.789

Contraposition law

Original Sentence If the bald eagle is small,
then the mouse is not small.

AMR-LDA The bald eagle isn’t small,
unless the mouse is small.

LReasoner-LDA If it is not small, then it
will be not the bald eagle.

Table 8: Logically equivalent sentences constructed by
contraposition law.

Contraposition law

Original Sentence If the bald eagle is kind,
then Dave is not short.

AMR-LDA If Dave is short,
the bald eagle is not kind.

LReasoner-LDA If it is not kind, then it
will be not the bald eagle.

Table 9: Logically equivalent sentences constructed by
contraposition law.

Implication law

Original Sentence The bear is not sleepy
or Bob is not cute.

AMR-LDA If the bear is not sleepy,
then Bob is not cute.

LReasoner-LDA -

Table 10: Logically equivalent sentences constructed by
implication law.

Double negation law
Original Sentence The bald eagle is beautiful.
AMR-LDA The bald eagle isn’t ugly.
LReasoner-LDA -

Table 11: Logically equivalent sentences constructed by
double negation law.

Implication law

Original Sentence If the lion is not funny,
then the tiger is beautiful.

AMR-LDA Lions aren’t funny
or Tigers beautiful.

LReasoner-LDA -

Table 12: Logically equivalent sentences constructed by
implication law.

Double negation law
Original Sentence The bald eagle is strong.
AMR-LDA The bald eagle is not weak.
LReasoner-LDA -

Table 13: Logically equivalent sentences constructed by
double negation law.

Commutative law

Original Sentence The bald eagle is kind
and the wolf is not dull.

AMR-LDA The wolf is not dull
and the bald eagle is kind.

LReasoner-LDA -

Table 14: Logically equivalent sentences constructed by
commutative law.

Commutative law

Original Sentence The lion is thin
and the dinosaur is not angry.

AMR-LDA The dinosaur was not angry
and the lion was thin.

LReasoner-LDA -

Table 15: Logically equivalent sentences constructed by
commutative law.
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D.1 Real World/Long Sentence Case Studies790

The appendix of our paper describes Algorithm 1,791

which uses four lists from Tables 16, 17, 18 and 19792

to create synthetic sentences. We’ve also tested793

our method on real-world datasets like ReClor794

and LogiQA that require logical reasoning. Our795

method, AMR-LDA prompt augmentation, can796

work with just one list of various sentences. It797

automatically detects if a sentence can be trans-798

formed into a logically equivalent one using a spe-799

cific logical equivalence law. An example of this800

application on a real-world sentence is shown in801

Figure 3. We process sentences from context and802

options, generating logically equivalent sentences803

where possible.804

Our AMR-LDA can also been applied to long805

sentences. Our method can generate logically806

equivalent sentences for long sentences with clear807

sentence structure using logical equivalence rules808

(Commutative law) as shown in Figure 4 and 5.809

The second example shows that our AMR-LDA810

can understand the effect of that clause on yoga811

stretching, showing the generalisation advantages812

of AMR as a semantic representation compared813

to LReasoner-LDA which relies on a constituency814

parser and template and fails in this case which is815

out of templates.816

E Synthetic Dataset Construction817

Here are the entities, relationships, and attributes818

we used to construct our synthetic dataset. We819

used the synthetic dataset to conduct the AMR-820

based logic-driven data augmentation and logical-821

equivalence-identification contrastive learning. For822

the subject, we used “the bald eagle”, “the tiger”,823

“the bear”, “the lion”, “the wolf”, “the crocodile”,824

“the dinosaur”, “the snake”, “the leopard”, “the cat”,825

“the dog”, “the mouse”, “the rabbit”, “the squir-826

rel”, “Anne”, “Alan”, “Bob”, “Charlie”, “Dave”,827

“Erin”, “Harry”, “Gary”, and “Fiona”. For the re-828

lationships, we used “is” and “is not”. For the at-829

tributes, we used “kind”, “quiet”, “round”, “nice”,830

“smart”, “clever”, “dull”, “rough”, “lazy”, “slow”,831

“sleepy”, “boring”, “tired”, “reckless”, “furry”,832

“small”, “cute”, “lovely”, “beautiful”, “funny”,833

“big”, “strong”, “awful”, “fierce”, “heavy”, “horri-834

ble”, “powerful”, “angry”, “tall”, “huge”, “short”,835

“thin”, “little”, “tiny”, “wealthy”, “poor”, “dull”,836

“rough”, “bad”, and “sad”.837

Here are the entities, relationships, and attributes838

we used to fine-tune T5-Large. After T5-Large had839

been fine-tuned, we used the fine-tuned model to 840

generate logical equivalence sentences as the label 841

for the above synthetic sentences and then con- 842

ducted the logical-equivalence-identification con- 843

trastive learning and downstream task. For the 844

subject, based on the above subject name entities, 845

we add “the duck”, “the goat”, “the goose”, “the 846

donkey”, “the cow”, “James”, “Robert”, “John”, 847

“Michael”, “David”, “William”, “Richard”, “An- 848

thony”, “Paul”, “Andrew”. For the attributes, 849

we add “cautious”, “careful”, “brainy”, “bored”, 850

“adorable”, “aggressive”, “anxious”, “dizzy”, “de- 851

pressed”, “disturbed”, and “awful”. 852

The entity names used for the “change name” ex- 853

periment in Table 20. For the new entity names that 854

we used “the sheep”, “the kitten”, “the Garfield”, 855

“the lion”, “the goat”, “the bull”, “the cow”, “the ele- 856

phant”, “the butterfly”, “the fish”, “Peter”, “Bill”, 857

“Tom”, “Amy”, “Charles”, “Tim”, “Lucy”, and 858

“John”. 859

Table 16, 17, 18, and 19 are the logic pattern and 860

its variation that we consider to replace the original 861

logic pattern for the experiment on Table 20. 862

To validate whether pre-trained language model 863

can distinguish logically equivalent sentences. We 864

design a preliminary experiment as Table 20 shown. 865

We use RoBERTa-Large to conduct the experiment. 866

We first generate a synthetic test set 1, which in- 867

cludes 1312 test samples with 23 entities, 2 relation- 868

ships, 40 attributes, and 4 logical equivalence laws 869

(double negation, contraposition, implication, and 870

commutative laws). Model’s performance can im- 871

prove if we fine-tune language model on the logical 872

equivalence training set, which is constructed by 873

our AMR-LDA data augmentation method. Also, 874

The result shows that the model’s performance will 875

not drop if we change the entity name or logic 876

pattern, this indicates that the fine-tuned discrimi- 877

native large language model can handle scenarios 878

requiring greater robustness more effectively. 879

Here are some synthetic sentence examples and 880

more details for implication, conjunction, disjunc- 881

tion, and negation in the context of AMR-LDA 882

mentioned in Algorithm 1. 883

Double Negation Law: The original sentence 884

“The bald eagle is strong” is parsed into an AMR 885

graph using a text-to-AMR parser. The parser con- 886

firms no negative meanings. To apply the double 887

negation law, negative polarity is added, and an 888

AMR-to-text generator then reforms the sentence. 889

WordNet replaces the adjective with its antonym, 890

creating a logically equivalent sentence. 891
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AMR-LDA Prompt Augmentation Case Study

GPT-4 Input: “context”: “If you have no keyboarding skills at all, you will not be able to use
a computer. And if you are not able to use a computer, you will not be able to write your essays
using a word processing program.”,
“question”: “If the statements above are true, which one of the following must be true?”, "answers":
A. “If you are not able to write your essays using a word processing program, you have no
keyboarding skills. If you have the skill of a keyboard, you can write your essay using a word
processing program.If you can use a computer, you have keyboarding skills. If you can write
your essay with a word processing program, you can use a computer. Whether you have keyboard
skills at all or can’t use a computer. Whether you can use a computer or you can’t write your
own essay with a word processing program.”,
B. “If you are able to write your essays using a word processing program, you have at least some
keyboarding skills. If you don’t have at least some keyboard skills, you can’t write your essay
with a word processing program. If you can use a computer, you have keyboarding skills. If you
can write your essay with a word processing program, you can use a computer. Whether you
have keyboard skills at all or can’t use a computer. Whether you can use a computer or you
can’t write your own essay with a word processing program.”,
C. “If you are not able to write your essays using a word processing program, you are not able
to use a computer. If you can use a computer, you can write your essay using word processing
programs. If you can use a computer, you have keyboarding skills. If you can write your essay
with a word processing program, you can use a computer. Whether you have keyboard skills at
all or can’t use a computer. Whether you can use a computer or you can’t write your own essay
with a word processing program.”,
D. “If you have some keyboarding skills, you will be able to write your essays using a word
processing program. If you can’t write your essay with a word processing program, you don’t
have some keyboard skills. If you can use a computer, you have keyboarding skills. If you can
write your essay with a word processing program, you can use a computer. Whether you have
keyboard skills at all or can’t use a computer. Whether you can use a computer or you can’t
write your own essay with a word processing program.”
GPT-4 output: B

Figure 3: Example for using AMR-LDA to augment the prompt from ReClor dataset and their subsequent utilisation
as input for GPT-4. Data segments that are marked in bold italics and appear in blue were generated using the
contraposition law, while those in brown were generated using the implication law.

Commutative Law: The sentence “The bald892

eagle is clever and the wolf is fierce” is converted893

into an AMR graph. The root node “a/and” of this894

graph, a conjunction argument, allows for the appli-895

cation of the commutative law by swapping argu-896

ments. The AMR-to-text generator then produces897

a new sentence, maintaining logical equivalence.898

Implication Law: The sentence “If Alan is kind,899

then Bob is clever” is parsed into an AMR graph.900

The method checks for conditional and conclusion901

arguments. An “or” disjunction replaces the root902

node, and negative polarity is added to the first903

half of the sentence. The modified graph is then904

transformed back into a natural language sentence,905

ensuring logical equivalence.906

Contraposition Law: The same initial sentence 907

“If Alan is kind, then Bob is clever” is analyzed. 908

The contraposition law is applied by swapping the 909

conditional and conclusion arguments in the AMR 910

graph and adding negative modifiers to both. The 911

adjusted graph is then converted back into a logi- 912

cally equivalent sentence. 913

F Confidence Intervals for the Main 914

Experiments 915

Here are the confidence intervals for the main ex- 916

periments in Table 23. We select random seed 0, 21 917

and 42 to conduct the main experiment on ReClor 918

and LogiQA datasets as shown on Table 23. We 919

utilise a 95% confidence interval to calculate. 920
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Long Sentence Example 1:

Original sentence: Sarah woke up early in the morning, and she started her day with a cup of
coffee and some light yoga stretches.
Original sentence’s AMR graph: (a / and :op1 (w / wake-up-02 :ARG1 (p / person :name
(n / name :op1 "Sarah")) :time (e / early :op1 (d / date-entity :dayperiod (m / morning)))) :op2
(s / start-01 :ARG0 p :ARG1 (d2 / day :poss p) :ARG2 (a2 / and :op1 (c / coffee :quant (v /
volume-quantity :quant 1 :unit (c2 / cup))) :op2 (s2 / stretch-01 :ARG0 p :mod (y / yoga) :ARG1-of
(l / light-06) :quant (s3 / some)))))
Modified AMR graph using AMR-LDA: (a / and :op1 (s / start-01 :ARG0 p :ARG1 (d2 / day
:poss p) :ARG2 (a2 / and :op1 (c / coffee :quant (v / volume-quantity :quant 1 :unit (c2 / cup))) :op2
(s2 / stretch-01 :ARG0 p :mod (y / yoga) :ARG1-of (l / light-06) :quant (s3 / some)))) :op2 (w /
wake-up-02 :ARG1 (p / person :name (n / name :op1 "Sarah")) :time (e / early :op1 (d / date-entity
:dayperiod (m / morning)))))
Generated logical equivalence sentence using AMR-LDA: Sarah started her day with a cup of
coffee and some light yoga stretching and woke up early in the morning.

Figure 4: One example uses our AMR-LDA to generate logical equivalence sentences for long sentences. In this
case, a logical equivalence sentence is generated using commutative law, and the same color represents the same
argument. In this case, the order of the former and latter arguments for the conjunction word “and” has been
swapped.

Long Sentence Example 2:

Original sentence: Sarah woke up early in the morning, and she started her day with a cup of
coffee and some light yoga stretches that will help lose weight.
Original sentence’s AMR graph: (a / and (a / and :op1 (w / wake-up-02 :ARG1 (p / person
:name (n / name :op1 "Sarah")) :time (e / early :op1 (d / date-entity :dayperiod (m / morning))))
:op2 (s / start-01 :ARG0 p :ARG1 (d2 / day :poss p) :ARG2 (a2 / and :op1 (c / coffee :quant (v
/ volume-quantity :quant 1 :unit (c2 / cup))) :op2 (s2 / stretch-01 :mod (y / yoga) :ARG0-of (h /
help-01 :ARG1 (l / lose-01 :ARG1 (w2 / weight))) :ARG1-of (l2 / light-06) :quant (s3 / some)))))
Modified AMR graph using AMR-LDA: (a / and :op1 (s / start-01 :ARG0 p :ARG1 (d2 / day
:poss p) :ARG2 (a2 / and :op1 (c / coffee :quant (v / volume-quantity :quant 1 :unit (c2 / cup))) :op2
(s2 / stretch-01 :mod (y / yoga) :ARG0-of (h / help-01 :ARG1 (l / lose-01 :ARG1 (w2 / weight)))
:ARG1-of (l2 / light-06) :quant (s3 / some)))) :op2 (w / wake-up-02 :ARG1 (p / person :name (n /
name :op1 "Sarah")) :time (e / early :op1 (d / date-entity :dayperiod (m / morning)))))
Generated logical equivalence sentence using AMR-LDA: Sarah started her day with a cup of
coffee and some light yoga stretching to help lose weight, and woke up early in the morning.

Figure 5: One example uses our AMR-LDA to generate logical equivalence sentences for long sentences. In this
case, a logical equivalence sentence is generated using commutative law, and the same color represents the same
argument. AMR-LDA can understand the effect of that clause on yoga stretching. In this case, the order of the
former and latter arguments for the conjunction word “and” has been swapped.
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Logic pattern for double negation law

Original sentence subject + verb + adj
Positive sample subject + verb + “not” + the antonym of the adj
Negative sample subject + verb + “not” + adj

Table 16: We used the logic pattern for double negation law for constructing the test set for the experiment in Table
20.

Original logic pattern for commutative law Changed logic pattern

s1 sub1 + verb1 + adj1 sub1 + verb1 + “not” + adj1
s2 sub2 + verb2 + adj2 sub2 + verb2 + “not” + adj2
s3 sub1 + verb1 + “not” + adj1 sub2 + verb2 + “not” + adj2
Original sentence s1 + “and” + s2
Positive sample s2 + “and” + s1
Negative sample s1 + “and” + s3

Table 17: We used the logic pattern for commutative law for constructing the test set for the experiment in Table 20.

Logic pattern for contraposition law

Original sentence1 “If” + sub1 + verb + adj1 + “, then” + sub2 + verb + adj2
Positive sentence1 “If” + sub2 + verb + “not” + adj2 + “, then” + sub1 + verb + “not” + adj1
Negative sentence1 “If” + sub1 + verb + adj1 + “, then” + sub2 + verb + “not” + adj2

Original sentence2 “If” + sub1 + verb + adj1 + “, then” + sub2 + verb + “not” + adj2
Positive sentence2 “If” + sub2 + verb + adj2 + “, then” + sub1 + verb + “not” + adj1
Negative sentence2 “If” + sub1 + verb + adj1 + “, then” + sub2 + verb + adj2

Original sentence3 “If” + sub1 + verb + “not” + adj1 + “, then” + sub2 + verb + adj2
Positive sentence3 “If” + sub2 + verb + “not” + adj2 + “, then” + sub1 + verb + adj1
Negative sentence3 “If” + sub1 + verb + “not” + adj1 + “, then” + sub2 + verb + “not” + adj2

Original sentence4 “If” + sub1 + verb + “not” + adj1 + “, then” + sub2 + verb + “not” + adj2
Positive sentence4 “If” + sub2 + verb + “not” + adj2 + “, then” + sub1 + verb + “not” + adj1
Negative sentence4 “If” + sub1 + verb + “not” + adj1 + “, then” + sub2 + verb + adj2

Table 18: We used the logic pattern for contraposition law for constructing the test set for the experiment in Table
20.

Original logic pattern for implication law

Original sentence “If” + sub1 + verb + adj1 + “, then” + sub2 + verb + adj2
Positive sample sub1 + verb + “not” + adj1 + “or” + sub2 + verb + adj2
Negative sample sub1 + verb + “not” + adj1 + “or” + sub2 + verb + “not” + adj2

Changed logic pattern
Original sentence sub1 + verb + “not” + adj1 + “or” + sub2 + verb + adj2
Positive sample “If” + sub1 + verb + adj1 + “, then” + sub2 + verb + adj2
Negative sample sub1 + verb + “not” + adj1 + “or” + sub2 + verb + “not” + adj2

Table 19: We used the logic pattern for implication law for constructing the test set for the experiment in Table 20.
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Test sets ↓; Models → RoBERTa
Fine-tuned
RoBERTa

Test set 1 0.5335 0.8513
Test set 2 (change name) 0.5347 0.8510
Test set 3 (change logic) 0.4672 0.9482

Table 20: Compared fine-tuned RoBERTa-Large and RoBERTa-Large on three different synthetic test sets.

Stage-1
Fine-tuning

Stage-2
Fine-tuning

Seed 2021 0/21/42
Batch Size 32 16/32
Initial Learning Rate 2e-5 2e-5/3e-6
Learning Rate Scheduler Type Linear
Epoch 10
Num Warmup Steps 0
Weight Decay 0
Max Sequence Length 256
Gradient Accumulation Steps 1

Table 21: Hyperparameter details for stage-1 fine-tuning and stage-2 fine-tuning except ReClor and LogiQA. Stage-1
fine-tuning means logical-equivalence-identification contrastive learning, and stage-2 fine-tuning means fine-tuning
on the downstream tasks.

Stage-2 Fine-tuning
ReClor LogiQA

Seed 42
Batch Size 2/4
Gradient Accumulation Steps 2
Initial Learning Rate 1e-05/1e-5/3e-6
Epoch 10
Adam Betas (0.9, 0.98)
Adam Epsilon 1e-6
No Clip Grad Norm True
Warmup Proportion 0.1
weight_decay 0.01

Table 22: Model hyperparameter tuning details for stage-2 fine-tuning on ReClor and LogiQA.
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If Alan is kind, then Bob is clever.

Text-to-AMR Parser

Contraposition Law

Alan isn't kind if
Bob isn't clever.

AMR-to-
Text 

Generator

Implication Law

Alan is not kind or 
Bob is clever.

:polarity

:op1

:name

:ARG1 :name

:op1

:condition
k/kind-01

c/clever-01 p2/person

n2/namep/person

n/name

“Bob”

“Alan”

-

-

:ARG0

:polarity

:condition

:op1

:name

:ARG0 :name

:op1

c/clever-01

k/kind-01 p/person

n/namep2/person

n2/name

“Alan”

“Bob”

:ARG1

:name

:op1

:op2

:ARG1
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:op1

:op1

:name

:ARG0

c/clever-01

root/or

k/kind-01

p/person

n/name

p2/person

n2/name

“Alan” “Bob”

-

Figure 6: An example of our AMR-based logic-driven data augmentation method using contraposition law and
implication law

The bald eagle is clever and the wolf
is fierce.

Text-to-AMR Parser

The wolf is fierce and the bald
eagle is clever.

AMR-to-Text Generator

Commutative 
       Law

:op1

:mod

:ARG1 :domain

a/and

c/clever-01 f/fierce

w/wolfe/eagle

b/bald

:op2 :op1

:mod

:domain :ARG1

a/and

f/fierce c/clever-01

e/eaglew/wolf

b/bald

:op2

Figure 7: An example of our AMR-based logic-driven data augmentation method using commutative law

The bald eagle is strong.

Text-to-AMR Parser

The bald eagle is not strong.

AMR-to-Text Generator

1. Add negation 
argument

WordNet

The bald eagle is
not weak.

2. Antonym 
replacement

:mod

:ARG1

s/strong-02

e/eagle

b/bald
:mod

:ARG1

s/strong-02

e/eagle

b/bald

-

:polarity

Figure 8: An example for our AMR-based logic-driven data augmentation method using double negation law
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Context (Facts+Rules):
Facts: Alan is tall. Alan is big. Alan is huge. Fiona is thin. Fiona is small. Charlie is quiet. Charlie is
smart. Charlie is wealthy. Anne is dull. Anne is sad. Anne is poor.
Rules for Depth=1: If someone is tall then they are quiet . If someone is thin then they are little . If

someone is dull and sad then they are bad. If someone is quiet and smart then they are kind.
Rules for Depth=1 (with altered rules: If someone is not quiet then they are not tall . If someone is

not little then they are not thin . If someone is sad and dull then they are bad. If someone is smart and
quiet then they are kind.
Question 1: Alan is quiet? Label: True.
Question 2: Alan is not smart? Label: False.
Question 3: Fiona is little? Label: True.
Question 4: Fiona is not little? Label: False.
Question 5: Charlie is kind? Label: True.
Question 6: Charlie is not kind? Label: False.
Question 7: Anne is bad? Label: True.
Question 8: Anne is not bad? Label: False.

Figure 9: An example for PARARULE-Plus Depth=1 and Depth=1 (with altered rules). The input includes context
(facts + rules) and questions. The output is either true or false. In this example, we use logical equivalence laws
(contraposition and commutative laws to extend the sentence in the rule sets to logical equivalence sentences. The
highlighted words are the logical equivalence laws that we used. The green and lime green background mean the
sentences are constructed by contraposition law, and the cyan background means the sentences are constructed by
commutative law.)

Context (Facts+Rules):
Facts: Erin is strong. Erin is tall. Erin is huge. Dave is thin. Dave is short. Fiona is kind. Fiona is wealthy.
Fiona is quiet. Bob is sad. Bob is poor. Bob is bad.
Rules for Depth=2: Strong people are kind . If someone is thin and short then they are little. If someone

is sad and poor then they are dull. If someone is kind and wealthy then they are nice . All little people

are small . All kind people are wealthy. All nice people are smart. All dull people are rough .

Rules for Depth=2 (with altered rules): If someone is not kind then they are not strong . If someone is

thin and short then they are little. If someone is sad and poor then they are dull. If someone is not nice
then they are not both kind and wealthy . There are no little people who are not small . All kind people

are wealthy. All nice people are smart. There are no dull people who are not rough .
Question 1: Erin is wealthy? Label: True.
Question 2: Erin is not wealthy? Label: False.
Question 3: Dave is small? Label: True.
Question 4: Dave is not small? Label: False.
Question 5: Fiona is smart? Label: True.
Question 6: Fiona is not smart? Label: False.
Question 7: Bob is rough? Label: True.
Question 8: Bob is not rough? Label: False.

Figure 10: An example for PARARULE-Plus Depth=2 and Depth=2 (with altered rules). The input includes context
(facts + rules) and questions; the output is either “True” or “False”. In this example, we use the contraposition
law and De Morgan’s law to convert sentences in the rule set to logically equivalent sentences. We highlighted
the keywords that were changed when the alternative rules were constructed. Green and lime green backgrounds
indicate sentences constructed using the contraposition law, while pink and magenta indicate sentences constructed
with De Morgan’s law.)
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Require: Synthetic sentence lists (list1, list2, list3, and list4) generated following the patterns from
Table 16, 17, 18, and 19 respectively. total_list = []
for sent in synthetic_ sentence_lists do

amr_graph = Text-To-AMR-Parser(sent)
if sent in list1 then

##double negation law
if “:polarity -” in amr_graph then

Remove “:polarity -” from the amr_graph
else

Add “:polarity -” into the amr_graph
end if
aug_text = AMR-To-Text-Generator(amr_graph)
Use WordNet to replace an adjective word to antonym word from aug_text.

else if sent in list2 then
##commutative law
Switch the order of two arguments.
aug_text = AMR-To-Text-Generator(amr_graph)

else if sent in list3 then
##implication law
Change the root node as “or”.
if “:polarity -” in a condition argument then

Remove the “:polarity -”.
else

Add “:polarity -” into the argument.
end if
aug_text = AMR-To-Text-Generator(amr_graph)

else if sent in list4 then
##contraposition law
Switch the order of two arguments.
if “:polarity -” in the argument of the amr_graph then

Remove the “:polarity -”.
else

Add “:polarity -” into the argument.
end if
aug_text = AMR-To-Text-Generator(amr_graph)

end if
total_list = total_list.append((sent, aug_text, 1))

end for
return total_list

Algorithm 1: AMR-Based Logic-Driven Data Augmentation
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Require: Synthetic sentence lists (list1, list2, list3, and list4) generated following the patterns from
Table 16, 17, 18, and 19 respectively. total_list = [], total_list2 = []
for sent in synthetic_ sentence_lists do

amr_graph = Text-To-AMR-Parser(sent)
if “:polarity -” in amr_graph then

Remove “:polarity -”
else

Add “:polarity -” into the amr_graph
end if
aug_text = AMR-To-Text-Generator(amr_graph)
total_list = total_list.append((sent, aug_text, 0))
for sent in total_list do

random select an index i from total_list
total_list2 = total_list2.append((sent, total_list[i], 0))

end for
end for
total_list = total_list.extend(total_list2)
return total_list

Algorithm 2: Negative samples construction

Require: positive_list and negative_list from Algorithm 1 and 2, pre-trained large language model
(LLM),
stage-2 downstream task datasets (ReClor, LogiQA, MNLI, RTE, QNLI, QQP), batch_size bs,
learning_rate lr
Stage-1 fine-tuning
for sents, pos_sents, neg_sents from zip(positive_list, negative_list, bs) do

LLM, Loss = Contrastive_loss(LLM,
sents, pos_sents, neg_sents, label, lr)

end for
Stage-2 fine-tuning
for sent1, sent2 from zip(downstream_tasks, bs) do

LLM, Loss = Cross_entropy_loss(LLM, sent1, sent2, label, lr)
end for

Algorithm 3: Logical-Equivalence-Identification Contrastive Learning
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Model/Datasets ReClor

Dev Test Test-E Test-H

RoBERTa 0.5973 [0.5483,0.6400] 0.5320 [0.5230,0.5400] 0.7257 [0.6950,0.7500] 0.3797 [0.3430,0.4100]
RoBERTa LReasoner-LDA 0.5946 [0.5740,0.6100] 0.5366 [0.5240,0.5400] 0.7219 [0.7040,0.7400] 0.3910 [0.3620,0.4200]
RoBERTa AMR-DA 0.5866 [0.5390,0.6300] 0.5393 [0.5170,0.5600] 0.6681 [0.6420,0.6900] 0.4380 [0.4170,0.4500]
RoBERTa AMR-LDA 0.6526 [0.6050,0.7000] 0.5686 [0.5520,0.5800] 0.7734 [0.7390,0.8000] 0.4077 [0.3980,0.4100]
DeBERTaV2 0.7393 [0.6620,0.8100] 0.7046 [0.6080,0.8000] 0.8082 [0.7650,0.8500] 0.6231 [0.4770,0.7700]
DeBERTaV2 LReasoner-LDA 0.7573 [0.6840,0.8300] 0.7070 [0.5950,0.8100] 0.8408 [0.7730,0.9000] 0.6017 [0.4550,0.7400]
DeBERTaV2 AMR-DA 0.7906 [0.7360,0.8400] 0.7590 [0.7370,0.7800] 0.8462 [0.8020,0.8900] 0.6904 [0.6620,0.7100]
DeBERTaV2 AMR-LDA 0.7940 [0.7760,0.8100] 0.7763 [0.7380,0.8100] 0.8575 [0.8320,0.8800] 0.7124 [0.6640,0.7600]

Model/Datasets LogiQA

Dev Test

RoBERTa 0.3543 [0.3060,0.4000] 0.3450 [0.3060,0.3800]
RoBERTa LReasoner-LDA 0.3481 [0.3160,0.3900] 0.3481 [0.3090,0.3800]
RoBERTa AMR-DA 0.3645 [0.2940,0.4400] 0.3722 [0.3450,0.4100]
RoBERTa AMR-LDA 0.4029 [0.3640,0.4700] 0.3814 [0.3450,0.4100]
DeBERTaV2 0.3972 [0.2270,0.5300] 0.3962 [0.1840,0.5400]
DeBERTaV2 LReasoner-LDA 0.3087 [0.3030,0.3100] 0.2851 [0.2180,0.3600]
DeBERTaV2 AMR-DA 0.2995 [0.2540,0.3600] 0.3010 [0.2730,0.3200]
DeBERTaV2 AMR-LDA 0.4234 [0.3670,0.4800] 0.3988 [0.2570,0.4900]

Table 23: The confidence intervals for the main experiments conducted on the ReClor and LogiQA datasets. We
select random seed 0, 21 and 42 to conduct the main experiment on ReClor and LogiQA datasets. We utilise a 95%
confidence interval to calculate the confidence interval.
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